1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/OpenCL.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 39 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 40 CGM.getSanOpts().Alignment | 41 CGM.getSanOpts().ObjectSize | 42 CGM.getSanOpts().Vptr), 43 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 44 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 45 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 46 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 47 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 48 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 49 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 50 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 51 CXXThisValue(0), CXXDefaultInitExprThis(0), 52 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 53 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 54 TerminateHandler(0), TrapBB(0) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 } 77 78 79 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 80 return CGM.getTypes().ConvertTypeForMem(T); 81 } 82 83 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 84 return CGM.getTypes().ConvertType(T); 85 } 86 87 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 88 type = type.getCanonicalType(); 89 while (true) { 90 switch (type->getTypeClass()) { 91 #define TYPE(name, parent) 92 #define ABSTRACT_TYPE(name, parent) 93 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 94 #define DEPENDENT_TYPE(name, parent) case Type::name: 95 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 96 #include "clang/AST/TypeNodes.def" 97 llvm_unreachable("non-canonical or dependent type in IR-generation"); 98 99 case Type::Auto: 100 llvm_unreachable("undeduced auto type in IR-generation"); 101 102 // Various scalar types. 103 case Type::Builtin: 104 case Type::Pointer: 105 case Type::BlockPointer: 106 case Type::LValueReference: 107 case Type::RValueReference: 108 case Type::MemberPointer: 109 case Type::Vector: 110 case Type::ExtVector: 111 case Type::FunctionProto: 112 case Type::FunctionNoProto: 113 case Type::Enum: 114 case Type::ObjCObjectPointer: 115 return TEK_Scalar; 116 117 // Complexes. 118 case Type::Complex: 119 return TEK_Complex; 120 121 // Arrays, records, and Objective-C objects. 122 case Type::ConstantArray: 123 case Type::IncompleteArray: 124 case Type::VariableArray: 125 case Type::Record: 126 case Type::ObjCObject: 127 case Type::ObjCInterface: 128 return TEK_Aggregate; 129 130 // We operate on atomic values according to their underlying type. 131 case Type::Atomic: 132 type = cast<AtomicType>(type)->getValueType(); 133 continue; 134 } 135 llvm_unreachable("unknown type kind!"); 136 } 137 } 138 139 void CodeGenFunction::EmitReturnBlock() { 140 // For cleanliness, we try to avoid emitting the return block for 141 // simple cases. 142 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 143 144 if (CurBB) { 145 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 146 147 // We have a valid insert point, reuse it if it is empty or there are no 148 // explicit jumps to the return block. 149 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 150 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 151 delete ReturnBlock.getBlock(); 152 } else 153 EmitBlock(ReturnBlock.getBlock()); 154 return; 155 } 156 157 // Otherwise, if the return block is the target of a single direct 158 // branch then we can just put the code in that block instead. This 159 // cleans up functions which started with a unified return block. 160 if (ReturnBlock.getBlock()->hasOneUse()) { 161 llvm::BranchInst *BI = 162 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 163 if (BI && BI->isUnconditional() && 164 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 165 // Reset insertion point, including debug location, and delete the 166 // branch. This is really subtle and only works because the next change 167 // in location will hit the caching in CGDebugInfo::EmitLocation and not 168 // override this. 169 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 170 Builder.SetInsertPoint(BI->getParent()); 171 BI->eraseFromParent(); 172 delete ReturnBlock.getBlock(); 173 return; 174 } 175 } 176 177 // FIXME: We are at an unreachable point, there is no reason to emit the block 178 // unless it has uses. However, we still need a place to put the debug 179 // region.end for now. 180 181 EmitBlock(ReturnBlock.getBlock()); 182 } 183 184 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 185 if (!BB) return; 186 if (!BB->use_empty()) 187 return CGF.CurFn->getBasicBlockList().push_back(BB); 188 delete BB; 189 } 190 191 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 192 assert(BreakContinueStack.empty() && 193 "mismatched push/pop in break/continue stack!"); 194 195 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 196 && NumSimpleReturnExprs == NumReturnExprs 197 && ReturnBlock.getBlock()->use_empty(); 198 // Usually the return expression is evaluated before the cleanup 199 // code. If the function contains only a simple return statement, 200 // such as a constant, the location before the cleanup code becomes 201 // the last useful breakpoint in the function, because the simple 202 // return expression will be evaluated after the cleanup code. To be 203 // safe, set the debug location for cleanup code to the location of 204 // the return statement. Otherwise the cleanup code should be at the 205 // end of the function's lexical scope. 206 // 207 // If there are multiple branches to the return block, the branch 208 // instructions will get the location of the return statements and 209 // all will be fine. 210 if (CGDebugInfo *DI = getDebugInfo()) { 211 if (OnlySimpleReturnStmts) 212 DI->EmitLocation(Builder, LastStopPoint, false); 213 else 214 DI->EmitLocation(Builder, EndLoc, false); 215 } 216 217 // Pop any cleanups that might have been associated with the 218 // parameters. Do this in whatever block we're currently in; it's 219 // important to do this before we enter the return block or return 220 // edges will be *really* confused. 221 bool EmitRetDbgLoc = true; 222 if (EHStack.stable_begin() != PrologueCleanupDepth) { 223 PopCleanupBlocks(PrologueCleanupDepth); 224 225 // Make sure the line table doesn't jump back into the body for 226 // the ret after it's been at EndLoc. 227 EmitRetDbgLoc = false; 228 229 if (CGDebugInfo *DI = getDebugInfo()) 230 if (OnlySimpleReturnStmts) 231 DI->EmitLocation(Builder, EndLoc, false); 232 } 233 234 // Emit function epilog (to return). 235 EmitReturnBlock(); 236 237 if (ShouldInstrumentFunction()) 238 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 239 240 // Emit debug descriptor for function end. 241 if (CGDebugInfo *DI = getDebugInfo()) { 242 DI->EmitFunctionEnd(Builder); 243 } 244 245 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 246 EmitEndEHSpec(CurCodeDecl); 247 248 assert(EHStack.empty() && 249 "did not remove all scopes from cleanup stack!"); 250 251 // If someone did an indirect goto, emit the indirect goto block at the end of 252 // the function. 253 if (IndirectBranch) { 254 EmitBlock(IndirectBranch->getParent()); 255 Builder.ClearInsertionPoint(); 256 } 257 258 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 259 llvm::Instruction *Ptr = AllocaInsertPt; 260 AllocaInsertPt = 0; 261 Ptr->eraseFromParent(); 262 263 // If someone took the address of a label but never did an indirect goto, we 264 // made a zero entry PHI node, which is illegal, zap it now. 265 if (IndirectBranch) { 266 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 267 if (PN->getNumIncomingValues() == 0) { 268 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 269 PN->eraseFromParent(); 270 } 271 } 272 273 EmitIfUsed(*this, EHResumeBlock); 274 EmitIfUsed(*this, TerminateLandingPad); 275 EmitIfUsed(*this, TerminateHandler); 276 EmitIfUsed(*this, UnreachableBlock); 277 278 if (CGM.getCodeGenOpts().EmitDeclMetadata) 279 EmitDeclMetadata(); 280 } 281 282 /// ShouldInstrumentFunction - Return true if the current function should be 283 /// instrumented with __cyg_profile_func_* calls 284 bool CodeGenFunction::ShouldInstrumentFunction() { 285 if (!CGM.getCodeGenOpts().InstrumentFunctions) 286 return false; 287 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 288 return false; 289 return true; 290 } 291 292 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 293 /// instrumentation function with the current function and the call site, if 294 /// function instrumentation is enabled. 295 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 296 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 297 llvm::PointerType *PointerTy = Int8PtrTy; 298 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 299 llvm::FunctionType *FunctionTy = 300 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 301 302 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 303 llvm::CallInst *CallSite = Builder.CreateCall( 304 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 305 llvm::ConstantInt::get(Int32Ty, 0), 306 "callsite"); 307 308 llvm::Value *args[] = { 309 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 310 CallSite 311 }; 312 313 EmitNounwindRuntimeCall(F, args); 314 } 315 316 void CodeGenFunction::EmitMCountInstrumentation() { 317 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 318 319 llvm::Constant *MCountFn = 320 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 321 EmitNounwindRuntimeCall(MCountFn); 322 } 323 324 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 325 // information in the program executable. The argument information stored 326 // includes the argument name, its type, the address and access qualifiers used. 327 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 328 CodeGenModule &CGM,llvm::LLVMContext &Context, 329 SmallVector <llvm::Value*, 5> &kernelMDArgs, 330 CGBuilderTy& Builder, ASTContext &ASTCtx) { 331 // Create MDNodes that represent the kernel arg metadata. 332 // Each MDNode is a list in the form of "key", N number of values which is 333 // the same number of values as their are kernel arguments. 334 335 // MDNode for the kernel argument address space qualifiers. 336 SmallVector<llvm::Value*, 8> addressQuals; 337 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 338 339 // MDNode for the kernel argument access qualifiers (images only). 340 SmallVector<llvm::Value*, 8> accessQuals; 341 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 342 343 // MDNode for the kernel argument type names. 344 SmallVector<llvm::Value*, 8> argTypeNames; 345 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 346 347 // MDNode for the kernel argument type qualifiers. 348 SmallVector<llvm::Value*, 8> argTypeQuals; 349 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 350 351 // MDNode for the kernel argument names. 352 SmallVector<llvm::Value*, 8> argNames; 353 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 354 355 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 356 const ParmVarDecl *parm = FD->getParamDecl(i); 357 QualType ty = parm->getType(); 358 std::string typeQuals; 359 360 if (ty->isPointerType()) { 361 QualType pointeeTy = ty->getPointeeType(); 362 363 // Get address qualifier. 364 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 365 pointeeTy.getAddressSpace()))); 366 367 // Get argument type name. 368 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 369 370 // Turn "unsigned type" to "utype" 371 std::string::size_type pos = typeName.find("unsigned"); 372 if (pos != std::string::npos) 373 typeName.erase(pos+1, 8); 374 375 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 376 377 // Get argument type qualifiers: 378 if (ty.isRestrictQualified()) 379 typeQuals = "restrict"; 380 if (pointeeTy.isConstQualified() || 381 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 382 typeQuals += typeQuals.empty() ? "const" : " const"; 383 if (pointeeTy.isVolatileQualified()) 384 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 385 } else { 386 addressQuals.push_back(Builder.getInt32(0)); 387 388 // Get argument type name. 389 std::string typeName = ty.getUnqualifiedType().getAsString(); 390 391 // Turn "unsigned type" to "utype" 392 std::string::size_type pos = typeName.find("unsigned"); 393 if (pos != std::string::npos) 394 typeName.erase(pos+1, 8); 395 396 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 397 398 // Get argument type qualifiers: 399 if (ty.isConstQualified()) 400 typeQuals = "const"; 401 if (ty.isVolatileQualified()) 402 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 403 } 404 405 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 406 407 // Get image access qualifier: 408 if (ty->isImageType()) { 409 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 410 if (A && A->getAccess() == CLIA_write_only) 411 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 412 else 413 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 414 } else 415 accessQuals.push_back(llvm::MDString::get(Context, "none")); 416 417 // Get argument name. 418 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 419 } 420 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 424 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 425 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 426 } 427 428 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 429 llvm::Function *Fn) 430 { 431 if (!FD->hasAttr<OpenCLKernelAttr>()) 432 return; 433 434 llvm::LLVMContext &Context = getLLVMContext(); 435 436 SmallVector <llvm::Value*, 5> kernelMDArgs; 437 kernelMDArgs.push_back(Fn); 438 439 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 440 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 441 Builder, getContext()); 442 443 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 444 QualType hintQTy = A->getTypeHint(); 445 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 446 bool isSignedInteger = 447 hintQTy->isSignedIntegerType() || 448 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 449 llvm::Value *attrMDArgs[] = { 450 llvm::MDString::get(Context, "vec_type_hint"), 451 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 452 llvm::ConstantInt::get( 453 llvm::IntegerType::get(Context, 32), 454 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 455 }; 456 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 457 } 458 459 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 460 llvm::Value *attrMDArgs[] = { 461 llvm::MDString::get(Context, "work_group_size_hint"), 462 Builder.getInt32(A->getXDim()), 463 Builder.getInt32(A->getYDim()), 464 Builder.getInt32(A->getZDim()) 465 }; 466 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 467 } 468 469 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 470 llvm::Value *attrMDArgs[] = { 471 llvm::MDString::get(Context, "reqd_work_group_size"), 472 Builder.getInt32(A->getXDim()), 473 Builder.getInt32(A->getYDim()), 474 Builder.getInt32(A->getZDim()) 475 }; 476 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 477 } 478 479 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 480 llvm::NamedMDNode *OpenCLKernelMetadata = 481 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 482 OpenCLKernelMetadata->addOperand(kernelMDNode); 483 } 484 485 void CodeGenFunction::StartFunction(GlobalDecl GD, 486 QualType RetTy, 487 llvm::Function *Fn, 488 const CGFunctionInfo &FnInfo, 489 const FunctionArgList &Args, 490 SourceLocation StartLoc) { 491 const Decl *D = GD.getDecl(); 492 493 DidCallStackSave = false; 494 CurCodeDecl = D; 495 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 496 FnRetTy = RetTy; 497 CurFn = Fn; 498 CurFnInfo = &FnInfo; 499 assert(CurFn->isDeclaration() && "Function already has body?"); 500 501 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 502 SanOpts = &SanitizerOptions::Disabled; 503 SanitizePerformTypeCheck = false; 504 } 505 506 // Pass inline keyword to optimizer if it appears explicitly on any 507 // declaration. 508 if (!CGM.getCodeGenOpts().NoInline) 509 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 510 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 511 RE = FD->redecls_end(); RI != RE; ++RI) 512 if (RI->isInlineSpecified()) { 513 Fn->addFnAttr(llvm::Attribute::InlineHint); 514 break; 515 } 516 517 if (getLangOpts().OpenCL) { 518 // Add metadata for a kernel function. 519 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 520 EmitOpenCLKernelMetadata(FD, Fn); 521 } 522 523 // If we are checking function types, emit a function type signature as 524 // prefix data. 525 if (getLangOpts().CPlusPlus && SanOpts->Function) { 526 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 527 if (llvm::Constant *PrefixSig = 528 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 529 llvm::Constant *FTRTTIConst = 530 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 531 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 532 llvm::Constant *PrefixStructConst = 533 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 534 Fn->setPrefixData(PrefixStructConst); 535 } 536 } 537 } 538 539 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 540 541 // Create a marker to make it easy to insert allocas into the entryblock 542 // later. Don't create this with the builder, because we don't want it 543 // folded. 544 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 545 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 546 if (Builder.isNamePreserving()) 547 AllocaInsertPt->setName("allocapt"); 548 549 ReturnBlock = getJumpDestInCurrentScope("return"); 550 551 Builder.SetInsertPoint(EntryBB); 552 553 // Emit subprogram debug descriptor. 554 if (CGDebugInfo *DI = getDebugInfo()) { 555 SmallVector<QualType, 16> ArgTypes; 556 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 557 i != e; ++i) { 558 ArgTypes.push_back((*i)->getType()); 559 } 560 561 QualType FnType = 562 getContext().getFunctionType(RetTy, ArgTypes, 563 FunctionProtoType::ExtProtoInfo()); 564 565 DI->setLocation(StartLoc); 566 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 567 } 568 569 if (ShouldInstrumentFunction()) 570 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 571 572 if (CGM.getCodeGenOpts().InstrumentForProfiling) 573 EmitMCountInstrumentation(); 574 575 PGO.assignRegionCounters(GD); 576 577 if (RetTy->isVoidType()) { 578 // Void type; nothing to return. 579 ReturnValue = 0; 580 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 581 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 582 // Indirect aggregate return; emit returned value directly into sret slot. 583 // This reduces code size, and affects correctness in C++. 584 ReturnValue = CurFn->arg_begin(); 585 } else { 586 ReturnValue = CreateIRTemp(RetTy, "retval"); 587 588 // Tell the epilog emitter to autorelease the result. We do this 589 // now so that various specialized functions can suppress it 590 // during their IR-generation. 591 if (getLangOpts().ObjCAutoRefCount && 592 !CurFnInfo->isReturnsRetained() && 593 RetTy->isObjCRetainableType()) 594 AutoreleaseResult = true; 595 } 596 597 EmitStartEHSpec(CurCodeDecl); 598 599 PrologueCleanupDepth = EHStack.stable_begin(); 600 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 601 602 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 603 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 604 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 605 if (MD->getParent()->isLambda() && 606 MD->getOverloadedOperator() == OO_Call) { 607 // We're in a lambda; figure out the captures. 608 MD->getParent()->getCaptureFields(LambdaCaptureFields, 609 LambdaThisCaptureField); 610 if (LambdaThisCaptureField) { 611 // If this lambda captures this, load it. 612 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 613 CXXThisValue = EmitLoadOfLValue(ThisLValue, 614 SourceLocation()).getScalarVal(); 615 } 616 } else { 617 // Not in a lambda; just use 'this' from the method. 618 // FIXME: Should we generate a new load for each use of 'this'? The 619 // fast register allocator would be happier... 620 CXXThisValue = CXXABIThisValue; 621 } 622 } 623 624 // If any of the arguments have a variably modified type, make sure to 625 // emit the type size. 626 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 627 i != e; ++i) { 628 const VarDecl *VD = *i; 629 630 // Dig out the type as written from ParmVarDecls; it's unclear whether 631 // the standard (C99 6.9.1p10) requires this, but we're following the 632 // precedent set by gcc. 633 QualType Ty; 634 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 635 Ty = PVD->getOriginalType(); 636 else 637 Ty = VD->getType(); 638 639 if (Ty->isVariablyModifiedType()) 640 EmitVariablyModifiedType(Ty); 641 } 642 // Emit a location at the end of the prologue. 643 if (CGDebugInfo *DI = getDebugInfo()) 644 DI->EmitLocation(Builder, StartLoc); 645 } 646 647 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 648 const Stmt *Body) { 649 RegionCounter Cnt = getPGORegionCounter(Body); 650 Cnt.beginRegion(Builder); 651 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 652 EmitCompoundStmtWithoutScope(*S); 653 else 654 EmitStmt(Body); 655 } 656 657 /// Tries to mark the given function nounwind based on the 658 /// non-existence of any throwing calls within it. We believe this is 659 /// lightweight enough to do at -O0. 660 static void TryMarkNoThrow(llvm::Function *F) { 661 // LLVM treats 'nounwind' on a function as part of the type, so we 662 // can't do this on functions that can be overwritten. 663 if (F->mayBeOverridden()) return; 664 665 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 666 for (llvm::BasicBlock::iterator 667 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 668 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 669 if (!Call->doesNotThrow()) 670 return; 671 } else if (isa<llvm::ResumeInst>(&*BI)) { 672 return; 673 } 674 F->setDoesNotThrow(); 675 } 676 677 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 678 const FunctionDecl *UnsizedDealloc) { 679 // This is a weak discardable definition of the sized deallocation function. 680 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 681 682 // Call the unsized deallocation function and forward the first argument 683 // unchanged. 684 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 685 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 686 } 687 688 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 689 const CGFunctionInfo &FnInfo) { 690 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 691 692 // Check if we should generate debug info for this function. 693 if (FD->hasAttr<NoDebugAttr>()) 694 DebugInfo = NULL; // disable debug info indefinitely for this function 695 696 FunctionArgList Args; 697 QualType ResTy = FD->getResultType(); 698 699 CurGD = GD; 700 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 701 if (MD && MD->isInstance()) { 702 if (CGM.getCXXABI().HasThisReturn(GD)) 703 ResTy = MD->getThisType(getContext()); 704 CGM.getCXXABI().buildThisParam(*this, Args); 705 } 706 707 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 708 Args.push_back(FD->getParamDecl(i)); 709 710 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 711 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 712 713 SourceRange BodyRange; 714 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 715 CurEHLocation = BodyRange.getEnd(); 716 717 // Emit the standard function prologue. 718 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 719 720 // Generate the body of the function. 721 if (isa<CXXDestructorDecl>(FD)) 722 EmitDestructorBody(Args); 723 else if (isa<CXXConstructorDecl>(FD)) 724 EmitConstructorBody(Args); 725 else if (getLangOpts().CUDA && 726 !CGM.getCodeGenOpts().CUDAIsDevice && 727 FD->hasAttr<CUDAGlobalAttr>()) 728 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 729 else if (isa<CXXConversionDecl>(FD) && 730 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 731 // The lambda conversion to block pointer is special; the semantics can't be 732 // expressed in the AST, so IRGen needs to special-case it. 733 EmitLambdaToBlockPointerBody(Args); 734 } else if (isa<CXXMethodDecl>(FD) && 735 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 736 // The lambda static invoker function is special, because it forwards or 737 // clones the body of the function call operator (but is actually static). 738 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 739 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 740 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 741 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 742 // Implicit copy-assignment gets the same special treatment as implicit 743 // copy-constructors. 744 emitImplicitAssignmentOperatorBody(Args); 745 } else if (Stmt *Body = FD->getBody()) { 746 EmitFunctionBody(Args, Body); 747 } else if (FunctionDecl *UnsizedDealloc = 748 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 749 // Global sized deallocation functions get an implicit weak definition if 750 // they don't have an explicit definition. 751 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 752 } else 753 llvm_unreachable("no definition for emitted function"); 754 755 // C++11 [stmt.return]p2: 756 // Flowing off the end of a function [...] results in undefined behavior in 757 // a value-returning function. 758 // C11 6.9.1p12: 759 // If the '}' that terminates a function is reached, and the value of the 760 // function call is used by the caller, the behavior is undefined. 761 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 762 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 763 if (SanOpts->Return) 764 EmitCheck(Builder.getFalse(), "missing_return", 765 EmitCheckSourceLocation(FD->getLocation()), 766 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 767 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 768 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 769 Builder.CreateUnreachable(); 770 Builder.ClearInsertionPoint(); 771 } 772 773 // Emit the standard function epilogue. 774 FinishFunction(BodyRange.getEnd()); 775 776 // If we haven't marked the function nothrow through other means, do 777 // a quick pass now to see if we can. 778 if (!CurFn->doesNotThrow()) 779 TryMarkNoThrow(CurFn); 780 781 PGO.emitWriteoutFunction(CurGD); 782 PGO.destroyRegionCounters(); 783 } 784 785 /// ContainsLabel - Return true if the statement contains a label in it. If 786 /// this statement is not executed normally, it not containing a label means 787 /// that we can just remove the code. 788 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 789 // Null statement, not a label! 790 if (S == 0) return false; 791 792 // If this is a label, we have to emit the code, consider something like: 793 // if (0) { ... foo: bar(); } goto foo; 794 // 795 // TODO: If anyone cared, we could track __label__'s, since we know that you 796 // can't jump to one from outside their declared region. 797 if (isa<LabelStmt>(S)) 798 return true; 799 800 // If this is a case/default statement, and we haven't seen a switch, we have 801 // to emit the code. 802 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 803 return true; 804 805 // If this is a switch statement, we want to ignore cases below it. 806 if (isa<SwitchStmt>(S)) 807 IgnoreCaseStmts = true; 808 809 // Scan subexpressions for verboten labels. 810 for (Stmt::const_child_range I = S->children(); I; ++I) 811 if (ContainsLabel(*I, IgnoreCaseStmts)) 812 return true; 813 814 return false; 815 } 816 817 /// containsBreak - Return true if the statement contains a break out of it. 818 /// If the statement (recursively) contains a switch or loop with a break 819 /// inside of it, this is fine. 820 bool CodeGenFunction::containsBreak(const Stmt *S) { 821 // Null statement, not a label! 822 if (S == 0) return false; 823 824 // If this is a switch or loop that defines its own break scope, then we can 825 // include it and anything inside of it. 826 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 827 isa<ForStmt>(S)) 828 return false; 829 830 if (isa<BreakStmt>(S)) 831 return true; 832 833 // Scan subexpressions for verboten breaks. 834 for (Stmt::const_child_range I = S->children(); I; ++I) 835 if (containsBreak(*I)) 836 return true; 837 838 return false; 839 } 840 841 842 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 843 /// to a constant, or if it does but contains a label, return false. If it 844 /// constant folds return true and set the boolean result in Result. 845 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 846 bool &ResultBool) { 847 llvm::APSInt ResultInt; 848 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 849 return false; 850 851 ResultBool = ResultInt.getBoolValue(); 852 return true; 853 } 854 855 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 856 /// to a constant, or if it does but contains a label, return false. If it 857 /// constant folds return true and set the folded value. 858 bool CodeGenFunction:: 859 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 860 // FIXME: Rename and handle conversion of other evaluatable things 861 // to bool. 862 llvm::APSInt Int; 863 if (!Cond->EvaluateAsInt(Int, getContext())) 864 return false; // Not foldable, not integer or not fully evaluatable. 865 866 if (CodeGenFunction::ContainsLabel(Cond)) 867 return false; // Contains a label. 868 869 ResultInt = Int; 870 return true; 871 } 872 873 874 875 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 876 /// statement) to the specified blocks. Based on the condition, this might try 877 /// to simplify the codegen of the conditional based on the branch. 878 /// 879 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 880 llvm::BasicBlock *TrueBlock, 881 llvm::BasicBlock *FalseBlock, 882 uint64_t TrueCount) { 883 Cond = Cond->IgnoreParens(); 884 885 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 886 RegionCounter Cnt = getPGORegionCounter(CondBOp); 887 888 // Handle X && Y in a condition. 889 if (CondBOp->getOpcode() == BO_LAnd) { 890 // If we have "1 && X", simplify the code. "0 && X" would have constant 891 // folded if the case was simple enough. 892 bool ConstantBool = false; 893 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 894 ConstantBool) { 895 // br(1 && X) -> br(X). 896 Cnt.beginRegion(Builder); 897 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 898 TrueCount); 899 } 900 901 // If we have "X && 1", simplify the code to use an uncond branch. 902 // "X && 0" would have been constant folded to 0. 903 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 904 ConstantBool) { 905 // br(X && 1) -> br(X). 906 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 907 TrueCount); 908 } 909 910 // Emit the LHS as a conditional. If the LHS conditional is false, we 911 // want to jump to the FalseBlock. 912 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 913 // The counter tells us how often we evaluate RHS, and all of TrueCount 914 // can be propagated to that branch. 915 uint64_t RHSCount = Cnt.getCount(); 916 917 ConditionalEvaluation eval(*this); 918 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 919 EmitBlock(LHSTrue); 920 921 // Any temporaries created here are conditional. 922 Cnt.beginRegion(Builder); 923 eval.begin(*this); 924 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 925 eval.end(*this); 926 Cnt.adjustFallThroughCount(); 927 Cnt.applyAdjustmentsToRegion(); 928 929 return; 930 } 931 932 if (CondBOp->getOpcode() == BO_LOr) { 933 // If we have "0 || X", simplify the code. "1 || X" would have constant 934 // folded if the case was simple enough. 935 bool ConstantBool = false; 936 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 937 !ConstantBool) { 938 // br(0 || X) -> br(X). 939 Cnt.beginRegion(Builder); 940 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 941 TrueCount); 942 } 943 944 // If we have "X || 0", simplify the code to use an uncond branch. 945 // "X || 1" would have been constant folded to 1. 946 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 947 !ConstantBool) { 948 // br(X || 0) -> br(X). 949 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 950 TrueCount); 951 } 952 953 // Emit the LHS as a conditional. If the LHS conditional is true, we 954 // want to jump to the TrueBlock. 955 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 956 // We have the count for entry to the RHS and for the whole expression 957 // being true, so we can divy up True count between the short circuit and 958 // the RHS. 959 uint64_t LHSCount = TrueCount - Cnt.getCount(); 960 uint64_t RHSCount = TrueCount - LHSCount; 961 962 ConditionalEvaluation eval(*this); 963 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 964 EmitBlock(LHSFalse); 965 966 // Any temporaries created here are conditional. 967 Cnt.beginRegion(Builder); 968 eval.begin(*this); 969 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 970 971 eval.end(*this); 972 Cnt.adjustFallThroughCount(); 973 Cnt.applyAdjustmentsToRegion(); 974 975 return; 976 } 977 } 978 979 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 980 // br(!x, t, f) -> br(x, f, t) 981 if (CondUOp->getOpcode() == UO_LNot) { 982 // Negate the count. 983 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 984 // Negate the condition and swap the destination blocks. 985 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 986 FalseCount); 987 } 988 } 989 990 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 991 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 992 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 993 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 994 995 RegionCounter Cnt = getPGORegionCounter(CondOp); 996 ConditionalEvaluation cond(*this); 997 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 998 999 // When computing PGO branch weights, we only know the overall count for 1000 // the true block. This code is essentially doing tail duplication of the 1001 // naive code-gen, introducing new edges for which counts are not 1002 // available. Divide the counts proportionally between the LHS and RHS of 1003 // the conditional operator. 1004 uint64_t LHSScaledTrueCount = 0; 1005 if (TrueCount) { 1006 double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount(); 1007 LHSScaledTrueCount = TrueCount * LHSRatio; 1008 } 1009 1010 cond.begin(*this); 1011 EmitBlock(LHSBlock); 1012 Cnt.beginRegion(Builder); 1013 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1014 LHSScaledTrueCount); 1015 cond.end(*this); 1016 1017 cond.begin(*this); 1018 EmitBlock(RHSBlock); 1019 Cnt.beginElseRegion(); 1020 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1021 TrueCount - LHSScaledTrueCount); 1022 cond.end(*this); 1023 1024 return; 1025 } 1026 1027 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1028 // Conditional operator handling can give us a throw expression as a 1029 // condition for a case like: 1030 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1031 // Fold this to: 1032 // br(c, throw x, br(y, t, f)) 1033 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1034 return; 1035 } 1036 1037 // Create branch weights based on the number of times we get here and the 1038 // number of times the condition should be true. 1039 uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount); 1040 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1041 CurrentCount - TrueCount); 1042 1043 // Emit the code with the fully general case. 1044 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1045 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1046 } 1047 1048 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1049 /// specified stmt yet. 1050 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1051 CGM.ErrorUnsupported(S, Type); 1052 } 1053 1054 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1055 /// variable-length array whose elements have a non-zero bit-pattern. 1056 /// 1057 /// \param baseType the inner-most element type of the array 1058 /// \param src - a char* pointing to the bit-pattern for a single 1059 /// base element of the array 1060 /// \param sizeInChars - the total size of the VLA, in chars 1061 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1062 llvm::Value *dest, llvm::Value *src, 1063 llvm::Value *sizeInChars) { 1064 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1065 = CGF.getContext().getTypeInfoInChars(baseType); 1066 1067 CGBuilderTy &Builder = CGF.Builder; 1068 1069 llvm::Value *baseSizeInChars 1070 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1071 1072 llvm::Type *i8p = Builder.getInt8PtrTy(); 1073 1074 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1075 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1076 1077 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1078 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1079 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1080 1081 // Make a loop over the VLA. C99 guarantees that the VLA element 1082 // count must be nonzero. 1083 CGF.EmitBlock(loopBB); 1084 1085 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1086 cur->addIncoming(begin, originBB); 1087 1088 // memcpy the individual element bit-pattern. 1089 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1090 baseSizeAndAlign.second.getQuantity(), 1091 /*volatile*/ false); 1092 1093 // Go to the next element. 1094 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1095 1096 // Leave if that's the end of the VLA. 1097 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1098 Builder.CreateCondBr(done, contBB, loopBB); 1099 cur->addIncoming(next, loopBB); 1100 1101 CGF.EmitBlock(contBB); 1102 } 1103 1104 void 1105 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1106 // Ignore empty classes in C++. 1107 if (getLangOpts().CPlusPlus) { 1108 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1109 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1110 return; 1111 } 1112 } 1113 1114 // Cast the dest ptr to the appropriate i8 pointer type. 1115 unsigned DestAS = 1116 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1117 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1118 if (DestPtr->getType() != BP) 1119 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1120 1121 // Get size and alignment info for this aggregate. 1122 std::pair<CharUnits, CharUnits> TypeInfo = 1123 getContext().getTypeInfoInChars(Ty); 1124 CharUnits Size = TypeInfo.first; 1125 CharUnits Align = TypeInfo.second; 1126 1127 llvm::Value *SizeVal; 1128 const VariableArrayType *vla; 1129 1130 // Don't bother emitting a zero-byte memset. 1131 if (Size.isZero()) { 1132 // But note that getTypeInfo returns 0 for a VLA. 1133 if (const VariableArrayType *vlaType = 1134 dyn_cast_or_null<VariableArrayType>( 1135 getContext().getAsArrayType(Ty))) { 1136 QualType eltType; 1137 llvm::Value *numElts; 1138 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1139 1140 SizeVal = numElts; 1141 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1142 if (!eltSize.isOne()) 1143 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1144 vla = vlaType; 1145 } else { 1146 return; 1147 } 1148 } else { 1149 SizeVal = CGM.getSize(Size); 1150 vla = 0; 1151 } 1152 1153 // If the type contains a pointer to data member we can't memset it to zero. 1154 // Instead, create a null constant and copy it to the destination. 1155 // TODO: there are other patterns besides zero that we can usefully memset, 1156 // like -1, which happens to be the pattern used by member-pointers. 1157 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1158 // For a VLA, emit a single element, then splat that over the VLA. 1159 if (vla) Ty = getContext().getBaseElementType(vla); 1160 1161 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1162 1163 llvm::GlobalVariable *NullVariable = 1164 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1165 /*isConstant=*/true, 1166 llvm::GlobalVariable::PrivateLinkage, 1167 NullConstant, Twine()); 1168 llvm::Value *SrcPtr = 1169 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1170 1171 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1172 1173 // Get and call the appropriate llvm.memcpy overload. 1174 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1175 return; 1176 } 1177 1178 // Otherwise, just memset the whole thing to zero. This is legal 1179 // because in LLVM, all default initializers (other than the ones we just 1180 // handled above) are guaranteed to have a bit pattern of all zeros. 1181 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1182 Align.getQuantity(), false); 1183 } 1184 1185 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1186 // Make sure that there is a block for the indirect goto. 1187 if (IndirectBranch == 0) 1188 GetIndirectGotoBlock(); 1189 1190 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1191 1192 // Make sure the indirect branch includes all of the address-taken blocks. 1193 IndirectBranch->addDestination(BB); 1194 return llvm::BlockAddress::get(CurFn, BB); 1195 } 1196 1197 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1198 // If we already made the indirect branch for indirect goto, return its block. 1199 if (IndirectBranch) return IndirectBranch->getParent(); 1200 1201 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1202 1203 // Create the PHI node that indirect gotos will add entries to. 1204 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1205 "indirect.goto.dest"); 1206 1207 // Create the indirect branch instruction. 1208 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1209 return IndirectBranch->getParent(); 1210 } 1211 1212 /// Computes the length of an array in elements, as well as the base 1213 /// element type and a properly-typed first element pointer. 1214 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1215 QualType &baseType, 1216 llvm::Value *&addr) { 1217 const ArrayType *arrayType = origArrayType; 1218 1219 // If it's a VLA, we have to load the stored size. Note that 1220 // this is the size of the VLA in bytes, not its size in elements. 1221 llvm::Value *numVLAElements = 0; 1222 if (isa<VariableArrayType>(arrayType)) { 1223 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1224 1225 // Walk into all VLAs. This doesn't require changes to addr, 1226 // which has type T* where T is the first non-VLA element type. 1227 do { 1228 QualType elementType = arrayType->getElementType(); 1229 arrayType = getContext().getAsArrayType(elementType); 1230 1231 // If we only have VLA components, 'addr' requires no adjustment. 1232 if (!arrayType) { 1233 baseType = elementType; 1234 return numVLAElements; 1235 } 1236 } while (isa<VariableArrayType>(arrayType)); 1237 1238 // We get out here only if we find a constant array type 1239 // inside the VLA. 1240 } 1241 1242 // We have some number of constant-length arrays, so addr should 1243 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1244 // down to the first element of addr. 1245 SmallVector<llvm::Value*, 8> gepIndices; 1246 1247 // GEP down to the array type. 1248 llvm::ConstantInt *zero = Builder.getInt32(0); 1249 gepIndices.push_back(zero); 1250 1251 uint64_t countFromCLAs = 1; 1252 QualType eltType; 1253 1254 llvm::ArrayType *llvmArrayType = 1255 dyn_cast<llvm::ArrayType>( 1256 cast<llvm::PointerType>(addr->getType())->getElementType()); 1257 while (llvmArrayType) { 1258 assert(isa<ConstantArrayType>(arrayType)); 1259 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1260 == llvmArrayType->getNumElements()); 1261 1262 gepIndices.push_back(zero); 1263 countFromCLAs *= llvmArrayType->getNumElements(); 1264 eltType = arrayType->getElementType(); 1265 1266 llvmArrayType = 1267 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1268 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1269 assert((!llvmArrayType || arrayType) && 1270 "LLVM and Clang types are out-of-synch"); 1271 } 1272 1273 if (arrayType) { 1274 // From this point onwards, the Clang array type has been emitted 1275 // as some other type (probably a packed struct). Compute the array 1276 // size, and just emit the 'begin' expression as a bitcast. 1277 while (arrayType) { 1278 countFromCLAs *= 1279 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1280 eltType = arrayType->getElementType(); 1281 arrayType = getContext().getAsArrayType(eltType); 1282 } 1283 1284 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1285 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1286 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1287 } else { 1288 // Create the actual GEP. 1289 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1290 } 1291 1292 baseType = eltType; 1293 1294 llvm::Value *numElements 1295 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1296 1297 // If we had any VLA dimensions, factor them in. 1298 if (numVLAElements) 1299 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1300 1301 return numElements; 1302 } 1303 1304 std::pair<llvm::Value*, QualType> 1305 CodeGenFunction::getVLASize(QualType type) { 1306 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1307 assert(vla && "type was not a variable array type!"); 1308 return getVLASize(vla); 1309 } 1310 1311 std::pair<llvm::Value*, QualType> 1312 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1313 // The number of elements so far; always size_t. 1314 llvm::Value *numElements = 0; 1315 1316 QualType elementType; 1317 do { 1318 elementType = type->getElementType(); 1319 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1320 assert(vlaSize && "no size for VLA!"); 1321 assert(vlaSize->getType() == SizeTy); 1322 1323 if (!numElements) { 1324 numElements = vlaSize; 1325 } else { 1326 // It's undefined behavior if this wraps around, so mark it that way. 1327 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1328 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1329 } 1330 } while ((type = getContext().getAsVariableArrayType(elementType))); 1331 1332 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1333 } 1334 1335 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1336 assert(type->isVariablyModifiedType() && 1337 "Must pass variably modified type to EmitVLASizes!"); 1338 1339 EnsureInsertPoint(); 1340 1341 // We're going to walk down into the type and look for VLA 1342 // expressions. 1343 do { 1344 assert(type->isVariablyModifiedType()); 1345 1346 const Type *ty = type.getTypePtr(); 1347 switch (ty->getTypeClass()) { 1348 1349 #define TYPE(Class, Base) 1350 #define ABSTRACT_TYPE(Class, Base) 1351 #define NON_CANONICAL_TYPE(Class, Base) 1352 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1353 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1354 #include "clang/AST/TypeNodes.def" 1355 llvm_unreachable("unexpected dependent type!"); 1356 1357 // These types are never variably-modified. 1358 case Type::Builtin: 1359 case Type::Complex: 1360 case Type::Vector: 1361 case Type::ExtVector: 1362 case Type::Record: 1363 case Type::Enum: 1364 case Type::Elaborated: 1365 case Type::TemplateSpecialization: 1366 case Type::ObjCObject: 1367 case Type::ObjCInterface: 1368 case Type::ObjCObjectPointer: 1369 llvm_unreachable("type class is never variably-modified!"); 1370 1371 case Type::Adjusted: 1372 type = cast<AdjustedType>(ty)->getAdjustedType(); 1373 break; 1374 1375 case Type::Decayed: 1376 type = cast<DecayedType>(ty)->getPointeeType(); 1377 break; 1378 1379 case Type::Pointer: 1380 type = cast<PointerType>(ty)->getPointeeType(); 1381 break; 1382 1383 case Type::BlockPointer: 1384 type = cast<BlockPointerType>(ty)->getPointeeType(); 1385 break; 1386 1387 case Type::LValueReference: 1388 case Type::RValueReference: 1389 type = cast<ReferenceType>(ty)->getPointeeType(); 1390 break; 1391 1392 case Type::MemberPointer: 1393 type = cast<MemberPointerType>(ty)->getPointeeType(); 1394 break; 1395 1396 case Type::ConstantArray: 1397 case Type::IncompleteArray: 1398 // Losing element qualification here is fine. 1399 type = cast<ArrayType>(ty)->getElementType(); 1400 break; 1401 1402 case Type::VariableArray: { 1403 // Losing element qualification here is fine. 1404 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1405 1406 // Unknown size indication requires no size computation. 1407 // Otherwise, evaluate and record it. 1408 if (const Expr *size = vat->getSizeExpr()) { 1409 // It's possible that we might have emitted this already, 1410 // e.g. with a typedef and a pointer to it. 1411 llvm::Value *&entry = VLASizeMap[size]; 1412 if (!entry) { 1413 llvm::Value *Size = EmitScalarExpr(size); 1414 1415 // C11 6.7.6.2p5: 1416 // If the size is an expression that is not an integer constant 1417 // expression [...] each time it is evaluated it shall have a value 1418 // greater than zero. 1419 if (SanOpts->VLABound && 1420 size->getType()->isSignedIntegerType()) { 1421 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1422 llvm::Constant *StaticArgs[] = { 1423 EmitCheckSourceLocation(size->getLocStart()), 1424 EmitCheckTypeDescriptor(size->getType()) 1425 }; 1426 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1427 "vla_bound_not_positive", StaticArgs, Size, 1428 CRK_Recoverable); 1429 } 1430 1431 // Always zexting here would be wrong if it weren't 1432 // undefined behavior to have a negative bound. 1433 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1434 } 1435 } 1436 type = vat->getElementType(); 1437 break; 1438 } 1439 1440 case Type::FunctionProto: 1441 case Type::FunctionNoProto: 1442 type = cast<FunctionType>(ty)->getResultType(); 1443 break; 1444 1445 case Type::Paren: 1446 case Type::TypeOf: 1447 case Type::UnaryTransform: 1448 case Type::Attributed: 1449 case Type::SubstTemplateTypeParm: 1450 case Type::PackExpansion: 1451 // Keep walking after single level desugaring. 1452 type = type.getSingleStepDesugaredType(getContext()); 1453 break; 1454 1455 case Type::Typedef: 1456 case Type::Decltype: 1457 case Type::Auto: 1458 // Stop walking: nothing to do. 1459 return; 1460 1461 case Type::TypeOfExpr: 1462 // Stop walking: emit typeof expression. 1463 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1464 return; 1465 1466 case Type::Atomic: 1467 type = cast<AtomicType>(ty)->getValueType(); 1468 break; 1469 } 1470 } while (type->isVariablyModifiedType()); 1471 } 1472 1473 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1474 if (getContext().getBuiltinVaListType()->isArrayType()) 1475 return EmitScalarExpr(E); 1476 return EmitLValue(E).getAddress(); 1477 } 1478 1479 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1480 llvm::Constant *Init) { 1481 assert (Init && "Invalid DeclRefExpr initializer!"); 1482 if (CGDebugInfo *Dbg = getDebugInfo()) 1483 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1484 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1485 } 1486 1487 CodeGenFunction::PeepholeProtection 1488 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1489 // At the moment, the only aggressive peephole we do in IR gen 1490 // is trunc(zext) folding, but if we add more, we can easily 1491 // extend this protection. 1492 1493 if (!rvalue.isScalar()) return PeepholeProtection(); 1494 llvm::Value *value = rvalue.getScalarVal(); 1495 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1496 1497 // Just make an extra bitcast. 1498 assert(HaveInsertPoint()); 1499 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1500 Builder.GetInsertBlock()); 1501 1502 PeepholeProtection protection; 1503 protection.Inst = inst; 1504 return protection; 1505 } 1506 1507 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1508 if (!protection.Inst) return; 1509 1510 // In theory, we could try to duplicate the peepholes now, but whatever. 1511 protection.Inst->eraseFromParent(); 1512 } 1513 1514 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1515 llvm::Value *AnnotatedVal, 1516 StringRef AnnotationStr, 1517 SourceLocation Location) { 1518 llvm::Value *Args[4] = { 1519 AnnotatedVal, 1520 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1521 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1522 CGM.EmitAnnotationLineNo(Location) 1523 }; 1524 return Builder.CreateCall(AnnotationFn, Args); 1525 } 1526 1527 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1528 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1529 // FIXME We create a new bitcast for every annotation because that's what 1530 // llvm-gcc was doing. 1531 for (specific_attr_iterator<AnnotateAttr> 1532 ai = D->specific_attr_begin<AnnotateAttr>(), 1533 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1534 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1535 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1536 (*ai)->getAnnotation(), D->getLocation()); 1537 } 1538 1539 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1540 llvm::Value *V) { 1541 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1542 llvm::Type *VTy = V->getType(); 1543 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1544 CGM.Int8PtrTy); 1545 1546 for (specific_attr_iterator<AnnotateAttr> 1547 ai = D->specific_attr_begin<AnnotateAttr>(), 1548 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1549 // FIXME Always emit the cast inst so we can differentiate between 1550 // annotation on the first field of a struct and annotation on the struct 1551 // itself. 1552 if (VTy != CGM.Int8PtrTy) 1553 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1554 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1555 V = Builder.CreateBitCast(V, VTy); 1556 } 1557 1558 return V; 1559 } 1560 1561 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1562