1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 42 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 43 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 44 CGBuilderInserterTy(this)), 45 CurFn(nullptr), ReturnValue(Address::invalid()), 46 CapturedStmtInfo(nullptr), 47 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 48 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 49 IsOutlinedSEHHelper(false), 50 BlockInfo(nullptr), BlockPointer(nullptr), 51 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 52 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 53 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 54 DebugInfo(CGM.getModuleDebugInfo()), 55 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 56 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 57 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 58 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 59 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 60 CXXStructorImplicitParamDecl(nullptr), 61 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 62 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 63 TerminateHandler(nullptr), TrapBB(nullptr) { 64 if (!suppressNewContext) 65 CGM.getCXXABI().getMangleContext().startNewFunction(); 66 67 llvm::FastMathFlags FMF; 68 if (CGM.getLangOpts().FastMath) 69 FMF.setUnsafeAlgebra(); 70 if (CGM.getLangOpts().FiniteMathOnly) { 71 FMF.setNoNaNs(); 72 FMF.setNoInfs(); 73 } 74 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 75 FMF.setNoNaNs(); 76 } 77 if (CGM.getCodeGenOpts().NoSignedZeros) { 78 FMF.setNoSignedZeros(); 79 } 80 if (CGM.getCodeGenOpts().ReciprocalMath) { 81 FMF.setAllowReciprocal(); 82 } 83 Builder.setFastMathFlags(FMF); 84 } 85 86 CodeGenFunction::~CodeGenFunction() { 87 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 88 89 // If there are any unclaimed block infos, go ahead and destroy them 90 // now. This can happen if IR-gen gets clever and skips evaluating 91 // something. 92 if (FirstBlockInfo) 93 destroyBlockInfos(FirstBlockInfo); 94 95 if (getLangOpts().OpenMP) { 96 CGM.getOpenMPRuntime().functionFinished(*this); 97 } 98 } 99 100 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 101 AlignmentSource *Source) { 102 return getNaturalTypeAlignment(T->getPointeeType(), Source, 103 /*forPointee*/ true); 104 } 105 106 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 107 AlignmentSource *Source, 108 bool forPointeeType) { 109 // Honor alignment typedef attributes even on incomplete types. 110 // We also honor them straight for C++ class types, even as pointees; 111 // there's an expressivity gap here. 112 if (auto TT = T->getAs<TypedefType>()) { 113 if (auto Align = TT->getDecl()->getMaxAlignment()) { 114 if (Source) *Source = AlignmentSource::AttributedType; 115 return getContext().toCharUnitsFromBits(Align); 116 } 117 } 118 119 if (Source) *Source = AlignmentSource::Type; 120 121 CharUnits Alignment; 122 if (T->isIncompleteType()) { 123 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 124 } else { 125 // For C++ class pointees, we don't know whether we're pointing at a 126 // base or a complete object, so we generally need to use the 127 // non-virtual alignment. 128 const CXXRecordDecl *RD; 129 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 130 Alignment = CGM.getClassPointerAlignment(RD); 131 } else { 132 Alignment = getContext().getTypeAlignInChars(T); 133 } 134 135 // Cap to the global maximum type alignment unless the alignment 136 // was somehow explicit on the type. 137 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 138 if (Alignment.getQuantity() > MaxAlign && 139 !getContext().isAlignmentRequired(T)) 140 Alignment = CharUnits::fromQuantity(MaxAlign); 141 } 142 } 143 return Alignment; 144 } 145 146 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 147 AlignmentSource AlignSource; 148 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 149 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 150 CGM.getTBAAInfo(T)); 151 } 152 153 /// Given a value of type T* that may not be to a complete object, 154 /// construct an l-value with the natural pointee alignment of T. 155 LValue 156 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 157 AlignmentSource AlignSource; 158 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 159 return MakeAddrLValue(Address(V, Align), T, AlignSource); 160 } 161 162 163 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 164 return CGM.getTypes().ConvertTypeForMem(T); 165 } 166 167 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 168 return CGM.getTypes().ConvertType(T); 169 } 170 171 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 172 type = type.getCanonicalType(); 173 while (true) { 174 switch (type->getTypeClass()) { 175 #define TYPE(name, parent) 176 #define ABSTRACT_TYPE(name, parent) 177 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 178 #define DEPENDENT_TYPE(name, parent) case Type::name: 179 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 180 #include "clang/AST/TypeNodes.def" 181 llvm_unreachable("non-canonical or dependent type in IR-generation"); 182 183 case Type::Auto: 184 llvm_unreachable("undeduced auto type in IR-generation"); 185 186 // Various scalar types. 187 case Type::Builtin: 188 case Type::Pointer: 189 case Type::BlockPointer: 190 case Type::LValueReference: 191 case Type::RValueReference: 192 case Type::MemberPointer: 193 case Type::Vector: 194 case Type::ExtVector: 195 case Type::FunctionProto: 196 case Type::FunctionNoProto: 197 case Type::Enum: 198 case Type::ObjCObjectPointer: 199 case Type::Pipe: 200 return TEK_Scalar; 201 202 // Complexes. 203 case Type::Complex: 204 return TEK_Complex; 205 206 // Arrays, records, and Objective-C objects. 207 case Type::ConstantArray: 208 case Type::IncompleteArray: 209 case Type::VariableArray: 210 case Type::Record: 211 case Type::ObjCObject: 212 case Type::ObjCInterface: 213 return TEK_Aggregate; 214 215 // We operate on atomic values according to their underlying type. 216 case Type::Atomic: 217 type = cast<AtomicType>(type)->getValueType(); 218 continue; 219 } 220 llvm_unreachable("unknown type kind!"); 221 } 222 } 223 224 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 225 // For cleanliness, we try to avoid emitting the return block for 226 // simple cases. 227 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 228 229 if (CurBB) { 230 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 231 232 // We have a valid insert point, reuse it if it is empty or there are no 233 // explicit jumps to the return block. 234 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 235 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 236 delete ReturnBlock.getBlock(); 237 } else 238 EmitBlock(ReturnBlock.getBlock()); 239 return llvm::DebugLoc(); 240 } 241 242 // Otherwise, if the return block is the target of a single direct 243 // branch then we can just put the code in that block instead. This 244 // cleans up functions which started with a unified return block. 245 if (ReturnBlock.getBlock()->hasOneUse()) { 246 llvm::BranchInst *BI = 247 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 248 if (BI && BI->isUnconditional() && 249 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 250 // Record/return the DebugLoc of the simple 'return' expression to be used 251 // later by the actual 'ret' instruction. 252 llvm::DebugLoc Loc = BI->getDebugLoc(); 253 Builder.SetInsertPoint(BI->getParent()); 254 BI->eraseFromParent(); 255 delete ReturnBlock.getBlock(); 256 return Loc; 257 } 258 } 259 260 // FIXME: We are at an unreachable point, there is no reason to emit the block 261 // unless it has uses. However, we still need a place to put the debug 262 // region.end for now. 263 264 EmitBlock(ReturnBlock.getBlock()); 265 return llvm::DebugLoc(); 266 } 267 268 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 269 if (!BB) return; 270 if (!BB->use_empty()) 271 return CGF.CurFn->getBasicBlockList().push_back(BB); 272 delete BB; 273 } 274 275 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 276 assert(BreakContinueStack.empty() && 277 "mismatched push/pop in break/continue stack!"); 278 279 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 280 && NumSimpleReturnExprs == NumReturnExprs 281 && ReturnBlock.getBlock()->use_empty(); 282 // Usually the return expression is evaluated before the cleanup 283 // code. If the function contains only a simple return statement, 284 // such as a constant, the location before the cleanup code becomes 285 // the last useful breakpoint in the function, because the simple 286 // return expression will be evaluated after the cleanup code. To be 287 // safe, set the debug location for cleanup code to the location of 288 // the return statement. Otherwise the cleanup code should be at the 289 // end of the function's lexical scope. 290 // 291 // If there are multiple branches to the return block, the branch 292 // instructions will get the location of the return statements and 293 // all will be fine. 294 if (CGDebugInfo *DI = getDebugInfo()) { 295 if (OnlySimpleReturnStmts) 296 DI->EmitLocation(Builder, LastStopPoint); 297 else 298 DI->EmitLocation(Builder, EndLoc); 299 } 300 301 // Pop any cleanups that might have been associated with the 302 // parameters. Do this in whatever block we're currently in; it's 303 // important to do this before we enter the return block or return 304 // edges will be *really* confused. 305 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 306 bool HasOnlyLifetimeMarkers = 307 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 308 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 309 if (HasCleanups) { 310 // Make sure the line table doesn't jump back into the body for 311 // the ret after it's been at EndLoc. 312 if (CGDebugInfo *DI = getDebugInfo()) 313 if (OnlySimpleReturnStmts) 314 DI->EmitLocation(Builder, EndLoc); 315 316 PopCleanupBlocks(PrologueCleanupDepth); 317 } 318 319 // Emit function epilog (to return). 320 llvm::DebugLoc Loc = EmitReturnBlock(); 321 322 if (ShouldInstrumentFunction()) 323 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 324 325 // Emit debug descriptor for function end. 326 if (CGDebugInfo *DI = getDebugInfo()) 327 DI->EmitFunctionEnd(Builder); 328 329 // Reset the debug location to that of the simple 'return' expression, if any 330 // rather than that of the end of the function's scope '}'. 331 ApplyDebugLocation AL(*this, Loc); 332 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 333 EmitEndEHSpec(CurCodeDecl); 334 335 assert(EHStack.empty() && 336 "did not remove all scopes from cleanup stack!"); 337 338 // If someone did an indirect goto, emit the indirect goto block at the end of 339 // the function. 340 if (IndirectBranch) { 341 EmitBlock(IndirectBranch->getParent()); 342 Builder.ClearInsertionPoint(); 343 } 344 345 // If some of our locals escaped, insert a call to llvm.localescape in the 346 // entry block. 347 if (!EscapedLocals.empty()) { 348 // Invert the map from local to index into a simple vector. There should be 349 // no holes. 350 SmallVector<llvm::Value *, 4> EscapeArgs; 351 EscapeArgs.resize(EscapedLocals.size()); 352 for (auto &Pair : EscapedLocals) 353 EscapeArgs[Pair.second] = Pair.first; 354 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 355 &CGM.getModule(), llvm::Intrinsic::localescape); 356 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 357 } 358 359 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 360 llvm::Instruction *Ptr = AllocaInsertPt; 361 AllocaInsertPt = nullptr; 362 Ptr->eraseFromParent(); 363 364 // If someone took the address of a label but never did an indirect goto, we 365 // made a zero entry PHI node, which is illegal, zap it now. 366 if (IndirectBranch) { 367 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 368 if (PN->getNumIncomingValues() == 0) { 369 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 370 PN->eraseFromParent(); 371 } 372 } 373 374 EmitIfUsed(*this, EHResumeBlock); 375 EmitIfUsed(*this, TerminateLandingPad); 376 EmitIfUsed(*this, TerminateHandler); 377 EmitIfUsed(*this, UnreachableBlock); 378 379 if (CGM.getCodeGenOpts().EmitDeclMetadata) 380 EmitDeclMetadata(); 381 382 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 383 I = DeferredReplacements.begin(), 384 E = DeferredReplacements.end(); 385 I != E; ++I) { 386 I->first->replaceAllUsesWith(I->second); 387 I->first->eraseFromParent(); 388 } 389 } 390 391 /// ShouldInstrumentFunction - Return true if the current function should be 392 /// instrumented with __cyg_profile_func_* calls 393 bool CodeGenFunction::ShouldInstrumentFunction() { 394 if (!CGM.getCodeGenOpts().InstrumentFunctions) 395 return false; 396 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 397 return false; 398 return true; 399 } 400 401 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 402 /// instrumentation function with the current function and the call site, if 403 /// function instrumentation is enabled. 404 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 405 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 406 llvm::PointerType *PointerTy = Int8PtrTy; 407 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 408 llvm::FunctionType *FunctionTy = 409 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 410 411 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 412 llvm::CallInst *CallSite = Builder.CreateCall( 413 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 414 llvm::ConstantInt::get(Int32Ty, 0), 415 "callsite"); 416 417 llvm::Value *args[] = { 418 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 419 CallSite 420 }; 421 422 EmitNounwindRuntimeCall(F, args); 423 } 424 425 void CodeGenFunction::EmitMCountInstrumentation() { 426 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 427 428 llvm::Constant *MCountFn = 429 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 430 EmitNounwindRuntimeCall(MCountFn); 431 } 432 433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 434 // information in the program executable. The argument information stored 435 // includes the argument name, its type, the address and access qualifiers used. 436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 437 CodeGenModule &CGM, llvm::LLVMContext &Context, 438 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 439 CGBuilderTy &Builder, ASTContext &ASTCtx) { 440 // Create MDNodes that represent the kernel arg metadata. 441 // Each MDNode is a list in the form of "key", N number of values which is 442 // the same number of values as their are kernel arguments. 443 444 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 445 446 // MDNode for the kernel argument address space qualifiers. 447 SmallVector<llvm::Metadata *, 8> addressQuals; 448 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 449 450 // MDNode for the kernel argument access qualifiers (images only). 451 SmallVector<llvm::Metadata *, 8> accessQuals; 452 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 453 454 // MDNode for the kernel argument type names. 455 SmallVector<llvm::Metadata *, 8> argTypeNames; 456 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 457 458 // MDNode for the kernel argument base type names. 459 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 460 argBaseTypeNames.push_back( 461 llvm::MDString::get(Context, "kernel_arg_base_type")); 462 463 // MDNode for the kernel argument type qualifiers. 464 SmallVector<llvm::Metadata *, 8> argTypeQuals; 465 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 466 467 // MDNode for the kernel argument names. 468 SmallVector<llvm::Metadata *, 8> argNames; 469 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 470 471 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 472 const ParmVarDecl *parm = FD->getParamDecl(i); 473 QualType ty = parm->getType(); 474 std::string typeQuals; 475 476 if (ty->isPointerType()) { 477 QualType pointeeTy = ty->getPointeeType(); 478 479 // Get address qualifier. 480 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 481 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 482 483 // Get argument type name. 484 std::string typeName = 485 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 486 487 // Turn "unsigned type" to "utype" 488 std::string::size_type pos = typeName.find("unsigned"); 489 if (pointeeTy.isCanonical() && pos != std::string::npos) 490 typeName.erase(pos+1, 8); 491 492 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 493 494 std::string baseTypeName = 495 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 496 Policy) + 497 "*"; 498 499 // Turn "unsigned type" to "utype" 500 pos = baseTypeName.find("unsigned"); 501 if (pos != std::string::npos) 502 baseTypeName.erase(pos+1, 8); 503 504 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 505 506 // Get argument type qualifiers: 507 if (ty.isRestrictQualified()) 508 typeQuals = "restrict"; 509 if (pointeeTy.isConstQualified() || 510 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 511 typeQuals += typeQuals.empty() ? "const" : " const"; 512 if (pointeeTy.isVolatileQualified()) 513 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 514 } else { 515 uint32_t AddrSpc = 0; 516 bool isPipe = ty->isPipeType(); 517 if (ty->isImageType() || isPipe) 518 AddrSpc = 519 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 520 521 addressQuals.push_back( 522 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 523 524 // Get argument type name. 525 std::string typeName; 526 if (isPipe) 527 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 528 else 529 typeName = ty.getUnqualifiedType().getAsString(Policy); 530 531 // Turn "unsigned type" to "utype" 532 std::string::size_type pos = typeName.find("unsigned"); 533 if (ty.isCanonical() && pos != std::string::npos) 534 typeName.erase(pos+1, 8); 535 536 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 537 538 std::string baseTypeName; 539 if (isPipe) 540 baseTypeName = 541 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 542 else 543 baseTypeName = 544 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 545 546 // Turn "unsigned type" to "utype" 547 pos = baseTypeName.find("unsigned"); 548 if (pos != std::string::npos) 549 baseTypeName.erase(pos+1, 8); 550 551 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 552 553 // Get argument type qualifiers: 554 if (ty.isConstQualified()) 555 typeQuals = "const"; 556 if (ty.isVolatileQualified()) 557 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 558 if (isPipe) 559 typeQuals = "pipe"; 560 } 561 562 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 563 564 // Get image and pipe access qualifier: 565 if (ty->isImageType()|| ty->isPipeType()) { 566 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 567 if (A && A->isWriteOnly()) 568 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 569 else if (A && A->isReadWrite()) 570 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 571 else 572 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 573 } else 574 accessQuals.push_back(llvm::MDString::get(Context, "none")); 575 576 // Get argument name. 577 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 578 } 579 580 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 581 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 582 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 583 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 584 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 585 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 586 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 587 } 588 589 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 590 llvm::Function *Fn) 591 { 592 if (!FD->hasAttr<OpenCLKernelAttr>()) 593 return; 594 595 llvm::LLVMContext &Context = getLLVMContext(); 596 597 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 598 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 599 600 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 601 getContext()); 602 603 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 604 QualType hintQTy = A->getTypeHint(); 605 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 606 bool isSignedInteger = 607 hintQTy->isSignedIntegerType() || 608 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 609 llvm::Metadata *attrMDArgs[] = { 610 llvm::MDString::get(Context, "vec_type_hint"), 611 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 612 CGM.getTypes().ConvertType(A->getTypeHint()))), 613 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 614 llvm::IntegerType::get(Context, 32), 615 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 616 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 617 } 618 619 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 620 llvm::Metadata *attrMDArgs[] = { 621 llvm::MDString::get(Context, "work_group_size_hint"), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 628 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 629 llvm::Metadata *attrMDArgs[] = { 630 llvm::MDString::get(Context, "reqd_work_group_size"), 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 633 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 634 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 635 } 636 637 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 638 llvm::NamedMDNode *OpenCLKernelMetadata = 639 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 640 OpenCLKernelMetadata->addOperand(kernelMDNode); 641 } 642 643 /// Determine whether the function F ends with a return stmt. 644 static bool endsWithReturn(const Decl* F) { 645 const Stmt *Body = nullptr; 646 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 647 Body = FD->getBody(); 648 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 649 Body = OMD->getBody(); 650 651 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 652 auto LastStmt = CS->body_rbegin(); 653 if (LastStmt != CS->body_rend()) 654 return isa<ReturnStmt>(*LastStmt); 655 } 656 return false; 657 } 658 659 void CodeGenFunction::StartFunction(GlobalDecl GD, 660 QualType RetTy, 661 llvm::Function *Fn, 662 const CGFunctionInfo &FnInfo, 663 const FunctionArgList &Args, 664 SourceLocation Loc, 665 SourceLocation StartLoc) { 666 assert(!CurFn && 667 "Do not use a CodeGenFunction object for more than one function"); 668 669 const Decl *D = GD.getDecl(); 670 671 DidCallStackSave = false; 672 CurCodeDecl = D; 673 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 674 if (FD->usesSEHTry()) 675 CurSEHParent = FD; 676 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 677 FnRetTy = RetTy; 678 CurFn = Fn; 679 CurFnInfo = &FnInfo; 680 assert(CurFn->isDeclaration() && "Function already has body?"); 681 682 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 683 SanOpts.clear(); 684 685 if (D) { 686 // Apply the no_sanitize* attributes to SanOpts. 687 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 688 SanOpts.Mask &= ~Attr->getMask(); 689 } 690 691 // Apply sanitizer attributes to the function. 692 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 693 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 694 if (SanOpts.has(SanitizerKind::Thread)) 695 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 696 if (SanOpts.has(SanitizerKind::Memory)) 697 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 698 if (SanOpts.has(SanitizerKind::SafeStack)) 699 Fn->addFnAttr(llvm::Attribute::SafeStack); 700 701 // Pass inline keyword to optimizer if it appears explicitly on any 702 // declaration. Also, in the case of -fno-inline attach NoInline 703 // attribute to all function that are not marked AlwaysInline. 704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 705 if (!CGM.getCodeGenOpts().NoInline) { 706 for (auto RI : FD->redecls()) 707 if (RI->isInlineSpecified()) { 708 Fn->addFnAttr(llvm::Attribute::InlineHint); 709 break; 710 } 711 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 712 Fn->addFnAttr(llvm::Attribute::NoInline); 713 } 714 715 // Add no-jump-tables value. 716 Fn->addFnAttr("no-jump-tables", 717 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 718 719 if (getLangOpts().OpenCL) { 720 // Add metadata for a kernel function. 721 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 722 EmitOpenCLKernelMetadata(FD, Fn); 723 } 724 725 // If we are checking function types, emit a function type signature as 726 // prologue data. 727 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 728 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 729 if (llvm::Constant *PrologueSig = 730 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 731 llvm::Constant *FTRTTIConst = 732 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 733 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 734 llvm::Constant *PrologueStructConst = 735 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 736 Fn->setPrologueData(PrologueStructConst); 737 } 738 } 739 } 740 741 // If we're in C++ mode and the function name is "main", it is guaranteed 742 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 743 // used within a program"). 744 if (getLangOpts().CPlusPlus) 745 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 746 if (FD->isMain()) 747 Fn->addFnAttr(llvm::Attribute::NoRecurse); 748 749 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 750 751 // Create a marker to make it easy to insert allocas into the entryblock 752 // later. Don't create this with the builder, because we don't want it 753 // folded. 754 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 755 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 756 757 ReturnBlock = getJumpDestInCurrentScope("return"); 758 759 Builder.SetInsertPoint(EntryBB); 760 761 // Emit subprogram debug descriptor. 762 if (CGDebugInfo *DI = getDebugInfo()) { 763 SmallVector<QualType, 16> ArgTypes; 764 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 765 i != e; ++i) { 766 ArgTypes.push_back((*i)->getType()); 767 } 768 769 QualType FnType = 770 getContext().getFunctionType(RetTy, ArgTypes, 771 FunctionProtoType::ExtProtoInfo()); 772 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 773 } 774 775 if (ShouldInstrumentFunction()) 776 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 777 778 if (CGM.getCodeGenOpts().InstrumentForProfiling) 779 EmitMCountInstrumentation(); 780 781 if (RetTy->isVoidType()) { 782 // Void type; nothing to return. 783 ReturnValue = Address::invalid(); 784 785 // Count the implicit return. 786 if (!endsWithReturn(D)) 787 ++NumReturnExprs; 788 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 789 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 790 // Indirect aggregate return; emit returned value directly into sret slot. 791 // This reduces code size, and affects correctness in C++. 792 auto AI = CurFn->arg_begin(); 793 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 794 ++AI; 795 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 796 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 797 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 798 // Load the sret pointer from the argument struct and return into that. 799 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 800 llvm::Function::arg_iterator EI = CurFn->arg_end(); 801 --EI; 802 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 803 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 804 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 805 } else { 806 ReturnValue = CreateIRTemp(RetTy, "retval"); 807 808 // Tell the epilog emitter to autorelease the result. We do this 809 // now so that various specialized functions can suppress it 810 // during their IR-generation. 811 if (getLangOpts().ObjCAutoRefCount && 812 !CurFnInfo->isReturnsRetained() && 813 RetTy->isObjCRetainableType()) 814 AutoreleaseResult = true; 815 } 816 817 EmitStartEHSpec(CurCodeDecl); 818 819 PrologueCleanupDepth = EHStack.stable_begin(); 820 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 821 822 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 823 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 824 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 825 if (MD->getParent()->isLambda() && 826 MD->getOverloadedOperator() == OO_Call) { 827 // We're in a lambda; figure out the captures. 828 MD->getParent()->getCaptureFields(LambdaCaptureFields, 829 LambdaThisCaptureField); 830 if (LambdaThisCaptureField) { 831 // If the lambda captures the object referred to by '*this' - either by 832 // value or by reference, make sure CXXThisValue points to the correct 833 // object. 834 835 // Get the lvalue for the field (which is a copy of the enclosing object 836 // or contains the address of the enclosing object). 837 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 838 if (!LambdaThisCaptureField->getType()->isPointerType()) { 839 // If the enclosing object was captured by value, just use its address. 840 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 841 } else { 842 // Load the lvalue pointed to by the field, since '*this' was captured 843 // by reference. 844 CXXThisValue = 845 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 846 } 847 } 848 for (auto *FD : MD->getParent()->fields()) { 849 if (FD->hasCapturedVLAType()) { 850 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 851 SourceLocation()).getScalarVal(); 852 auto VAT = FD->getCapturedVLAType(); 853 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 854 } 855 } 856 } else { 857 // Not in a lambda; just use 'this' from the method. 858 // FIXME: Should we generate a new load for each use of 'this'? The 859 // fast register allocator would be happier... 860 CXXThisValue = CXXABIThisValue; 861 } 862 } 863 864 // If any of the arguments have a variably modified type, make sure to 865 // emit the type size. 866 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 867 i != e; ++i) { 868 const VarDecl *VD = *i; 869 870 // Dig out the type as written from ParmVarDecls; it's unclear whether 871 // the standard (C99 6.9.1p10) requires this, but we're following the 872 // precedent set by gcc. 873 QualType Ty; 874 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 875 Ty = PVD->getOriginalType(); 876 else 877 Ty = VD->getType(); 878 879 if (Ty->isVariablyModifiedType()) 880 EmitVariablyModifiedType(Ty); 881 } 882 // Emit a location at the end of the prologue. 883 if (CGDebugInfo *DI = getDebugInfo()) 884 DI->EmitLocation(Builder, StartLoc); 885 } 886 887 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 888 const Stmt *Body) { 889 incrementProfileCounter(Body); 890 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 891 EmitCompoundStmtWithoutScope(*S); 892 else 893 EmitStmt(Body); 894 } 895 896 /// When instrumenting to collect profile data, the counts for some blocks 897 /// such as switch cases need to not include the fall-through counts, so 898 /// emit a branch around the instrumentation code. When not instrumenting, 899 /// this just calls EmitBlock(). 900 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 901 const Stmt *S) { 902 llvm::BasicBlock *SkipCountBB = nullptr; 903 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 904 // When instrumenting for profiling, the fallthrough to certain 905 // statements needs to skip over the instrumentation code so that we 906 // get an accurate count. 907 SkipCountBB = createBasicBlock("skipcount"); 908 EmitBranch(SkipCountBB); 909 } 910 EmitBlock(BB); 911 uint64_t CurrentCount = getCurrentProfileCount(); 912 incrementProfileCounter(S); 913 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 914 if (SkipCountBB) 915 EmitBlock(SkipCountBB); 916 } 917 918 /// Tries to mark the given function nounwind based on the 919 /// non-existence of any throwing calls within it. We believe this is 920 /// lightweight enough to do at -O0. 921 static void TryMarkNoThrow(llvm::Function *F) { 922 // LLVM treats 'nounwind' on a function as part of the type, so we 923 // can't do this on functions that can be overwritten. 924 if (F->isInterposable()) return; 925 926 for (llvm::BasicBlock &BB : *F) 927 for (llvm::Instruction &I : BB) 928 if (I.mayThrow()) 929 return; 930 931 F->setDoesNotThrow(); 932 } 933 934 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 935 const CGFunctionInfo &FnInfo) { 936 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 937 938 // Check if we should generate debug info for this function. 939 if (FD->hasAttr<NoDebugAttr>()) 940 DebugInfo = nullptr; // disable debug info indefinitely for this function 941 942 FunctionArgList Args; 943 QualType ResTy = FD->getReturnType(); 944 945 CurGD = GD; 946 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 947 if (MD && MD->isInstance()) { 948 if (CGM.getCXXABI().HasThisReturn(GD)) 949 ResTy = MD->getThisType(getContext()); 950 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 951 ResTy = CGM.getContext().VoidPtrTy; 952 CGM.getCXXABI().buildThisParam(*this, Args); 953 } 954 955 for (auto *Param : FD->params()) { 956 Args.push_back(Param); 957 if (!Param->hasAttr<PassObjectSizeAttr>()) 958 continue; 959 960 IdentifierInfo *NoID = nullptr; 961 auto *Implicit = ImplicitParamDecl::Create( 962 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 963 getContext().getSizeType()); 964 SizeArguments[Param] = Implicit; 965 Args.push_back(Implicit); 966 } 967 968 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 969 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 970 971 SourceRange BodyRange; 972 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 973 CurEHLocation = BodyRange.getEnd(); 974 975 // Use the location of the start of the function to determine where 976 // the function definition is located. By default use the location 977 // of the declaration as the location for the subprogram. A function 978 // may lack a declaration in the source code if it is created by code 979 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 980 SourceLocation Loc = FD->getLocation(); 981 982 // If this is a function specialization then use the pattern body 983 // as the location for the function. 984 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 985 if (SpecDecl->hasBody(SpecDecl)) 986 Loc = SpecDecl->getLocation(); 987 988 // Emit the standard function prologue. 989 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 990 991 // Generate the body of the function. 992 PGO.assignRegionCounters(GD, CurFn); 993 if (isa<CXXDestructorDecl>(FD)) 994 EmitDestructorBody(Args); 995 else if (isa<CXXConstructorDecl>(FD)) 996 EmitConstructorBody(Args); 997 else if (getLangOpts().CUDA && 998 !getLangOpts().CUDAIsDevice && 999 FD->hasAttr<CUDAGlobalAttr>()) 1000 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1001 else if (isa<CXXConversionDecl>(FD) && 1002 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1003 // The lambda conversion to block pointer is special; the semantics can't be 1004 // expressed in the AST, so IRGen needs to special-case it. 1005 EmitLambdaToBlockPointerBody(Args); 1006 } else if (isa<CXXMethodDecl>(FD) && 1007 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1008 // The lambda static invoker function is special, because it forwards or 1009 // clones the body of the function call operator (but is actually static). 1010 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1011 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1012 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1013 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1014 // Implicit copy-assignment gets the same special treatment as implicit 1015 // copy-constructors. 1016 emitImplicitAssignmentOperatorBody(Args); 1017 } else if (Stmt *Body = FD->getBody()) { 1018 EmitFunctionBody(Args, Body); 1019 } else 1020 llvm_unreachable("no definition for emitted function"); 1021 1022 // C++11 [stmt.return]p2: 1023 // Flowing off the end of a function [...] results in undefined behavior in 1024 // a value-returning function. 1025 // C11 6.9.1p12: 1026 // If the '}' that terminates a function is reached, and the value of the 1027 // function call is used by the caller, the behavior is undefined. 1028 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1029 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1030 if (SanOpts.has(SanitizerKind::Return)) { 1031 SanitizerScope SanScope(this); 1032 llvm::Value *IsFalse = Builder.getFalse(); 1033 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1034 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1035 None); 1036 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1037 EmitTrapCall(llvm::Intrinsic::trap); 1038 } 1039 Builder.CreateUnreachable(); 1040 Builder.ClearInsertionPoint(); 1041 } 1042 1043 // Emit the standard function epilogue. 1044 FinishFunction(BodyRange.getEnd()); 1045 1046 // If we haven't marked the function nothrow through other means, do 1047 // a quick pass now to see if we can. 1048 if (!CurFn->doesNotThrow()) 1049 TryMarkNoThrow(CurFn); 1050 } 1051 1052 /// ContainsLabel - Return true if the statement contains a label in it. If 1053 /// this statement is not executed normally, it not containing a label means 1054 /// that we can just remove the code. 1055 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1056 // Null statement, not a label! 1057 if (!S) return false; 1058 1059 // If this is a label, we have to emit the code, consider something like: 1060 // if (0) { ... foo: bar(); } goto foo; 1061 // 1062 // TODO: If anyone cared, we could track __label__'s, since we know that you 1063 // can't jump to one from outside their declared region. 1064 if (isa<LabelStmt>(S)) 1065 return true; 1066 1067 // If this is a case/default statement, and we haven't seen a switch, we have 1068 // to emit the code. 1069 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1070 return true; 1071 1072 // If this is a switch statement, we want to ignore cases below it. 1073 if (isa<SwitchStmt>(S)) 1074 IgnoreCaseStmts = true; 1075 1076 // Scan subexpressions for verboten labels. 1077 for (const Stmt *SubStmt : S->children()) 1078 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1079 return true; 1080 1081 return false; 1082 } 1083 1084 /// containsBreak - Return true if the statement contains a break out of it. 1085 /// If the statement (recursively) contains a switch or loop with a break 1086 /// inside of it, this is fine. 1087 bool CodeGenFunction::containsBreak(const Stmt *S) { 1088 // Null statement, not a label! 1089 if (!S) return false; 1090 1091 // If this is a switch or loop that defines its own break scope, then we can 1092 // include it and anything inside of it. 1093 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1094 isa<ForStmt>(S)) 1095 return false; 1096 1097 if (isa<BreakStmt>(S)) 1098 return true; 1099 1100 // Scan subexpressions for verboten breaks. 1101 for (const Stmt *SubStmt : S->children()) 1102 if (containsBreak(SubStmt)) 1103 return true; 1104 1105 return false; 1106 } 1107 1108 1109 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1110 /// to a constant, or if it does but contains a label, return false. If it 1111 /// constant folds return true and set the boolean result in Result. 1112 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1113 bool &ResultBool) { 1114 llvm::APSInt ResultInt; 1115 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1116 return false; 1117 1118 ResultBool = ResultInt.getBoolValue(); 1119 return true; 1120 } 1121 1122 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1123 /// to a constant, or if it does but contains a label, return false. If it 1124 /// constant folds return true and set the folded value. 1125 bool CodeGenFunction:: 1126 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1127 // FIXME: Rename and handle conversion of other evaluatable things 1128 // to bool. 1129 llvm::APSInt Int; 1130 if (!Cond->EvaluateAsInt(Int, getContext())) 1131 return false; // Not foldable, not integer or not fully evaluatable. 1132 1133 if (CodeGenFunction::ContainsLabel(Cond)) 1134 return false; // Contains a label. 1135 1136 ResultInt = Int; 1137 return true; 1138 } 1139 1140 1141 1142 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1143 /// statement) to the specified blocks. Based on the condition, this might try 1144 /// to simplify the codegen of the conditional based on the branch. 1145 /// 1146 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1147 llvm::BasicBlock *TrueBlock, 1148 llvm::BasicBlock *FalseBlock, 1149 uint64_t TrueCount) { 1150 Cond = Cond->IgnoreParens(); 1151 1152 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1153 1154 // Handle X && Y in a condition. 1155 if (CondBOp->getOpcode() == BO_LAnd) { 1156 // If we have "1 && X", simplify the code. "0 && X" would have constant 1157 // folded if the case was simple enough. 1158 bool ConstantBool = false; 1159 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1160 ConstantBool) { 1161 // br(1 && X) -> br(X). 1162 incrementProfileCounter(CondBOp); 1163 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1164 TrueCount); 1165 } 1166 1167 // If we have "X && 1", simplify the code to use an uncond branch. 1168 // "X && 0" would have been constant folded to 0. 1169 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1170 ConstantBool) { 1171 // br(X && 1) -> br(X). 1172 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1173 TrueCount); 1174 } 1175 1176 // Emit the LHS as a conditional. If the LHS conditional is false, we 1177 // want to jump to the FalseBlock. 1178 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1179 // The counter tells us how often we evaluate RHS, and all of TrueCount 1180 // can be propagated to that branch. 1181 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1182 1183 ConditionalEvaluation eval(*this); 1184 { 1185 ApplyDebugLocation DL(*this, Cond); 1186 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1187 EmitBlock(LHSTrue); 1188 } 1189 1190 incrementProfileCounter(CondBOp); 1191 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1192 1193 // Any temporaries created here are conditional. 1194 eval.begin(*this); 1195 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1196 eval.end(*this); 1197 1198 return; 1199 } 1200 1201 if (CondBOp->getOpcode() == BO_LOr) { 1202 // If we have "0 || X", simplify the code. "1 || X" would have constant 1203 // folded if the case was simple enough. 1204 bool ConstantBool = false; 1205 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1206 !ConstantBool) { 1207 // br(0 || X) -> br(X). 1208 incrementProfileCounter(CondBOp); 1209 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1210 TrueCount); 1211 } 1212 1213 // If we have "X || 0", simplify the code to use an uncond branch. 1214 // "X || 1" would have been constant folded to 1. 1215 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1216 !ConstantBool) { 1217 // br(X || 0) -> br(X). 1218 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1219 TrueCount); 1220 } 1221 1222 // Emit the LHS as a conditional. If the LHS conditional is true, we 1223 // want to jump to the TrueBlock. 1224 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1225 // We have the count for entry to the RHS and for the whole expression 1226 // being true, so we can divy up True count between the short circuit and 1227 // the RHS. 1228 uint64_t LHSCount = 1229 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1230 uint64_t RHSCount = TrueCount - LHSCount; 1231 1232 ConditionalEvaluation eval(*this); 1233 { 1234 ApplyDebugLocation DL(*this, Cond); 1235 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1236 EmitBlock(LHSFalse); 1237 } 1238 1239 incrementProfileCounter(CondBOp); 1240 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1241 1242 // Any temporaries created here are conditional. 1243 eval.begin(*this); 1244 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1245 1246 eval.end(*this); 1247 1248 return; 1249 } 1250 } 1251 1252 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1253 // br(!x, t, f) -> br(x, f, t) 1254 if (CondUOp->getOpcode() == UO_LNot) { 1255 // Negate the count. 1256 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1257 // Negate the condition and swap the destination blocks. 1258 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1259 FalseCount); 1260 } 1261 } 1262 1263 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1264 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1265 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1266 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1267 1268 ConditionalEvaluation cond(*this); 1269 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1270 getProfileCount(CondOp)); 1271 1272 // When computing PGO branch weights, we only know the overall count for 1273 // the true block. This code is essentially doing tail duplication of the 1274 // naive code-gen, introducing new edges for which counts are not 1275 // available. Divide the counts proportionally between the LHS and RHS of 1276 // the conditional operator. 1277 uint64_t LHSScaledTrueCount = 0; 1278 if (TrueCount) { 1279 double LHSRatio = 1280 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1281 LHSScaledTrueCount = TrueCount * LHSRatio; 1282 } 1283 1284 cond.begin(*this); 1285 EmitBlock(LHSBlock); 1286 incrementProfileCounter(CondOp); 1287 { 1288 ApplyDebugLocation DL(*this, Cond); 1289 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1290 LHSScaledTrueCount); 1291 } 1292 cond.end(*this); 1293 1294 cond.begin(*this); 1295 EmitBlock(RHSBlock); 1296 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1297 TrueCount - LHSScaledTrueCount); 1298 cond.end(*this); 1299 1300 return; 1301 } 1302 1303 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1304 // Conditional operator handling can give us a throw expression as a 1305 // condition for a case like: 1306 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1307 // Fold this to: 1308 // br(c, throw x, br(y, t, f)) 1309 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1310 return; 1311 } 1312 1313 // If the branch has a condition wrapped by __builtin_unpredictable, 1314 // create metadata that specifies that the branch is unpredictable. 1315 // Don't bother if not optimizing because that metadata would not be used. 1316 llvm::MDNode *Unpredictable = nullptr; 1317 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1318 if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) { 1319 const Decl *TargetDecl = Call->getCalleeDecl(); 1320 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1321 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1322 llvm::MDBuilder MDHelper(getLLVMContext()); 1323 Unpredictable = MDHelper.createUnpredictable(); 1324 } 1325 } 1326 } 1327 } 1328 1329 // Create branch weights based on the number of times we get here and the 1330 // number of times the condition should be true. 1331 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1332 llvm::MDNode *Weights = 1333 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1334 1335 // Emit the code with the fully general case. 1336 llvm::Value *CondV; 1337 { 1338 ApplyDebugLocation DL(*this, Cond); 1339 CondV = EvaluateExprAsBool(Cond); 1340 } 1341 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1342 } 1343 1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1345 /// specified stmt yet. 1346 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1347 CGM.ErrorUnsupported(S, Type); 1348 } 1349 1350 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1351 /// variable-length array whose elements have a non-zero bit-pattern. 1352 /// 1353 /// \param baseType the inner-most element type of the array 1354 /// \param src - a char* pointing to the bit-pattern for a single 1355 /// base element of the array 1356 /// \param sizeInChars - the total size of the VLA, in chars 1357 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1358 Address dest, Address src, 1359 llvm::Value *sizeInChars) { 1360 CGBuilderTy &Builder = CGF.Builder; 1361 1362 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1363 llvm::Value *baseSizeInChars 1364 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1365 1366 Address begin = 1367 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1368 llvm::Value *end = 1369 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1370 1371 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1372 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1373 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1374 1375 // Make a loop over the VLA. C99 guarantees that the VLA element 1376 // count must be nonzero. 1377 CGF.EmitBlock(loopBB); 1378 1379 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1380 cur->addIncoming(begin.getPointer(), originBB); 1381 1382 CharUnits curAlign = 1383 dest.getAlignment().alignmentOfArrayElement(baseSize); 1384 1385 // memcpy the individual element bit-pattern. 1386 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1387 /*volatile*/ false); 1388 1389 // Go to the next element. 1390 llvm::Value *next = 1391 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1392 1393 // Leave if that's the end of the VLA. 1394 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1395 Builder.CreateCondBr(done, contBB, loopBB); 1396 cur->addIncoming(next, loopBB); 1397 1398 CGF.EmitBlock(contBB); 1399 } 1400 1401 void 1402 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1403 // Ignore empty classes in C++. 1404 if (getLangOpts().CPlusPlus) { 1405 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1406 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1407 return; 1408 } 1409 } 1410 1411 // Cast the dest ptr to the appropriate i8 pointer type. 1412 if (DestPtr.getElementType() != Int8Ty) 1413 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1414 1415 // Get size and alignment info for this aggregate. 1416 CharUnits size = getContext().getTypeSizeInChars(Ty); 1417 1418 llvm::Value *SizeVal; 1419 const VariableArrayType *vla; 1420 1421 // Don't bother emitting a zero-byte memset. 1422 if (size.isZero()) { 1423 // But note that getTypeInfo returns 0 for a VLA. 1424 if (const VariableArrayType *vlaType = 1425 dyn_cast_or_null<VariableArrayType>( 1426 getContext().getAsArrayType(Ty))) { 1427 QualType eltType; 1428 llvm::Value *numElts; 1429 std::tie(numElts, eltType) = getVLASize(vlaType); 1430 1431 SizeVal = numElts; 1432 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1433 if (!eltSize.isOne()) 1434 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1435 vla = vlaType; 1436 } else { 1437 return; 1438 } 1439 } else { 1440 SizeVal = CGM.getSize(size); 1441 vla = nullptr; 1442 } 1443 1444 // If the type contains a pointer to data member we can't memset it to zero. 1445 // Instead, create a null constant and copy it to the destination. 1446 // TODO: there are other patterns besides zero that we can usefully memset, 1447 // like -1, which happens to be the pattern used by member-pointers. 1448 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1449 // For a VLA, emit a single element, then splat that over the VLA. 1450 if (vla) Ty = getContext().getBaseElementType(vla); 1451 1452 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1453 1454 llvm::GlobalVariable *NullVariable = 1455 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1456 /*isConstant=*/true, 1457 llvm::GlobalVariable::PrivateLinkage, 1458 NullConstant, Twine()); 1459 CharUnits NullAlign = DestPtr.getAlignment(); 1460 NullVariable->setAlignment(NullAlign.getQuantity()); 1461 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1462 NullAlign); 1463 1464 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1465 1466 // Get and call the appropriate llvm.memcpy overload. 1467 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1468 return; 1469 } 1470 1471 // Otherwise, just memset the whole thing to zero. This is legal 1472 // because in LLVM, all default initializers (other than the ones we just 1473 // handled above) are guaranteed to have a bit pattern of all zeros. 1474 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1475 } 1476 1477 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1478 // Make sure that there is a block for the indirect goto. 1479 if (!IndirectBranch) 1480 GetIndirectGotoBlock(); 1481 1482 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1483 1484 // Make sure the indirect branch includes all of the address-taken blocks. 1485 IndirectBranch->addDestination(BB); 1486 return llvm::BlockAddress::get(CurFn, BB); 1487 } 1488 1489 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1490 // If we already made the indirect branch for indirect goto, return its block. 1491 if (IndirectBranch) return IndirectBranch->getParent(); 1492 1493 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1494 1495 // Create the PHI node that indirect gotos will add entries to. 1496 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1497 "indirect.goto.dest"); 1498 1499 // Create the indirect branch instruction. 1500 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1501 return IndirectBranch->getParent(); 1502 } 1503 1504 /// Computes the length of an array in elements, as well as the base 1505 /// element type and a properly-typed first element pointer. 1506 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1507 QualType &baseType, 1508 Address &addr) { 1509 const ArrayType *arrayType = origArrayType; 1510 1511 // If it's a VLA, we have to load the stored size. Note that 1512 // this is the size of the VLA in bytes, not its size in elements. 1513 llvm::Value *numVLAElements = nullptr; 1514 if (isa<VariableArrayType>(arrayType)) { 1515 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1516 1517 // Walk into all VLAs. This doesn't require changes to addr, 1518 // which has type T* where T is the first non-VLA element type. 1519 do { 1520 QualType elementType = arrayType->getElementType(); 1521 arrayType = getContext().getAsArrayType(elementType); 1522 1523 // If we only have VLA components, 'addr' requires no adjustment. 1524 if (!arrayType) { 1525 baseType = elementType; 1526 return numVLAElements; 1527 } 1528 } while (isa<VariableArrayType>(arrayType)); 1529 1530 // We get out here only if we find a constant array type 1531 // inside the VLA. 1532 } 1533 1534 // We have some number of constant-length arrays, so addr should 1535 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1536 // down to the first element of addr. 1537 SmallVector<llvm::Value*, 8> gepIndices; 1538 1539 // GEP down to the array type. 1540 llvm::ConstantInt *zero = Builder.getInt32(0); 1541 gepIndices.push_back(zero); 1542 1543 uint64_t countFromCLAs = 1; 1544 QualType eltType; 1545 1546 llvm::ArrayType *llvmArrayType = 1547 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1548 while (llvmArrayType) { 1549 assert(isa<ConstantArrayType>(arrayType)); 1550 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1551 == llvmArrayType->getNumElements()); 1552 1553 gepIndices.push_back(zero); 1554 countFromCLAs *= llvmArrayType->getNumElements(); 1555 eltType = arrayType->getElementType(); 1556 1557 llvmArrayType = 1558 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1559 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1560 assert((!llvmArrayType || arrayType) && 1561 "LLVM and Clang types are out-of-synch"); 1562 } 1563 1564 if (arrayType) { 1565 // From this point onwards, the Clang array type has been emitted 1566 // as some other type (probably a packed struct). Compute the array 1567 // size, and just emit the 'begin' expression as a bitcast. 1568 while (arrayType) { 1569 countFromCLAs *= 1570 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1571 eltType = arrayType->getElementType(); 1572 arrayType = getContext().getAsArrayType(eltType); 1573 } 1574 1575 llvm::Type *baseType = ConvertType(eltType); 1576 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1577 } else { 1578 // Create the actual GEP. 1579 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1580 gepIndices, "array.begin"), 1581 addr.getAlignment()); 1582 } 1583 1584 baseType = eltType; 1585 1586 llvm::Value *numElements 1587 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1588 1589 // If we had any VLA dimensions, factor them in. 1590 if (numVLAElements) 1591 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1592 1593 return numElements; 1594 } 1595 1596 std::pair<llvm::Value*, QualType> 1597 CodeGenFunction::getVLASize(QualType type) { 1598 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1599 assert(vla && "type was not a variable array type!"); 1600 return getVLASize(vla); 1601 } 1602 1603 std::pair<llvm::Value*, QualType> 1604 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1605 // The number of elements so far; always size_t. 1606 llvm::Value *numElements = nullptr; 1607 1608 QualType elementType; 1609 do { 1610 elementType = type->getElementType(); 1611 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1612 assert(vlaSize && "no size for VLA!"); 1613 assert(vlaSize->getType() == SizeTy); 1614 1615 if (!numElements) { 1616 numElements = vlaSize; 1617 } else { 1618 // It's undefined behavior if this wraps around, so mark it that way. 1619 // FIXME: Teach -fsanitize=undefined to trap this. 1620 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1621 } 1622 } while ((type = getContext().getAsVariableArrayType(elementType))); 1623 1624 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1625 } 1626 1627 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1628 assert(type->isVariablyModifiedType() && 1629 "Must pass variably modified type to EmitVLASizes!"); 1630 1631 EnsureInsertPoint(); 1632 1633 // We're going to walk down into the type and look for VLA 1634 // expressions. 1635 do { 1636 assert(type->isVariablyModifiedType()); 1637 1638 const Type *ty = type.getTypePtr(); 1639 switch (ty->getTypeClass()) { 1640 1641 #define TYPE(Class, Base) 1642 #define ABSTRACT_TYPE(Class, Base) 1643 #define NON_CANONICAL_TYPE(Class, Base) 1644 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1645 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1646 #include "clang/AST/TypeNodes.def" 1647 llvm_unreachable("unexpected dependent type!"); 1648 1649 // These types are never variably-modified. 1650 case Type::Builtin: 1651 case Type::Complex: 1652 case Type::Vector: 1653 case Type::ExtVector: 1654 case Type::Record: 1655 case Type::Enum: 1656 case Type::Elaborated: 1657 case Type::TemplateSpecialization: 1658 case Type::ObjCObject: 1659 case Type::ObjCInterface: 1660 case Type::ObjCObjectPointer: 1661 llvm_unreachable("type class is never variably-modified!"); 1662 1663 case Type::Adjusted: 1664 type = cast<AdjustedType>(ty)->getAdjustedType(); 1665 break; 1666 1667 case Type::Decayed: 1668 type = cast<DecayedType>(ty)->getPointeeType(); 1669 break; 1670 1671 case Type::Pointer: 1672 type = cast<PointerType>(ty)->getPointeeType(); 1673 break; 1674 1675 case Type::BlockPointer: 1676 type = cast<BlockPointerType>(ty)->getPointeeType(); 1677 break; 1678 1679 case Type::LValueReference: 1680 case Type::RValueReference: 1681 type = cast<ReferenceType>(ty)->getPointeeType(); 1682 break; 1683 1684 case Type::MemberPointer: 1685 type = cast<MemberPointerType>(ty)->getPointeeType(); 1686 break; 1687 1688 case Type::ConstantArray: 1689 case Type::IncompleteArray: 1690 // Losing element qualification here is fine. 1691 type = cast<ArrayType>(ty)->getElementType(); 1692 break; 1693 1694 case Type::VariableArray: { 1695 // Losing element qualification here is fine. 1696 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1697 1698 // Unknown size indication requires no size computation. 1699 // Otherwise, evaluate and record it. 1700 if (const Expr *size = vat->getSizeExpr()) { 1701 // It's possible that we might have emitted this already, 1702 // e.g. with a typedef and a pointer to it. 1703 llvm::Value *&entry = VLASizeMap[size]; 1704 if (!entry) { 1705 llvm::Value *Size = EmitScalarExpr(size); 1706 1707 // C11 6.7.6.2p5: 1708 // If the size is an expression that is not an integer constant 1709 // expression [...] each time it is evaluated it shall have a value 1710 // greater than zero. 1711 if (SanOpts.has(SanitizerKind::VLABound) && 1712 size->getType()->isSignedIntegerType()) { 1713 SanitizerScope SanScope(this); 1714 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1715 llvm::Constant *StaticArgs[] = { 1716 EmitCheckSourceLocation(size->getLocStart()), 1717 EmitCheckTypeDescriptor(size->getType()) 1718 }; 1719 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1720 SanitizerKind::VLABound), 1721 "vla_bound_not_positive", StaticArgs, Size); 1722 } 1723 1724 // Always zexting here would be wrong if it weren't 1725 // undefined behavior to have a negative bound. 1726 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1727 } 1728 } 1729 type = vat->getElementType(); 1730 break; 1731 } 1732 1733 case Type::FunctionProto: 1734 case Type::FunctionNoProto: 1735 type = cast<FunctionType>(ty)->getReturnType(); 1736 break; 1737 1738 case Type::Paren: 1739 case Type::TypeOf: 1740 case Type::UnaryTransform: 1741 case Type::Attributed: 1742 case Type::SubstTemplateTypeParm: 1743 case Type::PackExpansion: 1744 // Keep walking after single level desugaring. 1745 type = type.getSingleStepDesugaredType(getContext()); 1746 break; 1747 1748 case Type::Typedef: 1749 case Type::Decltype: 1750 case Type::Auto: 1751 // Stop walking: nothing to do. 1752 return; 1753 1754 case Type::TypeOfExpr: 1755 // Stop walking: emit typeof expression. 1756 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1757 return; 1758 1759 case Type::Atomic: 1760 type = cast<AtomicType>(ty)->getValueType(); 1761 break; 1762 1763 case Type::Pipe: 1764 type = cast<PipeType>(ty)->getElementType(); 1765 break; 1766 } 1767 } while (type->isVariablyModifiedType()); 1768 } 1769 1770 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1771 if (getContext().getBuiltinVaListType()->isArrayType()) 1772 return EmitPointerWithAlignment(E); 1773 return EmitLValue(E).getAddress(); 1774 } 1775 1776 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1777 return EmitLValue(E).getAddress(); 1778 } 1779 1780 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1781 llvm::Constant *Init) { 1782 assert (Init && "Invalid DeclRefExpr initializer!"); 1783 if (CGDebugInfo *Dbg = getDebugInfo()) 1784 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1785 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1786 } 1787 1788 CodeGenFunction::PeepholeProtection 1789 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1790 // At the moment, the only aggressive peephole we do in IR gen 1791 // is trunc(zext) folding, but if we add more, we can easily 1792 // extend this protection. 1793 1794 if (!rvalue.isScalar()) return PeepholeProtection(); 1795 llvm::Value *value = rvalue.getScalarVal(); 1796 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1797 1798 // Just make an extra bitcast. 1799 assert(HaveInsertPoint()); 1800 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1801 Builder.GetInsertBlock()); 1802 1803 PeepholeProtection protection; 1804 protection.Inst = inst; 1805 return protection; 1806 } 1807 1808 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1809 if (!protection.Inst) return; 1810 1811 // In theory, we could try to duplicate the peepholes now, but whatever. 1812 protection.Inst->eraseFromParent(); 1813 } 1814 1815 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1816 llvm::Value *AnnotatedVal, 1817 StringRef AnnotationStr, 1818 SourceLocation Location) { 1819 llvm::Value *Args[4] = { 1820 AnnotatedVal, 1821 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1822 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1823 CGM.EmitAnnotationLineNo(Location) 1824 }; 1825 return Builder.CreateCall(AnnotationFn, Args); 1826 } 1827 1828 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1829 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1830 // FIXME We create a new bitcast for every annotation because that's what 1831 // llvm-gcc was doing. 1832 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1833 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1834 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1835 I->getAnnotation(), D->getLocation()); 1836 } 1837 1838 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1839 Address Addr) { 1840 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1841 llvm::Value *V = Addr.getPointer(); 1842 llvm::Type *VTy = V->getType(); 1843 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1844 CGM.Int8PtrTy); 1845 1846 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1847 // FIXME Always emit the cast inst so we can differentiate between 1848 // annotation on the first field of a struct and annotation on the struct 1849 // itself. 1850 if (VTy != CGM.Int8PtrTy) 1851 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1852 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1853 V = Builder.CreateBitCast(V, VTy); 1854 } 1855 1856 return Address(V, Addr.getAlignment()); 1857 } 1858 1859 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1860 1861 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1862 : CGF(CGF) { 1863 assert(!CGF->IsSanitizerScope); 1864 CGF->IsSanitizerScope = true; 1865 } 1866 1867 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1868 CGF->IsSanitizerScope = false; 1869 } 1870 1871 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1872 const llvm::Twine &Name, 1873 llvm::BasicBlock *BB, 1874 llvm::BasicBlock::iterator InsertPt) const { 1875 LoopStack.InsertHelper(I); 1876 if (IsSanitizerScope) 1877 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1878 } 1879 1880 void CGBuilderInserter::InsertHelper( 1881 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1882 llvm::BasicBlock::iterator InsertPt) const { 1883 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1884 if (CGF) 1885 CGF->InsertHelper(I, Name, BB, InsertPt); 1886 } 1887 1888 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1889 CodeGenModule &CGM, const FunctionDecl *FD, 1890 std::string &FirstMissing) { 1891 // If there aren't any required features listed then go ahead and return. 1892 if (ReqFeatures.empty()) 1893 return false; 1894 1895 // Now build up the set of caller features and verify that all the required 1896 // features are there. 1897 llvm::StringMap<bool> CallerFeatureMap; 1898 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1899 1900 // If we have at least one of the features in the feature list return 1901 // true, otherwise return false. 1902 return std::all_of( 1903 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1904 SmallVector<StringRef, 1> OrFeatures; 1905 Feature.split(OrFeatures, "|"); 1906 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1907 [&](StringRef Feature) { 1908 if (!CallerFeatureMap.lookup(Feature)) { 1909 FirstMissing = Feature.str(); 1910 return false; 1911 } 1912 return true; 1913 }); 1914 }); 1915 } 1916 1917 // Emits an error if we don't have a valid set of target features for the 1918 // called function. 1919 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1920 const FunctionDecl *TargetDecl) { 1921 // Early exit if this is an indirect call. 1922 if (!TargetDecl) 1923 return; 1924 1925 // Get the current enclosing function if it exists. If it doesn't 1926 // we can't check the target features anyhow. 1927 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1928 if (!FD) 1929 return; 1930 1931 // Grab the required features for the call. For a builtin this is listed in 1932 // the td file with the default cpu, for an always_inline function this is any 1933 // listed cpu and any listed features. 1934 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1935 std::string MissingFeature; 1936 if (BuiltinID) { 1937 SmallVector<StringRef, 1> ReqFeatures; 1938 const char *FeatureList = 1939 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1940 // Return if the builtin doesn't have any required features. 1941 if (!FeatureList || StringRef(FeatureList) == "") 1942 return; 1943 StringRef(FeatureList).split(ReqFeatures, ","); 1944 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1945 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1946 << TargetDecl->getDeclName() 1947 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1948 1949 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1950 // Get the required features for the callee. 1951 SmallVector<StringRef, 1> ReqFeatures; 1952 llvm::StringMap<bool> CalleeFeatureMap; 1953 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1954 for (const auto &F : CalleeFeatureMap) { 1955 // Only positive features are "required". 1956 if (F.getValue()) 1957 ReqFeatures.push_back(F.getKey()); 1958 } 1959 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1960 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1961 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1962 } 1963 } 1964 1965 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1966 if (!CGM.getCodeGenOpts().SanitizeStats) 1967 return; 1968 1969 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1970 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1971 CGM.getSanStats().create(IRB, SSK); 1972 } 1973