1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 
38 using namespace clang;
39 using namespace CodeGen;
40 
41 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
42     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
43       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
44               CGBuilderInserterTy(this)),
45       CurFn(nullptr), ReturnValue(Address::invalid()),
46       CapturedStmtInfo(nullptr),
47       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
48       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
49       IsOutlinedSEHHelper(false),
50       BlockInfo(nullptr), BlockPointer(nullptr),
51       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
52       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
53       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
54       DebugInfo(CGM.getModuleDebugInfo()),
55       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
56       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
57       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
58       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
59       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
60       CXXStructorImplicitParamDecl(nullptr),
61       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
62       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
63       TerminateHandler(nullptr), TrapBB(nullptr) {
64   if (!suppressNewContext)
65     CGM.getCXXABI().getMangleContext().startNewFunction();
66 
67   llvm::FastMathFlags FMF;
68   if (CGM.getLangOpts().FastMath)
69     FMF.setUnsafeAlgebra();
70   if (CGM.getLangOpts().FiniteMathOnly) {
71     FMF.setNoNaNs();
72     FMF.setNoInfs();
73   }
74   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
75     FMF.setNoNaNs();
76   }
77   if (CGM.getCodeGenOpts().NoSignedZeros) {
78     FMF.setNoSignedZeros();
79   }
80   if (CGM.getCodeGenOpts().ReciprocalMath) {
81     FMF.setAllowReciprocal();
82   }
83   Builder.setFastMathFlags(FMF);
84 }
85 
86 CodeGenFunction::~CodeGenFunction() {
87   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
88 
89   // If there are any unclaimed block infos, go ahead and destroy them
90   // now.  This can happen if IR-gen gets clever and skips evaluating
91   // something.
92   if (FirstBlockInfo)
93     destroyBlockInfos(FirstBlockInfo);
94 
95   if (getLangOpts().OpenMP) {
96     CGM.getOpenMPRuntime().functionFinished(*this);
97   }
98 }
99 
100 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
101                                                      AlignmentSource *Source) {
102   return getNaturalTypeAlignment(T->getPointeeType(), Source,
103                                  /*forPointee*/ true);
104 }
105 
106 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
107                                                    AlignmentSource *Source,
108                                                    bool forPointeeType) {
109   // Honor alignment typedef attributes even on incomplete types.
110   // We also honor them straight for C++ class types, even as pointees;
111   // there's an expressivity gap here.
112   if (auto TT = T->getAs<TypedefType>()) {
113     if (auto Align = TT->getDecl()->getMaxAlignment()) {
114       if (Source) *Source = AlignmentSource::AttributedType;
115       return getContext().toCharUnitsFromBits(Align);
116     }
117   }
118 
119   if (Source) *Source = AlignmentSource::Type;
120 
121   CharUnits Alignment;
122   if (T->isIncompleteType()) {
123     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
124   } else {
125     // For C++ class pointees, we don't know whether we're pointing at a
126     // base or a complete object, so we generally need to use the
127     // non-virtual alignment.
128     const CXXRecordDecl *RD;
129     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
130       Alignment = CGM.getClassPointerAlignment(RD);
131     } else {
132       Alignment = getContext().getTypeAlignInChars(T);
133     }
134 
135     // Cap to the global maximum type alignment unless the alignment
136     // was somehow explicit on the type.
137     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
138       if (Alignment.getQuantity() > MaxAlign &&
139           !getContext().isAlignmentRequired(T))
140         Alignment = CharUnits::fromQuantity(MaxAlign);
141     }
142   }
143   return Alignment;
144 }
145 
146 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
147   AlignmentSource AlignSource;
148   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
149   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
150                           CGM.getTBAAInfo(T));
151 }
152 
153 /// Given a value of type T* that may not be to a complete object,
154 /// construct an l-value with the natural pointee alignment of T.
155 LValue
156 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
157   AlignmentSource AlignSource;
158   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
159   return MakeAddrLValue(Address(V, Align), T, AlignSource);
160 }
161 
162 
163 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
164   return CGM.getTypes().ConvertTypeForMem(T);
165 }
166 
167 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
168   return CGM.getTypes().ConvertType(T);
169 }
170 
171 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
172   type = type.getCanonicalType();
173   while (true) {
174     switch (type->getTypeClass()) {
175 #define TYPE(name, parent)
176 #define ABSTRACT_TYPE(name, parent)
177 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
178 #define DEPENDENT_TYPE(name, parent) case Type::name:
179 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
180 #include "clang/AST/TypeNodes.def"
181       llvm_unreachable("non-canonical or dependent type in IR-generation");
182 
183     case Type::Auto:
184       llvm_unreachable("undeduced auto type in IR-generation");
185 
186     // Various scalar types.
187     case Type::Builtin:
188     case Type::Pointer:
189     case Type::BlockPointer:
190     case Type::LValueReference:
191     case Type::RValueReference:
192     case Type::MemberPointer:
193     case Type::Vector:
194     case Type::ExtVector:
195     case Type::FunctionProto:
196     case Type::FunctionNoProto:
197     case Type::Enum:
198     case Type::ObjCObjectPointer:
199     case Type::Pipe:
200       return TEK_Scalar;
201 
202     // Complexes.
203     case Type::Complex:
204       return TEK_Complex;
205 
206     // Arrays, records, and Objective-C objects.
207     case Type::ConstantArray:
208     case Type::IncompleteArray:
209     case Type::VariableArray:
210     case Type::Record:
211     case Type::ObjCObject:
212     case Type::ObjCInterface:
213       return TEK_Aggregate;
214 
215     // We operate on atomic values according to their underlying type.
216     case Type::Atomic:
217       type = cast<AtomicType>(type)->getValueType();
218       continue;
219     }
220     llvm_unreachable("unknown type kind!");
221   }
222 }
223 
224 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
225   // For cleanliness, we try to avoid emitting the return block for
226   // simple cases.
227   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
228 
229   if (CurBB) {
230     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
231 
232     // We have a valid insert point, reuse it if it is empty or there are no
233     // explicit jumps to the return block.
234     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
235       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
236       delete ReturnBlock.getBlock();
237     } else
238       EmitBlock(ReturnBlock.getBlock());
239     return llvm::DebugLoc();
240   }
241 
242   // Otherwise, if the return block is the target of a single direct
243   // branch then we can just put the code in that block instead. This
244   // cleans up functions which started with a unified return block.
245   if (ReturnBlock.getBlock()->hasOneUse()) {
246     llvm::BranchInst *BI =
247       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
248     if (BI && BI->isUnconditional() &&
249         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
250       // Record/return the DebugLoc of the simple 'return' expression to be used
251       // later by the actual 'ret' instruction.
252       llvm::DebugLoc Loc = BI->getDebugLoc();
253       Builder.SetInsertPoint(BI->getParent());
254       BI->eraseFromParent();
255       delete ReturnBlock.getBlock();
256       return Loc;
257     }
258   }
259 
260   // FIXME: We are at an unreachable point, there is no reason to emit the block
261   // unless it has uses. However, we still need a place to put the debug
262   // region.end for now.
263 
264   EmitBlock(ReturnBlock.getBlock());
265   return llvm::DebugLoc();
266 }
267 
268 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
269   if (!BB) return;
270   if (!BB->use_empty())
271     return CGF.CurFn->getBasicBlockList().push_back(BB);
272   delete BB;
273 }
274 
275 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
276   assert(BreakContinueStack.empty() &&
277          "mismatched push/pop in break/continue stack!");
278 
279   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
280     && NumSimpleReturnExprs == NumReturnExprs
281     && ReturnBlock.getBlock()->use_empty();
282   // Usually the return expression is evaluated before the cleanup
283   // code.  If the function contains only a simple return statement,
284   // such as a constant, the location before the cleanup code becomes
285   // the last useful breakpoint in the function, because the simple
286   // return expression will be evaluated after the cleanup code. To be
287   // safe, set the debug location for cleanup code to the location of
288   // the return statement.  Otherwise the cleanup code should be at the
289   // end of the function's lexical scope.
290   //
291   // If there are multiple branches to the return block, the branch
292   // instructions will get the location of the return statements and
293   // all will be fine.
294   if (CGDebugInfo *DI = getDebugInfo()) {
295     if (OnlySimpleReturnStmts)
296       DI->EmitLocation(Builder, LastStopPoint);
297     else
298       DI->EmitLocation(Builder, EndLoc);
299   }
300 
301   // Pop any cleanups that might have been associated with the
302   // parameters.  Do this in whatever block we're currently in; it's
303   // important to do this before we enter the return block or return
304   // edges will be *really* confused.
305   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
306   bool HasOnlyLifetimeMarkers =
307       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
308   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
309   if (HasCleanups) {
310     // Make sure the line table doesn't jump back into the body for
311     // the ret after it's been at EndLoc.
312     if (CGDebugInfo *DI = getDebugInfo())
313       if (OnlySimpleReturnStmts)
314         DI->EmitLocation(Builder, EndLoc);
315 
316     PopCleanupBlocks(PrologueCleanupDepth);
317   }
318 
319   // Emit function epilog (to return).
320   llvm::DebugLoc Loc = EmitReturnBlock();
321 
322   if (ShouldInstrumentFunction())
323     EmitFunctionInstrumentation("__cyg_profile_func_exit");
324 
325   // Emit debug descriptor for function end.
326   if (CGDebugInfo *DI = getDebugInfo())
327     DI->EmitFunctionEnd(Builder);
328 
329   // Reset the debug location to that of the simple 'return' expression, if any
330   // rather than that of the end of the function's scope '}'.
331   ApplyDebugLocation AL(*this, Loc);
332   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
333   EmitEndEHSpec(CurCodeDecl);
334 
335   assert(EHStack.empty() &&
336          "did not remove all scopes from cleanup stack!");
337 
338   // If someone did an indirect goto, emit the indirect goto block at the end of
339   // the function.
340   if (IndirectBranch) {
341     EmitBlock(IndirectBranch->getParent());
342     Builder.ClearInsertionPoint();
343   }
344 
345   // If some of our locals escaped, insert a call to llvm.localescape in the
346   // entry block.
347   if (!EscapedLocals.empty()) {
348     // Invert the map from local to index into a simple vector. There should be
349     // no holes.
350     SmallVector<llvm::Value *, 4> EscapeArgs;
351     EscapeArgs.resize(EscapedLocals.size());
352     for (auto &Pair : EscapedLocals)
353       EscapeArgs[Pair.second] = Pair.first;
354     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
355         &CGM.getModule(), llvm::Intrinsic::localescape);
356     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
357   }
358 
359   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
360   llvm::Instruction *Ptr = AllocaInsertPt;
361   AllocaInsertPt = nullptr;
362   Ptr->eraseFromParent();
363 
364   // If someone took the address of a label but never did an indirect goto, we
365   // made a zero entry PHI node, which is illegal, zap it now.
366   if (IndirectBranch) {
367     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
368     if (PN->getNumIncomingValues() == 0) {
369       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
370       PN->eraseFromParent();
371     }
372   }
373 
374   EmitIfUsed(*this, EHResumeBlock);
375   EmitIfUsed(*this, TerminateLandingPad);
376   EmitIfUsed(*this, TerminateHandler);
377   EmitIfUsed(*this, UnreachableBlock);
378 
379   if (CGM.getCodeGenOpts().EmitDeclMetadata)
380     EmitDeclMetadata();
381 
382   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
383            I = DeferredReplacements.begin(),
384            E = DeferredReplacements.end();
385        I != E; ++I) {
386     I->first->replaceAllUsesWith(I->second);
387     I->first->eraseFromParent();
388   }
389 }
390 
391 /// ShouldInstrumentFunction - Return true if the current function should be
392 /// instrumented with __cyg_profile_func_* calls
393 bool CodeGenFunction::ShouldInstrumentFunction() {
394   if (!CGM.getCodeGenOpts().InstrumentFunctions)
395     return false;
396   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
397     return false;
398   return true;
399 }
400 
401 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
402 /// instrumentation function with the current function and the call site, if
403 /// function instrumentation is enabled.
404 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
405   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
406   llvm::PointerType *PointerTy = Int8PtrTy;
407   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
408   llvm::FunctionType *FunctionTy =
409     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
410 
411   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
412   llvm::CallInst *CallSite = Builder.CreateCall(
413     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
414     llvm::ConstantInt::get(Int32Ty, 0),
415     "callsite");
416 
417   llvm::Value *args[] = {
418     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
419     CallSite
420   };
421 
422   EmitNounwindRuntimeCall(F, args);
423 }
424 
425 void CodeGenFunction::EmitMCountInstrumentation() {
426   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
427 
428   llvm::Constant *MCountFn =
429     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
430   EmitNounwindRuntimeCall(MCountFn);
431 }
432 
433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
434 // information in the program executable. The argument information stored
435 // includes the argument name, its type, the address and access qualifiers used.
436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
437                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
438                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
439                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
440   // Create MDNodes that represent the kernel arg metadata.
441   // Each MDNode is a list in the form of "key", N number of values which is
442   // the same number of values as their are kernel arguments.
443 
444   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
445 
446   // MDNode for the kernel argument address space qualifiers.
447   SmallVector<llvm::Metadata *, 8> addressQuals;
448   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
449 
450   // MDNode for the kernel argument access qualifiers (images only).
451   SmallVector<llvm::Metadata *, 8> accessQuals;
452   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
453 
454   // MDNode for the kernel argument type names.
455   SmallVector<llvm::Metadata *, 8> argTypeNames;
456   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
457 
458   // MDNode for the kernel argument base type names.
459   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
460   argBaseTypeNames.push_back(
461       llvm::MDString::get(Context, "kernel_arg_base_type"));
462 
463   // MDNode for the kernel argument type qualifiers.
464   SmallVector<llvm::Metadata *, 8> argTypeQuals;
465   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
466 
467   // MDNode for the kernel argument names.
468   SmallVector<llvm::Metadata *, 8> argNames;
469   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
470 
471   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
472     const ParmVarDecl *parm = FD->getParamDecl(i);
473     QualType ty = parm->getType();
474     std::string typeQuals;
475 
476     if (ty->isPointerType()) {
477       QualType pointeeTy = ty->getPointeeType();
478 
479       // Get address qualifier.
480       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
481           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
482 
483       // Get argument type name.
484       std::string typeName =
485           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
486 
487       // Turn "unsigned type" to "utype"
488       std::string::size_type pos = typeName.find("unsigned");
489       if (pointeeTy.isCanonical() && pos != std::string::npos)
490         typeName.erase(pos+1, 8);
491 
492       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
493 
494       std::string baseTypeName =
495           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
496               Policy) +
497           "*";
498 
499       // Turn "unsigned type" to "utype"
500       pos = baseTypeName.find("unsigned");
501       if (pos != std::string::npos)
502         baseTypeName.erase(pos+1, 8);
503 
504       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
505 
506       // Get argument type qualifiers:
507       if (ty.isRestrictQualified())
508         typeQuals = "restrict";
509       if (pointeeTy.isConstQualified() ||
510           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
511         typeQuals += typeQuals.empty() ? "const" : " const";
512       if (pointeeTy.isVolatileQualified())
513         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
514     } else {
515       uint32_t AddrSpc = 0;
516       bool isPipe = ty->isPipeType();
517       if (ty->isImageType() || isPipe)
518         AddrSpc =
519           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
520 
521       addressQuals.push_back(
522           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
523 
524       // Get argument type name.
525       std::string typeName;
526       if (isPipe)
527         typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy);
528       else
529         typeName = ty.getUnqualifiedType().getAsString(Policy);
530 
531       // Turn "unsigned type" to "utype"
532       std::string::size_type pos = typeName.find("unsigned");
533       if (ty.isCanonical() && pos != std::string::npos)
534         typeName.erase(pos+1, 8);
535 
536       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
537 
538       std::string baseTypeName;
539       if (isPipe)
540         baseTypeName =
541           cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy);
542       else
543         baseTypeName =
544           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
545 
546       // Turn "unsigned type" to "utype"
547       pos = baseTypeName.find("unsigned");
548       if (pos != std::string::npos)
549         baseTypeName.erase(pos+1, 8);
550 
551       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
552 
553       // Get argument type qualifiers:
554       if (ty.isConstQualified())
555         typeQuals = "const";
556       if (ty.isVolatileQualified())
557         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
558       if (isPipe)
559         typeQuals = "pipe";
560     }
561 
562     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
563 
564     // Get image and pipe access qualifier:
565     if (ty->isImageType()|| ty->isPipeType()) {
566       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
567       if (A && A->isWriteOnly())
568         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
569       else if (A && A->isReadWrite())
570         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
571       else
572         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
573     } else
574       accessQuals.push_back(llvm::MDString::get(Context, "none"));
575 
576     // Get argument name.
577     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
578   }
579 
580   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
581   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
582   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
583   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
584   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
585   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
586     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
587 }
588 
589 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
590                                                llvm::Function *Fn)
591 {
592   if (!FD->hasAttr<OpenCLKernelAttr>())
593     return;
594 
595   llvm::LLVMContext &Context = getLLVMContext();
596 
597   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
598   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
599 
600   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
601                        getContext());
602 
603   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
604     QualType hintQTy = A->getTypeHint();
605     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
606     bool isSignedInteger =
607         hintQTy->isSignedIntegerType() ||
608         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
609     llvm::Metadata *attrMDArgs[] = {
610         llvm::MDString::get(Context, "vec_type_hint"),
611         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
612             CGM.getTypes().ConvertType(A->getTypeHint()))),
613         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
614             llvm::IntegerType::get(Context, 32),
615             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
616     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
617   }
618 
619   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
620     llvm::Metadata *attrMDArgs[] = {
621         llvm::MDString::get(Context, "work_group_size_hint"),
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
626   }
627 
628   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
629     llvm::Metadata *attrMDArgs[] = {
630         llvm::MDString::get(Context, "reqd_work_group_size"),
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
633         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
634     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
635   }
636 
637   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
638   llvm::NamedMDNode *OpenCLKernelMetadata =
639     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
640   OpenCLKernelMetadata->addOperand(kernelMDNode);
641 }
642 
643 /// Determine whether the function F ends with a return stmt.
644 static bool endsWithReturn(const Decl* F) {
645   const Stmt *Body = nullptr;
646   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
647     Body = FD->getBody();
648   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
649     Body = OMD->getBody();
650 
651   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
652     auto LastStmt = CS->body_rbegin();
653     if (LastStmt != CS->body_rend())
654       return isa<ReturnStmt>(*LastStmt);
655   }
656   return false;
657 }
658 
659 void CodeGenFunction::StartFunction(GlobalDecl GD,
660                                     QualType RetTy,
661                                     llvm::Function *Fn,
662                                     const CGFunctionInfo &FnInfo,
663                                     const FunctionArgList &Args,
664                                     SourceLocation Loc,
665                                     SourceLocation StartLoc) {
666   assert(!CurFn &&
667          "Do not use a CodeGenFunction object for more than one function");
668 
669   const Decl *D = GD.getDecl();
670 
671   DidCallStackSave = false;
672   CurCodeDecl = D;
673   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
674     if (FD->usesSEHTry())
675       CurSEHParent = FD;
676   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
677   FnRetTy = RetTy;
678   CurFn = Fn;
679   CurFnInfo = &FnInfo;
680   assert(CurFn->isDeclaration() && "Function already has body?");
681 
682   if (CGM.isInSanitizerBlacklist(Fn, Loc))
683     SanOpts.clear();
684 
685   if (D) {
686     // Apply the no_sanitize* attributes to SanOpts.
687     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
688       SanOpts.Mask &= ~Attr->getMask();
689   }
690 
691   // Apply sanitizer attributes to the function.
692   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
693     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
694   if (SanOpts.has(SanitizerKind::Thread))
695     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
696   if (SanOpts.has(SanitizerKind::Memory))
697     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
698   if (SanOpts.has(SanitizerKind::SafeStack))
699     Fn->addFnAttr(llvm::Attribute::SafeStack);
700 
701   // Pass inline keyword to optimizer if it appears explicitly on any
702   // declaration. Also, in the case of -fno-inline attach NoInline
703   // attribute to all function that are not marked AlwaysInline.
704   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
705     if (!CGM.getCodeGenOpts().NoInline) {
706       for (auto RI : FD->redecls())
707         if (RI->isInlineSpecified()) {
708           Fn->addFnAttr(llvm::Attribute::InlineHint);
709           break;
710         }
711     } else if (!FD->hasAttr<AlwaysInlineAttr>())
712       Fn->addFnAttr(llvm::Attribute::NoInline);
713   }
714 
715   // Add no-jump-tables value.
716   Fn->addFnAttr("no-jump-tables",
717                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
718 
719   if (getLangOpts().OpenCL) {
720     // Add metadata for a kernel function.
721     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
722       EmitOpenCLKernelMetadata(FD, Fn);
723   }
724 
725   // If we are checking function types, emit a function type signature as
726   // prologue data.
727   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
728     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
729       if (llvm::Constant *PrologueSig =
730               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
731         llvm::Constant *FTRTTIConst =
732             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
733         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
734         llvm::Constant *PrologueStructConst =
735             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
736         Fn->setPrologueData(PrologueStructConst);
737       }
738     }
739   }
740 
741   // If we're in C++ mode and the function name is "main", it is guaranteed
742   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
743   // used within a program").
744   if (getLangOpts().CPlusPlus)
745     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
746       if (FD->isMain())
747         Fn->addFnAttr(llvm::Attribute::NoRecurse);
748 
749   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
750 
751   // Create a marker to make it easy to insert allocas into the entryblock
752   // later.  Don't create this with the builder, because we don't want it
753   // folded.
754   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
755   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
756 
757   ReturnBlock = getJumpDestInCurrentScope("return");
758 
759   Builder.SetInsertPoint(EntryBB);
760 
761   // Emit subprogram debug descriptor.
762   if (CGDebugInfo *DI = getDebugInfo()) {
763     SmallVector<QualType, 16> ArgTypes;
764     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
765 	 i != e; ++i) {
766       ArgTypes.push_back((*i)->getType());
767     }
768 
769     QualType FnType =
770       getContext().getFunctionType(RetTy, ArgTypes,
771                                    FunctionProtoType::ExtProtoInfo());
772     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
773   }
774 
775   if (ShouldInstrumentFunction())
776     EmitFunctionInstrumentation("__cyg_profile_func_enter");
777 
778   if (CGM.getCodeGenOpts().InstrumentForProfiling)
779     EmitMCountInstrumentation();
780 
781   if (RetTy->isVoidType()) {
782     // Void type; nothing to return.
783     ReturnValue = Address::invalid();
784 
785     // Count the implicit return.
786     if (!endsWithReturn(D))
787       ++NumReturnExprs;
788   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
789              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
790     // Indirect aggregate return; emit returned value directly into sret slot.
791     // This reduces code size, and affects correctness in C++.
792     auto AI = CurFn->arg_begin();
793     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
794       ++AI;
795     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
796   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
797              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
798     // Load the sret pointer from the argument struct and return into that.
799     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
800     llvm::Function::arg_iterator EI = CurFn->arg_end();
801     --EI;
802     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
803     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
804     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
805   } else {
806     ReturnValue = CreateIRTemp(RetTy, "retval");
807 
808     // Tell the epilog emitter to autorelease the result.  We do this
809     // now so that various specialized functions can suppress it
810     // during their IR-generation.
811     if (getLangOpts().ObjCAutoRefCount &&
812         !CurFnInfo->isReturnsRetained() &&
813         RetTy->isObjCRetainableType())
814       AutoreleaseResult = true;
815   }
816 
817   EmitStartEHSpec(CurCodeDecl);
818 
819   PrologueCleanupDepth = EHStack.stable_begin();
820   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
821 
822   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
823     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
824     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
825     if (MD->getParent()->isLambda() &&
826         MD->getOverloadedOperator() == OO_Call) {
827       // We're in a lambda; figure out the captures.
828       MD->getParent()->getCaptureFields(LambdaCaptureFields,
829                                         LambdaThisCaptureField);
830       if (LambdaThisCaptureField) {
831         // If the lambda captures the object referred to by '*this' - either by
832         // value or by reference, make sure CXXThisValue points to the correct
833         // object.
834 
835         // Get the lvalue for the field (which is a copy of the enclosing object
836         // or contains the address of the enclosing object).
837         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
838         if (!LambdaThisCaptureField->getType()->isPointerType()) {
839           // If the enclosing object was captured by value, just use its address.
840           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
841         } else {
842           // Load the lvalue pointed to by the field, since '*this' was captured
843           // by reference.
844           CXXThisValue =
845               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
846         }
847       }
848       for (auto *FD : MD->getParent()->fields()) {
849         if (FD->hasCapturedVLAType()) {
850           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
851                                            SourceLocation()).getScalarVal();
852           auto VAT = FD->getCapturedVLAType();
853           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
854         }
855       }
856     } else {
857       // Not in a lambda; just use 'this' from the method.
858       // FIXME: Should we generate a new load for each use of 'this'?  The
859       // fast register allocator would be happier...
860       CXXThisValue = CXXABIThisValue;
861     }
862   }
863 
864   // If any of the arguments have a variably modified type, make sure to
865   // emit the type size.
866   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
867        i != e; ++i) {
868     const VarDecl *VD = *i;
869 
870     // Dig out the type as written from ParmVarDecls; it's unclear whether
871     // the standard (C99 6.9.1p10) requires this, but we're following the
872     // precedent set by gcc.
873     QualType Ty;
874     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
875       Ty = PVD->getOriginalType();
876     else
877       Ty = VD->getType();
878 
879     if (Ty->isVariablyModifiedType())
880       EmitVariablyModifiedType(Ty);
881   }
882   // Emit a location at the end of the prologue.
883   if (CGDebugInfo *DI = getDebugInfo())
884     DI->EmitLocation(Builder, StartLoc);
885 }
886 
887 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
888                                        const Stmt *Body) {
889   incrementProfileCounter(Body);
890   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
891     EmitCompoundStmtWithoutScope(*S);
892   else
893     EmitStmt(Body);
894 }
895 
896 /// When instrumenting to collect profile data, the counts for some blocks
897 /// such as switch cases need to not include the fall-through counts, so
898 /// emit a branch around the instrumentation code. When not instrumenting,
899 /// this just calls EmitBlock().
900 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
901                                                const Stmt *S) {
902   llvm::BasicBlock *SkipCountBB = nullptr;
903   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
904     // When instrumenting for profiling, the fallthrough to certain
905     // statements needs to skip over the instrumentation code so that we
906     // get an accurate count.
907     SkipCountBB = createBasicBlock("skipcount");
908     EmitBranch(SkipCountBB);
909   }
910   EmitBlock(BB);
911   uint64_t CurrentCount = getCurrentProfileCount();
912   incrementProfileCounter(S);
913   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
914   if (SkipCountBB)
915     EmitBlock(SkipCountBB);
916 }
917 
918 /// Tries to mark the given function nounwind based on the
919 /// non-existence of any throwing calls within it.  We believe this is
920 /// lightweight enough to do at -O0.
921 static void TryMarkNoThrow(llvm::Function *F) {
922   // LLVM treats 'nounwind' on a function as part of the type, so we
923   // can't do this on functions that can be overwritten.
924   if (F->isInterposable()) return;
925 
926   for (llvm::BasicBlock &BB : *F)
927     for (llvm::Instruction &I : BB)
928       if (I.mayThrow())
929         return;
930 
931   F->setDoesNotThrow();
932 }
933 
934 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
935                                    const CGFunctionInfo &FnInfo) {
936   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
937 
938   // Check if we should generate debug info for this function.
939   if (FD->hasAttr<NoDebugAttr>())
940     DebugInfo = nullptr; // disable debug info indefinitely for this function
941 
942   FunctionArgList Args;
943   QualType ResTy = FD->getReturnType();
944 
945   CurGD = GD;
946   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
947   if (MD && MD->isInstance()) {
948     if (CGM.getCXXABI().HasThisReturn(GD))
949       ResTy = MD->getThisType(getContext());
950     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
951       ResTy = CGM.getContext().VoidPtrTy;
952     CGM.getCXXABI().buildThisParam(*this, Args);
953   }
954 
955   for (auto *Param : FD->params()) {
956     Args.push_back(Param);
957     if (!Param->hasAttr<PassObjectSizeAttr>())
958       continue;
959 
960     IdentifierInfo *NoID = nullptr;
961     auto *Implicit = ImplicitParamDecl::Create(
962         getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
963         getContext().getSizeType());
964     SizeArguments[Param] = Implicit;
965     Args.push_back(Implicit);
966   }
967 
968   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
969     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
970 
971   SourceRange BodyRange;
972   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
973   CurEHLocation = BodyRange.getEnd();
974 
975   // Use the location of the start of the function to determine where
976   // the function definition is located. By default use the location
977   // of the declaration as the location for the subprogram. A function
978   // may lack a declaration in the source code if it is created by code
979   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
980   SourceLocation Loc = FD->getLocation();
981 
982   // If this is a function specialization then use the pattern body
983   // as the location for the function.
984   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
985     if (SpecDecl->hasBody(SpecDecl))
986       Loc = SpecDecl->getLocation();
987 
988   // Emit the standard function prologue.
989   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
990 
991   // Generate the body of the function.
992   PGO.assignRegionCounters(GD, CurFn);
993   if (isa<CXXDestructorDecl>(FD))
994     EmitDestructorBody(Args);
995   else if (isa<CXXConstructorDecl>(FD))
996     EmitConstructorBody(Args);
997   else if (getLangOpts().CUDA &&
998            !getLangOpts().CUDAIsDevice &&
999            FD->hasAttr<CUDAGlobalAttr>())
1000     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1001   else if (isa<CXXConversionDecl>(FD) &&
1002            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1003     // The lambda conversion to block pointer is special; the semantics can't be
1004     // expressed in the AST, so IRGen needs to special-case it.
1005     EmitLambdaToBlockPointerBody(Args);
1006   } else if (isa<CXXMethodDecl>(FD) &&
1007              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1008     // The lambda static invoker function is special, because it forwards or
1009     // clones the body of the function call operator (but is actually static).
1010     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1011   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1012              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1013               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1014     // Implicit copy-assignment gets the same special treatment as implicit
1015     // copy-constructors.
1016     emitImplicitAssignmentOperatorBody(Args);
1017   } else if (Stmt *Body = FD->getBody()) {
1018     EmitFunctionBody(Args, Body);
1019   } else
1020     llvm_unreachable("no definition for emitted function");
1021 
1022   // C++11 [stmt.return]p2:
1023   //   Flowing off the end of a function [...] results in undefined behavior in
1024   //   a value-returning function.
1025   // C11 6.9.1p12:
1026   //   If the '}' that terminates a function is reached, and the value of the
1027   //   function call is used by the caller, the behavior is undefined.
1028   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1029       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1030     if (SanOpts.has(SanitizerKind::Return)) {
1031       SanitizerScope SanScope(this);
1032       llvm::Value *IsFalse = Builder.getFalse();
1033       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1034                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1035                 None);
1036     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1037       EmitTrapCall(llvm::Intrinsic::trap);
1038     }
1039     Builder.CreateUnreachable();
1040     Builder.ClearInsertionPoint();
1041   }
1042 
1043   // Emit the standard function epilogue.
1044   FinishFunction(BodyRange.getEnd());
1045 
1046   // If we haven't marked the function nothrow through other means, do
1047   // a quick pass now to see if we can.
1048   if (!CurFn->doesNotThrow())
1049     TryMarkNoThrow(CurFn);
1050 }
1051 
1052 /// ContainsLabel - Return true if the statement contains a label in it.  If
1053 /// this statement is not executed normally, it not containing a label means
1054 /// that we can just remove the code.
1055 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1056   // Null statement, not a label!
1057   if (!S) return false;
1058 
1059   // If this is a label, we have to emit the code, consider something like:
1060   // if (0) {  ...  foo:  bar(); }  goto foo;
1061   //
1062   // TODO: If anyone cared, we could track __label__'s, since we know that you
1063   // can't jump to one from outside their declared region.
1064   if (isa<LabelStmt>(S))
1065     return true;
1066 
1067   // If this is a case/default statement, and we haven't seen a switch, we have
1068   // to emit the code.
1069   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1070     return true;
1071 
1072   // If this is a switch statement, we want to ignore cases below it.
1073   if (isa<SwitchStmt>(S))
1074     IgnoreCaseStmts = true;
1075 
1076   // Scan subexpressions for verboten labels.
1077   for (const Stmt *SubStmt : S->children())
1078     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1079       return true;
1080 
1081   return false;
1082 }
1083 
1084 /// containsBreak - Return true if the statement contains a break out of it.
1085 /// If the statement (recursively) contains a switch or loop with a break
1086 /// inside of it, this is fine.
1087 bool CodeGenFunction::containsBreak(const Stmt *S) {
1088   // Null statement, not a label!
1089   if (!S) return false;
1090 
1091   // If this is a switch or loop that defines its own break scope, then we can
1092   // include it and anything inside of it.
1093   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1094       isa<ForStmt>(S))
1095     return false;
1096 
1097   if (isa<BreakStmt>(S))
1098     return true;
1099 
1100   // Scan subexpressions for verboten breaks.
1101   for (const Stmt *SubStmt : S->children())
1102     if (containsBreak(SubStmt))
1103       return true;
1104 
1105   return false;
1106 }
1107 
1108 
1109 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1110 /// to a constant, or if it does but contains a label, return false.  If it
1111 /// constant folds return true and set the boolean result in Result.
1112 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1113                                                    bool &ResultBool) {
1114   llvm::APSInt ResultInt;
1115   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1116     return false;
1117 
1118   ResultBool = ResultInt.getBoolValue();
1119   return true;
1120 }
1121 
1122 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1123 /// to a constant, or if it does but contains a label, return false.  If it
1124 /// constant folds return true and set the folded value.
1125 bool CodeGenFunction::
1126 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1127   // FIXME: Rename and handle conversion of other evaluatable things
1128   // to bool.
1129   llvm::APSInt Int;
1130   if (!Cond->EvaluateAsInt(Int, getContext()))
1131     return false;  // Not foldable, not integer or not fully evaluatable.
1132 
1133   if (CodeGenFunction::ContainsLabel(Cond))
1134     return false;  // Contains a label.
1135 
1136   ResultInt = Int;
1137   return true;
1138 }
1139 
1140 
1141 
1142 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1143 /// statement) to the specified blocks.  Based on the condition, this might try
1144 /// to simplify the codegen of the conditional based on the branch.
1145 ///
1146 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1147                                            llvm::BasicBlock *TrueBlock,
1148                                            llvm::BasicBlock *FalseBlock,
1149                                            uint64_t TrueCount) {
1150   Cond = Cond->IgnoreParens();
1151 
1152   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1153 
1154     // Handle X && Y in a condition.
1155     if (CondBOp->getOpcode() == BO_LAnd) {
1156       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1157       // folded if the case was simple enough.
1158       bool ConstantBool = false;
1159       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1160           ConstantBool) {
1161         // br(1 && X) -> br(X).
1162         incrementProfileCounter(CondBOp);
1163         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1164                                     TrueCount);
1165       }
1166 
1167       // If we have "X && 1", simplify the code to use an uncond branch.
1168       // "X && 0" would have been constant folded to 0.
1169       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1170           ConstantBool) {
1171         // br(X && 1) -> br(X).
1172         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1173                                     TrueCount);
1174       }
1175 
1176       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1177       // want to jump to the FalseBlock.
1178       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1179       // The counter tells us how often we evaluate RHS, and all of TrueCount
1180       // can be propagated to that branch.
1181       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1182 
1183       ConditionalEvaluation eval(*this);
1184       {
1185         ApplyDebugLocation DL(*this, Cond);
1186         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1187         EmitBlock(LHSTrue);
1188       }
1189 
1190       incrementProfileCounter(CondBOp);
1191       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1192 
1193       // Any temporaries created here are conditional.
1194       eval.begin(*this);
1195       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1196       eval.end(*this);
1197 
1198       return;
1199     }
1200 
1201     if (CondBOp->getOpcode() == BO_LOr) {
1202       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1203       // folded if the case was simple enough.
1204       bool ConstantBool = false;
1205       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1206           !ConstantBool) {
1207         // br(0 || X) -> br(X).
1208         incrementProfileCounter(CondBOp);
1209         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1210                                     TrueCount);
1211       }
1212 
1213       // If we have "X || 0", simplify the code to use an uncond branch.
1214       // "X || 1" would have been constant folded to 1.
1215       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1216           !ConstantBool) {
1217         // br(X || 0) -> br(X).
1218         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1219                                     TrueCount);
1220       }
1221 
1222       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1223       // want to jump to the TrueBlock.
1224       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1225       // We have the count for entry to the RHS and for the whole expression
1226       // being true, so we can divy up True count between the short circuit and
1227       // the RHS.
1228       uint64_t LHSCount =
1229           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1230       uint64_t RHSCount = TrueCount - LHSCount;
1231 
1232       ConditionalEvaluation eval(*this);
1233       {
1234         ApplyDebugLocation DL(*this, Cond);
1235         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1236         EmitBlock(LHSFalse);
1237       }
1238 
1239       incrementProfileCounter(CondBOp);
1240       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1241 
1242       // Any temporaries created here are conditional.
1243       eval.begin(*this);
1244       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1245 
1246       eval.end(*this);
1247 
1248       return;
1249     }
1250   }
1251 
1252   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1253     // br(!x, t, f) -> br(x, f, t)
1254     if (CondUOp->getOpcode() == UO_LNot) {
1255       // Negate the count.
1256       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1257       // Negate the condition and swap the destination blocks.
1258       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1259                                   FalseCount);
1260     }
1261   }
1262 
1263   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1264     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1265     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1266     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1267 
1268     ConditionalEvaluation cond(*this);
1269     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1270                          getProfileCount(CondOp));
1271 
1272     // When computing PGO branch weights, we only know the overall count for
1273     // the true block. This code is essentially doing tail duplication of the
1274     // naive code-gen, introducing new edges for which counts are not
1275     // available. Divide the counts proportionally between the LHS and RHS of
1276     // the conditional operator.
1277     uint64_t LHSScaledTrueCount = 0;
1278     if (TrueCount) {
1279       double LHSRatio =
1280           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1281       LHSScaledTrueCount = TrueCount * LHSRatio;
1282     }
1283 
1284     cond.begin(*this);
1285     EmitBlock(LHSBlock);
1286     incrementProfileCounter(CondOp);
1287     {
1288       ApplyDebugLocation DL(*this, Cond);
1289       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1290                            LHSScaledTrueCount);
1291     }
1292     cond.end(*this);
1293 
1294     cond.begin(*this);
1295     EmitBlock(RHSBlock);
1296     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1297                          TrueCount - LHSScaledTrueCount);
1298     cond.end(*this);
1299 
1300     return;
1301   }
1302 
1303   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1304     // Conditional operator handling can give us a throw expression as a
1305     // condition for a case like:
1306     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1307     // Fold this to:
1308     //   br(c, throw x, br(y, t, f))
1309     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1310     return;
1311   }
1312 
1313   // If the branch has a condition wrapped by __builtin_unpredictable,
1314   // create metadata that specifies that the branch is unpredictable.
1315   // Don't bother if not optimizing because that metadata would not be used.
1316   llvm::MDNode *Unpredictable = nullptr;
1317   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1318     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1319       const Decl *TargetDecl = Call->getCalleeDecl();
1320       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1321         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1322           llvm::MDBuilder MDHelper(getLLVMContext());
1323           Unpredictable = MDHelper.createUnpredictable();
1324         }
1325       }
1326     }
1327   }
1328 
1329   // Create branch weights based on the number of times we get here and the
1330   // number of times the condition should be true.
1331   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1332   llvm::MDNode *Weights =
1333       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1334 
1335   // Emit the code with the fully general case.
1336   llvm::Value *CondV;
1337   {
1338     ApplyDebugLocation DL(*this, Cond);
1339     CondV = EvaluateExprAsBool(Cond);
1340   }
1341   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1342 }
1343 
1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1345 /// specified stmt yet.
1346 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1347   CGM.ErrorUnsupported(S, Type);
1348 }
1349 
1350 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1351 /// variable-length array whose elements have a non-zero bit-pattern.
1352 ///
1353 /// \param baseType the inner-most element type of the array
1354 /// \param src - a char* pointing to the bit-pattern for a single
1355 /// base element of the array
1356 /// \param sizeInChars - the total size of the VLA, in chars
1357 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1358                                Address dest, Address src,
1359                                llvm::Value *sizeInChars) {
1360   CGBuilderTy &Builder = CGF.Builder;
1361 
1362   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1363   llvm::Value *baseSizeInChars
1364     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1365 
1366   Address begin =
1367     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1368   llvm::Value *end =
1369     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1370 
1371   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1372   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1373   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1374 
1375   // Make a loop over the VLA.  C99 guarantees that the VLA element
1376   // count must be nonzero.
1377   CGF.EmitBlock(loopBB);
1378 
1379   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1380   cur->addIncoming(begin.getPointer(), originBB);
1381 
1382   CharUnits curAlign =
1383     dest.getAlignment().alignmentOfArrayElement(baseSize);
1384 
1385   // memcpy the individual element bit-pattern.
1386   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1387                        /*volatile*/ false);
1388 
1389   // Go to the next element.
1390   llvm::Value *next =
1391     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1392 
1393   // Leave if that's the end of the VLA.
1394   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1395   Builder.CreateCondBr(done, contBB, loopBB);
1396   cur->addIncoming(next, loopBB);
1397 
1398   CGF.EmitBlock(contBB);
1399 }
1400 
1401 void
1402 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1403   // Ignore empty classes in C++.
1404   if (getLangOpts().CPlusPlus) {
1405     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1406       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1407         return;
1408     }
1409   }
1410 
1411   // Cast the dest ptr to the appropriate i8 pointer type.
1412   if (DestPtr.getElementType() != Int8Ty)
1413     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1414 
1415   // Get size and alignment info for this aggregate.
1416   CharUnits size = getContext().getTypeSizeInChars(Ty);
1417 
1418   llvm::Value *SizeVal;
1419   const VariableArrayType *vla;
1420 
1421   // Don't bother emitting a zero-byte memset.
1422   if (size.isZero()) {
1423     // But note that getTypeInfo returns 0 for a VLA.
1424     if (const VariableArrayType *vlaType =
1425           dyn_cast_or_null<VariableArrayType>(
1426                                           getContext().getAsArrayType(Ty))) {
1427       QualType eltType;
1428       llvm::Value *numElts;
1429       std::tie(numElts, eltType) = getVLASize(vlaType);
1430 
1431       SizeVal = numElts;
1432       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1433       if (!eltSize.isOne())
1434         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1435       vla = vlaType;
1436     } else {
1437       return;
1438     }
1439   } else {
1440     SizeVal = CGM.getSize(size);
1441     vla = nullptr;
1442   }
1443 
1444   // If the type contains a pointer to data member we can't memset it to zero.
1445   // Instead, create a null constant and copy it to the destination.
1446   // TODO: there are other patterns besides zero that we can usefully memset,
1447   // like -1, which happens to be the pattern used by member-pointers.
1448   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1449     // For a VLA, emit a single element, then splat that over the VLA.
1450     if (vla) Ty = getContext().getBaseElementType(vla);
1451 
1452     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1453 
1454     llvm::GlobalVariable *NullVariable =
1455       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1456                                /*isConstant=*/true,
1457                                llvm::GlobalVariable::PrivateLinkage,
1458                                NullConstant, Twine());
1459     CharUnits NullAlign = DestPtr.getAlignment();
1460     NullVariable->setAlignment(NullAlign.getQuantity());
1461     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1462                    NullAlign);
1463 
1464     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1465 
1466     // Get and call the appropriate llvm.memcpy overload.
1467     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1468     return;
1469   }
1470 
1471   // Otherwise, just memset the whole thing to zero.  This is legal
1472   // because in LLVM, all default initializers (other than the ones we just
1473   // handled above) are guaranteed to have a bit pattern of all zeros.
1474   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1475 }
1476 
1477 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1478   // Make sure that there is a block for the indirect goto.
1479   if (!IndirectBranch)
1480     GetIndirectGotoBlock();
1481 
1482   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1483 
1484   // Make sure the indirect branch includes all of the address-taken blocks.
1485   IndirectBranch->addDestination(BB);
1486   return llvm::BlockAddress::get(CurFn, BB);
1487 }
1488 
1489 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1490   // If we already made the indirect branch for indirect goto, return its block.
1491   if (IndirectBranch) return IndirectBranch->getParent();
1492 
1493   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1494 
1495   // Create the PHI node that indirect gotos will add entries to.
1496   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1497                                               "indirect.goto.dest");
1498 
1499   // Create the indirect branch instruction.
1500   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1501   return IndirectBranch->getParent();
1502 }
1503 
1504 /// Computes the length of an array in elements, as well as the base
1505 /// element type and a properly-typed first element pointer.
1506 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1507                                               QualType &baseType,
1508                                               Address &addr) {
1509   const ArrayType *arrayType = origArrayType;
1510 
1511   // If it's a VLA, we have to load the stored size.  Note that
1512   // this is the size of the VLA in bytes, not its size in elements.
1513   llvm::Value *numVLAElements = nullptr;
1514   if (isa<VariableArrayType>(arrayType)) {
1515     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1516 
1517     // Walk into all VLAs.  This doesn't require changes to addr,
1518     // which has type T* where T is the first non-VLA element type.
1519     do {
1520       QualType elementType = arrayType->getElementType();
1521       arrayType = getContext().getAsArrayType(elementType);
1522 
1523       // If we only have VLA components, 'addr' requires no adjustment.
1524       if (!arrayType) {
1525         baseType = elementType;
1526         return numVLAElements;
1527       }
1528     } while (isa<VariableArrayType>(arrayType));
1529 
1530     // We get out here only if we find a constant array type
1531     // inside the VLA.
1532   }
1533 
1534   // We have some number of constant-length arrays, so addr should
1535   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1536   // down to the first element of addr.
1537   SmallVector<llvm::Value*, 8> gepIndices;
1538 
1539   // GEP down to the array type.
1540   llvm::ConstantInt *zero = Builder.getInt32(0);
1541   gepIndices.push_back(zero);
1542 
1543   uint64_t countFromCLAs = 1;
1544   QualType eltType;
1545 
1546   llvm::ArrayType *llvmArrayType =
1547     dyn_cast<llvm::ArrayType>(addr.getElementType());
1548   while (llvmArrayType) {
1549     assert(isa<ConstantArrayType>(arrayType));
1550     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1551              == llvmArrayType->getNumElements());
1552 
1553     gepIndices.push_back(zero);
1554     countFromCLAs *= llvmArrayType->getNumElements();
1555     eltType = arrayType->getElementType();
1556 
1557     llvmArrayType =
1558       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1559     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1560     assert((!llvmArrayType || arrayType) &&
1561            "LLVM and Clang types are out-of-synch");
1562   }
1563 
1564   if (arrayType) {
1565     // From this point onwards, the Clang array type has been emitted
1566     // as some other type (probably a packed struct). Compute the array
1567     // size, and just emit the 'begin' expression as a bitcast.
1568     while (arrayType) {
1569       countFromCLAs *=
1570           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1571       eltType = arrayType->getElementType();
1572       arrayType = getContext().getAsArrayType(eltType);
1573     }
1574 
1575     llvm::Type *baseType = ConvertType(eltType);
1576     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1577   } else {
1578     // Create the actual GEP.
1579     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1580                                              gepIndices, "array.begin"),
1581                    addr.getAlignment());
1582   }
1583 
1584   baseType = eltType;
1585 
1586   llvm::Value *numElements
1587     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1588 
1589   // If we had any VLA dimensions, factor them in.
1590   if (numVLAElements)
1591     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1592 
1593   return numElements;
1594 }
1595 
1596 std::pair<llvm::Value*, QualType>
1597 CodeGenFunction::getVLASize(QualType type) {
1598   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1599   assert(vla && "type was not a variable array type!");
1600   return getVLASize(vla);
1601 }
1602 
1603 std::pair<llvm::Value*, QualType>
1604 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1605   // The number of elements so far; always size_t.
1606   llvm::Value *numElements = nullptr;
1607 
1608   QualType elementType;
1609   do {
1610     elementType = type->getElementType();
1611     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1612     assert(vlaSize && "no size for VLA!");
1613     assert(vlaSize->getType() == SizeTy);
1614 
1615     if (!numElements) {
1616       numElements = vlaSize;
1617     } else {
1618       // It's undefined behavior if this wraps around, so mark it that way.
1619       // FIXME: Teach -fsanitize=undefined to trap this.
1620       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1621     }
1622   } while ((type = getContext().getAsVariableArrayType(elementType)));
1623 
1624   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1625 }
1626 
1627 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1628   assert(type->isVariablyModifiedType() &&
1629          "Must pass variably modified type to EmitVLASizes!");
1630 
1631   EnsureInsertPoint();
1632 
1633   // We're going to walk down into the type and look for VLA
1634   // expressions.
1635   do {
1636     assert(type->isVariablyModifiedType());
1637 
1638     const Type *ty = type.getTypePtr();
1639     switch (ty->getTypeClass()) {
1640 
1641 #define TYPE(Class, Base)
1642 #define ABSTRACT_TYPE(Class, Base)
1643 #define NON_CANONICAL_TYPE(Class, Base)
1644 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1645 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1646 #include "clang/AST/TypeNodes.def"
1647       llvm_unreachable("unexpected dependent type!");
1648 
1649     // These types are never variably-modified.
1650     case Type::Builtin:
1651     case Type::Complex:
1652     case Type::Vector:
1653     case Type::ExtVector:
1654     case Type::Record:
1655     case Type::Enum:
1656     case Type::Elaborated:
1657     case Type::TemplateSpecialization:
1658     case Type::ObjCObject:
1659     case Type::ObjCInterface:
1660     case Type::ObjCObjectPointer:
1661       llvm_unreachable("type class is never variably-modified!");
1662 
1663     case Type::Adjusted:
1664       type = cast<AdjustedType>(ty)->getAdjustedType();
1665       break;
1666 
1667     case Type::Decayed:
1668       type = cast<DecayedType>(ty)->getPointeeType();
1669       break;
1670 
1671     case Type::Pointer:
1672       type = cast<PointerType>(ty)->getPointeeType();
1673       break;
1674 
1675     case Type::BlockPointer:
1676       type = cast<BlockPointerType>(ty)->getPointeeType();
1677       break;
1678 
1679     case Type::LValueReference:
1680     case Type::RValueReference:
1681       type = cast<ReferenceType>(ty)->getPointeeType();
1682       break;
1683 
1684     case Type::MemberPointer:
1685       type = cast<MemberPointerType>(ty)->getPointeeType();
1686       break;
1687 
1688     case Type::ConstantArray:
1689     case Type::IncompleteArray:
1690       // Losing element qualification here is fine.
1691       type = cast<ArrayType>(ty)->getElementType();
1692       break;
1693 
1694     case Type::VariableArray: {
1695       // Losing element qualification here is fine.
1696       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1697 
1698       // Unknown size indication requires no size computation.
1699       // Otherwise, evaluate and record it.
1700       if (const Expr *size = vat->getSizeExpr()) {
1701         // It's possible that we might have emitted this already,
1702         // e.g. with a typedef and a pointer to it.
1703         llvm::Value *&entry = VLASizeMap[size];
1704         if (!entry) {
1705           llvm::Value *Size = EmitScalarExpr(size);
1706 
1707           // C11 6.7.6.2p5:
1708           //   If the size is an expression that is not an integer constant
1709           //   expression [...] each time it is evaluated it shall have a value
1710           //   greater than zero.
1711           if (SanOpts.has(SanitizerKind::VLABound) &&
1712               size->getType()->isSignedIntegerType()) {
1713             SanitizerScope SanScope(this);
1714             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1715             llvm::Constant *StaticArgs[] = {
1716               EmitCheckSourceLocation(size->getLocStart()),
1717               EmitCheckTypeDescriptor(size->getType())
1718             };
1719             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1720                                      SanitizerKind::VLABound),
1721                       "vla_bound_not_positive", StaticArgs, Size);
1722           }
1723 
1724           // Always zexting here would be wrong if it weren't
1725           // undefined behavior to have a negative bound.
1726           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1727         }
1728       }
1729       type = vat->getElementType();
1730       break;
1731     }
1732 
1733     case Type::FunctionProto:
1734     case Type::FunctionNoProto:
1735       type = cast<FunctionType>(ty)->getReturnType();
1736       break;
1737 
1738     case Type::Paren:
1739     case Type::TypeOf:
1740     case Type::UnaryTransform:
1741     case Type::Attributed:
1742     case Type::SubstTemplateTypeParm:
1743     case Type::PackExpansion:
1744       // Keep walking after single level desugaring.
1745       type = type.getSingleStepDesugaredType(getContext());
1746       break;
1747 
1748     case Type::Typedef:
1749     case Type::Decltype:
1750     case Type::Auto:
1751       // Stop walking: nothing to do.
1752       return;
1753 
1754     case Type::TypeOfExpr:
1755       // Stop walking: emit typeof expression.
1756       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1757       return;
1758 
1759     case Type::Atomic:
1760       type = cast<AtomicType>(ty)->getValueType();
1761       break;
1762 
1763     case Type::Pipe:
1764       type = cast<PipeType>(ty)->getElementType();
1765       break;
1766     }
1767   } while (type->isVariablyModifiedType());
1768 }
1769 
1770 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1771   if (getContext().getBuiltinVaListType()->isArrayType())
1772     return EmitPointerWithAlignment(E);
1773   return EmitLValue(E).getAddress();
1774 }
1775 
1776 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1777   return EmitLValue(E).getAddress();
1778 }
1779 
1780 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1781                                               llvm::Constant *Init) {
1782   assert (Init && "Invalid DeclRefExpr initializer!");
1783   if (CGDebugInfo *Dbg = getDebugInfo())
1784     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1785       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1786 }
1787 
1788 CodeGenFunction::PeepholeProtection
1789 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1790   // At the moment, the only aggressive peephole we do in IR gen
1791   // is trunc(zext) folding, but if we add more, we can easily
1792   // extend this protection.
1793 
1794   if (!rvalue.isScalar()) return PeepholeProtection();
1795   llvm::Value *value = rvalue.getScalarVal();
1796   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1797 
1798   // Just make an extra bitcast.
1799   assert(HaveInsertPoint());
1800   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1801                                                   Builder.GetInsertBlock());
1802 
1803   PeepholeProtection protection;
1804   protection.Inst = inst;
1805   return protection;
1806 }
1807 
1808 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1809   if (!protection.Inst) return;
1810 
1811   // In theory, we could try to duplicate the peepholes now, but whatever.
1812   protection.Inst->eraseFromParent();
1813 }
1814 
1815 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1816                                                  llvm::Value *AnnotatedVal,
1817                                                  StringRef AnnotationStr,
1818                                                  SourceLocation Location) {
1819   llvm::Value *Args[4] = {
1820     AnnotatedVal,
1821     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1822     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1823     CGM.EmitAnnotationLineNo(Location)
1824   };
1825   return Builder.CreateCall(AnnotationFn, Args);
1826 }
1827 
1828 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1829   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1830   // FIXME We create a new bitcast for every annotation because that's what
1831   // llvm-gcc was doing.
1832   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1833     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1834                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1835                        I->getAnnotation(), D->getLocation());
1836 }
1837 
1838 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1839                                               Address Addr) {
1840   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1841   llvm::Value *V = Addr.getPointer();
1842   llvm::Type *VTy = V->getType();
1843   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1844                                     CGM.Int8PtrTy);
1845 
1846   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1847     // FIXME Always emit the cast inst so we can differentiate between
1848     // annotation on the first field of a struct and annotation on the struct
1849     // itself.
1850     if (VTy != CGM.Int8PtrTy)
1851       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1852     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1853     V = Builder.CreateBitCast(V, VTy);
1854   }
1855 
1856   return Address(V, Addr.getAlignment());
1857 }
1858 
1859 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1860 
1861 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1862     : CGF(CGF) {
1863   assert(!CGF->IsSanitizerScope);
1864   CGF->IsSanitizerScope = true;
1865 }
1866 
1867 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1868   CGF->IsSanitizerScope = false;
1869 }
1870 
1871 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1872                                    const llvm::Twine &Name,
1873                                    llvm::BasicBlock *BB,
1874                                    llvm::BasicBlock::iterator InsertPt) const {
1875   LoopStack.InsertHelper(I);
1876   if (IsSanitizerScope)
1877     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1878 }
1879 
1880 void CGBuilderInserter::InsertHelper(
1881     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1882     llvm::BasicBlock::iterator InsertPt) const {
1883   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1884   if (CGF)
1885     CGF->InsertHelper(I, Name, BB, InsertPt);
1886 }
1887 
1888 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1889                                 CodeGenModule &CGM, const FunctionDecl *FD,
1890                                 std::string &FirstMissing) {
1891   // If there aren't any required features listed then go ahead and return.
1892   if (ReqFeatures.empty())
1893     return false;
1894 
1895   // Now build up the set of caller features and verify that all the required
1896   // features are there.
1897   llvm::StringMap<bool> CallerFeatureMap;
1898   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1899 
1900   // If we have at least one of the features in the feature list return
1901   // true, otherwise return false.
1902   return std::all_of(
1903       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1904         SmallVector<StringRef, 1> OrFeatures;
1905         Feature.split(OrFeatures, "|");
1906         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1907                            [&](StringRef Feature) {
1908                              if (!CallerFeatureMap.lookup(Feature)) {
1909                                FirstMissing = Feature.str();
1910                                return false;
1911                              }
1912                              return true;
1913                            });
1914       });
1915 }
1916 
1917 // Emits an error if we don't have a valid set of target features for the
1918 // called function.
1919 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1920                                           const FunctionDecl *TargetDecl) {
1921   // Early exit if this is an indirect call.
1922   if (!TargetDecl)
1923     return;
1924 
1925   // Get the current enclosing function if it exists. If it doesn't
1926   // we can't check the target features anyhow.
1927   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1928   if (!FD)
1929     return;
1930 
1931   // Grab the required features for the call. For a builtin this is listed in
1932   // the td file with the default cpu, for an always_inline function this is any
1933   // listed cpu and any listed features.
1934   unsigned BuiltinID = TargetDecl->getBuiltinID();
1935   std::string MissingFeature;
1936   if (BuiltinID) {
1937     SmallVector<StringRef, 1> ReqFeatures;
1938     const char *FeatureList =
1939         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1940     // Return if the builtin doesn't have any required features.
1941     if (!FeatureList || StringRef(FeatureList) == "")
1942       return;
1943     StringRef(FeatureList).split(ReqFeatures, ",");
1944     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1945       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1946           << TargetDecl->getDeclName()
1947           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1948 
1949   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1950     // Get the required features for the callee.
1951     SmallVector<StringRef, 1> ReqFeatures;
1952     llvm::StringMap<bool> CalleeFeatureMap;
1953     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1954     for (const auto &F : CalleeFeatureMap) {
1955       // Only positive features are "required".
1956       if (F.getValue())
1957         ReqFeatures.push_back(F.getKey());
1958     }
1959     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1960       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1961           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1962   }
1963 }
1964 
1965 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
1966   if (!CGM.getCodeGenOpts().SanitizeStats)
1967     return;
1968 
1969   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
1970   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
1971   CGM.getSanStats().create(IRB, SSK);
1972 }
1973