1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.setFastMathFlags(FMF);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198     case Type::Pipe:
199       return TEK_Scalar;
200 
201     // Complexes.
202     case Type::Complex:
203       return TEK_Complex;
204 
205     // Arrays, records, and Objective-C objects.
206     case Type::ConstantArray:
207     case Type::IncompleteArray:
208     case Type::VariableArray:
209     case Type::Record:
210     case Type::ObjCObject:
211     case Type::ObjCInterface:
212       return TEK_Aggregate;
213 
214     // We operate on atomic values according to their underlying type.
215     case Type::Atomic:
216       type = cast<AtomicType>(type)->getValueType();
217       continue;
218     }
219     llvm_unreachable("unknown type kind!");
220   }
221 }
222 
223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224   // For cleanliness, we try to avoid emitting the return block for
225   // simple cases.
226   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227 
228   if (CurBB) {
229     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230 
231     // We have a valid insert point, reuse it if it is empty or there are no
232     // explicit jumps to the return block.
233     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235       delete ReturnBlock.getBlock();
236     } else
237       EmitBlock(ReturnBlock.getBlock());
238     return llvm::DebugLoc();
239   }
240 
241   // Otherwise, if the return block is the target of a single direct
242   // branch then we can just put the code in that block instead. This
243   // cleans up functions which started with a unified return block.
244   if (ReturnBlock.getBlock()->hasOneUse()) {
245     llvm::BranchInst *BI =
246       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247     if (BI && BI->isUnconditional() &&
248         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249       // Record/return the DebugLoc of the simple 'return' expression to be used
250       // later by the actual 'ret' instruction.
251       llvm::DebugLoc Loc = BI->getDebugLoc();
252       Builder.SetInsertPoint(BI->getParent());
253       BI->eraseFromParent();
254       delete ReturnBlock.getBlock();
255       return Loc;
256     }
257   }
258 
259   // FIXME: We are at an unreachable point, there is no reason to emit the block
260   // unless it has uses. However, we still need a place to put the debug
261   // region.end for now.
262 
263   EmitBlock(ReturnBlock.getBlock());
264   return llvm::DebugLoc();
265 }
266 
267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268   if (!BB) return;
269   if (!BB->use_empty())
270     return CGF.CurFn->getBasicBlockList().push_back(BB);
271   delete BB;
272 }
273 
274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275   assert(BreakContinueStack.empty() &&
276          "mismatched push/pop in break/continue stack!");
277 
278   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279     && NumSimpleReturnExprs == NumReturnExprs
280     && ReturnBlock.getBlock()->use_empty();
281   // Usually the return expression is evaluated before the cleanup
282   // code.  If the function contains only a simple return statement,
283   // such as a constant, the location before the cleanup code becomes
284   // the last useful breakpoint in the function, because the simple
285   // return expression will be evaluated after the cleanup code. To be
286   // safe, set the debug location for cleanup code to the location of
287   // the return statement.  Otherwise the cleanup code should be at the
288   // end of the function's lexical scope.
289   //
290   // If there are multiple branches to the return block, the branch
291   // instructions will get the location of the return statements and
292   // all will be fine.
293   if (CGDebugInfo *DI = getDebugInfo()) {
294     if (OnlySimpleReturnStmts)
295       DI->EmitLocation(Builder, LastStopPoint);
296     else
297       DI->EmitLocation(Builder, EndLoc);
298   }
299 
300   // Pop any cleanups that might have been associated with the
301   // parameters.  Do this in whatever block we're currently in; it's
302   // important to do this before we enter the return block or return
303   // edges will be *really* confused.
304   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305   bool HasOnlyLifetimeMarkers =
306       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308   if (HasCleanups) {
309     // Make sure the line table doesn't jump back into the body for
310     // the ret after it's been at EndLoc.
311     if (CGDebugInfo *DI = getDebugInfo())
312       if (OnlySimpleReturnStmts)
313         DI->EmitLocation(Builder, EndLoc);
314 
315     PopCleanupBlocks(PrologueCleanupDepth);
316   }
317 
318   // Emit function epilog (to return).
319   llvm::DebugLoc Loc = EmitReturnBlock();
320 
321   if (ShouldInstrumentFunction())
322     EmitFunctionInstrumentation("__cyg_profile_func_exit");
323 
324   // Emit debug descriptor for function end.
325   if (CGDebugInfo *DI = getDebugInfo())
326     DI->EmitFunctionEnd(Builder);
327 
328   // Reset the debug location to that of the simple 'return' expression, if any
329   // rather than that of the end of the function's scope '}'.
330   ApplyDebugLocation AL(*this, Loc);
331   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332   EmitEndEHSpec(CurCodeDecl);
333 
334   assert(EHStack.empty() &&
335          "did not remove all scopes from cleanup stack!");
336 
337   // If someone did an indirect goto, emit the indirect goto block at the end of
338   // the function.
339   if (IndirectBranch) {
340     EmitBlock(IndirectBranch->getParent());
341     Builder.ClearInsertionPoint();
342   }
343 
344   // If some of our locals escaped, insert a call to llvm.localescape in the
345   // entry block.
346   if (!EscapedLocals.empty()) {
347     // Invert the map from local to index into a simple vector. There should be
348     // no holes.
349     SmallVector<llvm::Value *, 4> EscapeArgs;
350     EscapeArgs.resize(EscapedLocals.size());
351     for (auto &Pair : EscapedLocals)
352       EscapeArgs[Pair.second] = Pair.first;
353     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354         &CGM.getModule(), llvm::Intrinsic::localescape);
355     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356   }
357 
358   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359   llvm::Instruction *Ptr = AllocaInsertPt;
360   AllocaInsertPt = nullptr;
361   Ptr->eraseFromParent();
362 
363   // If someone took the address of a label but never did an indirect goto, we
364   // made a zero entry PHI node, which is illegal, zap it now.
365   if (IndirectBranch) {
366     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367     if (PN->getNumIncomingValues() == 0) {
368       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369       PN->eraseFromParent();
370     }
371   }
372 
373   EmitIfUsed(*this, EHResumeBlock);
374   EmitIfUsed(*this, TerminateLandingPad);
375   EmitIfUsed(*this, TerminateHandler);
376   EmitIfUsed(*this, UnreachableBlock);
377 
378   if (CGM.getCodeGenOpts().EmitDeclMetadata)
379     EmitDeclMetadata();
380 
381   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382            I = DeferredReplacements.begin(),
383            E = DeferredReplacements.end();
384        I != E; ++I) {
385     I->first->replaceAllUsesWith(I->second);
386     I->first->eraseFromParent();
387   }
388 }
389 
390 /// ShouldInstrumentFunction - Return true if the current function should be
391 /// instrumented with __cyg_profile_func_* calls
392 bool CodeGenFunction::ShouldInstrumentFunction() {
393   if (!CGM.getCodeGenOpts().InstrumentFunctions)
394     return false;
395   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396     return false;
397   return true;
398 }
399 
400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
401 /// instrumentation function with the current function and the call site, if
402 /// function instrumentation is enabled.
403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
404   auto NL = ApplyDebugLocation::CreateArtificial(*this);
405   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
406   llvm::PointerType *PointerTy = Int8PtrTy;
407   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
408   llvm::FunctionType *FunctionTy =
409     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
410 
411   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
412   llvm::CallInst *CallSite = Builder.CreateCall(
413     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
414     llvm::ConstantInt::get(Int32Ty, 0),
415     "callsite");
416 
417   llvm::Value *args[] = {
418     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
419     CallSite
420   };
421 
422   EmitNounwindRuntimeCall(F, args);
423 }
424 
425 void CodeGenFunction::EmitMCountInstrumentation() {
426   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
427 
428   llvm::Constant *MCountFn =
429     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
430   EmitNounwindRuntimeCall(MCountFn);
431 }
432 
433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
434 // information in the program executable. The argument information stored
435 // includes the argument name, its type, the address and access qualifiers used.
436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
437                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
438                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
439                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
440   // Create MDNodes that represent the kernel arg metadata.
441   // Each MDNode is a list in the form of "key", N number of values which is
442   // the same number of values as their are kernel arguments.
443 
444   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
445 
446   // MDNode for the kernel argument address space qualifiers.
447   SmallVector<llvm::Metadata *, 8> addressQuals;
448   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
449 
450   // MDNode for the kernel argument access qualifiers (images only).
451   SmallVector<llvm::Metadata *, 8> accessQuals;
452   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
453 
454   // MDNode for the kernel argument type names.
455   SmallVector<llvm::Metadata *, 8> argTypeNames;
456   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
457 
458   // MDNode for the kernel argument base type names.
459   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
460   argBaseTypeNames.push_back(
461       llvm::MDString::get(Context, "kernel_arg_base_type"));
462 
463   // MDNode for the kernel argument type qualifiers.
464   SmallVector<llvm::Metadata *, 8> argTypeQuals;
465   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
466 
467   // MDNode for the kernel argument names.
468   SmallVector<llvm::Metadata *, 8> argNames;
469   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
470 
471   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
472     const ParmVarDecl *parm = FD->getParamDecl(i);
473     QualType ty = parm->getType();
474     std::string typeQuals;
475 
476     if (ty->isPointerType()) {
477       QualType pointeeTy = ty->getPointeeType();
478 
479       // Get address qualifier.
480       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
481           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
482 
483       // Get argument type name.
484       std::string typeName =
485           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
486 
487       // Turn "unsigned type" to "utype"
488       std::string::size_type pos = typeName.find("unsigned");
489       if (pointeeTy.isCanonical() && pos != std::string::npos)
490         typeName.erase(pos+1, 8);
491 
492       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
493 
494       std::string baseTypeName =
495           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
496               Policy) +
497           "*";
498 
499       // Turn "unsigned type" to "utype"
500       pos = baseTypeName.find("unsigned");
501       if (pos != std::string::npos)
502         baseTypeName.erase(pos+1, 8);
503 
504       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
505 
506       // Get argument type qualifiers:
507       if (ty.isRestrictQualified())
508         typeQuals = "restrict";
509       if (pointeeTy.isConstQualified() ||
510           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
511         typeQuals += typeQuals.empty() ? "const" : " const";
512       if (pointeeTy.isVolatileQualified())
513         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
514     } else {
515       uint32_t AddrSpc = 0;
516       bool isPipe = ty->isPipeType();
517       if (ty->isImageType() || isPipe)
518         AddrSpc =
519           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
520 
521       addressQuals.push_back(
522           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
523 
524       // Get argument type name.
525       std::string typeName;
526       if (isPipe)
527         typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy);
528       else
529         typeName = ty.getUnqualifiedType().getAsString(Policy);
530 
531       // Turn "unsigned type" to "utype"
532       std::string::size_type pos = typeName.find("unsigned");
533       if (ty.isCanonical() && pos != std::string::npos)
534         typeName.erase(pos+1, 8);
535 
536       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
537 
538       std::string baseTypeName;
539       if (isPipe)
540         baseTypeName =
541           cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy);
542       else
543         baseTypeName =
544           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
545 
546       // Turn "unsigned type" to "utype"
547       pos = baseTypeName.find("unsigned");
548       if (pos != std::string::npos)
549         baseTypeName.erase(pos+1, 8);
550 
551       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
552 
553       // Get argument type qualifiers:
554       if (ty.isConstQualified())
555         typeQuals = "const";
556       if (ty.isVolatileQualified())
557         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
558       if (isPipe)
559         typeQuals = "pipe";
560     }
561 
562     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
563 
564     // Get image and pipe access qualifier:
565     if (ty->isImageType()|| ty->isPipeType()) {
566       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
567       if (A && A->isWriteOnly())
568         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
569       else if (A && A->isReadWrite())
570         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
571       else
572         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
573     } else
574       accessQuals.push_back(llvm::MDString::get(Context, "none"));
575 
576     // Get argument name.
577     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
578   }
579 
580   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
581   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
582   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
583   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
584   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
585   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
586     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
587 }
588 
589 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
590                                                llvm::Function *Fn)
591 {
592   if (!FD->hasAttr<OpenCLKernelAttr>())
593     return;
594 
595   llvm::LLVMContext &Context = getLLVMContext();
596 
597   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
598   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
599 
600   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
601                        getContext());
602 
603   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
604     QualType hintQTy = A->getTypeHint();
605     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
606     bool isSignedInteger =
607         hintQTy->isSignedIntegerType() ||
608         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
609     llvm::Metadata *attrMDArgs[] = {
610         llvm::MDString::get(Context, "vec_type_hint"),
611         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
612             CGM.getTypes().ConvertType(A->getTypeHint()))),
613         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
614             llvm::IntegerType::get(Context, 32),
615             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
616     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
617   }
618 
619   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
620     llvm::Metadata *attrMDArgs[] = {
621         llvm::MDString::get(Context, "work_group_size_hint"),
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
626   }
627 
628   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
629     llvm::Metadata *attrMDArgs[] = {
630         llvm::MDString::get(Context, "reqd_work_group_size"),
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
633         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
634     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
635   }
636 
637   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
638   llvm::NamedMDNode *OpenCLKernelMetadata =
639     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
640   OpenCLKernelMetadata->addOperand(kernelMDNode);
641 }
642 
643 /// Determine whether the function F ends with a return stmt.
644 static bool endsWithReturn(const Decl* F) {
645   const Stmt *Body = nullptr;
646   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
647     Body = FD->getBody();
648   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
649     Body = OMD->getBody();
650 
651   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
652     auto LastStmt = CS->body_rbegin();
653     if (LastStmt != CS->body_rend())
654       return isa<ReturnStmt>(*LastStmt);
655   }
656   return false;
657 }
658 
659 void CodeGenFunction::StartFunction(GlobalDecl GD,
660                                     QualType RetTy,
661                                     llvm::Function *Fn,
662                                     const CGFunctionInfo &FnInfo,
663                                     const FunctionArgList &Args,
664                                     SourceLocation Loc,
665                                     SourceLocation StartLoc) {
666   assert(!CurFn &&
667          "Do not use a CodeGenFunction object for more than one function");
668 
669   const Decl *D = GD.getDecl();
670 
671   DidCallStackSave = false;
672   CurCodeDecl = D;
673   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
674     if (FD->usesSEHTry())
675       CurSEHParent = FD;
676   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
677   FnRetTy = RetTy;
678   CurFn = Fn;
679   CurFnInfo = &FnInfo;
680   assert(CurFn->isDeclaration() && "Function already has body?");
681 
682   if (CGM.isInSanitizerBlacklist(Fn, Loc))
683     SanOpts.clear();
684 
685   if (D) {
686     // Apply the no_sanitize* attributes to SanOpts.
687     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
688       SanOpts.Mask &= ~Attr->getMask();
689   }
690 
691   // Apply sanitizer attributes to the function.
692   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
693     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
694   if (SanOpts.has(SanitizerKind::Thread))
695     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
696   if (SanOpts.has(SanitizerKind::Memory))
697     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
698   if (SanOpts.has(SanitizerKind::SafeStack))
699     Fn->addFnAttr(llvm::Attribute::SafeStack);
700 
701   // Pass inline keyword to optimizer if it appears explicitly on any
702   // declaration. Also, in the case of -fno-inline attach NoInline
703   // attribute to all function that are not marked AlwaysInline.
704   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
705     if (!CGM.getCodeGenOpts().NoInline) {
706       for (auto RI : FD->redecls())
707         if (RI->isInlineSpecified()) {
708           Fn->addFnAttr(llvm::Attribute::InlineHint);
709           break;
710         }
711     } else if (!FD->hasAttr<AlwaysInlineAttr>())
712       Fn->addFnAttr(llvm::Attribute::NoInline);
713     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
714       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
715   }
716 
717   // Add no-jump-tables value.
718   Fn->addFnAttr("no-jump-tables",
719                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
720 
721   if (getLangOpts().OpenCL) {
722     // Add metadata for a kernel function.
723     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
724       EmitOpenCLKernelMetadata(FD, Fn);
725   }
726 
727   // If we are checking function types, emit a function type signature as
728   // prologue data.
729   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
730     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
731       if (llvm::Constant *PrologueSig =
732               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
733         llvm::Constant *FTRTTIConst =
734             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
735         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
736         llvm::Constant *PrologueStructConst =
737             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
738         Fn->setPrologueData(PrologueStructConst);
739       }
740     }
741   }
742 
743   // If we're in C++ mode and the function name is "main", it is guaranteed
744   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
745   // used within a program").
746   if (getLangOpts().CPlusPlus)
747     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
748       if (FD->isMain())
749         Fn->addFnAttr(llvm::Attribute::NoRecurse);
750 
751   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
752 
753   // Create a marker to make it easy to insert allocas into the entryblock
754   // later.  Don't create this with the builder, because we don't want it
755   // folded.
756   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
757   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
758 
759   ReturnBlock = getJumpDestInCurrentScope("return");
760 
761   Builder.SetInsertPoint(EntryBB);
762 
763   // Emit subprogram debug descriptor.
764   if (CGDebugInfo *DI = getDebugInfo()) {
765     // Reconstruct the type from the argument list so that implicit parameters,
766     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
767     // convention.
768     CallingConv CC = CallingConv::CC_C;
769     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
770       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
771         CC = SrcFnTy->getCallConv();
772     SmallVector<QualType, 16> ArgTypes;
773     for (const VarDecl *VD : Args)
774       ArgTypes.push_back(VD->getType());
775     QualType FnType = getContext().getFunctionType(
776         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
777     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
778   }
779 
780   if (ShouldInstrumentFunction())
781     EmitFunctionInstrumentation("__cyg_profile_func_enter");
782 
783   if (CGM.getCodeGenOpts().InstrumentForProfiling)
784     EmitMCountInstrumentation();
785 
786   if (RetTy->isVoidType()) {
787     // Void type; nothing to return.
788     ReturnValue = Address::invalid();
789 
790     // Count the implicit return.
791     if (!endsWithReturn(D))
792       ++NumReturnExprs;
793   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
794              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
795     // Indirect aggregate return; emit returned value directly into sret slot.
796     // This reduces code size, and affects correctness in C++.
797     auto AI = CurFn->arg_begin();
798     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
799       ++AI;
800     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
801   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
802              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
803     // Load the sret pointer from the argument struct and return into that.
804     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
805     llvm::Function::arg_iterator EI = CurFn->arg_end();
806     --EI;
807     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
808     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
809     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
810   } else {
811     ReturnValue = CreateIRTemp(RetTy, "retval");
812 
813     // Tell the epilog emitter to autorelease the result.  We do this
814     // now so that various specialized functions can suppress it
815     // during their IR-generation.
816     if (getLangOpts().ObjCAutoRefCount &&
817         !CurFnInfo->isReturnsRetained() &&
818         RetTy->isObjCRetainableType())
819       AutoreleaseResult = true;
820   }
821 
822   EmitStartEHSpec(CurCodeDecl);
823 
824   PrologueCleanupDepth = EHStack.stable_begin();
825   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
826 
827   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
828     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
829     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
830     if (MD->getParent()->isLambda() &&
831         MD->getOverloadedOperator() == OO_Call) {
832       // We're in a lambda; figure out the captures.
833       MD->getParent()->getCaptureFields(LambdaCaptureFields,
834                                         LambdaThisCaptureField);
835       if (LambdaThisCaptureField) {
836         // If the lambda captures the object referred to by '*this' - either by
837         // value or by reference, make sure CXXThisValue points to the correct
838         // object.
839 
840         // Get the lvalue for the field (which is a copy of the enclosing object
841         // or contains the address of the enclosing object).
842         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
843         if (!LambdaThisCaptureField->getType()->isPointerType()) {
844           // If the enclosing object was captured by value, just use its address.
845           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
846         } else {
847           // Load the lvalue pointed to by the field, since '*this' was captured
848           // by reference.
849           CXXThisValue =
850               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
851         }
852       }
853       for (auto *FD : MD->getParent()->fields()) {
854         if (FD->hasCapturedVLAType()) {
855           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
856                                            SourceLocation()).getScalarVal();
857           auto VAT = FD->getCapturedVLAType();
858           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
859         }
860       }
861     } else {
862       // Not in a lambda; just use 'this' from the method.
863       // FIXME: Should we generate a new load for each use of 'this'?  The
864       // fast register allocator would be happier...
865       CXXThisValue = CXXABIThisValue;
866     }
867   }
868 
869   // If any of the arguments have a variably modified type, make sure to
870   // emit the type size.
871   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
872        i != e; ++i) {
873     const VarDecl *VD = *i;
874 
875     // Dig out the type as written from ParmVarDecls; it's unclear whether
876     // the standard (C99 6.9.1p10) requires this, but we're following the
877     // precedent set by gcc.
878     QualType Ty;
879     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
880       Ty = PVD->getOriginalType();
881     else
882       Ty = VD->getType();
883 
884     if (Ty->isVariablyModifiedType())
885       EmitVariablyModifiedType(Ty);
886   }
887   // Emit a location at the end of the prologue.
888   if (CGDebugInfo *DI = getDebugInfo())
889     DI->EmitLocation(Builder, StartLoc);
890 }
891 
892 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
893                                        const Stmt *Body) {
894   incrementProfileCounter(Body);
895   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
896     EmitCompoundStmtWithoutScope(*S);
897   else
898     EmitStmt(Body);
899 }
900 
901 /// When instrumenting to collect profile data, the counts for some blocks
902 /// such as switch cases need to not include the fall-through counts, so
903 /// emit a branch around the instrumentation code. When not instrumenting,
904 /// this just calls EmitBlock().
905 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
906                                                const Stmt *S) {
907   llvm::BasicBlock *SkipCountBB = nullptr;
908   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
909     // When instrumenting for profiling, the fallthrough to certain
910     // statements needs to skip over the instrumentation code so that we
911     // get an accurate count.
912     SkipCountBB = createBasicBlock("skipcount");
913     EmitBranch(SkipCountBB);
914   }
915   EmitBlock(BB);
916   uint64_t CurrentCount = getCurrentProfileCount();
917   incrementProfileCounter(S);
918   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
919   if (SkipCountBB)
920     EmitBlock(SkipCountBB);
921 }
922 
923 /// Tries to mark the given function nounwind based on the
924 /// non-existence of any throwing calls within it.  We believe this is
925 /// lightweight enough to do at -O0.
926 static void TryMarkNoThrow(llvm::Function *F) {
927   // LLVM treats 'nounwind' on a function as part of the type, so we
928   // can't do this on functions that can be overwritten.
929   if (F->isInterposable()) return;
930 
931   for (llvm::BasicBlock &BB : *F)
932     for (llvm::Instruction &I : BB)
933       if (I.mayThrow())
934         return;
935 
936   F->setDoesNotThrow();
937 }
938 
939 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
940                                    const CGFunctionInfo &FnInfo) {
941   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
942 
943   // Check if we should generate debug info for this function.
944   if (FD->hasAttr<NoDebugAttr>())
945     DebugInfo = nullptr; // disable debug info indefinitely for this function
946 
947   FunctionArgList Args;
948   QualType ResTy = FD->getReturnType();
949 
950   CurGD = GD;
951   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
952   if (MD && MD->isInstance()) {
953     if (CGM.getCXXABI().HasThisReturn(GD))
954       ResTy = MD->getThisType(getContext());
955     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
956       ResTy = CGM.getContext().VoidPtrTy;
957     CGM.getCXXABI().buildThisParam(*this, Args);
958   }
959 
960   for (auto *Param : FD->params()) {
961     Args.push_back(Param);
962     if (!Param->hasAttr<PassObjectSizeAttr>())
963       continue;
964 
965     IdentifierInfo *NoID = nullptr;
966     auto *Implicit = ImplicitParamDecl::Create(
967         getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
968         getContext().getSizeType());
969     SizeArguments[Param] = Implicit;
970     Args.push_back(Implicit);
971   }
972 
973   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
974     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
975 
976   SourceRange BodyRange;
977   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
978   CurEHLocation = BodyRange.getEnd();
979 
980   // Use the location of the start of the function to determine where
981   // the function definition is located. By default use the location
982   // of the declaration as the location for the subprogram. A function
983   // may lack a declaration in the source code if it is created by code
984   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
985   SourceLocation Loc = FD->getLocation();
986 
987   // If this is a function specialization then use the pattern body
988   // as the location for the function.
989   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
990     if (SpecDecl->hasBody(SpecDecl))
991       Loc = SpecDecl->getLocation();
992 
993   // Emit the standard function prologue.
994   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
995 
996   // Generate the body of the function.
997   PGO.assignRegionCounters(GD, CurFn);
998   if (isa<CXXDestructorDecl>(FD))
999     EmitDestructorBody(Args);
1000   else if (isa<CXXConstructorDecl>(FD))
1001     EmitConstructorBody(Args);
1002   else if (getLangOpts().CUDA &&
1003            !getLangOpts().CUDAIsDevice &&
1004            FD->hasAttr<CUDAGlobalAttr>())
1005     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1006   else if (isa<CXXConversionDecl>(FD) &&
1007            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1008     // The lambda conversion to block pointer is special; the semantics can't be
1009     // expressed in the AST, so IRGen needs to special-case it.
1010     EmitLambdaToBlockPointerBody(Args);
1011   } else if (isa<CXXMethodDecl>(FD) &&
1012              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1013     // The lambda static invoker function is special, because it forwards or
1014     // clones the body of the function call operator (but is actually static).
1015     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1016   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1017              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1018               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1019     // Implicit copy-assignment gets the same special treatment as implicit
1020     // copy-constructors.
1021     emitImplicitAssignmentOperatorBody(Args);
1022   } else if (Stmt *Body = FD->getBody()) {
1023     EmitFunctionBody(Args, Body);
1024   } else
1025     llvm_unreachable("no definition for emitted function");
1026 
1027   // C++11 [stmt.return]p2:
1028   //   Flowing off the end of a function [...] results in undefined behavior in
1029   //   a value-returning function.
1030   // C11 6.9.1p12:
1031   //   If the '}' that terminates a function is reached, and the value of the
1032   //   function call is used by the caller, the behavior is undefined.
1033   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1034       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1035     if (SanOpts.has(SanitizerKind::Return)) {
1036       SanitizerScope SanScope(this);
1037       llvm::Value *IsFalse = Builder.getFalse();
1038       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1039                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1040                 None);
1041     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1042       EmitTrapCall(llvm::Intrinsic::trap);
1043     }
1044     Builder.CreateUnreachable();
1045     Builder.ClearInsertionPoint();
1046   }
1047 
1048   // Emit the standard function epilogue.
1049   FinishFunction(BodyRange.getEnd());
1050 
1051   // If we haven't marked the function nothrow through other means, do
1052   // a quick pass now to see if we can.
1053   if (!CurFn->doesNotThrow())
1054     TryMarkNoThrow(CurFn);
1055 }
1056 
1057 /// ContainsLabel - Return true if the statement contains a label in it.  If
1058 /// this statement is not executed normally, it not containing a label means
1059 /// that we can just remove the code.
1060 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1061   // Null statement, not a label!
1062   if (!S) return false;
1063 
1064   // If this is a label, we have to emit the code, consider something like:
1065   // if (0) {  ...  foo:  bar(); }  goto foo;
1066   //
1067   // TODO: If anyone cared, we could track __label__'s, since we know that you
1068   // can't jump to one from outside their declared region.
1069   if (isa<LabelStmt>(S))
1070     return true;
1071 
1072   // If this is a case/default statement, and we haven't seen a switch, we have
1073   // to emit the code.
1074   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1075     return true;
1076 
1077   // If this is a switch statement, we want to ignore cases below it.
1078   if (isa<SwitchStmt>(S))
1079     IgnoreCaseStmts = true;
1080 
1081   // Scan subexpressions for verboten labels.
1082   for (const Stmt *SubStmt : S->children())
1083     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1084       return true;
1085 
1086   return false;
1087 }
1088 
1089 /// containsBreak - Return true if the statement contains a break out of it.
1090 /// If the statement (recursively) contains a switch or loop with a break
1091 /// inside of it, this is fine.
1092 bool CodeGenFunction::containsBreak(const Stmt *S) {
1093   // Null statement, not a label!
1094   if (!S) return false;
1095 
1096   // If this is a switch or loop that defines its own break scope, then we can
1097   // include it and anything inside of it.
1098   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1099       isa<ForStmt>(S))
1100     return false;
1101 
1102   if (isa<BreakStmt>(S))
1103     return true;
1104 
1105   // Scan subexpressions for verboten breaks.
1106   for (const Stmt *SubStmt : S->children())
1107     if (containsBreak(SubStmt))
1108       return true;
1109 
1110   return false;
1111 }
1112 
1113 
1114 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1115 /// to a constant, or if it does but contains a label, return false.  If it
1116 /// constant folds return true and set the boolean result in Result.
1117 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1118                                                    bool &ResultBool) {
1119   llvm::APSInt ResultInt;
1120   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1121     return false;
1122 
1123   ResultBool = ResultInt.getBoolValue();
1124   return true;
1125 }
1126 
1127 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1128 /// to a constant, or if it does but contains a label, return false.  If it
1129 /// constant folds return true and set the folded value.
1130 bool CodeGenFunction::
1131 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1132   // FIXME: Rename and handle conversion of other evaluatable things
1133   // to bool.
1134   llvm::APSInt Int;
1135   if (!Cond->EvaluateAsInt(Int, getContext()))
1136     return false;  // Not foldable, not integer or not fully evaluatable.
1137 
1138   if (CodeGenFunction::ContainsLabel(Cond))
1139     return false;  // Contains a label.
1140 
1141   ResultInt = Int;
1142   return true;
1143 }
1144 
1145 
1146 
1147 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1148 /// statement) to the specified blocks.  Based on the condition, this might try
1149 /// to simplify the codegen of the conditional based on the branch.
1150 ///
1151 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1152                                            llvm::BasicBlock *TrueBlock,
1153                                            llvm::BasicBlock *FalseBlock,
1154                                            uint64_t TrueCount) {
1155   Cond = Cond->IgnoreParens();
1156 
1157   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1158 
1159     // Handle X && Y in a condition.
1160     if (CondBOp->getOpcode() == BO_LAnd) {
1161       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1162       // folded if the case was simple enough.
1163       bool ConstantBool = false;
1164       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1165           ConstantBool) {
1166         // br(1 && X) -> br(X).
1167         incrementProfileCounter(CondBOp);
1168         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1169                                     TrueCount);
1170       }
1171 
1172       // If we have "X && 1", simplify the code to use an uncond branch.
1173       // "X && 0" would have been constant folded to 0.
1174       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1175           ConstantBool) {
1176         // br(X && 1) -> br(X).
1177         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1178                                     TrueCount);
1179       }
1180 
1181       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1182       // want to jump to the FalseBlock.
1183       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1184       // The counter tells us how often we evaluate RHS, and all of TrueCount
1185       // can be propagated to that branch.
1186       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1187 
1188       ConditionalEvaluation eval(*this);
1189       {
1190         ApplyDebugLocation DL(*this, Cond);
1191         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1192         EmitBlock(LHSTrue);
1193       }
1194 
1195       incrementProfileCounter(CondBOp);
1196       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1197 
1198       // Any temporaries created here are conditional.
1199       eval.begin(*this);
1200       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1201       eval.end(*this);
1202 
1203       return;
1204     }
1205 
1206     if (CondBOp->getOpcode() == BO_LOr) {
1207       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1208       // folded if the case was simple enough.
1209       bool ConstantBool = false;
1210       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1211           !ConstantBool) {
1212         // br(0 || X) -> br(X).
1213         incrementProfileCounter(CondBOp);
1214         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1215                                     TrueCount);
1216       }
1217 
1218       // If we have "X || 0", simplify the code to use an uncond branch.
1219       // "X || 1" would have been constant folded to 1.
1220       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1221           !ConstantBool) {
1222         // br(X || 0) -> br(X).
1223         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1224                                     TrueCount);
1225       }
1226 
1227       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1228       // want to jump to the TrueBlock.
1229       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1230       // We have the count for entry to the RHS and for the whole expression
1231       // being true, so we can divy up True count between the short circuit and
1232       // the RHS.
1233       uint64_t LHSCount =
1234           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1235       uint64_t RHSCount = TrueCount - LHSCount;
1236 
1237       ConditionalEvaluation eval(*this);
1238       {
1239         ApplyDebugLocation DL(*this, Cond);
1240         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1241         EmitBlock(LHSFalse);
1242       }
1243 
1244       incrementProfileCounter(CondBOp);
1245       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1246 
1247       // Any temporaries created here are conditional.
1248       eval.begin(*this);
1249       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1250 
1251       eval.end(*this);
1252 
1253       return;
1254     }
1255   }
1256 
1257   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1258     // br(!x, t, f) -> br(x, f, t)
1259     if (CondUOp->getOpcode() == UO_LNot) {
1260       // Negate the count.
1261       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1262       // Negate the condition and swap the destination blocks.
1263       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1264                                   FalseCount);
1265     }
1266   }
1267 
1268   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1269     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1270     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1271     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1272 
1273     ConditionalEvaluation cond(*this);
1274     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1275                          getProfileCount(CondOp));
1276 
1277     // When computing PGO branch weights, we only know the overall count for
1278     // the true block. This code is essentially doing tail duplication of the
1279     // naive code-gen, introducing new edges for which counts are not
1280     // available. Divide the counts proportionally between the LHS and RHS of
1281     // the conditional operator.
1282     uint64_t LHSScaledTrueCount = 0;
1283     if (TrueCount) {
1284       double LHSRatio =
1285           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1286       LHSScaledTrueCount = TrueCount * LHSRatio;
1287     }
1288 
1289     cond.begin(*this);
1290     EmitBlock(LHSBlock);
1291     incrementProfileCounter(CondOp);
1292     {
1293       ApplyDebugLocation DL(*this, Cond);
1294       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1295                            LHSScaledTrueCount);
1296     }
1297     cond.end(*this);
1298 
1299     cond.begin(*this);
1300     EmitBlock(RHSBlock);
1301     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1302                          TrueCount - LHSScaledTrueCount);
1303     cond.end(*this);
1304 
1305     return;
1306   }
1307 
1308   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1309     // Conditional operator handling can give us a throw expression as a
1310     // condition for a case like:
1311     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1312     // Fold this to:
1313     //   br(c, throw x, br(y, t, f))
1314     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1315     return;
1316   }
1317 
1318   // If the branch has a condition wrapped by __builtin_unpredictable,
1319   // create metadata that specifies that the branch is unpredictable.
1320   // Don't bother if not optimizing because that metadata would not be used.
1321   llvm::MDNode *Unpredictable = nullptr;
1322   auto *Call = dyn_cast<CallExpr>(Cond);
1323   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1324     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1325     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1326       llvm::MDBuilder MDHelper(getLLVMContext());
1327       Unpredictable = MDHelper.createUnpredictable();
1328     }
1329   }
1330 
1331   // Create branch weights based on the number of times we get here and the
1332   // number of times the condition should be true.
1333   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1334   llvm::MDNode *Weights =
1335       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1336 
1337   // Emit the code with the fully general case.
1338   llvm::Value *CondV;
1339   {
1340     ApplyDebugLocation DL(*this, Cond);
1341     CondV = EvaluateExprAsBool(Cond);
1342   }
1343   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1344 }
1345 
1346 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1347 /// specified stmt yet.
1348 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1349   CGM.ErrorUnsupported(S, Type);
1350 }
1351 
1352 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1353 /// variable-length array whose elements have a non-zero bit-pattern.
1354 ///
1355 /// \param baseType the inner-most element type of the array
1356 /// \param src - a char* pointing to the bit-pattern for a single
1357 /// base element of the array
1358 /// \param sizeInChars - the total size of the VLA, in chars
1359 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1360                                Address dest, Address src,
1361                                llvm::Value *sizeInChars) {
1362   CGBuilderTy &Builder = CGF.Builder;
1363 
1364   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1365   llvm::Value *baseSizeInChars
1366     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1367 
1368   Address begin =
1369     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1370   llvm::Value *end =
1371     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1372 
1373   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1374   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1375   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1376 
1377   // Make a loop over the VLA.  C99 guarantees that the VLA element
1378   // count must be nonzero.
1379   CGF.EmitBlock(loopBB);
1380 
1381   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1382   cur->addIncoming(begin.getPointer(), originBB);
1383 
1384   CharUnits curAlign =
1385     dest.getAlignment().alignmentOfArrayElement(baseSize);
1386 
1387   // memcpy the individual element bit-pattern.
1388   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1389                        /*volatile*/ false);
1390 
1391   // Go to the next element.
1392   llvm::Value *next =
1393     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1394 
1395   // Leave if that's the end of the VLA.
1396   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1397   Builder.CreateCondBr(done, contBB, loopBB);
1398   cur->addIncoming(next, loopBB);
1399 
1400   CGF.EmitBlock(contBB);
1401 }
1402 
1403 void
1404 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1405   // Ignore empty classes in C++.
1406   if (getLangOpts().CPlusPlus) {
1407     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1408       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1409         return;
1410     }
1411   }
1412 
1413   // Cast the dest ptr to the appropriate i8 pointer type.
1414   if (DestPtr.getElementType() != Int8Ty)
1415     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1416 
1417   // Get size and alignment info for this aggregate.
1418   CharUnits size = getContext().getTypeSizeInChars(Ty);
1419 
1420   llvm::Value *SizeVal;
1421   const VariableArrayType *vla;
1422 
1423   // Don't bother emitting a zero-byte memset.
1424   if (size.isZero()) {
1425     // But note that getTypeInfo returns 0 for a VLA.
1426     if (const VariableArrayType *vlaType =
1427           dyn_cast_or_null<VariableArrayType>(
1428                                           getContext().getAsArrayType(Ty))) {
1429       QualType eltType;
1430       llvm::Value *numElts;
1431       std::tie(numElts, eltType) = getVLASize(vlaType);
1432 
1433       SizeVal = numElts;
1434       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1435       if (!eltSize.isOne())
1436         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1437       vla = vlaType;
1438     } else {
1439       return;
1440     }
1441   } else {
1442     SizeVal = CGM.getSize(size);
1443     vla = nullptr;
1444   }
1445 
1446   // If the type contains a pointer to data member we can't memset it to zero.
1447   // Instead, create a null constant and copy it to the destination.
1448   // TODO: there are other patterns besides zero that we can usefully memset,
1449   // like -1, which happens to be the pattern used by member-pointers.
1450   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1451     // For a VLA, emit a single element, then splat that over the VLA.
1452     if (vla) Ty = getContext().getBaseElementType(vla);
1453 
1454     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1455 
1456     llvm::GlobalVariable *NullVariable =
1457       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1458                                /*isConstant=*/true,
1459                                llvm::GlobalVariable::PrivateLinkage,
1460                                NullConstant, Twine());
1461     CharUnits NullAlign = DestPtr.getAlignment();
1462     NullVariable->setAlignment(NullAlign.getQuantity());
1463     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1464                    NullAlign);
1465 
1466     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1467 
1468     // Get and call the appropriate llvm.memcpy overload.
1469     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1470     return;
1471   }
1472 
1473   // Otherwise, just memset the whole thing to zero.  This is legal
1474   // because in LLVM, all default initializers (other than the ones we just
1475   // handled above) are guaranteed to have a bit pattern of all zeros.
1476   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1477 }
1478 
1479 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1480   // Make sure that there is a block for the indirect goto.
1481   if (!IndirectBranch)
1482     GetIndirectGotoBlock();
1483 
1484   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1485 
1486   // Make sure the indirect branch includes all of the address-taken blocks.
1487   IndirectBranch->addDestination(BB);
1488   return llvm::BlockAddress::get(CurFn, BB);
1489 }
1490 
1491 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1492   // If we already made the indirect branch for indirect goto, return its block.
1493   if (IndirectBranch) return IndirectBranch->getParent();
1494 
1495   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1496 
1497   // Create the PHI node that indirect gotos will add entries to.
1498   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1499                                               "indirect.goto.dest");
1500 
1501   // Create the indirect branch instruction.
1502   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1503   return IndirectBranch->getParent();
1504 }
1505 
1506 /// Computes the length of an array in elements, as well as the base
1507 /// element type and a properly-typed first element pointer.
1508 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1509                                               QualType &baseType,
1510                                               Address &addr) {
1511   const ArrayType *arrayType = origArrayType;
1512 
1513   // If it's a VLA, we have to load the stored size.  Note that
1514   // this is the size of the VLA in bytes, not its size in elements.
1515   llvm::Value *numVLAElements = nullptr;
1516   if (isa<VariableArrayType>(arrayType)) {
1517     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1518 
1519     // Walk into all VLAs.  This doesn't require changes to addr,
1520     // which has type T* where T is the first non-VLA element type.
1521     do {
1522       QualType elementType = arrayType->getElementType();
1523       arrayType = getContext().getAsArrayType(elementType);
1524 
1525       // If we only have VLA components, 'addr' requires no adjustment.
1526       if (!arrayType) {
1527         baseType = elementType;
1528         return numVLAElements;
1529       }
1530     } while (isa<VariableArrayType>(arrayType));
1531 
1532     // We get out here only if we find a constant array type
1533     // inside the VLA.
1534   }
1535 
1536   // We have some number of constant-length arrays, so addr should
1537   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1538   // down to the first element of addr.
1539   SmallVector<llvm::Value*, 8> gepIndices;
1540 
1541   // GEP down to the array type.
1542   llvm::ConstantInt *zero = Builder.getInt32(0);
1543   gepIndices.push_back(zero);
1544 
1545   uint64_t countFromCLAs = 1;
1546   QualType eltType;
1547 
1548   llvm::ArrayType *llvmArrayType =
1549     dyn_cast<llvm::ArrayType>(addr.getElementType());
1550   while (llvmArrayType) {
1551     assert(isa<ConstantArrayType>(arrayType));
1552     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1553              == llvmArrayType->getNumElements());
1554 
1555     gepIndices.push_back(zero);
1556     countFromCLAs *= llvmArrayType->getNumElements();
1557     eltType = arrayType->getElementType();
1558 
1559     llvmArrayType =
1560       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1561     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1562     assert((!llvmArrayType || arrayType) &&
1563            "LLVM and Clang types are out-of-synch");
1564   }
1565 
1566   if (arrayType) {
1567     // From this point onwards, the Clang array type has been emitted
1568     // as some other type (probably a packed struct). Compute the array
1569     // size, and just emit the 'begin' expression as a bitcast.
1570     while (arrayType) {
1571       countFromCLAs *=
1572           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1573       eltType = arrayType->getElementType();
1574       arrayType = getContext().getAsArrayType(eltType);
1575     }
1576 
1577     llvm::Type *baseType = ConvertType(eltType);
1578     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1579   } else {
1580     // Create the actual GEP.
1581     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1582                                              gepIndices, "array.begin"),
1583                    addr.getAlignment());
1584   }
1585 
1586   baseType = eltType;
1587 
1588   llvm::Value *numElements
1589     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1590 
1591   // If we had any VLA dimensions, factor them in.
1592   if (numVLAElements)
1593     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1594 
1595   return numElements;
1596 }
1597 
1598 std::pair<llvm::Value*, QualType>
1599 CodeGenFunction::getVLASize(QualType type) {
1600   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1601   assert(vla && "type was not a variable array type!");
1602   return getVLASize(vla);
1603 }
1604 
1605 std::pair<llvm::Value*, QualType>
1606 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1607   // The number of elements so far; always size_t.
1608   llvm::Value *numElements = nullptr;
1609 
1610   QualType elementType;
1611   do {
1612     elementType = type->getElementType();
1613     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1614     assert(vlaSize && "no size for VLA!");
1615     assert(vlaSize->getType() == SizeTy);
1616 
1617     if (!numElements) {
1618       numElements = vlaSize;
1619     } else {
1620       // It's undefined behavior if this wraps around, so mark it that way.
1621       // FIXME: Teach -fsanitize=undefined to trap this.
1622       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1623     }
1624   } while ((type = getContext().getAsVariableArrayType(elementType)));
1625 
1626   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1627 }
1628 
1629 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1630   assert(type->isVariablyModifiedType() &&
1631          "Must pass variably modified type to EmitVLASizes!");
1632 
1633   EnsureInsertPoint();
1634 
1635   // We're going to walk down into the type and look for VLA
1636   // expressions.
1637   do {
1638     assert(type->isVariablyModifiedType());
1639 
1640     const Type *ty = type.getTypePtr();
1641     switch (ty->getTypeClass()) {
1642 
1643 #define TYPE(Class, Base)
1644 #define ABSTRACT_TYPE(Class, Base)
1645 #define NON_CANONICAL_TYPE(Class, Base)
1646 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1647 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1648 #include "clang/AST/TypeNodes.def"
1649       llvm_unreachable("unexpected dependent type!");
1650 
1651     // These types are never variably-modified.
1652     case Type::Builtin:
1653     case Type::Complex:
1654     case Type::Vector:
1655     case Type::ExtVector:
1656     case Type::Record:
1657     case Type::Enum:
1658     case Type::Elaborated:
1659     case Type::TemplateSpecialization:
1660     case Type::ObjCObject:
1661     case Type::ObjCInterface:
1662     case Type::ObjCObjectPointer:
1663       llvm_unreachable("type class is never variably-modified!");
1664 
1665     case Type::Adjusted:
1666       type = cast<AdjustedType>(ty)->getAdjustedType();
1667       break;
1668 
1669     case Type::Decayed:
1670       type = cast<DecayedType>(ty)->getPointeeType();
1671       break;
1672 
1673     case Type::Pointer:
1674       type = cast<PointerType>(ty)->getPointeeType();
1675       break;
1676 
1677     case Type::BlockPointer:
1678       type = cast<BlockPointerType>(ty)->getPointeeType();
1679       break;
1680 
1681     case Type::LValueReference:
1682     case Type::RValueReference:
1683       type = cast<ReferenceType>(ty)->getPointeeType();
1684       break;
1685 
1686     case Type::MemberPointer:
1687       type = cast<MemberPointerType>(ty)->getPointeeType();
1688       break;
1689 
1690     case Type::ConstantArray:
1691     case Type::IncompleteArray:
1692       // Losing element qualification here is fine.
1693       type = cast<ArrayType>(ty)->getElementType();
1694       break;
1695 
1696     case Type::VariableArray: {
1697       // Losing element qualification here is fine.
1698       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1699 
1700       // Unknown size indication requires no size computation.
1701       // Otherwise, evaluate and record it.
1702       if (const Expr *size = vat->getSizeExpr()) {
1703         // It's possible that we might have emitted this already,
1704         // e.g. with a typedef and a pointer to it.
1705         llvm::Value *&entry = VLASizeMap[size];
1706         if (!entry) {
1707           llvm::Value *Size = EmitScalarExpr(size);
1708 
1709           // C11 6.7.6.2p5:
1710           //   If the size is an expression that is not an integer constant
1711           //   expression [...] each time it is evaluated it shall have a value
1712           //   greater than zero.
1713           if (SanOpts.has(SanitizerKind::VLABound) &&
1714               size->getType()->isSignedIntegerType()) {
1715             SanitizerScope SanScope(this);
1716             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1717             llvm::Constant *StaticArgs[] = {
1718               EmitCheckSourceLocation(size->getLocStart()),
1719               EmitCheckTypeDescriptor(size->getType())
1720             };
1721             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1722                                      SanitizerKind::VLABound),
1723                       "vla_bound_not_positive", StaticArgs, Size);
1724           }
1725 
1726           // Always zexting here would be wrong if it weren't
1727           // undefined behavior to have a negative bound.
1728           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1729         }
1730       }
1731       type = vat->getElementType();
1732       break;
1733     }
1734 
1735     case Type::FunctionProto:
1736     case Type::FunctionNoProto:
1737       type = cast<FunctionType>(ty)->getReturnType();
1738       break;
1739 
1740     case Type::Paren:
1741     case Type::TypeOf:
1742     case Type::UnaryTransform:
1743     case Type::Attributed:
1744     case Type::SubstTemplateTypeParm:
1745     case Type::PackExpansion:
1746       // Keep walking after single level desugaring.
1747       type = type.getSingleStepDesugaredType(getContext());
1748       break;
1749 
1750     case Type::Typedef:
1751     case Type::Decltype:
1752     case Type::Auto:
1753       // Stop walking: nothing to do.
1754       return;
1755 
1756     case Type::TypeOfExpr:
1757       // Stop walking: emit typeof expression.
1758       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1759       return;
1760 
1761     case Type::Atomic:
1762       type = cast<AtomicType>(ty)->getValueType();
1763       break;
1764 
1765     case Type::Pipe:
1766       type = cast<PipeType>(ty)->getElementType();
1767       break;
1768     }
1769   } while (type->isVariablyModifiedType());
1770 }
1771 
1772 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1773   if (getContext().getBuiltinVaListType()->isArrayType())
1774     return EmitPointerWithAlignment(E);
1775   return EmitLValue(E).getAddress();
1776 }
1777 
1778 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1779   return EmitLValue(E).getAddress();
1780 }
1781 
1782 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1783                                               llvm::Constant *Init) {
1784   assert (Init && "Invalid DeclRefExpr initializer!");
1785   if (CGDebugInfo *Dbg = getDebugInfo())
1786     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1787       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1788 }
1789 
1790 CodeGenFunction::PeepholeProtection
1791 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1792   // At the moment, the only aggressive peephole we do in IR gen
1793   // is trunc(zext) folding, but if we add more, we can easily
1794   // extend this protection.
1795 
1796   if (!rvalue.isScalar()) return PeepholeProtection();
1797   llvm::Value *value = rvalue.getScalarVal();
1798   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1799 
1800   // Just make an extra bitcast.
1801   assert(HaveInsertPoint());
1802   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1803                                                   Builder.GetInsertBlock());
1804 
1805   PeepholeProtection protection;
1806   protection.Inst = inst;
1807   return protection;
1808 }
1809 
1810 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1811   if (!protection.Inst) return;
1812 
1813   // In theory, we could try to duplicate the peepholes now, but whatever.
1814   protection.Inst->eraseFromParent();
1815 }
1816 
1817 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1818                                                  llvm::Value *AnnotatedVal,
1819                                                  StringRef AnnotationStr,
1820                                                  SourceLocation Location) {
1821   llvm::Value *Args[4] = {
1822     AnnotatedVal,
1823     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1824     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1825     CGM.EmitAnnotationLineNo(Location)
1826   };
1827   return Builder.CreateCall(AnnotationFn, Args);
1828 }
1829 
1830 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1831   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1832   // FIXME We create a new bitcast for every annotation because that's what
1833   // llvm-gcc was doing.
1834   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1835     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1836                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1837                        I->getAnnotation(), D->getLocation());
1838 }
1839 
1840 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1841                                               Address Addr) {
1842   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1843   llvm::Value *V = Addr.getPointer();
1844   llvm::Type *VTy = V->getType();
1845   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1846                                     CGM.Int8PtrTy);
1847 
1848   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1849     // FIXME Always emit the cast inst so we can differentiate between
1850     // annotation on the first field of a struct and annotation on the struct
1851     // itself.
1852     if (VTy != CGM.Int8PtrTy)
1853       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1854     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1855     V = Builder.CreateBitCast(V, VTy);
1856   }
1857 
1858   return Address(V, Addr.getAlignment());
1859 }
1860 
1861 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1862 
1863 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1864     : CGF(CGF) {
1865   assert(!CGF->IsSanitizerScope);
1866   CGF->IsSanitizerScope = true;
1867 }
1868 
1869 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1870   CGF->IsSanitizerScope = false;
1871 }
1872 
1873 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1874                                    const llvm::Twine &Name,
1875                                    llvm::BasicBlock *BB,
1876                                    llvm::BasicBlock::iterator InsertPt) const {
1877   LoopStack.InsertHelper(I);
1878   if (IsSanitizerScope)
1879     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1880 }
1881 
1882 void CGBuilderInserter::InsertHelper(
1883     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1884     llvm::BasicBlock::iterator InsertPt) const {
1885   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1886   if (CGF)
1887     CGF->InsertHelper(I, Name, BB, InsertPt);
1888 }
1889 
1890 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1891                                 CodeGenModule &CGM, const FunctionDecl *FD,
1892                                 std::string &FirstMissing) {
1893   // If there aren't any required features listed then go ahead and return.
1894   if (ReqFeatures.empty())
1895     return false;
1896 
1897   // Now build up the set of caller features and verify that all the required
1898   // features are there.
1899   llvm::StringMap<bool> CallerFeatureMap;
1900   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1901 
1902   // If we have at least one of the features in the feature list return
1903   // true, otherwise return false.
1904   return std::all_of(
1905       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1906         SmallVector<StringRef, 1> OrFeatures;
1907         Feature.split(OrFeatures, "|");
1908         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1909                            [&](StringRef Feature) {
1910                              if (!CallerFeatureMap.lookup(Feature)) {
1911                                FirstMissing = Feature.str();
1912                                return false;
1913                              }
1914                              return true;
1915                            });
1916       });
1917 }
1918 
1919 // Emits an error if we don't have a valid set of target features for the
1920 // called function.
1921 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1922                                           const FunctionDecl *TargetDecl) {
1923   // Early exit if this is an indirect call.
1924   if (!TargetDecl)
1925     return;
1926 
1927   // Get the current enclosing function if it exists. If it doesn't
1928   // we can't check the target features anyhow.
1929   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1930   if (!FD)
1931     return;
1932 
1933   // Grab the required features for the call. For a builtin this is listed in
1934   // the td file with the default cpu, for an always_inline function this is any
1935   // listed cpu and any listed features.
1936   unsigned BuiltinID = TargetDecl->getBuiltinID();
1937   std::string MissingFeature;
1938   if (BuiltinID) {
1939     SmallVector<StringRef, 1> ReqFeatures;
1940     const char *FeatureList =
1941         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1942     // Return if the builtin doesn't have any required features.
1943     if (!FeatureList || StringRef(FeatureList) == "")
1944       return;
1945     StringRef(FeatureList).split(ReqFeatures, ",");
1946     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1947       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1948           << TargetDecl->getDeclName()
1949           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1950 
1951   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1952     // Get the required features for the callee.
1953     SmallVector<StringRef, 1> ReqFeatures;
1954     llvm::StringMap<bool> CalleeFeatureMap;
1955     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1956     for (const auto &F : CalleeFeatureMap) {
1957       // Only positive features are "required".
1958       if (F.getValue())
1959         ReqFeatures.push_back(F.getKey());
1960     }
1961     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1962       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1963           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1964   }
1965 }
1966 
1967 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
1968   if (!CGM.getCodeGenOpts().SanitizeStats)
1969     return;
1970 
1971   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
1972   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
1973   CGM.getSanStats().create(IRB, SSK);
1974 }
1975