1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
43 /// markers.
44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
45                                       const LangOptions &LangOpts) {
46   if (CGOpts.DisableLifetimeMarkers)
47     return false;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // Asan uses markers for use-after-scope checks.
55   if (CGOpts.SanitizeAddressUseAfterScope)
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       CurFn(nullptr), ReturnValue(Address::invalid()),
67       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
68       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
69       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
70       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
71       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
72       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
73       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
74       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
75       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
76       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
77       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
78       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
79       CXXStructorImplicitParamDecl(nullptr),
80       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
81       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
82       TerminateHandler(nullptr), TrapBB(nullptr),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87 
88   llvm::FastMathFlags FMF;
89   if (CGM.getLangOpts().FastMath)
90     FMF.setUnsafeAlgebra();
91   if (CGM.getLangOpts().FiniteMathOnly) {
92     FMF.setNoNaNs();
93     FMF.setNoInfs();
94   }
95   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
96     FMF.setNoNaNs();
97   }
98   if (CGM.getCodeGenOpts().NoSignedZeros) {
99     FMF.setNoSignedZeros();
100   }
101   if (CGM.getCodeGenOpts().ReciprocalMath) {
102     FMF.setAllowReciprocal();
103   }
104   Builder.setFastMathFlags(FMF);
105 }
106 
107 CodeGenFunction::~CodeGenFunction() {
108   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
109 
110   // If there are any unclaimed block infos, go ahead and destroy them
111   // now.  This can happen if IR-gen gets clever and skips evaluating
112   // something.
113   if (FirstBlockInfo)
114     destroyBlockInfos(FirstBlockInfo);
115 
116   if (getLangOpts().OpenMP && CurFn)
117     CGM.getOpenMPRuntime().functionFinished(*this);
118 }
119 
120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
121                                                     LValueBaseInfo *BaseInfo) {
122   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
123                                  /*forPointee*/ true);
124 }
125 
126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
127                                                    LValueBaseInfo *BaseInfo,
128                                                    bool forPointeeType) {
129   // Honor alignment typedef attributes even on incomplete types.
130   // We also honor them straight for C++ class types, even as pointees;
131   // there's an expressivity gap here.
132   if (auto TT = T->getAs<TypedefType>()) {
133     if (auto Align = TT->getDecl()->getMaxAlignment()) {
134       if (BaseInfo)
135         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
136       return getContext().toCharUnitsFromBits(Align);
137     }
138   }
139 
140   if (BaseInfo)
141     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
142 
143   CharUnits Alignment;
144   if (T->isIncompleteType()) {
145     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
146   } else {
147     // For C++ class pointees, we don't know whether we're pointing at a
148     // base or a complete object, so we generally need to use the
149     // non-virtual alignment.
150     const CXXRecordDecl *RD;
151     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
152       Alignment = CGM.getClassPointerAlignment(RD);
153     } else {
154       Alignment = getContext().getTypeAlignInChars(T);
155       if (T.getQualifiers().hasUnaligned())
156         Alignment = CharUnits::One();
157     }
158 
159     // Cap to the global maximum type alignment unless the alignment
160     // was somehow explicit on the type.
161     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
162       if (Alignment.getQuantity() > MaxAlign &&
163           !getContext().isAlignmentRequired(T))
164         Alignment = CharUnits::fromQuantity(MaxAlign);
165     }
166   }
167   return Alignment;
168 }
169 
170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
171   LValueBaseInfo BaseInfo;
172   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
173   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
174                           CGM.getTBAAAccessInfo(T));
175 }
176 
177 /// Given a value of type T* that may not be to a complete object,
178 /// construct an l-value with the natural pointee alignment of T.
179 LValue
180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
183   return MakeAddrLValue(Address(V, Align), T, BaseInfo,
184                         CGM.getTBAAAccessInfo(T));
185 }
186 
187 
188 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
189   return CGM.getTypes().ConvertTypeForMem(T);
190 }
191 
192 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
193   return CGM.getTypes().ConvertType(T);
194 }
195 
196 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
197   type = type.getCanonicalType();
198   while (true) {
199     switch (type->getTypeClass()) {
200 #define TYPE(name, parent)
201 #define ABSTRACT_TYPE(name, parent)
202 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
203 #define DEPENDENT_TYPE(name, parent) case Type::name:
204 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
205 #include "clang/AST/TypeNodes.def"
206       llvm_unreachable("non-canonical or dependent type in IR-generation");
207 
208     case Type::Auto:
209     case Type::DeducedTemplateSpecialization:
210       llvm_unreachable("undeduced type in IR-generation");
211 
212     // Various scalar types.
213     case Type::Builtin:
214     case Type::Pointer:
215     case Type::BlockPointer:
216     case Type::LValueReference:
217     case Type::RValueReference:
218     case Type::MemberPointer:
219     case Type::Vector:
220     case Type::ExtVector:
221     case Type::FunctionProto:
222     case Type::FunctionNoProto:
223     case Type::Enum:
224     case Type::ObjCObjectPointer:
225     case Type::Pipe:
226       return TEK_Scalar;
227 
228     // Complexes.
229     case Type::Complex:
230       return TEK_Complex;
231 
232     // Arrays, records, and Objective-C objects.
233     case Type::ConstantArray:
234     case Type::IncompleteArray:
235     case Type::VariableArray:
236     case Type::Record:
237     case Type::ObjCObject:
238     case Type::ObjCInterface:
239       return TEK_Aggregate;
240 
241     // We operate on atomic values according to their underlying type.
242     case Type::Atomic:
243       type = cast<AtomicType>(type)->getValueType();
244       continue;
245     }
246     llvm_unreachable("unknown type kind!");
247   }
248 }
249 
250 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
251   // For cleanliness, we try to avoid emitting the return block for
252   // simple cases.
253   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
254 
255   if (CurBB) {
256     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
257 
258     // We have a valid insert point, reuse it if it is empty or there are no
259     // explicit jumps to the return block.
260     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
261       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
262       delete ReturnBlock.getBlock();
263     } else
264       EmitBlock(ReturnBlock.getBlock());
265     return llvm::DebugLoc();
266   }
267 
268   // Otherwise, if the return block is the target of a single direct
269   // branch then we can just put the code in that block instead. This
270   // cleans up functions which started with a unified return block.
271   if (ReturnBlock.getBlock()->hasOneUse()) {
272     llvm::BranchInst *BI =
273       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
274     if (BI && BI->isUnconditional() &&
275         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
276       // Record/return the DebugLoc of the simple 'return' expression to be used
277       // later by the actual 'ret' instruction.
278       llvm::DebugLoc Loc = BI->getDebugLoc();
279       Builder.SetInsertPoint(BI->getParent());
280       BI->eraseFromParent();
281       delete ReturnBlock.getBlock();
282       return Loc;
283     }
284   }
285 
286   // FIXME: We are at an unreachable point, there is no reason to emit the block
287   // unless it has uses. However, we still need a place to put the debug
288   // region.end for now.
289 
290   EmitBlock(ReturnBlock.getBlock());
291   return llvm::DebugLoc();
292 }
293 
294 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
295   if (!BB) return;
296   if (!BB->use_empty())
297     return CGF.CurFn->getBasicBlockList().push_back(BB);
298   delete BB;
299 }
300 
301 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
302   assert(BreakContinueStack.empty() &&
303          "mismatched push/pop in break/continue stack!");
304 
305   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
306     && NumSimpleReturnExprs == NumReturnExprs
307     && ReturnBlock.getBlock()->use_empty();
308   // Usually the return expression is evaluated before the cleanup
309   // code.  If the function contains only a simple return statement,
310   // such as a constant, the location before the cleanup code becomes
311   // the last useful breakpoint in the function, because the simple
312   // return expression will be evaluated after the cleanup code. To be
313   // safe, set the debug location for cleanup code to the location of
314   // the return statement.  Otherwise the cleanup code should be at the
315   // end of the function's lexical scope.
316   //
317   // If there are multiple branches to the return block, the branch
318   // instructions will get the location of the return statements and
319   // all will be fine.
320   if (CGDebugInfo *DI = getDebugInfo()) {
321     if (OnlySimpleReturnStmts)
322       DI->EmitLocation(Builder, LastStopPoint);
323     else
324       DI->EmitLocation(Builder, EndLoc);
325   }
326 
327   // Pop any cleanups that might have been associated with the
328   // parameters.  Do this in whatever block we're currently in; it's
329   // important to do this before we enter the return block or return
330   // edges will be *really* confused.
331   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
332   bool HasOnlyLifetimeMarkers =
333       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
334   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
335   if (HasCleanups) {
336     // Make sure the line table doesn't jump back into the body for
337     // the ret after it's been at EndLoc.
338     if (CGDebugInfo *DI = getDebugInfo())
339       if (OnlySimpleReturnStmts)
340         DI->EmitLocation(Builder, EndLoc);
341 
342     PopCleanupBlocks(PrologueCleanupDepth);
343   }
344 
345   // Emit function epilog (to return).
346   llvm::DebugLoc Loc = EmitReturnBlock();
347 
348   if (ShouldInstrumentFunction())
349     EmitFunctionInstrumentation("__cyg_profile_func_exit");
350 
351   // Emit debug descriptor for function end.
352   if (CGDebugInfo *DI = getDebugInfo())
353     DI->EmitFunctionEnd(Builder, CurFn);
354 
355   // Reset the debug location to that of the simple 'return' expression, if any
356   // rather than that of the end of the function's scope '}'.
357   ApplyDebugLocation AL(*this, Loc);
358   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
359   EmitEndEHSpec(CurCodeDecl);
360 
361   assert(EHStack.empty() &&
362          "did not remove all scopes from cleanup stack!");
363 
364   // If someone did an indirect goto, emit the indirect goto block at the end of
365   // the function.
366   if (IndirectBranch) {
367     EmitBlock(IndirectBranch->getParent());
368     Builder.ClearInsertionPoint();
369   }
370 
371   // If some of our locals escaped, insert a call to llvm.localescape in the
372   // entry block.
373   if (!EscapedLocals.empty()) {
374     // Invert the map from local to index into a simple vector. There should be
375     // no holes.
376     SmallVector<llvm::Value *, 4> EscapeArgs;
377     EscapeArgs.resize(EscapedLocals.size());
378     for (auto &Pair : EscapedLocals)
379       EscapeArgs[Pair.second] = Pair.first;
380     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
381         &CGM.getModule(), llvm::Intrinsic::localescape);
382     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
383   }
384 
385   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
386   llvm::Instruction *Ptr = AllocaInsertPt;
387   AllocaInsertPt = nullptr;
388   Ptr->eraseFromParent();
389 
390   // If someone took the address of a label but never did an indirect goto, we
391   // made a zero entry PHI node, which is illegal, zap it now.
392   if (IndirectBranch) {
393     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
394     if (PN->getNumIncomingValues() == 0) {
395       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
396       PN->eraseFromParent();
397     }
398   }
399 
400   EmitIfUsed(*this, EHResumeBlock);
401   EmitIfUsed(*this, TerminateLandingPad);
402   EmitIfUsed(*this, TerminateHandler);
403   EmitIfUsed(*this, UnreachableBlock);
404 
405   if (CGM.getCodeGenOpts().EmitDeclMetadata)
406     EmitDeclMetadata();
407 
408   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
409            I = DeferredReplacements.begin(),
410            E = DeferredReplacements.end();
411        I != E; ++I) {
412     I->first->replaceAllUsesWith(I->second);
413     I->first->eraseFromParent();
414   }
415 }
416 
417 /// ShouldInstrumentFunction - Return true if the current function should be
418 /// instrumented with __cyg_profile_func_* calls
419 bool CodeGenFunction::ShouldInstrumentFunction() {
420   if (!CGM.getCodeGenOpts().InstrumentFunctions)
421     return false;
422   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
423     return false;
424   return true;
425 }
426 
427 /// ShouldXRayInstrument - Return true if the current function should be
428 /// instrumented with XRay nop sleds.
429 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
430   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
431 }
432 
433 llvm::Constant *
434 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
435                                             llvm::Constant *Addr) {
436   // Addresses stored in prologue data can't require run-time fixups and must
437   // be PC-relative. Run-time fixups are undesirable because they necessitate
438   // writable text segments, which are unsafe. And absolute addresses are
439   // undesirable because they break PIE mode.
440 
441   // Add a layer of indirection through a private global. Taking its address
442   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
443   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
444                                       /*isConstant=*/true,
445                                       llvm::GlobalValue::PrivateLinkage, Addr);
446 
447   // Create a PC-relative address.
448   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
449   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
450   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
451   return (IntPtrTy == Int32Ty)
452              ? PCRelAsInt
453              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
454 }
455 
456 llvm::Value *
457 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
458                                           llvm::Value *EncodedAddr) {
459   // Reconstruct the address of the global.
460   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
461   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
462   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
463   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
464 
465   // Load the original pointer through the global.
466   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
467                             "decoded_addr");
468 }
469 
470 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
471 /// instrumentation function with the current function and the call site, if
472 /// function instrumentation is enabled.
473 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
474   auto NL = ApplyDebugLocation::CreateArtificial(*this);
475   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
476   llvm::PointerType *PointerTy = Int8PtrTy;
477   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
478   llvm::FunctionType *FunctionTy =
479     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
480 
481   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
482   llvm::CallInst *CallSite = Builder.CreateCall(
483     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
484     llvm::ConstantInt::get(Int32Ty, 0),
485     "callsite");
486 
487   llvm::Value *args[] = {
488     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
489     CallSite
490   };
491 
492   EmitNounwindRuntimeCall(F, args);
493 }
494 
495 static void removeImageAccessQualifier(std::string& TyName) {
496   std::string ReadOnlyQual("__read_only");
497   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
498   if (ReadOnlyPos != std::string::npos)
499     // "+ 1" for the space after access qualifier.
500     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
501   else {
502     std::string WriteOnlyQual("__write_only");
503     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
504     if (WriteOnlyPos != std::string::npos)
505       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
506     else {
507       std::string ReadWriteQual("__read_write");
508       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
509       if (ReadWritePos != std::string::npos)
510         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
511     }
512   }
513 }
514 
515 // Returns the address space id that should be produced to the
516 // kernel_arg_addr_space metadata. This is always fixed to the ids
517 // as specified in the SPIR 2.0 specification in order to differentiate
518 // for example in clGetKernelArgInfo() implementation between the address
519 // spaces with targets without unique mapping to the OpenCL address spaces
520 // (basically all single AS CPUs).
521 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
522   switch (LangAS) {
523   case LangAS::opencl_global:   return 1;
524   case LangAS::opencl_constant: return 2;
525   case LangAS::opencl_local:    return 3;
526   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
527   default:
528     return 0; // Assume private.
529   }
530 }
531 
532 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
533 // information in the program executable. The argument information stored
534 // includes the argument name, its type, the address and access qualifiers used.
535 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
536                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
537                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
538   // Create MDNodes that represent the kernel arg metadata.
539   // Each MDNode is a list in the form of "key", N number of values which is
540   // the same number of values as their are kernel arguments.
541 
542   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
543 
544   // MDNode for the kernel argument address space qualifiers.
545   SmallVector<llvm::Metadata *, 8> addressQuals;
546 
547   // MDNode for the kernel argument access qualifiers (images only).
548   SmallVector<llvm::Metadata *, 8> accessQuals;
549 
550   // MDNode for the kernel argument type names.
551   SmallVector<llvm::Metadata *, 8> argTypeNames;
552 
553   // MDNode for the kernel argument base type names.
554   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
555 
556   // MDNode for the kernel argument type qualifiers.
557   SmallVector<llvm::Metadata *, 8> argTypeQuals;
558 
559   // MDNode for the kernel argument names.
560   SmallVector<llvm::Metadata *, 8> argNames;
561 
562   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
563     const ParmVarDecl *parm = FD->getParamDecl(i);
564     QualType ty = parm->getType();
565     std::string typeQuals;
566 
567     if (ty->isPointerType()) {
568       QualType pointeeTy = ty->getPointeeType();
569 
570       // Get address qualifier.
571       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
572         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
573 
574       // Get argument type name.
575       std::string typeName =
576           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
577 
578       // Turn "unsigned type" to "utype"
579       std::string::size_type pos = typeName.find("unsigned");
580       if (pointeeTy.isCanonical() && pos != std::string::npos)
581         typeName.erase(pos+1, 8);
582 
583       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
584 
585       std::string baseTypeName =
586           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
587               Policy) +
588           "*";
589 
590       // Turn "unsigned type" to "utype"
591       pos = baseTypeName.find("unsigned");
592       if (pos != std::string::npos)
593         baseTypeName.erase(pos+1, 8);
594 
595       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
596 
597       // Get argument type qualifiers:
598       if (ty.isRestrictQualified())
599         typeQuals = "restrict";
600       if (pointeeTy.isConstQualified() ||
601           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
602         typeQuals += typeQuals.empty() ? "const" : " const";
603       if (pointeeTy.isVolatileQualified())
604         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
605     } else {
606       uint32_t AddrSpc = 0;
607       bool isPipe = ty->isPipeType();
608       if (ty->isImageType() || isPipe)
609         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
610 
611       addressQuals.push_back(
612           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
613 
614       // Get argument type name.
615       std::string typeName;
616       if (isPipe)
617         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
618                      .getAsString(Policy);
619       else
620         typeName = ty.getUnqualifiedType().getAsString(Policy);
621 
622       // Turn "unsigned type" to "utype"
623       std::string::size_type pos = typeName.find("unsigned");
624       if (ty.isCanonical() && pos != std::string::npos)
625         typeName.erase(pos+1, 8);
626 
627       std::string baseTypeName;
628       if (isPipe)
629         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
630                           ->getElementType().getCanonicalType()
631                           .getAsString(Policy);
632       else
633         baseTypeName =
634           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
635 
636       // Remove access qualifiers on images
637       // (as they are inseparable from type in clang implementation,
638       // but OpenCL spec provides a special query to get access qualifier
639       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
640       if (ty->isImageType()) {
641         removeImageAccessQualifier(typeName);
642         removeImageAccessQualifier(baseTypeName);
643       }
644 
645       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
646 
647       // Turn "unsigned type" to "utype"
648       pos = baseTypeName.find("unsigned");
649       if (pos != std::string::npos)
650         baseTypeName.erase(pos+1, 8);
651 
652       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
653 
654       if (isPipe)
655         typeQuals = "pipe";
656     }
657 
658     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
659 
660     // Get image and pipe access qualifier:
661     if (ty->isImageType()|| ty->isPipeType()) {
662       const Decl *PDecl = parm;
663       if (auto *TD = dyn_cast<TypedefType>(ty))
664         PDecl = TD->getDecl();
665       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
666       if (A && A->isWriteOnly())
667         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
668       else if (A && A->isReadWrite())
669         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
670       else
671         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
672     } else
673       accessQuals.push_back(llvm::MDString::get(Context, "none"));
674 
675     // Get argument name.
676     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
677   }
678 
679   Fn->setMetadata("kernel_arg_addr_space",
680                   llvm::MDNode::get(Context, addressQuals));
681   Fn->setMetadata("kernel_arg_access_qual",
682                   llvm::MDNode::get(Context, accessQuals));
683   Fn->setMetadata("kernel_arg_type",
684                   llvm::MDNode::get(Context, argTypeNames));
685   Fn->setMetadata("kernel_arg_base_type",
686                   llvm::MDNode::get(Context, argBaseTypeNames));
687   Fn->setMetadata("kernel_arg_type_qual",
688                   llvm::MDNode::get(Context, argTypeQuals));
689   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
690     Fn->setMetadata("kernel_arg_name",
691                     llvm::MDNode::get(Context, argNames));
692 }
693 
694 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
695                                                llvm::Function *Fn)
696 {
697   if (!FD->hasAttr<OpenCLKernelAttr>())
698     return;
699 
700   llvm::LLVMContext &Context = getLLVMContext();
701 
702   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
703 
704   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
705     QualType HintQTy = A->getTypeHint();
706     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
707     bool IsSignedInteger =
708         HintQTy->isSignedIntegerType() ||
709         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
710     llvm::Metadata *AttrMDArgs[] = {
711         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
712             CGM.getTypes().ConvertType(A->getTypeHint()))),
713         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
714             llvm::IntegerType::get(Context, 32),
715             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
716     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
717   }
718 
719   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
720     llvm::Metadata *AttrMDArgs[] = {
721         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
722         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
723         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
724     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
725   }
726 
727   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
728     llvm::Metadata *AttrMDArgs[] = {
729         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
731         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
732     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
733   }
734 
735   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
736           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
737     llvm::Metadata *AttrMDArgs[] = {
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
739     Fn->setMetadata("intel_reqd_sub_group_size",
740                     llvm::MDNode::get(Context, AttrMDArgs));
741   }
742 }
743 
744 /// Determine whether the function F ends with a return stmt.
745 static bool endsWithReturn(const Decl* F) {
746   const Stmt *Body = nullptr;
747   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
748     Body = FD->getBody();
749   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
750     Body = OMD->getBody();
751 
752   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
753     auto LastStmt = CS->body_rbegin();
754     if (LastStmt != CS->body_rend())
755       return isa<ReturnStmt>(*LastStmt);
756   }
757   return false;
758 }
759 
760 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
761   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
762   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
763 }
764 
765 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
766   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
767   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
768       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
769       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
770     return false;
771 
772   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
773     return false;
774 
775   if (MD->getNumParams() == 2) {
776     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
777     if (!PT || !PT->isVoidPointerType() ||
778         !PT->getPointeeType().isConstQualified())
779       return false;
780   }
781 
782   return true;
783 }
784 
785 void CodeGenFunction::StartFunction(GlobalDecl GD,
786                                     QualType RetTy,
787                                     llvm::Function *Fn,
788                                     const CGFunctionInfo &FnInfo,
789                                     const FunctionArgList &Args,
790                                     SourceLocation Loc,
791                                     SourceLocation StartLoc) {
792   assert(!CurFn &&
793          "Do not use a CodeGenFunction object for more than one function");
794 
795   const Decl *D = GD.getDecl();
796 
797   DidCallStackSave = false;
798   CurCodeDecl = D;
799   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
800     if (FD->usesSEHTry())
801       CurSEHParent = FD;
802   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
803   FnRetTy = RetTy;
804   CurFn = Fn;
805   CurFnInfo = &FnInfo;
806   assert(CurFn->isDeclaration() && "Function already has body?");
807 
808   // If this function has been blacklisted for any of the enabled sanitizers,
809   // disable the sanitizer for the function.
810   do {
811 #define SANITIZER(NAME, ID)                                                    \
812   if (SanOpts.empty())                                                         \
813     break;                                                                     \
814   if (SanOpts.has(SanitizerKind::ID))                                          \
815     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
816       SanOpts.set(SanitizerKind::ID, false);
817 
818 #include "clang/Basic/Sanitizers.def"
819 #undef SANITIZER
820   } while (0);
821 
822   if (D) {
823     // Apply the no_sanitize* attributes to SanOpts.
824     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
825       SanOpts.Mask &= ~Attr->getMask();
826   }
827 
828   // Apply sanitizer attributes to the function.
829   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831   if (SanOpts.has(SanitizerKind::Thread))
832     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
833   if (SanOpts.has(SanitizerKind::Memory))
834     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
835   if (SanOpts.has(SanitizerKind::SafeStack))
836     Fn->addFnAttr(llvm::Attribute::SafeStack);
837 
838   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
839   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
840   if (SanOpts.has(SanitizerKind::Thread)) {
841     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
842       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
843       if (OMD->getMethodFamily() == OMF_dealloc ||
844           OMD->getMethodFamily() == OMF_initialize ||
845           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
846         markAsIgnoreThreadCheckingAtRuntime(Fn);
847       }
848     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
849       IdentifierInfo *II = FD->getIdentifier();
850       if (II && II->isStr("__destroy_helper_block_"))
851         markAsIgnoreThreadCheckingAtRuntime(Fn);
852     }
853   }
854 
855   // Ignore unrelated casts in STL allocate() since the allocator must cast
856   // from void* to T* before object initialization completes. Don't match on the
857   // namespace because not all allocators are in std::
858   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
859     if (matchesStlAllocatorFn(D, getContext()))
860       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
861   }
862 
863   // Apply xray attributes to the function (as a string, for now)
864   if (D && ShouldXRayInstrumentFunction()) {
865     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
866       if (XRayAttr->alwaysXRayInstrument())
867         Fn->addFnAttr("function-instrument", "xray-always");
868       if (XRayAttr->neverXRayInstrument())
869         Fn->addFnAttr("function-instrument", "xray-never");
870       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
871         Fn->addFnAttr("xray-log-args",
872                       llvm::utostr(LogArgs->getArgumentCount()));
873       }
874     } else {
875       if (!CGM.imbueXRayAttrs(Fn, Loc))
876         Fn->addFnAttr(
877             "xray-instruction-threshold",
878             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
879     }
880   }
881 
882   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
883     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
884       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
885 
886   // Add no-jump-tables value.
887   Fn->addFnAttr("no-jump-tables",
888                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
889 
890   // Add profile-sample-accurate value.
891   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
892     Fn->addFnAttr("profile-sample-accurate");
893 
894   if (getLangOpts().OpenCL) {
895     // Add metadata for a kernel function.
896     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
897       EmitOpenCLKernelMetadata(FD, Fn);
898   }
899 
900   // If we are checking function types, emit a function type signature as
901   // prologue data.
902   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
903     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
904       if (llvm::Constant *PrologueSig =
905               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
906         llvm::Constant *FTRTTIConst =
907             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
908         llvm::Constant *FTRTTIConstEncoded =
909             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
910         llvm::Constant *PrologueStructElems[] = {PrologueSig,
911                                                  FTRTTIConstEncoded};
912         llvm::Constant *PrologueStructConst =
913             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
914         Fn->setPrologueData(PrologueStructConst);
915       }
916     }
917   }
918 
919   // If we're checking nullability, we need to know whether we can check the
920   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
921   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
922     auto Nullability = FnRetTy->getNullability(getContext());
923     if (Nullability && *Nullability == NullabilityKind::NonNull) {
924       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
925             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
926         RetValNullabilityPrecondition =
927             llvm::ConstantInt::getTrue(getLLVMContext());
928     }
929   }
930 
931   // If we're in C++ mode and the function name is "main", it is guaranteed
932   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
933   // used within a program").
934   if (getLangOpts().CPlusPlus)
935     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
936       if (FD->isMain())
937         Fn->addFnAttr(llvm::Attribute::NoRecurse);
938 
939   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
940 
941   // Create a marker to make it easy to insert allocas into the entryblock
942   // later.  Don't create this with the builder, because we don't want it
943   // folded.
944   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
945   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
946 
947   ReturnBlock = getJumpDestInCurrentScope("return");
948 
949   Builder.SetInsertPoint(EntryBB);
950 
951   // If we're checking the return value, allocate space for a pointer to a
952   // precise source location of the checked return statement.
953   if (requiresReturnValueCheck()) {
954     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
955     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
956   }
957 
958   // Emit subprogram debug descriptor.
959   if (CGDebugInfo *DI = getDebugInfo()) {
960     // Reconstruct the type from the argument list so that implicit parameters,
961     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
962     // convention.
963     CallingConv CC = CallingConv::CC_C;
964     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
965       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
966         CC = SrcFnTy->getCallConv();
967     SmallVector<QualType, 16> ArgTypes;
968     for (const VarDecl *VD : Args)
969       ArgTypes.push_back(VD->getType());
970     QualType FnType = getContext().getFunctionType(
971         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
972     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
973   }
974 
975   if (ShouldInstrumentFunction())
976     EmitFunctionInstrumentation("__cyg_profile_func_enter");
977 
978   // Since emitting the mcount call here impacts optimizations such as function
979   // inlining, we just add an attribute to insert a mcount call in backend.
980   // The attribute "counting-function" is set to mcount function name which is
981   // architecture dependent.
982   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
983     if (CGM.getCodeGenOpts().CallFEntry)
984       Fn->addFnAttr("fentry-call", "true");
985     else {
986       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
987         Fn->addFnAttr("counting-function", getTarget().getMCountName());
988     }
989   }
990 
991   if (RetTy->isVoidType()) {
992     // Void type; nothing to return.
993     ReturnValue = Address::invalid();
994 
995     // Count the implicit return.
996     if (!endsWithReturn(D))
997       ++NumReturnExprs;
998   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
999              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1000     // Indirect aggregate return; emit returned value directly into sret slot.
1001     // This reduces code size, and affects correctness in C++.
1002     auto AI = CurFn->arg_begin();
1003     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1004       ++AI;
1005     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1006   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1007              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1008     // Load the sret pointer from the argument struct and return into that.
1009     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1010     llvm::Function::arg_iterator EI = CurFn->arg_end();
1011     --EI;
1012     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1013     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1014     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1015   } else {
1016     ReturnValue = CreateIRTemp(RetTy, "retval");
1017 
1018     // Tell the epilog emitter to autorelease the result.  We do this
1019     // now so that various specialized functions can suppress it
1020     // during their IR-generation.
1021     if (getLangOpts().ObjCAutoRefCount &&
1022         !CurFnInfo->isReturnsRetained() &&
1023         RetTy->isObjCRetainableType())
1024       AutoreleaseResult = true;
1025   }
1026 
1027   EmitStartEHSpec(CurCodeDecl);
1028 
1029   PrologueCleanupDepth = EHStack.stable_begin();
1030   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1031 
1032   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1033     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1034     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1035     if (MD->getParent()->isLambda() &&
1036         MD->getOverloadedOperator() == OO_Call) {
1037       // We're in a lambda; figure out the captures.
1038       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1039                                         LambdaThisCaptureField);
1040       if (LambdaThisCaptureField) {
1041         // If the lambda captures the object referred to by '*this' - either by
1042         // value or by reference, make sure CXXThisValue points to the correct
1043         // object.
1044 
1045         // Get the lvalue for the field (which is a copy of the enclosing object
1046         // or contains the address of the enclosing object).
1047         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1048         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1049           // If the enclosing object was captured by value, just use its address.
1050           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1051         } else {
1052           // Load the lvalue pointed to by the field, since '*this' was captured
1053           // by reference.
1054           CXXThisValue =
1055               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1056         }
1057       }
1058       for (auto *FD : MD->getParent()->fields()) {
1059         if (FD->hasCapturedVLAType()) {
1060           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1061                                            SourceLocation()).getScalarVal();
1062           auto VAT = FD->getCapturedVLAType();
1063           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1064         }
1065       }
1066     } else {
1067       // Not in a lambda; just use 'this' from the method.
1068       // FIXME: Should we generate a new load for each use of 'this'?  The
1069       // fast register allocator would be happier...
1070       CXXThisValue = CXXABIThisValue;
1071     }
1072 
1073     // Check the 'this' pointer once per function, if it's available.
1074     if (CXXABIThisValue) {
1075       SanitizerSet SkippedChecks;
1076       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1077       QualType ThisTy = MD->getThisType(getContext());
1078 
1079       // If this is the call operator of a lambda with no capture-default, it
1080       // may have a static invoker function, which may call this operator with
1081       // a null 'this' pointer.
1082       if (isLambdaCallOperator(MD) &&
1083           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1084               LCD_None)
1085         SkippedChecks.set(SanitizerKind::Null, true);
1086 
1087       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1088                                                 : TCK_MemberCall,
1089                     Loc, CXXABIThisValue, ThisTy,
1090                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1091                     SkippedChecks);
1092     }
1093   }
1094 
1095   // If any of the arguments have a variably modified type, make sure to
1096   // emit the type size.
1097   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1098        i != e; ++i) {
1099     const VarDecl *VD = *i;
1100 
1101     // Dig out the type as written from ParmVarDecls; it's unclear whether
1102     // the standard (C99 6.9.1p10) requires this, but we're following the
1103     // precedent set by gcc.
1104     QualType Ty;
1105     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1106       Ty = PVD->getOriginalType();
1107     else
1108       Ty = VD->getType();
1109 
1110     if (Ty->isVariablyModifiedType())
1111       EmitVariablyModifiedType(Ty);
1112   }
1113   // Emit a location at the end of the prologue.
1114   if (CGDebugInfo *DI = getDebugInfo())
1115     DI->EmitLocation(Builder, StartLoc);
1116 }
1117 
1118 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1119                                        const Stmt *Body) {
1120   incrementProfileCounter(Body);
1121   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1122     EmitCompoundStmtWithoutScope(*S);
1123   else
1124     EmitStmt(Body);
1125 }
1126 
1127 /// When instrumenting to collect profile data, the counts for some blocks
1128 /// such as switch cases need to not include the fall-through counts, so
1129 /// emit a branch around the instrumentation code. When not instrumenting,
1130 /// this just calls EmitBlock().
1131 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1132                                                const Stmt *S) {
1133   llvm::BasicBlock *SkipCountBB = nullptr;
1134   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1135     // When instrumenting for profiling, the fallthrough to certain
1136     // statements needs to skip over the instrumentation code so that we
1137     // get an accurate count.
1138     SkipCountBB = createBasicBlock("skipcount");
1139     EmitBranch(SkipCountBB);
1140   }
1141   EmitBlock(BB);
1142   uint64_t CurrentCount = getCurrentProfileCount();
1143   incrementProfileCounter(S);
1144   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1145   if (SkipCountBB)
1146     EmitBlock(SkipCountBB);
1147 }
1148 
1149 /// Tries to mark the given function nounwind based on the
1150 /// non-existence of any throwing calls within it.  We believe this is
1151 /// lightweight enough to do at -O0.
1152 static void TryMarkNoThrow(llvm::Function *F) {
1153   // LLVM treats 'nounwind' on a function as part of the type, so we
1154   // can't do this on functions that can be overwritten.
1155   if (F->isInterposable()) return;
1156 
1157   for (llvm::BasicBlock &BB : *F)
1158     for (llvm::Instruction &I : BB)
1159       if (I.mayThrow())
1160         return;
1161 
1162   F->setDoesNotThrow();
1163 }
1164 
1165 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1166                                                FunctionArgList &Args) {
1167   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1168   QualType ResTy = FD->getReturnType();
1169 
1170   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1171   if (MD && MD->isInstance()) {
1172     if (CGM.getCXXABI().HasThisReturn(GD))
1173       ResTy = MD->getThisType(getContext());
1174     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1175       ResTy = CGM.getContext().VoidPtrTy;
1176     CGM.getCXXABI().buildThisParam(*this, Args);
1177   }
1178 
1179   // The base version of an inheriting constructor whose constructed base is a
1180   // virtual base is not passed any arguments (because it doesn't actually call
1181   // the inherited constructor).
1182   bool PassedParams = true;
1183   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1184     if (auto Inherited = CD->getInheritedConstructor())
1185       PassedParams =
1186           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1187 
1188   if (PassedParams) {
1189     for (auto *Param : FD->parameters()) {
1190       Args.push_back(Param);
1191       if (!Param->hasAttr<PassObjectSizeAttr>())
1192         continue;
1193 
1194       auto *Implicit = ImplicitParamDecl::Create(
1195           getContext(), Param->getDeclContext(), Param->getLocation(),
1196           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1197       SizeArguments[Param] = Implicit;
1198       Args.push_back(Implicit);
1199     }
1200   }
1201 
1202   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1203     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1204 
1205   return ResTy;
1206 }
1207 
1208 static bool
1209 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1210                                              const ASTContext &Context) {
1211   QualType T = FD->getReturnType();
1212   // Avoid the optimization for functions that return a record type with a
1213   // trivial destructor or another trivially copyable type.
1214   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1215     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1216       return !ClassDecl->hasTrivialDestructor();
1217   }
1218   return !T.isTriviallyCopyableType(Context);
1219 }
1220 
1221 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1222                                    const CGFunctionInfo &FnInfo) {
1223   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1224   CurGD = GD;
1225 
1226   FunctionArgList Args;
1227   QualType ResTy = BuildFunctionArgList(GD, Args);
1228 
1229   // Check if we should generate debug info for this function.
1230   if (FD->hasAttr<NoDebugAttr>())
1231     DebugInfo = nullptr; // disable debug info indefinitely for this function
1232 
1233   // The function might not have a body if we're generating thunks for a
1234   // function declaration.
1235   SourceRange BodyRange;
1236   if (Stmt *Body = FD->getBody())
1237     BodyRange = Body->getSourceRange();
1238   else
1239     BodyRange = FD->getLocation();
1240   CurEHLocation = BodyRange.getEnd();
1241 
1242   // Use the location of the start of the function to determine where
1243   // the function definition is located. By default use the location
1244   // of the declaration as the location for the subprogram. A function
1245   // may lack a declaration in the source code if it is created by code
1246   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1247   SourceLocation Loc = FD->getLocation();
1248 
1249   // If this is a function specialization then use the pattern body
1250   // as the location for the function.
1251   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1252     if (SpecDecl->hasBody(SpecDecl))
1253       Loc = SpecDecl->getLocation();
1254 
1255   Stmt *Body = FD->getBody();
1256 
1257   // Initialize helper which will detect jumps which can cause invalid lifetime
1258   // markers.
1259   if (Body && ShouldEmitLifetimeMarkers)
1260     Bypasses.Init(Body);
1261 
1262   // Emit the standard function prologue.
1263   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1264 
1265   // Generate the body of the function.
1266   PGO.assignRegionCounters(GD, CurFn);
1267   if (isa<CXXDestructorDecl>(FD))
1268     EmitDestructorBody(Args);
1269   else if (isa<CXXConstructorDecl>(FD))
1270     EmitConstructorBody(Args);
1271   else if (getLangOpts().CUDA &&
1272            !getLangOpts().CUDAIsDevice &&
1273            FD->hasAttr<CUDAGlobalAttr>())
1274     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1275   else if (isa<CXXMethodDecl>(FD) &&
1276            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1277     // The lambda static invoker function is special, because it forwards or
1278     // clones the body of the function call operator (but is actually static).
1279     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1280   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1281              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1282               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1283     // Implicit copy-assignment gets the same special treatment as implicit
1284     // copy-constructors.
1285     emitImplicitAssignmentOperatorBody(Args);
1286   } else if (Body) {
1287     EmitFunctionBody(Args, Body);
1288   } else
1289     llvm_unreachable("no definition for emitted function");
1290 
1291   // C++11 [stmt.return]p2:
1292   //   Flowing off the end of a function [...] results in undefined behavior in
1293   //   a value-returning function.
1294   // C11 6.9.1p12:
1295   //   If the '}' that terminates a function is reached, and the value of the
1296   //   function call is used by the caller, the behavior is undefined.
1297   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1298       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1299     bool ShouldEmitUnreachable =
1300         CGM.getCodeGenOpts().StrictReturn ||
1301         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1302     if (SanOpts.has(SanitizerKind::Return)) {
1303       SanitizerScope SanScope(this);
1304       llvm::Value *IsFalse = Builder.getFalse();
1305       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1306                 SanitizerHandler::MissingReturn,
1307                 EmitCheckSourceLocation(FD->getLocation()), None);
1308     } else if (ShouldEmitUnreachable) {
1309       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1310         EmitTrapCall(llvm::Intrinsic::trap);
1311     }
1312     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1313       Builder.CreateUnreachable();
1314       Builder.ClearInsertionPoint();
1315     }
1316   }
1317 
1318   // Emit the standard function epilogue.
1319   FinishFunction(BodyRange.getEnd());
1320 
1321   // If we haven't marked the function nothrow through other means, do
1322   // a quick pass now to see if we can.
1323   if (!CurFn->doesNotThrow())
1324     TryMarkNoThrow(CurFn);
1325 }
1326 
1327 /// ContainsLabel - Return true if the statement contains a label in it.  If
1328 /// this statement is not executed normally, it not containing a label means
1329 /// that we can just remove the code.
1330 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1331   // Null statement, not a label!
1332   if (!S) return false;
1333 
1334   // If this is a label, we have to emit the code, consider something like:
1335   // if (0) {  ...  foo:  bar(); }  goto foo;
1336   //
1337   // TODO: If anyone cared, we could track __label__'s, since we know that you
1338   // can't jump to one from outside their declared region.
1339   if (isa<LabelStmt>(S))
1340     return true;
1341 
1342   // If this is a case/default statement, and we haven't seen a switch, we have
1343   // to emit the code.
1344   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1345     return true;
1346 
1347   // If this is a switch statement, we want to ignore cases below it.
1348   if (isa<SwitchStmt>(S))
1349     IgnoreCaseStmts = true;
1350 
1351   // Scan subexpressions for verboten labels.
1352   for (const Stmt *SubStmt : S->children())
1353     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1354       return true;
1355 
1356   return false;
1357 }
1358 
1359 /// containsBreak - Return true if the statement contains a break out of it.
1360 /// If the statement (recursively) contains a switch or loop with a break
1361 /// inside of it, this is fine.
1362 bool CodeGenFunction::containsBreak(const Stmt *S) {
1363   // Null statement, not a label!
1364   if (!S) return false;
1365 
1366   // If this is a switch or loop that defines its own break scope, then we can
1367   // include it and anything inside of it.
1368   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1369       isa<ForStmt>(S))
1370     return false;
1371 
1372   if (isa<BreakStmt>(S))
1373     return true;
1374 
1375   // Scan subexpressions for verboten breaks.
1376   for (const Stmt *SubStmt : S->children())
1377     if (containsBreak(SubStmt))
1378       return true;
1379 
1380   return false;
1381 }
1382 
1383 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1384   if (!S) return false;
1385 
1386   // Some statement kinds add a scope and thus never add a decl to the current
1387   // scope. Note, this list is longer than the list of statements that might
1388   // have an unscoped decl nested within them, but this way is conservatively
1389   // correct even if more statement kinds are added.
1390   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1391       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1392       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1393       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1394     return false;
1395 
1396   if (isa<DeclStmt>(S))
1397     return true;
1398 
1399   for (const Stmt *SubStmt : S->children())
1400     if (mightAddDeclToScope(SubStmt))
1401       return true;
1402 
1403   return false;
1404 }
1405 
1406 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1407 /// to a constant, or if it does but contains a label, return false.  If it
1408 /// constant folds return true and set the boolean result in Result.
1409 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1410                                                    bool &ResultBool,
1411                                                    bool AllowLabels) {
1412   llvm::APSInt ResultInt;
1413   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1414     return false;
1415 
1416   ResultBool = ResultInt.getBoolValue();
1417   return true;
1418 }
1419 
1420 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1421 /// to a constant, or if it does but contains a label, return false.  If it
1422 /// constant folds return true and set the folded value.
1423 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1424                                                    llvm::APSInt &ResultInt,
1425                                                    bool AllowLabels) {
1426   // FIXME: Rename and handle conversion of other evaluatable things
1427   // to bool.
1428   llvm::APSInt Int;
1429   if (!Cond->EvaluateAsInt(Int, getContext()))
1430     return false;  // Not foldable, not integer or not fully evaluatable.
1431 
1432   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1433     return false;  // Contains a label.
1434 
1435   ResultInt = Int;
1436   return true;
1437 }
1438 
1439 
1440 
1441 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1442 /// statement) to the specified blocks.  Based on the condition, this might try
1443 /// to simplify the codegen of the conditional based on the branch.
1444 ///
1445 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1446                                            llvm::BasicBlock *TrueBlock,
1447                                            llvm::BasicBlock *FalseBlock,
1448                                            uint64_t TrueCount) {
1449   Cond = Cond->IgnoreParens();
1450 
1451   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1452 
1453     // Handle X && Y in a condition.
1454     if (CondBOp->getOpcode() == BO_LAnd) {
1455       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1456       // folded if the case was simple enough.
1457       bool ConstantBool = false;
1458       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1459           ConstantBool) {
1460         // br(1 && X) -> br(X).
1461         incrementProfileCounter(CondBOp);
1462         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1463                                     TrueCount);
1464       }
1465 
1466       // If we have "X && 1", simplify the code to use an uncond branch.
1467       // "X && 0" would have been constant folded to 0.
1468       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1469           ConstantBool) {
1470         // br(X && 1) -> br(X).
1471         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1472                                     TrueCount);
1473       }
1474 
1475       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1476       // want to jump to the FalseBlock.
1477       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1478       // The counter tells us how often we evaluate RHS, and all of TrueCount
1479       // can be propagated to that branch.
1480       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1481 
1482       ConditionalEvaluation eval(*this);
1483       {
1484         ApplyDebugLocation DL(*this, Cond);
1485         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1486         EmitBlock(LHSTrue);
1487       }
1488 
1489       incrementProfileCounter(CondBOp);
1490       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1491 
1492       // Any temporaries created here are conditional.
1493       eval.begin(*this);
1494       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1495       eval.end(*this);
1496 
1497       return;
1498     }
1499 
1500     if (CondBOp->getOpcode() == BO_LOr) {
1501       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1502       // folded if the case was simple enough.
1503       bool ConstantBool = false;
1504       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1505           !ConstantBool) {
1506         // br(0 || X) -> br(X).
1507         incrementProfileCounter(CondBOp);
1508         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1509                                     TrueCount);
1510       }
1511 
1512       // If we have "X || 0", simplify the code to use an uncond branch.
1513       // "X || 1" would have been constant folded to 1.
1514       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1515           !ConstantBool) {
1516         // br(X || 0) -> br(X).
1517         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1518                                     TrueCount);
1519       }
1520 
1521       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1522       // want to jump to the TrueBlock.
1523       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1524       // We have the count for entry to the RHS and for the whole expression
1525       // being true, so we can divy up True count between the short circuit and
1526       // the RHS.
1527       uint64_t LHSCount =
1528           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1529       uint64_t RHSCount = TrueCount - LHSCount;
1530 
1531       ConditionalEvaluation eval(*this);
1532       {
1533         ApplyDebugLocation DL(*this, Cond);
1534         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1535         EmitBlock(LHSFalse);
1536       }
1537 
1538       incrementProfileCounter(CondBOp);
1539       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1540 
1541       // Any temporaries created here are conditional.
1542       eval.begin(*this);
1543       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1544 
1545       eval.end(*this);
1546 
1547       return;
1548     }
1549   }
1550 
1551   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1552     // br(!x, t, f) -> br(x, f, t)
1553     if (CondUOp->getOpcode() == UO_LNot) {
1554       // Negate the count.
1555       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1556       // Negate the condition and swap the destination blocks.
1557       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1558                                   FalseCount);
1559     }
1560   }
1561 
1562   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1563     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1564     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1565     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1566 
1567     ConditionalEvaluation cond(*this);
1568     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1569                          getProfileCount(CondOp));
1570 
1571     // When computing PGO branch weights, we only know the overall count for
1572     // the true block. This code is essentially doing tail duplication of the
1573     // naive code-gen, introducing new edges for which counts are not
1574     // available. Divide the counts proportionally between the LHS and RHS of
1575     // the conditional operator.
1576     uint64_t LHSScaledTrueCount = 0;
1577     if (TrueCount) {
1578       double LHSRatio =
1579           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1580       LHSScaledTrueCount = TrueCount * LHSRatio;
1581     }
1582 
1583     cond.begin(*this);
1584     EmitBlock(LHSBlock);
1585     incrementProfileCounter(CondOp);
1586     {
1587       ApplyDebugLocation DL(*this, Cond);
1588       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1589                            LHSScaledTrueCount);
1590     }
1591     cond.end(*this);
1592 
1593     cond.begin(*this);
1594     EmitBlock(RHSBlock);
1595     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1596                          TrueCount - LHSScaledTrueCount);
1597     cond.end(*this);
1598 
1599     return;
1600   }
1601 
1602   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1603     // Conditional operator handling can give us a throw expression as a
1604     // condition for a case like:
1605     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1606     // Fold this to:
1607     //   br(c, throw x, br(y, t, f))
1608     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1609     return;
1610   }
1611 
1612   // If the branch has a condition wrapped by __builtin_unpredictable,
1613   // create metadata that specifies that the branch is unpredictable.
1614   // Don't bother if not optimizing because that metadata would not be used.
1615   llvm::MDNode *Unpredictable = nullptr;
1616   auto *Call = dyn_cast<CallExpr>(Cond);
1617   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1618     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1619     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1620       llvm::MDBuilder MDHelper(getLLVMContext());
1621       Unpredictable = MDHelper.createUnpredictable();
1622     }
1623   }
1624 
1625   // Create branch weights based on the number of times we get here and the
1626   // number of times the condition should be true.
1627   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1628   llvm::MDNode *Weights =
1629       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1630 
1631   // Emit the code with the fully general case.
1632   llvm::Value *CondV;
1633   {
1634     ApplyDebugLocation DL(*this, Cond);
1635     CondV = EvaluateExprAsBool(Cond);
1636   }
1637   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1638 }
1639 
1640 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1641 /// specified stmt yet.
1642 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1643   CGM.ErrorUnsupported(S, Type);
1644 }
1645 
1646 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1647 /// variable-length array whose elements have a non-zero bit-pattern.
1648 ///
1649 /// \param baseType the inner-most element type of the array
1650 /// \param src - a char* pointing to the bit-pattern for a single
1651 /// base element of the array
1652 /// \param sizeInChars - the total size of the VLA, in chars
1653 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1654                                Address dest, Address src,
1655                                llvm::Value *sizeInChars) {
1656   CGBuilderTy &Builder = CGF.Builder;
1657 
1658   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1659   llvm::Value *baseSizeInChars
1660     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1661 
1662   Address begin =
1663     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1664   llvm::Value *end =
1665     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1666 
1667   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1668   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1669   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1670 
1671   // Make a loop over the VLA.  C99 guarantees that the VLA element
1672   // count must be nonzero.
1673   CGF.EmitBlock(loopBB);
1674 
1675   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1676   cur->addIncoming(begin.getPointer(), originBB);
1677 
1678   CharUnits curAlign =
1679     dest.getAlignment().alignmentOfArrayElement(baseSize);
1680 
1681   // memcpy the individual element bit-pattern.
1682   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1683                        /*volatile*/ false);
1684 
1685   // Go to the next element.
1686   llvm::Value *next =
1687     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1688 
1689   // Leave if that's the end of the VLA.
1690   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1691   Builder.CreateCondBr(done, contBB, loopBB);
1692   cur->addIncoming(next, loopBB);
1693 
1694   CGF.EmitBlock(contBB);
1695 }
1696 
1697 void
1698 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1699   // Ignore empty classes in C++.
1700   if (getLangOpts().CPlusPlus) {
1701     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1702       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1703         return;
1704     }
1705   }
1706 
1707   // Cast the dest ptr to the appropriate i8 pointer type.
1708   if (DestPtr.getElementType() != Int8Ty)
1709     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1710 
1711   // Get size and alignment info for this aggregate.
1712   CharUnits size = getContext().getTypeSizeInChars(Ty);
1713 
1714   llvm::Value *SizeVal;
1715   const VariableArrayType *vla;
1716 
1717   // Don't bother emitting a zero-byte memset.
1718   if (size.isZero()) {
1719     // But note that getTypeInfo returns 0 for a VLA.
1720     if (const VariableArrayType *vlaType =
1721           dyn_cast_or_null<VariableArrayType>(
1722                                           getContext().getAsArrayType(Ty))) {
1723       QualType eltType;
1724       llvm::Value *numElts;
1725       std::tie(numElts, eltType) = getVLASize(vlaType);
1726 
1727       SizeVal = numElts;
1728       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1729       if (!eltSize.isOne())
1730         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1731       vla = vlaType;
1732     } else {
1733       return;
1734     }
1735   } else {
1736     SizeVal = CGM.getSize(size);
1737     vla = nullptr;
1738   }
1739 
1740   // If the type contains a pointer to data member we can't memset it to zero.
1741   // Instead, create a null constant and copy it to the destination.
1742   // TODO: there are other patterns besides zero that we can usefully memset,
1743   // like -1, which happens to be the pattern used by member-pointers.
1744   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1745     // For a VLA, emit a single element, then splat that over the VLA.
1746     if (vla) Ty = getContext().getBaseElementType(vla);
1747 
1748     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1749 
1750     llvm::GlobalVariable *NullVariable =
1751       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1752                                /*isConstant=*/true,
1753                                llvm::GlobalVariable::PrivateLinkage,
1754                                NullConstant, Twine());
1755     CharUnits NullAlign = DestPtr.getAlignment();
1756     NullVariable->setAlignment(NullAlign.getQuantity());
1757     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1758                    NullAlign);
1759 
1760     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1761 
1762     // Get and call the appropriate llvm.memcpy overload.
1763     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1764     return;
1765   }
1766 
1767   // Otherwise, just memset the whole thing to zero.  This is legal
1768   // because in LLVM, all default initializers (other than the ones we just
1769   // handled above) are guaranteed to have a bit pattern of all zeros.
1770   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1771 }
1772 
1773 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1774   // Make sure that there is a block for the indirect goto.
1775   if (!IndirectBranch)
1776     GetIndirectGotoBlock();
1777 
1778   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1779 
1780   // Make sure the indirect branch includes all of the address-taken blocks.
1781   IndirectBranch->addDestination(BB);
1782   return llvm::BlockAddress::get(CurFn, BB);
1783 }
1784 
1785 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1786   // If we already made the indirect branch for indirect goto, return its block.
1787   if (IndirectBranch) return IndirectBranch->getParent();
1788 
1789   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1790 
1791   // Create the PHI node that indirect gotos will add entries to.
1792   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1793                                               "indirect.goto.dest");
1794 
1795   // Create the indirect branch instruction.
1796   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1797   return IndirectBranch->getParent();
1798 }
1799 
1800 /// Computes the length of an array in elements, as well as the base
1801 /// element type and a properly-typed first element pointer.
1802 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1803                                               QualType &baseType,
1804                                               Address &addr) {
1805   const ArrayType *arrayType = origArrayType;
1806 
1807   // If it's a VLA, we have to load the stored size.  Note that
1808   // this is the size of the VLA in bytes, not its size in elements.
1809   llvm::Value *numVLAElements = nullptr;
1810   if (isa<VariableArrayType>(arrayType)) {
1811     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1812 
1813     // Walk into all VLAs.  This doesn't require changes to addr,
1814     // which has type T* where T is the first non-VLA element type.
1815     do {
1816       QualType elementType = arrayType->getElementType();
1817       arrayType = getContext().getAsArrayType(elementType);
1818 
1819       // If we only have VLA components, 'addr' requires no adjustment.
1820       if (!arrayType) {
1821         baseType = elementType;
1822         return numVLAElements;
1823       }
1824     } while (isa<VariableArrayType>(arrayType));
1825 
1826     // We get out here only if we find a constant array type
1827     // inside the VLA.
1828   }
1829 
1830   // We have some number of constant-length arrays, so addr should
1831   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1832   // down to the first element of addr.
1833   SmallVector<llvm::Value*, 8> gepIndices;
1834 
1835   // GEP down to the array type.
1836   llvm::ConstantInt *zero = Builder.getInt32(0);
1837   gepIndices.push_back(zero);
1838 
1839   uint64_t countFromCLAs = 1;
1840   QualType eltType;
1841 
1842   llvm::ArrayType *llvmArrayType =
1843     dyn_cast<llvm::ArrayType>(addr.getElementType());
1844   while (llvmArrayType) {
1845     assert(isa<ConstantArrayType>(arrayType));
1846     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1847              == llvmArrayType->getNumElements());
1848 
1849     gepIndices.push_back(zero);
1850     countFromCLAs *= llvmArrayType->getNumElements();
1851     eltType = arrayType->getElementType();
1852 
1853     llvmArrayType =
1854       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1855     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1856     assert((!llvmArrayType || arrayType) &&
1857            "LLVM and Clang types are out-of-synch");
1858   }
1859 
1860   if (arrayType) {
1861     // From this point onwards, the Clang array type has been emitted
1862     // as some other type (probably a packed struct). Compute the array
1863     // size, and just emit the 'begin' expression as a bitcast.
1864     while (arrayType) {
1865       countFromCLAs *=
1866           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1867       eltType = arrayType->getElementType();
1868       arrayType = getContext().getAsArrayType(eltType);
1869     }
1870 
1871     llvm::Type *baseType = ConvertType(eltType);
1872     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1873   } else {
1874     // Create the actual GEP.
1875     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1876                                              gepIndices, "array.begin"),
1877                    addr.getAlignment());
1878   }
1879 
1880   baseType = eltType;
1881 
1882   llvm::Value *numElements
1883     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1884 
1885   // If we had any VLA dimensions, factor them in.
1886   if (numVLAElements)
1887     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1888 
1889   return numElements;
1890 }
1891 
1892 std::pair<llvm::Value*, QualType>
1893 CodeGenFunction::getVLASize(QualType type) {
1894   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1895   assert(vla && "type was not a variable array type!");
1896   return getVLASize(vla);
1897 }
1898 
1899 std::pair<llvm::Value*, QualType>
1900 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1901   // The number of elements so far; always size_t.
1902   llvm::Value *numElements = nullptr;
1903 
1904   QualType elementType;
1905   do {
1906     elementType = type->getElementType();
1907     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1908     assert(vlaSize && "no size for VLA!");
1909     assert(vlaSize->getType() == SizeTy);
1910 
1911     if (!numElements) {
1912       numElements = vlaSize;
1913     } else {
1914       // It's undefined behavior if this wraps around, so mark it that way.
1915       // FIXME: Teach -fsanitize=undefined to trap this.
1916       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1917     }
1918   } while ((type = getContext().getAsVariableArrayType(elementType)));
1919 
1920   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1921 }
1922 
1923 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1924   assert(type->isVariablyModifiedType() &&
1925          "Must pass variably modified type to EmitVLASizes!");
1926 
1927   EnsureInsertPoint();
1928 
1929   // We're going to walk down into the type and look for VLA
1930   // expressions.
1931   do {
1932     assert(type->isVariablyModifiedType());
1933 
1934     const Type *ty = type.getTypePtr();
1935     switch (ty->getTypeClass()) {
1936 
1937 #define TYPE(Class, Base)
1938 #define ABSTRACT_TYPE(Class, Base)
1939 #define NON_CANONICAL_TYPE(Class, Base)
1940 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1941 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1942 #include "clang/AST/TypeNodes.def"
1943       llvm_unreachable("unexpected dependent type!");
1944 
1945     // These types are never variably-modified.
1946     case Type::Builtin:
1947     case Type::Complex:
1948     case Type::Vector:
1949     case Type::ExtVector:
1950     case Type::Record:
1951     case Type::Enum:
1952     case Type::Elaborated:
1953     case Type::TemplateSpecialization:
1954     case Type::ObjCTypeParam:
1955     case Type::ObjCObject:
1956     case Type::ObjCInterface:
1957     case Type::ObjCObjectPointer:
1958       llvm_unreachable("type class is never variably-modified!");
1959 
1960     case Type::Adjusted:
1961       type = cast<AdjustedType>(ty)->getAdjustedType();
1962       break;
1963 
1964     case Type::Decayed:
1965       type = cast<DecayedType>(ty)->getPointeeType();
1966       break;
1967 
1968     case Type::Pointer:
1969       type = cast<PointerType>(ty)->getPointeeType();
1970       break;
1971 
1972     case Type::BlockPointer:
1973       type = cast<BlockPointerType>(ty)->getPointeeType();
1974       break;
1975 
1976     case Type::LValueReference:
1977     case Type::RValueReference:
1978       type = cast<ReferenceType>(ty)->getPointeeType();
1979       break;
1980 
1981     case Type::MemberPointer:
1982       type = cast<MemberPointerType>(ty)->getPointeeType();
1983       break;
1984 
1985     case Type::ConstantArray:
1986     case Type::IncompleteArray:
1987       // Losing element qualification here is fine.
1988       type = cast<ArrayType>(ty)->getElementType();
1989       break;
1990 
1991     case Type::VariableArray: {
1992       // Losing element qualification here is fine.
1993       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1994 
1995       // Unknown size indication requires no size computation.
1996       // Otherwise, evaluate and record it.
1997       if (const Expr *size = vat->getSizeExpr()) {
1998         // It's possible that we might have emitted this already,
1999         // e.g. with a typedef and a pointer to it.
2000         llvm::Value *&entry = VLASizeMap[size];
2001         if (!entry) {
2002           llvm::Value *Size = EmitScalarExpr(size);
2003 
2004           // C11 6.7.6.2p5:
2005           //   If the size is an expression that is not an integer constant
2006           //   expression [...] each time it is evaluated it shall have a value
2007           //   greater than zero.
2008           if (SanOpts.has(SanitizerKind::VLABound) &&
2009               size->getType()->isSignedIntegerType()) {
2010             SanitizerScope SanScope(this);
2011             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2012             llvm::Constant *StaticArgs[] = {
2013               EmitCheckSourceLocation(size->getLocStart()),
2014               EmitCheckTypeDescriptor(size->getType())
2015             };
2016             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2017                                      SanitizerKind::VLABound),
2018                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2019           }
2020 
2021           // Always zexting here would be wrong if it weren't
2022           // undefined behavior to have a negative bound.
2023           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2024         }
2025       }
2026       type = vat->getElementType();
2027       break;
2028     }
2029 
2030     case Type::FunctionProto:
2031     case Type::FunctionNoProto:
2032       type = cast<FunctionType>(ty)->getReturnType();
2033       break;
2034 
2035     case Type::Paren:
2036     case Type::TypeOf:
2037     case Type::UnaryTransform:
2038     case Type::Attributed:
2039     case Type::SubstTemplateTypeParm:
2040     case Type::PackExpansion:
2041       // Keep walking after single level desugaring.
2042       type = type.getSingleStepDesugaredType(getContext());
2043       break;
2044 
2045     case Type::Typedef:
2046     case Type::Decltype:
2047     case Type::Auto:
2048     case Type::DeducedTemplateSpecialization:
2049       // Stop walking: nothing to do.
2050       return;
2051 
2052     case Type::TypeOfExpr:
2053       // Stop walking: emit typeof expression.
2054       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2055       return;
2056 
2057     case Type::Atomic:
2058       type = cast<AtomicType>(ty)->getValueType();
2059       break;
2060 
2061     case Type::Pipe:
2062       type = cast<PipeType>(ty)->getElementType();
2063       break;
2064     }
2065   } while (type->isVariablyModifiedType());
2066 }
2067 
2068 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2069   if (getContext().getBuiltinVaListType()->isArrayType())
2070     return EmitPointerWithAlignment(E);
2071   return EmitLValue(E).getAddress();
2072 }
2073 
2074 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2075   return EmitLValue(E).getAddress();
2076 }
2077 
2078 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2079                                               const APValue &Init) {
2080   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2081   if (CGDebugInfo *Dbg = getDebugInfo())
2082     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2083       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2084 }
2085 
2086 CodeGenFunction::PeepholeProtection
2087 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2088   // At the moment, the only aggressive peephole we do in IR gen
2089   // is trunc(zext) folding, but if we add more, we can easily
2090   // extend this protection.
2091 
2092   if (!rvalue.isScalar()) return PeepholeProtection();
2093   llvm::Value *value = rvalue.getScalarVal();
2094   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2095 
2096   // Just make an extra bitcast.
2097   assert(HaveInsertPoint());
2098   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2099                                                   Builder.GetInsertBlock());
2100 
2101   PeepholeProtection protection;
2102   protection.Inst = inst;
2103   return protection;
2104 }
2105 
2106 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2107   if (!protection.Inst) return;
2108 
2109   // In theory, we could try to duplicate the peepholes now, but whatever.
2110   protection.Inst->eraseFromParent();
2111 }
2112 
2113 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2114                                                  llvm::Value *AnnotatedVal,
2115                                                  StringRef AnnotationStr,
2116                                                  SourceLocation Location) {
2117   llvm::Value *Args[4] = {
2118     AnnotatedVal,
2119     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2120     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2121     CGM.EmitAnnotationLineNo(Location)
2122   };
2123   return Builder.CreateCall(AnnotationFn, Args);
2124 }
2125 
2126 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2127   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2128   // FIXME We create a new bitcast for every annotation because that's what
2129   // llvm-gcc was doing.
2130   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2131     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2132                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2133                        I->getAnnotation(), D->getLocation());
2134 }
2135 
2136 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2137                                               Address Addr) {
2138   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2139   llvm::Value *V = Addr.getPointer();
2140   llvm::Type *VTy = V->getType();
2141   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2142                                     CGM.Int8PtrTy);
2143 
2144   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2145     // FIXME Always emit the cast inst so we can differentiate between
2146     // annotation on the first field of a struct and annotation on the struct
2147     // itself.
2148     if (VTy != CGM.Int8PtrTy)
2149       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2150     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2151     V = Builder.CreateBitCast(V, VTy);
2152   }
2153 
2154   return Address(V, Addr.getAlignment());
2155 }
2156 
2157 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2158 
2159 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2160     : CGF(CGF) {
2161   assert(!CGF->IsSanitizerScope);
2162   CGF->IsSanitizerScope = true;
2163 }
2164 
2165 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2166   CGF->IsSanitizerScope = false;
2167 }
2168 
2169 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2170                                    const llvm::Twine &Name,
2171                                    llvm::BasicBlock *BB,
2172                                    llvm::BasicBlock::iterator InsertPt) const {
2173   LoopStack.InsertHelper(I);
2174   if (IsSanitizerScope)
2175     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2176 }
2177 
2178 void CGBuilderInserter::InsertHelper(
2179     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2180     llvm::BasicBlock::iterator InsertPt) const {
2181   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2182   if (CGF)
2183     CGF->InsertHelper(I, Name, BB, InsertPt);
2184 }
2185 
2186 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2187                                 CodeGenModule &CGM, const FunctionDecl *FD,
2188                                 std::string &FirstMissing) {
2189   // If there aren't any required features listed then go ahead and return.
2190   if (ReqFeatures.empty())
2191     return false;
2192 
2193   // Now build up the set of caller features and verify that all the required
2194   // features are there.
2195   llvm::StringMap<bool> CallerFeatureMap;
2196   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2197 
2198   // If we have at least one of the features in the feature list return
2199   // true, otherwise return false.
2200   return std::all_of(
2201       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2202         SmallVector<StringRef, 1> OrFeatures;
2203         Feature.split(OrFeatures, "|");
2204         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2205                            [&](StringRef Feature) {
2206                              if (!CallerFeatureMap.lookup(Feature)) {
2207                                FirstMissing = Feature.str();
2208                                return false;
2209                              }
2210                              return true;
2211                            });
2212       });
2213 }
2214 
2215 // Emits an error if we don't have a valid set of target features for the
2216 // called function.
2217 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2218                                           const FunctionDecl *TargetDecl) {
2219   // Early exit if this is an indirect call.
2220   if (!TargetDecl)
2221     return;
2222 
2223   // Get the current enclosing function if it exists. If it doesn't
2224   // we can't check the target features anyhow.
2225   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2226   if (!FD)
2227     return;
2228 
2229   // Grab the required features for the call. For a builtin this is listed in
2230   // the td file with the default cpu, for an always_inline function this is any
2231   // listed cpu and any listed features.
2232   unsigned BuiltinID = TargetDecl->getBuiltinID();
2233   std::string MissingFeature;
2234   if (BuiltinID) {
2235     SmallVector<StringRef, 1> ReqFeatures;
2236     const char *FeatureList =
2237         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2238     // Return if the builtin doesn't have any required features.
2239     if (!FeatureList || StringRef(FeatureList) == "")
2240       return;
2241     StringRef(FeatureList).split(ReqFeatures, ",");
2242     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2243       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2244           << TargetDecl->getDeclName()
2245           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2246 
2247   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2248     // Get the required features for the callee.
2249     SmallVector<StringRef, 1> ReqFeatures;
2250     llvm::StringMap<bool> CalleeFeatureMap;
2251     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2252     for (const auto &F : CalleeFeatureMap) {
2253       // Only positive features are "required".
2254       if (F.getValue())
2255         ReqFeatures.push_back(F.getKey());
2256     }
2257     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2258       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2259           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2260   }
2261 }
2262 
2263 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2264   if (!CGM.getCodeGenOpts().SanitizeStats)
2265     return;
2266 
2267   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2268   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2269   CGM.getSanStats().create(IRB, SSK);
2270 }
2271 
2272 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2273   if (CGDebugInfo *DI = getDebugInfo())
2274     return DI->SourceLocToDebugLoc(Location);
2275 
2276   return llvm::DebugLoc();
2277 }
2278