1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 47 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 48 TerminateHandler(0), TrapBB(0) { 49 if (!suppressNewContext) 50 CGM.getCXXABI().getMangleContext().startNewFunction(); 51 52 llvm::FastMathFlags FMF; 53 if (CGM.getLangOpts().FastMath) 54 FMF.setUnsafeAlgebra(); 55 if (CGM.getLangOpts().FiniteMathOnly) { 56 FMF.setNoNaNs(); 57 FMF.setNoInfs(); 58 } 59 Builder.SetFastMathFlags(FMF); 60 } 61 62 CodeGenFunction::~CodeGenFunction() { 63 // If there are any unclaimed block infos, go ahead and destroy them 64 // now. This can happen if IR-gen gets clever and skips evaluating 65 // something. 66 if (FirstBlockInfo) 67 destroyBlockInfos(FirstBlockInfo); 68 } 69 70 71 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 72 return CGM.getTypes().ConvertTypeForMem(T); 73 } 74 75 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 76 return CGM.getTypes().ConvertType(T); 77 } 78 79 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 80 switch (type.getCanonicalType()->getTypeClass()) { 81 #define TYPE(name, parent) 82 #define ABSTRACT_TYPE(name, parent) 83 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 84 #define DEPENDENT_TYPE(name, parent) case Type::name: 85 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 86 #include "clang/AST/TypeNodes.def" 87 llvm_unreachable("non-canonical or dependent type in IR-generation"); 88 89 case Type::Builtin: 90 case Type::Pointer: 91 case Type::BlockPointer: 92 case Type::LValueReference: 93 case Type::RValueReference: 94 case Type::MemberPointer: 95 case Type::Vector: 96 case Type::ExtVector: 97 case Type::FunctionProto: 98 case Type::FunctionNoProto: 99 case Type::Enum: 100 case Type::ObjCObjectPointer: 101 return false; 102 103 // Complexes, arrays, records, and Objective-C objects. 104 case Type::Complex: 105 case Type::ConstantArray: 106 case Type::IncompleteArray: 107 case Type::VariableArray: 108 case Type::Record: 109 case Type::ObjCObject: 110 case Type::ObjCInterface: 111 return true; 112 113 // In IRGen, atomic types are just the underlying type 114 case Type::Atomic: 115 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 116 } 117 llvm_unreachable("unknown type kind!"); 118 } 119 120 void CodeGenFunction::EmitReturnBlock() { 121 // For cleanliness, we try to avoid emitting the return block for 122 // simple cases. 123 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 124 125 if (CurBB) { 126 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 127 128 // We have a valid insert point, reuse it if it is empty or there are no 129 // explicit jumps to the return block. 130 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 131 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 132 delete ReturnBlock.getBlock(); 133 } else 134 EmitBlock(ReturnBlock.getBlock()); 135 return; 136 } 137 138 // Otherwise, if the return block is the target of a single direct 139 // branch then we can just put the code in that block instead. This 140 // cleans up functions which started with a unified return block. 141 if (ReturnBlock.getBlock()->hasOneUse()) { 142 llvm::BranchInst *BI = 143 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 144 if (BI && BI->isUnconditional() && 145 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 146 // Reset insertion point, including debug location, and delete the branch. 147 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 148 Builder.SetInsertPoint(BI->getParent()); 149 BI->eraseFromParent(); 150 delete ReturnBlock.getBlock(); 151 return; 152 } 153 } 154 155 // FIXME: We are at an unreachable point, there is no reason to emit the block 156 // unless it has uses. However, we still need a place to put the debug 157 // region.end for now. 158 159 EmitBlock(ReturnBlock.getBlock()); 160 } 161 162 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 163 if (!BB) return; 164 if (!BB->use_empty()) 165 return CGF.CurFn->getBasicBlockList().push_back(BB); 166 delete BB; 167 } 168 169 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 170 assert(BreakContinueStack.empty() && 171 "mismatched push/pop in break/continue stack!"); 172 173 // Pop any cleanups that might have been associated with the 174 // parameters. Do this in whatever block we're currently in; it's 175 // important to do this before we enter the return block or return 176 // edges will be *really* confused. 177 if (EHStack.stable_begin() != PrologueCleanupDepth) 178 PopCleanupBlocks(PrologueCleanupDepth); 179 180 // Emit function epilog (to return). 181 EmitReturnBlock(); 182 183 if (ShouldInstrumentFunction()) 184 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 185 186 // Emit debug descriptor for function end. 187 if (CGDebugInfo *DI = getDebugInfo()) { 188 DI->setLocation(EndLoc); 189 DI->EmitFunctionEnd(Builder); 190 } 191 192 EmitFunctionEpilog(*CurFnInfo); 193 EmitEndEHSpec(CurCodeDecl); 194 195 assert(EHStack.empty() && 196 "did not remove all scopes from cleanup stack!"); 197 198 // If someone did an indirect goto, emit the indirect goto block at the end of 199 // the function. 200 if (IndirectBranch) { 201 EmitBlock(IndirectBranch->getParent()); 202 Builder.ClearInsertionPoint(); 203 } 204 205 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 206 llvm::Instruction *Ptr = AllocaInsertPt; 207 AllocaInsertPt = 0; 208 Ptr->eraseFromParent(); 209 210 // If someone took the address of a label but never did an indirect goto, we 211 // made a zero entry PHI node, which is illegal, zap it now. 212 if (IndirectBranch) { 213 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 214 if (PN->getNumIncomingValues() == 0) { 215 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 216 PN->eraseFromParent(); 217 } 218 } 219 220 EmitIfUsed(*this, EHResumeBlock); 221 EmitIfUsed(*this, TerminateLandingPad); 222 EmitIfUsed(*this, TerminateHandler); 223 EmitIfUsed(*this, UnreachableBlock); 224 225 if (CGM.getCodeGenOpts().EmitDeclMetadata) 226 EmitDeclMetadata(); 227 } 228 229 /// ShouldInstrumentFunction - Return true if the current function should be 230 /// instrumented with __cyg_profile_func_* calls 231 bool CodeGenFunction::ShouldInstrumentFunction() { 232 if (!CGM.getCodeGenOpts().InstrumentFunctions) 233 return false; 234 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 235 return false; 236 return true; 237 } 238 239 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 240 /// instrumentation function with the current function and the call site, if 241 /// function instrumentation is enabled. 242 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 243 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 244 llvm::PointerType *PointerTy = Int8PtrTy; 245 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 246 llvm::FunctionType *FunctionTy = 247 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 248 249 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 250 llvm::CallInst *CallSite = Builder.CreateCall( 251 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 252 llvm::ConstantInt::get(Int32Ty, 0), 253 "callsite"); 254 255 Builder.CreateCall2(F, 256 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 257 CallSite); 258 } 259 260 void CodeGenFunction::EmitMCountInstrumentation() { 261 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 262 263 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 264 Target.getMCountName()); 265 Builder.CreateCall(MCountFn); 266 } 267 268 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 269 // information in the program executable. The argument information stored 270 // includes the argument name, its type, the address and access qualifiers used. 271 // FIXME: Add type, address, and access qualifiers. 272 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 273 CodeGenModule &CGM,llvm::LLVMContext &Context, 274 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 275 276 // Create MDNodes that represents the kernel arg metadata. 277 // Each MDNode is a list in the form of "key", N number of values which is 278 // the same number of values as their are kernel arguments. 279 280 // MDNode for the kernel argument names. 281 SmallVector<llvm::Value*, 8> argNames; 282 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 283 284 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 285 const ParmVarDecl *parm = FD->getParamDecl(i); 286 287 // Get argument name. 288 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 289 290 } 291 // Add MDNode to the list of all metadata. 292 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 293 } 294 295 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 296 llvm::Function *Fn) 297 { 298 if (!FD->hasAttr<OpenCLKernelAttr>()) 299 return; 300 301 llvm::LLVMContext &Context = getLLVMContext(); 302 303 SmallVector <llvm::Value*, 5> kernelMDArgs; 304 kernelMDArgs.push_back(Fn); 305 306 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 307 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 308 309 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 310 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 311 llvm::Value *attrMDArgs[] = { 312 llvm::MDString::get(Context, "work_group_size_hint"), 313 Builder.getInt32(attr->getXDim()), 314 Builder.getInt32(attr->getYDim()), 315 Builder.getInt32(attr->getZDim()) 316 }; 317 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 318 } 319 320 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 321 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 322 llvm::Value *attrMDArgs[] = { 323 llvm::MDString::get(Context, "reqd_work_group_size"), 324 Builder.getInt32(attr->getXDim()), 325 Builder.getInt32(attr->getYDim()), 326 Builder.getInt32(attr->getZDim()) 327 }; 328 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 329 } 330 331 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 332 llvm::NamedMDNode *OpenCLKernelMetadata = 333 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 334 OpenCLKernelMetadata->addOperand(kernelMDNode); 335 } 336 337 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 338 llvm::Function *Fn, 339 const CGFunctionInfo &FnInfo, 340 const FunctionArgList &Args, 341 SourceLocation StartLoc) { 342 const Decl *D = GD.getDecl(); 343 344 DidCallStackSave = false; 345 CurCodeDecl = CurFuncDecl = D; 346 FnRetTy = RetTy; 347 CurFn = Fn; 348 CurFnInfo = &FnInfo; 349 assert(CurFn->isDeclaration() && "Function already has body?"); 350 351 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 352 SanOpts = &SanitizerOptions::Disabled; 353 SanitizePerformTypeCheck = false; 354 } 355 356 // Pass inline keyword to optimizer if it appears explicitly on any 357 // declaration. 358 if (!CGM.getCodeGenOpts().NoInline) 359 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 360 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 361 RE = FD->redecls_end(); RI != RE; ++RI) 362 if (RI->isInlineSpecified()) { 363 Fn->addFnAttr(llvm::Attribute::InlineHint); 364 break; 365 } 366 367 if (getLangOpts().OpenCL) { 368 // Add metadata for a kernel function. 369 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 370 EmitOpenCLKernelMetadata(FD, Fn); 371 } 372 373 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 374 375 // Create a marker to make it easy to insert allocas into the entryblock 376 // later. Don't create this with the builder, because we don't want it 377 // folded. 378 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 379 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 380 if (Builder.isNamePreserving()) 381 AllocaInsertPt->setName("allocapt"); 382 383 ReturnBlock = getJumpDestInCurrentScope("return"); 384 385 Builder.SetInsertPoint(EntryBB); 386 387 // Emit subprogram debug descriptor. 388 if (CGDebugInfo *DI = getDebugInfo()) { 389 unsigned NumArgs = 0; 390 QualType *ArgsArray = new QualType[Args.size()]; 391 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 392 i != e; ++i) { 393 ArgsArray[NumArgs++] = (*i)->getType(); 394 } 395 396 QualType FnType = 397 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 398 FunctionProtoType::ExtProtoInfo()); 399 400 delete[] ArgsArray; 401 402 DI->setLocation(StartLoc); 403 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 404 } 405 406 if (ShouldInstrumentFunction()) 407 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 408 409 if (CGM.getCodeGenOpts().InstrumentForProfiling) 410 EmitMCountInstrumentation(); 411 412 if (RetTy->isVoidType()) { 413 // Void type; nothing to return. 414 ReturnValue = 0; 415 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 416 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 417 // Indirect aggregate return; emit returned value directly into sret slot. 418 // This reduces code size, and affects correctness in C++. 419 ReturnValue = CurFn->arg_begin(); 420 } else { 421 ReturnValue = CreateIRTemp(RetTy, "retval"); 422 423 // Tell the epilog emitter to autorelease the result. We do this 424 // now so that various specialized functions can suppress it 425 // during their IR-generation. 426 if (getLangOpts().ObjCAutoRefCount && 427 !CurFnInfo->isReturnsRetained() && 428 RetTy->isObjCRetainableType()) 429 AutoreleaseResult = true; 430 } 431 432 EmitStartEHSpec(CurCodeDecl); 433 434 PrologueCleanupDepth = EHStack.stable_begin(); 435 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 436 437 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 438 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 439 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 440 if (MD->getParent()->isLambda() && 441 MD->getOverloadedOperator() == OO_Call) { 442 // We're in a lambda; figure out the captures. 443 MD->getParent()->getCaptureFields(LambdaCaptureFields, 444 LambdaThisCaptureField); 445 if (LambdaThisCaptureField) { 446 // If this lambda captures this, load it. 447 QualType LambdaTagType = 448 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 449 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 450 LambdaTagType); 451 LValue ThisLValue = EmitLValueForField(LambdaLV, 452 LambdaThisCaptureField); 453 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 454 } 455 } else { 456 // Not in a lambda; just use 'this' from the method. 457 // FIXME: Should we generate a new load for each use of 'this'? The 458 // fast register allocator would be happier... 459 CXXThisValue = CXXABIThisValue; 460 } 461 } 462 463 // If any of the arguments have a variably modified type, make sure to 464 // emit the type size. 465 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 466 i != e; ++i) { 467 const VarDecl *VD = *i; 468 469 // Dig out the type as written from ParmVarDecls; it's unclear whether 470 // the standard (C99 6.9.1p10) requires this, but we're following the 471 // precedent set by gcc. 472 QualType Ty; 473 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 474 Ty = PVD->getOriginalType(); 475 else 476 Ty = VD->getType(); 477 478 if (Ty->isVariablyModifiedType()) 479 EmitVariablyModifiedType(Ty); 480 } 481 // Emit a location at the end of the prologue. 482 if (CGDebugInfo *DI = getDebugInfo()) 483 DI->EmitLocation(Builder, StartLoc); 484 } 485 486 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 487 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 488 assert(FD->getBody()); 489 EmitStmt(FD->getBody()); 490 } 491 492 /// Tries to mark the given function nounwind based on the 493 /// non-existence of any throwing calls within it. We believe this is 494 /// lightweight enough to do at -O0. 495 static void TryMarkNoThrow(llvm::Function *F) { 496 // LLVM treats 'nounwind' on a function as part of the type, so we 497 // can't do this on functions that can be overwritten. 498 if (F->mayBeOverridden()) return; 499 500 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 501 for (llvm::BasicBlock::iterator 502 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 503 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 504 if (!Call->doesNotThrow()) 505 return; 506 } else if (isa<llvm::ResumeInst>(&*BI)) { 507 return; 508 } 509 F->setDoesNotThrow(); 510 } 511 512 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 513 const CGFunctionInfo &FnInfo) { 514 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 515 516 // Check if we should generate debug info for this function. 517 if (!FD->hasAttr<NoDebugAttr>()) 518 maybeInitializeDebugInfo(); 519 520 FunctionArgList Args; 521 QualType ResTy = FD->getResultType(); 522 523 CurGD = GD; 524 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 525 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 526 527 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 528 Args.push_back(FD->getParamDecl(i)); 529 530 SourceRange BodyRange; 531 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 532 533 // Emit the standard function prologue. 534 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 535 536 // Generate the body of the function. 537 if (isa<CXXDestructorDecl>(FD)) 538 EmitDestructorBody(Args); 539 else if (isa<CXXConstructorDecl>(FD)) 540 EmitConstructorBody(Args); 541 else if (getLangOpts().CUDA && 542 !CGM.getCodeGenOpts().CUDAIsDevice && 543 FD->hasAttr<CUDAGlobalAttr>()) 544 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 545 else if (isa<CXXConversionDecl>(FD) && 546 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 547 // The lambda conversion to block pointer is special; the semantics can't be 548 // expressed in the AST, so IRGen needs to special-case it. 549 EmitLambdaToBlockPointerBody(Args); 550 } else if (isa<CXXMethodDecl>(FD) && 551 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 552 // The lambda "__invoke" function is special, because it forwards or 553 // clones the body of the function call operator (but is actually static). 554 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 555 } 556 else 557 EmitFunctionBody(Args); 558 559 // C++11 [stmt.return]p2: 560 // Flowing off the end of a function [...] results in undefined behavior in 561 // a value-returning function. 562 // C11 6.9.1p12: 563 // If the '}' that terminates a function is reached, and the value of the 564 // function call is used by the caller, the behavior is undefined. 565 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 566 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 567 if (SanOpts->Return) 568 EmitCheck(Builder.getFalse(), "missing_return", 569 EmitCheckSourceLocation(FD->getLocation()), 570 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 571 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 572 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 573 Builder.CreateUnreachable(); 574 Builder.ClearInsertionPoint(); 575 } 576 577 // Emit the standard function epilogue. 578 FinishFunction(BodyRange.getEnd()); 579 580 // If we haven't marked the function nothrow through other means, do 581 // a quick pass now to see if we can. 582 if (!CurFn->doesNotThrow()) 583 TryMarkNoThrow(CurFn); 584 } 585 586 /// ContainsLabel - Return true if the statement contains a label in it. If 587 /// this statement is not executed normally, it not containing a label means 588 /// that we can just remove the code. 589 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 590 // Null statement, not a label! 591 if (S == 0) return false; 592 593 // If this is a label, we have to emit the code, consider something like: 594 // if (0) { ... foo: bar(); } goto foo; 595 // 596 // TODO: If anyone cared, we could track __label__'s, since we know that you 597 // can't jump to one from outside their declared region. 598 if (isa<LabelStmt>(S)) 599 return true; 600 601 // If this is a case/default statement, and we haven't seen a switch, we have 602 // to emit the code. 603 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 604 return true; 605 606 // If this is a switch statement, we want to ignore cases below it. 607 if (isa<SwitchStmt>(S)) 608 IgnoreCaseStmts = true; 609 610 // Scan subexpressions for verboten labels. 611 for (Stmt::const_child_range I = S->children(); I; ++I) 612 if (ContainsLabel(*I, IgnoreCaseStmts)) 613 return true; 614 615 return false; 616 } 617 618 /// containsBreak - Return true if the statement contains a break out of it. 619 /// If the statement (recursively) contains a switch or loop with a break 620 /// inside of it, this is fine. 621 bool CodeGenFunction::containsBreak(const Stmt *S) { 622 // Null statement, not a label! 623 if (S == 0) return false; 624 625 // If this is a switch or loop that defines its own break scope, then we can 626 // include it and anything inside of it. 627 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 628 isa<ForStmt>(S)) 629 return false; 630 631 if (isa<BreakStmt>(S)) 632 return true; 633 634 // Scan subexpressions for verboten breaks. 635 for (Stmt::const_child_range I = S->children(); I; ++I) 636 if (containsBreak(*I)) 637 return true; 638 639 return false; 640 } 641 642 643 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 644 /// to a constant, or if it does but contains a label, return false. If it 645 /// constant folds return true and set the boolean result in Result. 646 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 647 bool &ResultBool) { 648 llvm::APSInt ResultInt; 649 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 650 return false; 651 652 ResultBool = ResultInt.getBoolValue(); 653 return true; 654 } 655 656 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 657 /// to a constant, or if it does but contains a label, return false. If it 658 /// constant folds return true and set the folded value. 659 bool CodeGenFunction:: 660 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 661 // FIXME: Rename and handle conversion of other evaluatable things 662 // to bool. 663 llvm::APSInt Int; 664 if (!Cond->EvaluateAsInt(Int, getContext())) 665 return false; // Not foldable, not integer or not fully evaluatable. 666 667 if (CodeGenFunction::ContainsLabel(Cond)) 668 return false; // Contains a label. 669 670 ResultInt = Int; 671 return true; 672 } 673 674 675 676 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 677 /// statement) to the specified blocks. Based on the condition, this might try 678 /// to simplify the codegen of the conditional based on the branch. 679 /// 680 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 681 llvm::BasicBlock *TrueBlock, 682 llvm::BasicBlock *FalseBlock) { 683 Cond = Cond->IgnoreParens(); 684 685 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 686 // Handle X && Y in a condition. 687 if (CondBOp->getOpcode() == BO_LAnd) { 688 // If we have "1 && X", simplify the code. "0 && X" would have constant 689 // folded if the case was simple enough. 690 bool ConstantBool = false; 691 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 692 ConstantBool) { 693 // br(1 && X) -> br(X). 694 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 695 } 696 697 // If we have "X && 1", simplify the code to use an uncond branch. 698 // "X && 0" would have been constant folded to 0. 699 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 700 ConstantBool) { 701 // br(X && 1) -> br(X). 702 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 703 } 704 705 // Emit the LHS as a conditional. If the LHS conditional is false, we 706 // want to jump to the FalseBlock. 707 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 708 709 ConditionalEvaluation eval(*this); 710 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 711 EmitBlock(LHSTrue); 712 713 // Any temporaries created here are conditional. 714 eval.begin(*this); 715 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 716 eval.end(*this); 717 718 return; 719 } 720 721 if (CondBOp->getOpcode() == BO_LOr) { 722 // If we have "0 || X", simplify the code. "1 || X" would have constant 723 // folded if the case was simple enough. 724 bool ConstantBool = false; 725 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 726 !ConstantBool) { 727 // br(0 || X) -> br(X). 728 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 729 } 730 731 // If we have "X || 0", simplify the code to use an uncond branch. 732 // "X || 1" would have been constant folded to 1. 733 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 734 !ConstantBool) { 735 // br(X || 0) -> br(X). 736 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 737 } 738 739 // Emit the LHS as a conditional. If the LHS conditional is true, we 740 // want to jump to the TrueBlock. 741 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 742 743 ConditionalEvaluation eval(*this); 744 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 745 EmitBlock(LHSFalse); 746 747 // Any temporaries created here are conditional. 748 eval.begin(*this); 749 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 750 eval.end(*this); 751 752 return; 753 } 754 } 755 756 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 757 // br(!x, t, f) -> br(x, f, t) 758 if (CondUOp->getOpcode() == UO_LNot) 759 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 760 } 761 762 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 763 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 764 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 765 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 766 767 ConditionalEvaluation cond(*this); 768 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 769 770 cond.begin(*this); 771 EmitBlock(LHSBlock); 772 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 773 cond.end(*this); 774 775 cond.begin(*this); 776 EmitBlock(RHSBlock); 777 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 778 cond.end(*this); 779 780 return; 781 } 782 783 // Emit the code with the fully general case. 784 llvm::Value *CondV = EvaluateExprAsBool(Cond); 785 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 786 } 787 788 /// ErrorUnsupported - Print out an error that codegen doesn't support the 789 /// specified stmt yet. 790 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 791 bool OmitOnError) { 792 CGM.ErrorUnsupported(S, Type, OmitOnError); 793 } 794 795 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 796 /// variable-length array whose elements have a non-zero bit-pattern. 797 /// 798 /// \param baseType the inner-most element type of the array 799 /// \param src - a char* pointing to the bit-pattern for a single 800 /// base element of the array 801 /// \param sizeInChars - the total size of the VLA, in chars 802 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 803 llvm::Value *dest, llvm::Value *src, 804 llvm::Value *sizeInChars) { 805 std::pair<CharUnits,CharUnits> baseSizeAndAlign 806 = CGF.getContext().getTypeInfoInChars(baseType); 807 808 CGBuilderTy &Builder = CGF.Builder; 809 810 llvm::Value *baseSizeInChars 811 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 812 813 llvm::Type *i8p = Builder.getInt8PtrTy(); 814 815 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 816 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 817 818 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 819 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 820 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 821 822 // Make a loop over the VLA. C99 guarantees that the VLA element 823 // count must be nonzero. 824 CGF.EmitBlock(loopBB); 825 826 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 827 cur->addIncoming(begin, originBB); 828 829 // memcpy the individual element bit-pattern. 830 Builder.CreateMemCpy(cur, src, baseSizeInChars, 831 baseSizeAndAlign.second.getQuantity(), 832 /*volatile*/ false); 833 834 // Go to the next element. 835 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 836 837 // Leave if that's the end of the VLA. 838 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 839 Builder.CreateCondBr(done, contBB, loopBB); 840 cur->addIncoming(next, loopBB); 841 842 CGF.EmitBlock(contBB); 843 } 844 845 void 846 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 847 // Ignore empty classes in C++. 848 if (getLangOpts().CPlusPlus) { 849 if (const RecordType *RT = Ty->getAs<RecordType>()) { 850 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 851 return; 852 } 853 } 854 855 // Cast the dest ptr to the appropriate i8 pointer type. 856 unsigned DestAS = 857 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 858 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 859 if (DestPtr->getType() != BP) 860 DestPtr = Builder.CreateBitCast(DestPtr, BP); 861 862 // Get size and alignment info for this aggregate. 863 std::pair<CharUnits, CharUnits> TypeInfo = 864 getContext().getTypeInfoInChars(Ty); 865 CharUnits Size = TypeInfo.first; 866 CharUnits Align = TypeInfo.second; 867 868 llvm::Value *SizeVal; 869 const VariableArrayType *vla; 870 871 // Don't bother emitting a zero-byte memset. 872 if (Size.isZero()) { 873 // But note that getTypeInfo returns 0 for a VLA. 874 if (const VariableArrayType *vlaType = 875 dyn_cast_or_null<VariableArrayType>( 876 getContext().getAsArrayType(Ty))) { 877 QualType eltType; 878 llvm::Value *numElts; 879 llvm::tie(numElts, eltType) = getVLASize(vlaType); 880 881 SizeVal = numElts; 882 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 883 if (!eltSize.isOne()) 884 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 885 vla = vlaType; 886 } else { 887 return; 888 } 889 } else { 890 SizeVal = CGM.getSize(Size); 891 vla = 0; 892 } 893 894 // If the type contains a pointer to data member we can't memset it to zero. 895 // Instead, create a null constant and copy it to the destination. 896 // TODO: there are other patterns besides zero that we can usefully memset, 897 // like -1, which happens to be the pattern used by member-pointers. 898 if (!CGM.getTypes().isZeroInitializable(Ty)) { 899 // For a VLA, emit a single element, then splat that over the VLA. 900 if (vla) Ty = getContext().getBaseElementType(vla); 901 902 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 903 904 llvm::GlobalVariable *NullVariable = 905 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 906 /*isConstant=*/true, 907 llvm::GlobalVariable::PrivateLinkage, 908 NullConstant, Twine()); 909 llvm::Value *SrcPtr = 910 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 911 912 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 913 914 // Get and call the appropriate llvm.memcpy overload. 915 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 916 return; 917 } 918 919 // Otherwise, just memset the whole thing to zero. This is legal 920 // because in LLVM, all default initializers (other than the ones we just 921 // handled above) are guaranteed to have a bit pattern of all zeros. 922 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 923 Align.getQuantity(), false); 924 } 925 926 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 927 // Make sure that there is a block for the indirect goto. 928 if (IndirectBranch == 0) 929 GetIndirectGotoBlock(); 930 931 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 932 933 // Make sure the indirect branch includes all of the address-taken blocks. 934 IndirectBranch->addDestination(BB); 935 return llvm::BlockAddress::get(CurFn, BB); 936 } 937 938 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 939 // If we already made the indirect branch for indirect goto, return its block. 940 if (IndirectBranch) return IndirectBranch->getParent(); 941 942 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 943 944 // Create the PHI node that indirect gotos will add entries to. 945 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 946 "indirect.goto.dest"); 947 948 // Create the indirect branch instruction. 949 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 950 return IndirectBranch->getParent(); 951 } 952 953 /// Computes the length of an array in elements, as well as the base 954 /// element type and a properly-typed first element pointer. 955 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 956 QualType &baseType, 957 llvm::Value *&addr) { 958 const ArrayType *arrayType = origArrayType; 959 960 // If it's a VLA, we have to load the stored size. Note that 961 // this is the size of the VLA in bytes, not its size in elements. 962 llvm::Value *numVLAElements = 0; 963 if (isa<VariableArrayType>(arrayType)) { 964 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 965 966 // Walk into all VLAs. This doesn't require changes to addr, 967 // which has type T* where T is the first non-VLA element type. 968 do { 969 QualType elementType = arrayType->getElementType(); 970 arrayType = getContext().getAsArrayType(elementType); 971 972 // If we only have VLA components, 'addr' requires no adjustment. 973 if (!arrayType) { 974 baseType = elementType; 975 return numVLAElements; 976 } 977 } while (isa<VariableArrayType>(arrayType)); 978 979 // We get out here only if we find a constant array type 980 // inside the VLA. 981 } 982 983 // We have some number of constant-length arrays, so addr should 984 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 985 // down to the first element of addr. 986 SmallVector<llvm::Value*, 8> gepIndices; 987 988 // GEP down to the array type. 989 llvm::ConstantInt *zero = Builder.getInt32(0); 990 gepIndices.push_back(zero); 991 992 uint64_t countFromCLAs = 1; 993 QualType eltType; 994 995 llvm::ArrayType *llvmArrayType = 996 dyn_cast<llvm::ArrayType>( 997 cast<llvm::PointerType>(addr->getType())->getElementType()); 998 while (llvmArrayType) { 999 assert(isa<ConstantArrayType>(arrayType)); 1000 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1001 == llvmArrayType->getNumElements()); 1002 1003 gepIndices.push_back(zero); 1004 countFromCLAs *= llvmArrayType->getNumElements(); 1005 eltType = arrayType->getElementType(); 1006 1007 llvmArrayType = 1008 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1009 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1010 assert((!llvmArrayType || arrayType) && 1011 "LLVM and Clang types are out-of-synch"); 1012 } 1013 1014 if (arrayType) { 1015 // From this point onwards, the Clang array type has been emitted 1016 // as some other type (probably a packed struct). Compute the array 1017 // size, and just emit the 'begin' expression as a bitcast. 1018 while (arrayType) { 1019 countFromCLAs *= 1020 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1021 eltType = arrayType->getElementType(); 1022 arrayType = getContext().getAsArrayType(eltType); 1023 } 1024 1025 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1026 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1027 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1028 } else { 1029 // Create the actual GEP. 1030 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1031 } 1032 1033 baseType = eltType; 1034 1035 llvm::Value *numElements 1036 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1037 1038 // If we had any VLA dimensions, factor them in. 1039 if (numVLAElements) 1040 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1041 1042 return numElements; 1043 } 1044 1045 std::pair<llvm::Value*, QualType> 1046 CodeGenFunction::getVLASize(QualType type) { 1047 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1048 assert(vla && "type was not a variable array type!"); 1049 return getVLASize(vla); 1050 } 1051 1052 std::pair<llvm::Value*, QualType> 1053 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1054 // The number of elements so far; always size_t. 1055 llvm::Value *numElements = 0; 1056 1057 QualType elementType; 1058 do { 1059 elementType = type->getElementType(); 1060 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1061 assert(vlaSize && "no size for VLA!"); 1062 assert(vlaSize->getType() == SizeTy); 1063 1064 if (!numElements) { 1065 numElements = vlaSize; 1066 } else { 1067 // It's undefined behavior if this wraps around, so mark it that way. 1068 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1069 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1070 } 1071 } while ((type = getContext().getAsVariableArrayType(elementType))); 1072 1073 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1074 } 1075 1076 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1077 assert(type->isVariablyModifiedType() && 1078 "Must pass variably modified type to EmitVLASizes!"); 1079 1080 EnsureInsertPoint(); 1081 1082 // We're going to walk down into the type and look for VLA 1083 // expressions. 1084 do { 1085 assert(type->isVariablyModifiedType()); 1086 1087 const Type *ty = type.getTypePtr(); 1088 switch (ty->getTypeClass()) { 1089 1090 #define TYPE(Class, Base) 1091 #define ABSTRACT_TYPE(Class, Base) 1092 #define NON_CANONICAL_TYPE(Class, Base) 1093 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1094 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1095 #include "clang/AST/TypeNodes.def" 1096 llvm_unreachable("unexpected dependent type!"); 1097 1098 // These types are never variably-modified. 1099 case Type::Builtin: 1100 case Type::Complex: 1101 case Type::Vector: 1102 case Type::ExtVector: 1103 case Type::Record: 1104 case Type::Enum: 1105 case Type::Elaborated: 1106 case Type::TemplateSpecialization: 1107 case Type::ObjCObject: 1108 case Type::ObjCInterface: 1109 case Type::ObjCObjectPointer: 1110 llvm_unreachable("type class is never variably-modified!"); 1111 1112 case Type::Pointer: 1113 type = cast<PointerType>(ty)->getPointeeType(); 1114 break; 1115 1116 case Type::BlockPointer: 1117 type = cast<BlockPointerType>(ty)->getPointeeType(); 1118 break; 1119 1120 case Type::LValueReference: 1121 case Type::RValueReference: 1122 type = cast<ReferenceType>(ty)->getPointeeType(); 1123 break; 1124 1125 case Type::MemberPointer: 1126 type = cast<MemberPointerType>(ty)->getPointeeType(); 1127 break; 1128 1129 case Type::ConstantArray: 1130 case Type::IncompleteArray: 1131 // Losing element qualification here is fine. 1132 type = cast<ArrayType>(ty)->getElementType(); 1133 break; 1134 1135 case Type::VariableArray: { 1136 // Losing element qualification here is fine. 1137 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1138 1139 // Unknown size indication requires no size computation. 1140 // Otherwise, evaluate and record it. 1141 if (const Expr *size = vat->getSizeExpr()) { 1142 // It's possible that we might have emitted this already, 1143 // e.g. with a typedef and a pointer to it. 1144 llvm::Value *&entry = VLASizeMap[size]; 1145 if (!entry) { 1146 llvm::Value *Size = EmitScalarExpr(size); 1147 1148 // C11 6.7.6.2p5: 1149 // If the size is an expression that is not an integer constant 1150 // expression [...] each time it is evaluated it shall have a value 1151 // greater than zero. 1152 if (SanOpts->VLABound && 1153 size->getType()->isSignedIntegerType()) { 1154 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1155 llvm::Constant *StaticArgs[] = { 1156 EmitCheckSourceLocation(size->getLocStart()), 1157 EmitCheckTypeDescriptor(size->getType()) 1158 }; 1159 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1160 "vla_bound_not_positive", StaticArgs, Size, 1161 CRK_Recoverable); 1162 } 1163 1164 // Always zexting here would be wrong if it weren't 1165 // undefined behavior to have a negative bound. 1166 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1167 } 1168 } 1169 type = vat->getElementType(); 1170 break; 1171 } 1172 1173 case Type::FunctionProto: 1174 case Type::FunctionNoProto: 1175 type = cast<FunctionType>(ty)->getResultType(); 1176 break; 1177 1178 case Type::Paren: 1179 case Type::TypeOf: 1180 case Type::UnaryTransform: 1181 case Type::Attributed: 1182 case Type::SubstTemplateTypeParm: 1183 // Keep walking after single level desugaring. 1184 type = type.getSingleStepDesugaredType(getContext()); 1185 break; 1186 1187 case Type::Typedef: 1188 case Type::Decltype: 1189 case Type::Auto: 1190 // Stop walking: nothing to do. 1191 return; 1192 1193 case Type::TypeOfExpr: 1194 // Stop walking: emit typeof expression. 1195 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1196 return; 1197 1198 case Type::Atomic: 1199 type = cast<AtomicType>(ty)->getValueType(); 1200 break; 1201 } 1202 } while (type->isVariablyModifiedType()); 1203 } 1204 1205 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1206 if (getContext().getBuiltinVaListType()->isArrayType()) 1207 return EmitScalarExpr(E); 1208 return EmitLValue(E).getAddress(); 1209 } 1210 1211 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1212 llvm::Constant *Init) { 1213 assert (Init && "Invalid DeclRefExpr initializer!"); 1214 if (CGDebugInfo *Dbg = getDebugInfo()) 1215 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1216 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1217 } 1218 1219 CodeGenFunction::PeepholeProtection 1220 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1221 // At the moment, the only aggressive peephole we do in IR gen 1222 // is trunc(zext) folding, but if we add more, we can easily 1223 // extend this protection. 1224 1225 if (!rvalue.isScalar()) return PeepholeProtection(); 1226 llvm::Value *value = rvalue.getScalarVal(); 1227 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1228 1229 // Just make an extra bitcast. 1230 assert(HaveInsertPoint()); 1231 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1232 Builder.GetInsertBlock()); 1233 1234 PeepholeProtection protection; 1235 protection.Inst = inst; 1236 return protection; 1237 } 1238 1239 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1240 if (!protection.Inst) return; 1241 1242 // In theory, we could try to duplicate the peepholes now, but whatever. 1243 protection.Inst->eraseFromParent(); 1244 } 1245 1246 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1247 llvm::Value *AnnotatedVal, 1248 StringRef AnnotationStr, 1249 SourceLocation Location) { 1250 llvm::Value *Args[4] = { 1251 AnnotatedVal, 1252 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1253 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1254 CGM.EmitAnnotationLineNo(Location) 1255 }; 1256 return Builder.CreateCall(AnnotationFn, Args); 1257 } 1258 1259 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1260 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1261 // FIXME We create a new bitcast for every annotation because that's what 1262 // llvm-gcc was doing. 1263 for (specific_attr_iterator<AnnotateAttr> 1264 ai = D->specific_attr_begin<AnnotateAttr>(), 1265 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1266 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1267 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1268 (*ai)->getAnnotation(), D->getLocation()); 1269 } 1270 1271 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1272 llvm::Value *V) { 1273 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1274 llvm::Type *VTy = V->getType(); 1275 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1276 CGM.Int8PtrTy); 1277 1278 for (specific_attr_iterator<AnnotateAttr> 1279 ai = D->specific_attr_begin<AnnotateAttr>(), 1280 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1281 // FIXME Always emit the cast inst so we can differentiate between 1282 // annotation on the first field of a struct and annotation on the struct 1283 // itself. 1284 if (VTy != CGM.Int8PtrTy) 1285 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1286 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1287 V = Builder.CreateBitCast(V, VTy); 1288 } 1289 1290 return V; 1291 } 1292