1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 401 /// instrumentation function with the current function and the call site, if 402 /// function instrumentation is enabled. 403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 404 auto NL = ApplyDebugLocation::CreateArtificial(*this); 405 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 406 llvm::PointerType *PointerTy = Int8PtrTy; 407 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 408 llvm::FunctionType *FunctionTy = 409 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 410 411 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 412 llvm::CallInst *CallSite = Builder.CreateCall( 413 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 414 llvm::ConstantInt::get(Int32Ty, 0), 415 "callsite"); 416 417 llvm::Value *args[] = { 418 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 419 CallSite 420 }; 421 422 EmitNounwindRuntimeCall(F, args); 423 } 424 425 void CodeGenFunction::EmitMCountInstrumentation() { 426 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 427 428 llvm::Constant *MCountFn = 429 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 430 EmitNounwindRuntimeCall(MCountFn); 431 } 432 433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 434 // information in the program executable. The argument information stored 435 // includes the argument name, its type, the address and access qualifiers used. 436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 437 CodeGenModule &CGM, llvm::LLVMContext &Context, 438 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 439 CGBuilderTy &Builder, ASTContext &ASTCtx) { 440 // Create MDNodes that represent the kernel arg metadata. 441 // Each MDNode is a list in the form of "key", N number of values which is 442 // the same number of values as their are kernel arguments. 443 444 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 445 446 // MDNode for the kernel argument address space qualifiers. 447 SmallVector<llvm::Metadata *, 8> addressQuals; 448 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 449 450 // MDNode for the kernel argument access qualifiers (images only). 451 SmallVector<llvm::Metadata *, 8> accessQuals; 452 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 453 454 // MDNode for the kernel argument type names. 455 SmallVector<llvm::Metadata *, 8> argTypeNames; 456 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 457 458 // MDNode for the kernel argument base type names. 459 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 460 argBaseTypeNames.push_back( 461 llvm::MDString::get(Context, "kernel_arg_base_type")); 462 463 // MDNode for the kernel argument type qualifiers. 464 SmallVector<llvm::Metadata *, 8> argTypeQuals; 465 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 466 467 // MDNode for the kernel argument names. 468 SmallVector<llvm::Metadata *, 8> argNames; 469 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 470 471 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 472 const ParmVarDecl *parm = FD->getParamDecl(i); 473 QualType ty = parm->getType(); 474 std::string typeQuals; 475 476 if (ty->isPointerType()) { 477 QualType pointeeTy = ty->getPointeeType(); 478 479 // Get address qualifier. 480 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 481 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 482 483 // Get argument type name. 484 std::string typeName = 485 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 486 487 // Turn "unsigned type" to "utype" 488 std::string::size_type pos = typeName.find("unsigned"); 489 if (pointeeTy.isCanonical() && pos != std::string::npos) 490 typeName.erase(pos+1, 8); 491 492 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 493 494 std::string baseTypeName = 495 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 496 Policy) + 497 "*"; 498 499 // Turn "unsigned type" to "utype" 500 pos = baseTypeName.find("unsigned"); 501 if (pos != std::string::npos) 502 baseTypeName.erase(pos+1, 8); 503 504 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 505 506 // Get argument type qualifiers: 507 if (ty.isRestrictQualified()) 508 typeQuals = "restrict"; 509 if (pointeeTy.isConstQualified() || 510 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 511 typeQuals += typeQuals.empty() ? "const" : " const"; 512 if (pointeeTy.isVolatileQualified()) 513 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 514 } else { 515 uint32_t AddrSpc = 0; 516 bool isPipe = ty->isPipeType(); 517 if (ty->isImageType() || isPipe) 518 AddrSpc = 519 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 520 521 addressQuals.push_back( 522 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 523 524 // Get argument type name. 525 std::string typeName; 526 if (isPipe) 527 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 528 else 529 typeName = ty.getUnqualifiedType().getAsString(Policy); 530 531 // Turn "unsigned type" to "utype" 532 std::string::size_type pos = typeName.find("unsigned"); 533 if (ty.isCanonical() && pos != std::string::npos) 534 typeName.erase(pos+1, 8); 535 536 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 537 538 std::string baseTypeName; 539 if (isPipe) 540 baseTypeName = 541 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 542 else 543 baseTypeName = 544 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 545 546 // Turn "unsigned type" to "utype" 547 pos = baseTypeName.find("unsigned"); 548 if (pos != std::string::npos) 549 baseTypeName.erase(pos+1, 8); 550 551 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 552 553 // Get argument type qualifiers: 554 if (ty.isConstQualified()) 555 typeQuals = "const"; 556 if (ty.isVolatileQualified()) 557 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 558 if (isPipe) 559 typeQuals = "pipe"; 560 } 561 562 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 563 564 // Get image and pipe access qualifier: 565 if (ty->isImageType()|| ty->isPipeType()) { 566 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 567 if (A && A->isWriteOnly()) 568 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 569 else if (A && A->isReadWrite()) 570 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 571 else 572 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 573 } else 574 accessQuals.push_back(llvm::MDString::get(Context, "none")); 575 576 // Get argument name. 577 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 578 } 579 580 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 581 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 582 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 583 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 584 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 585 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 586 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 587 } 588 589 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 590 llvm::Function *Fn) 591 { 592 if (!FD->hasAttr<OpenCLKernelAttr>()) 593 return; 594 595 llvm::LLVMContext &Context = getLLVMContext(); 596 597 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 598 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 599 600 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 601 getContext()); 602 603 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 604 QualType hintQTy = A->getTypeHint(); 605 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 606 bool isSignedInteger = 607 hintQTy->isSignedIntegerType() || 608 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 609 llvm::Metadata *attrMDArgs[] = { 610 llvm::MDString::get(Context, "vec_type_hint"), 611 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 612 CGM.getTypes().ConvertType(A->getTypeHint()))), 613 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 614 llvm::IntegerType::get(Context, 32), 615 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 616 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 617 } 618 619 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 620 llvm::Metadata *attrMDArgs[] = { 621 llvm::MDString::get(Context, "work_group_size_hint"), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 628 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 629 llvm::Metadata *attrMDArgs[] = { 630 llvm::MDString::get(Context, "reqd_work_group_size"), 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 633 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 634 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 635 } 636 637 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 638 llvm::NamedMDNode *OpenCLKernelMetadata = 639 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 640 OpenCLKernelMetadata->addOperand(kernelMDNode); 641 } 642 643 /// Determine whether the function F ends with a return stmt. 644 static bool endsWithReturn(const Decl* F) { 645 const Stmt *Body = nullptr; 646 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 647 Body = FD->getBody(); 648 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 649 Body = OMD->getBody(); 650 651 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 652 auto LastStmt = CS->body_rbegin(); 653 if (LastStmt != CS->body_rend()) 654 return isa<ReturnStmt>(*LastStmt); 655 } 656 return false; 657 } 658 659 void CodeGenFunction::StartFunction(GlobalDecl GD, 660 QualType RetTy, 661 llvm::Function *Fn, 662 const CGFunctionInfo &FnInfo, 663 const FunctionArgList &Args, 664 SourceLocation Loc, 665 SourceLocation StartLoc) { 666 assert(!CurFn && 667 "Do not use a CodeGenFunction object for more than one function"); 668 669 const Decl *D = GD.getDecl(); 670 671 DidCallStackSave = false; 672 CurCodeDecl = D; 673 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 674 if (FD->usesSEHTry()) 675 CurSEHParent = FD; 676 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 677 FnRetTy = RetTy; 678 CurFn = Fn; 679 CurFnInfo = &FnInfo; 680 assert(CurFn->isDeclaration() && "Function already has body?"); 681 682 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 683 SanOpts.clear(); 684 685 if (D) { 686 // Apply the no_sanitize* attributes to SanOpts. 687 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 688 SanOpts.Mask &= ~Attr->getMask(); 689 } 690 691 // Apply sanitizer attributes to the function. 692 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 693 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 694 if (SanOpts.has(SanitizerKind::Thread)) 695 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 696 if (SanOpts.has(SanitizerKind::Memory)) 697 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 698 if (SanOpts.has(SanitizerKind::SafeStack)) 699 Fn->addFnAttr(llvm::Attribute::SafeStack); 700 701 // Pass inline keyword to optimizer if it appears explicitly on any 702 // declaration. Also, in the case of -fno-inline attach NoInline 703 // attribute to all function that are not marked AlwaysInline. 704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 705 if (!CGM.getCodeGenOpts().NoInline) { 706 for (auto RI : FD->redecls()) 707 if (RI->isInlineSpecified()) { 708 Fn->addFnAttr(llvm::Attribute::InlineHint); 709 break; 710 } 711 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 712 Fn->addFnAttr(llvm::Attribute::NoInline); 713 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 714 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 715 } 716 717 // Add no-jump-tables value. 718 Fn->addFnAttr("no-jump-tables", 719 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 720 721 if (getLangOpts().OpenCL) { 722 // Add metadata for a kernel function. 723 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 724 EmitOpenCLKernelMetadata(FD, Fn); 725 } 726 727 // If we are checking function types, emit a function type signature as 728 // prologue data. 729 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 730 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 731 if (llvm::Constant *PrologueSig = 732 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 733 llvm::Constant *FTRTTIConst = 734 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 735 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 736 llvm::Constant *PrologueStructConst = 737 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 738 Fn->setPrologueData(PrologueStructConst); 739 } 740 } 741 } 742 743 // If we're in C++ mode and the function name is "main", it is guaranteed 744 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 745 // used within a program"). 746 if (getLangOpts().CPlusPlus) 747 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 748 if (FD->isMain()) 749 Fn->addFnAttr(llvm::Attribute::NoRecurse); 750 751 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 752 753 // Create a marker to make it easy to insert allocas into the entryblock 754 // later. Don't create this with the builder, because we don't want it 755 // folded. 756 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 757 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 758 759 ReturnBlock = getJumpDestInCurrentScope("return"); 760 761 Builder.SetInsertPoint(EntryBB); 762 763 // Emit subprogram debug descriptor. 764 if (CGDebugInfo *DI = getDebugInfo()) { 765 // Reconstruct the type from the argument list so that implicit parameters, 766 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 767 // convention. 768 CallingConv CC = CallingConv::CC_C; 769 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 770 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 771 CC = SrcFnTy->getCallConv(); 772 SmallVector<QualType, 16> ArgTypes; 773 for (const VarDecl *VD : Args) 774 ArgTypes.push_back(VD->getType()); 775 QualType FnType = getContext().getFunctionType( 776 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 777 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 778 } 779 780 if (ShouldInstrumentFunction()) 781 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 782 783 if (CGM.getCodeGenOpts().InstrumentForProfiling) 784 EmitMCountInstrumentation(); 785 786 if (RetTy->isVoidType()) { 787 // Void type; nothing to return. 788 ReturnValue = Address::invalid(); 789 790 // Count the implicit return. 791 if (!endsWithReturn(D)) 792 ++NumReturnExprs; 793 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 794 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 795 // Indirect aggregate return; emit returned value directly into sret slot. 796 // This reduces code size, and affects correctness in C++. 797 auto AI = CurFn->arg_begin(); 798 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 799 ++AI; 800 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 801 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 802 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 803 // Load the sret pointer from the argument struct and return into that. 804 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 805 llvm::Function::arg_iterator EI = CurFn->arg_end(); 806 --EI; 807 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 808 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 809 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 810 } else { 811 ReturnValue = CreateIRTemp(RetTy, "retval"); 812 813 // Tell the epilog emitter to autorelease the result. We do this 814 // now so that various specialized functions can suppress it 815 // during their IR-generation. 816 if (getLangOpts().ObjCAutoRefCount && 817 !CurFnInfo->isReturnsRetained() && 818 RetTy->isObjCRetainableType()) 819 AutoreleaseResult = true; 820 } 821 822 EmitStartEHSpec(CurCodeDecl); 823 824 PrologueCleanupDepth = EHStack.stable_begin(); 825 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 826 827 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 828 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 829 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 830 if (MD->getParent()->isLambda() && 831 MD->getOverloadedOperator() == OO_Call) { 832 // We're in a lambda; figure out the captures. 833 MD->getParent()->getCaptureFields(LambdaCaptureFields, 834 LambdaThisCaptureField); 835 if (LambdaThisCaptureField) { 836 // If the lambda captures the object referred to by '*this' - either by 837 // value or by reference, make sure CXXThisValue points to the correct 838 // object. 839 840 // Get the lvalue for the field (which is a copy of the enclosing object 841 // or contains the address of the enclosing object). 842 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 843 if (!LambdaThisCaptureField->getType()->isPointerType()) { 844 // If the enclosing object was captured by value, just use its address. 845 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 846 } else { 847 // Load the lvalue pointed to by the field, since '*this' was captured 848 // by reference. 849 CXXThisValue = 850 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 851 } 852 } 853 for (auto *FD : MD->getParent()->fields()) { 854 if (FD->hasCapturedVLAType()) { 855 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 856 SourceLocation()).getScalarVal(); 857 auto VAT = FD->getCapturedVLAType(); 858 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 859 } 860 } 861 } else { 862 // Not in a lambda; just use 'this' from the method. 863 // FIXME: Should we generate a new load for each use of 'this'? The 864 // fast register allocator would be happier... 865 CXXThisValue = CXXABIThisValue; 866 } 867 } 868 869 // If any of the arguments have a variably modified type, make sure to 870 // emit the type size. 871 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 872 i != e; ++i) { 873 const VarDecl *VD = *i; 874 875 // Dig out the type as written from ParmVarDecls; it's unclear whether 876 // the standard (C99 6.9.1p10) requires this, but we're following the 877 // precedent set by gcc. 878 QualType Ty; 879 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 880 Ty = PVD->getOriginalType(); 881 else 882 Ty = VD->getType(); 883 884 if (Ty->isVariablyModifiedType()) 885 EmitVariablyModifiedType(Ty); 886 } 887 // Emit a location at the end of the prologue. 888 if (CGDebugInfo *DI = getDebugInfo()) 889 DI->EmitLocation(Builder, StartLoc); 890 } 891 892 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 893 const Stmt *Body) { 894 incrementProfileCounter(Body); 895 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 896 EmitCompoundStmtWithoutScope(*S); 897 else 898 EmitStmt(Body); 899 } 900 901 /// When instrumenting to collect profile data, the counts for some blocks 902 /// such as switch cases need to not include the fall-through counts, so 903 /// emit a branch around the instrumentation code. When not instrumenting, 904 /// this just calls EmitBlock(). 905 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 906 const Stmt *S) { 907 llvm::BasicBlock *SkipCountBB = nullptr; 908 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 909 // When instrumenting for profiling, the fallthrough to certain 910 // statements needs to skip over the instrumentation code so that we 911 // get an accurate count. 912 SkipCountBB = createBasicBlock("skipcount"); 913 EmitBranch(SkipCountBB); 914 } 915 EmitBlock(BB); 916 uint64_t CurrentCount = getCurrentProfileCount(); 917 incrementProfileCounter(S); 918 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 919 if (SkipCountBB) 920 EmitBlock(SkipCountBB); 921 } 922 923 /// Tries to mark the given function nounwind based on the 924 /// non-existence of any throwing calls within it. We believe this is 925 /// lightweight enough to do at -O0. 926 static void TryMarkNoThrow(llvm::Function *F) { 927 // LLVM treats 'nounwind' on a function as part of the type, so we 928 // can't do this on functions that can be overwritten. 929 if (F->isInterposable()) return; 930 931 for (llvm::BasicBlock &BB : *F) 932 for (llvm::Instruction &I : BB) 933 if (I.mayThrow()) 934 return; 935 936 F->setDoesNotThrow(); 937 } 938 939 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 940 const CGFunctionInfo &FnInfo) { 941 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 942 943 // Check if we should generate debug info for this function. 944 if (FD->hasAttr<NoDebugAttr>()) 945 DebugInfo = nullptr; // disable debug info indefinitely for this function 946 947 FunctionArgList Args; 948 QualType ResTy = FD->getReturnType(); 949 950 CurGD = GD; 951 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 952 if (MD && MD->isInstance()) { 953 if (CGM.getCXXABI().HasThisReturn(GD)) 954 ResTy = MD->getThisType(getContext()); 955 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 956 ResTy = CGM.getContext().VoidPtrTy; 957 CGM.getCXXABI().buildThisParam(*this, Args); 958 } 959 960 for (auto *Param : FD->params()) { 961 Args.push_back(Param); 962 if (!Param->hasAttr<PassObjectSizeAttr>()) 963 continue; 964 965 IdentifierInfo *NoID = nullptr; 966 auto *Implicit = ImplicitParamDecl::Create( 967 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 968 getContext().getSizeType()); 969 SizeArguments[Param] = Implicit; 970 Args.push_back(Implicit); 971 } 972 973 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 974 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 975 976 SourceRange BodyRange; 977 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 978 CurEHLocation = BodyRange.getEnd(); 979 980 // Use the location of the start of the function to determine where 981 // the function definition is located. By default use the location 982 // of the declaration as the location for the subprogram. A function 983 // may lack a declaration in the source code if it is created by code 984 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 985 SourceLocation Loc = FD->getLocation(); 986 987 // If this is a function specialization then use the pattern body 988 // as the location for the function. 989 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 990 if (SpecDecl->hasBody(SpecDecl)) 991 Loc = SpecDecl->getLocation(); 992 993 // Emit the standard function prologue. 994 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 995 996 // Generate the body of the function. 997 PGO.assignRegionCounters(GD, CurFn); 998 if (isa<CXXDestructorDecl>(FD)) 999 EmitDestructorBody(Args); 1000 else if (isa<CXXConstructorDecl>(FD)) 1001 EmitConstructorBody(Args); 1002 else if (getLangOpts().CUDA && 1003 !getLangOpts().CUDAIsDevice && 1004 FD->hasAttr<CUDAGlobalAttr>()) 1005 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1006 else if (isa<CXXConversionDecl>(FD) && 1007 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1008 // The lambda conversion to block pointer is special; the semantics can't be 1009 // expressed in the AST, so IRGen needs to special-case it. 1010 EmitLambdaToBlockPointerBody(Args); 1011 } else if (isa<CXXMethodDecl>(FD) && 1012 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1013 // The lambda static invoker function is special, because it forwards or 1014 // clones the body of the function call operator (but is actually static). 1015 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1016 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1017 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1018 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1019 // Implicit copy-assignment gets the same special treatment as implicit 1020 // copy-constructors. 1021 emitImplicitAssignmentOperatorBody(Args); 1022 } else if (Stmt *Body = FD->getBody()) { 1023 EmitFunctionBody(Args, Body); 1024 } else 1025 llvm_unreachable("no definition for emitted function"); 1026 1027 // C++11 [stmt.return]p2: 1028 // Flowing off the end of a function [...] results in undefined behavior in 1029 // a value-returning function. 1030 // C11 6.9.1p12: 1031 // If the '}' that terminates a function is reached, and the value of the 1032 // function call is used by the caller, the behavior is undefined. 1033 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1034 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1035 if (SanOpts.has(SanitizerKind::Return)) { 1036 SanitizerScope SanScope(this); 1037 llvm::Value *IsFalse = Builder.getFalse(); 1038 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1039 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1040 None); 1041 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1042 EmitTrapCall(llvm::Intrinsic::trap); 1043 } 1044 Builder.CreateUnreachable(); 1045 Builder.ClearInsertionPoint(); 1046 } 1047 1048 // Emit the standard function epilogue. 1049 FinishFunction(BodyRange.getEnd()); 1050 1051 // If we haven't marked the function nothrow through other means, do 1052 // a quick pass now to see if we can. 1053 if (!CurFn->doesNotThrow()) 1054 TryMarkNoThrow(CurFn); 1055 } 1056 1057 /// ContainsLabel - Return true if the statement contains a label in it. If 1058 /// this statement is not executed normally, it not containing a label means 1059 /// that we can just remove the code. 1060 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1061 // Null statement, not a label! 1062 if (!S) return false; 1063 1064 // If this is a label, we have to emit the code, consider something like: 1065 // if (0) { ... foo: bar(); } goto foo; 1066 // 1067 // TODO: If anyone cared, we could track __label__'s, since we know that you 1068 // can't jump to one from outside their declared region. 1069 if (isa<LabelStmt>(S)) 1070 return true; 1071 1072 // If this is a case/default statement, and we haven't seen a switch, we have 1073 // to emit the code. 1074 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1075 return true; 1076 1077 // If this is a switch statement, we want to ignore cases below it. 1078 if (isa<SwitchStmt>(S)) 1079 IgnoreCaseStmts = true; 1080 1081 // Scan subexpressions for verboten labels. 1082 for (const Stmt *SubStmt : S->children()) 1083 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1084 return true; 1085 1086 return false; 1087 } 1088 1089 /// containsBreak - Return true if the statement contains a break out of it. 1090 /// If the statement (recursively) contains a switch or loop with a break 1091 /// inside of it, this is fine. 1092 bool CodeGenFunction::containsBreak(const Stmt *S) { 1093 // Null statement, not a label! 1094 if (!S) return false; 1095 1096 // If this is a switch or loop that defines its own break scope, then we can 1097 // include it and anything inside of it. 1098 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1099 isa<ForStmt>(S)) 1100 return false; 1101 1102 if (isa<BreakStmt>(S)) 1103 return true; 1104 1105 // Scan subexpressions for verboten breaks. 1106 for (const Stmt *SubStmt : S->children()) 1107 if (containsBreak(SubStmt)) 1108 return true; 1109 1110 return false; 1111 } 1112 1113 1114 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1115 /// to a constant, or if it does but contains a label, return false. If it 1116 /// constant folds return true and set the boolean result in Result. 1117 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1118 bool &ResultBool) { 1119 llvm::APSInt ResultInt; 1120 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1121 return false; 1122 1123 ResultBool = ResultInt.getBoolValue(); 1124 return true; 1125 } 1126 1127 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1128 /// to a constant, or if it does but contains a label, return false. If it 1129 /// constant folds return true and set the folded value. 1130 bool CodeGenFunction:: 1131 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1132 // FIXME: Rename and handle conversion of other evaluatable things 1133 // to bool. 1134 llvm::APSInt Int; 1135 if (!Cond->EvaluateAsInt(Int, getContext())) 1136 return false; // Not foldable, not integer or not fully evaluatable. 1137 1138 if (CodeGenFunction::ContainsLabel(Cond)) 1139 return false; // Contains a label. 1140 1141 ResultInt = Int; 1142 return true; 1143 } 1144 1145 1146 1147 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1148 /// statement) to the specified blocks. Based on the condition, this might try 1149 /// to simplify the codegen of the conditional based on the branch. 1150 /// 1151 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1152 llvm::BasicBlock *TrueBlock, 1153 llvm::BasicBlock *FalseBlock, 1154 uint64_t TrueCount) { 1155 Cond = Cond->IgnoreParens(); 1156 1157 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1158 1159 // Handle X && Y in a condition. 1160 if (CondBOp->getOpcode() == BO_LAnd) { 1161 // If we have "1 && X", simplify the code. "0 && X" would have constant 1162 // folded if the case was simple enough. 1163 bool ConstantBool = false; 1164 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1165 ConstantBool) { 1166 // br(1 && X) -> br(X). 1167 incrementProfileCounter(CondBOp); 1168 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1169 TrueCount); 1170 } 1171 1172 // If we have "X && 1", simplify the code to use an uncond branch. 1173 // "X && 0" would have been constant folded to 0. 1174 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1175 ConstantBool) { 1176 // br(X && 1) -> br(X). 1177 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1178 TrueCount); 1179 } 1180 1181 // Emit the LHS as a conditional. If the LHS conditional is false, we 1182 // want to jump to the FalseBlock. 1183 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1184 // The counter tells us how often we evaluate RHS, and all of TrueCount 1185 // can be propagated to that branch. 1186 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1187 1188 ConditionalEvaluation eval(*this); 1189 { 1190 ApplyDebugLocation DL(*this, Cond); 1191 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1192 EmitBlock(LHSTrue); 1193 } 1194 1195 incrementProfileCounter(CondBOp); 1196 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1197 1198 // Any temporaries created here are conditional. 1199 eval.begin(*this); 1200 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1201 eval.end(*this); 1202 1203 return; 1204 } 1205 1206 if (CondBOp->getOpcode() == BO_LOr) { 1207 // If we have "0 || X", simplify the code. "1 || X" would have constant 1208 // folded if the case was simple enough. 1209 bool ConstantBool = false; 1210 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1211 !ConstantBool) { 1212 // br(0 || X) -> br(X). 1213 incrementProfileCounter(CondBOp); 1214 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1215 TrueCount); 1216 } 1217 1218 // If we have "X || 0", simplify the code to use an uncond branch. 1219 // "X || 1" would have been constant folded to 1. 1220 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1221 !ConstantBool) { 1222 // br(X || 0) -> br(X). 1223 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1224 TrueCount); 1225 } 1226 1227 // Emit the LHS as a conditional. If the LHS conditional is true, we 1228 // want to jump to the TrueBlock. 1229 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1230 // We have the count for entry to the RHS and for the whole expression 1231 // being true, so we can divy up True count between the short circuit and 1232 // the RHS. 1233 uint64_t LHSCount = 1234 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1235 uint64_t RHSCount = TrueCount - LHSCount; 1236 1237 ConditionalEvaluation eval(*this); 1238 { 1239 ApplyDebugLocation DL(*this, Cond); 1240 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1241 EmitBlock(LHSFalse); 1242 } 1243 1244 incrementProfileCounter(CondBOp); 1245 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1246 1247 // Any temporaries created here are conditional. 1248 eval.begin(*this); 1249 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1250 1251 eval.end(*this); 1252 1253 return; 1254 } 1255 } 1256 1257 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1258 // br(!x, t, f) -> br(x, f, t) 1259 if (CondUOp->getOpcode() == UO_LNot) { 1260 // Negate the count. 1261 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1262 // Negate the condition and swap the destination blocks. 1263 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1264 FalseCount); 1265 } 1266 } 1267 1268 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1269 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1270 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1271 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1272 1273 ConditionalEvaluation cond(*this); 1274 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1275 getProfileCount(CondOp)); 1276 1277 // When computing PGO branch weights, we only know the overall count for 1278 // the true block. This code is essentially doing tail duplication of the 1279 // naive code-gen, introducing new edges for which counts are not 1280 // available. Divide the counts proportionally between the LHS and RHS of 1281 // the conditional operator. 1282 uint64_t LHSScaledTrueCount = 0; 1283 if (TrueCount) { 1284 double LHSRatio = 1285 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1286 LHSScaledTrueCount = TrueCount * LHSRatio; 1287 } 1288 1289 cond.begin(*this); 1290 EmitBlock(LHSBlock); 1291 incrementProfileCounter(CondOp); 1292 { 1293 ApplyDebugLocation DL(*this, Cond); 1294 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1295 LHSScaledTrueCount); 1296 } 1297 cond.end(*this); 1298 1299 cond.begin(*this); 1300 EmitBlock(RHSBlock); 1301 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1302 TrueCount - LHSScaledTrueCount); 1303 cond.end(*this); 1304 1305 return; 1306 } 1307 1308 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1309 // Conditional operator handling can give us a throw expression as a 1310 // condition for a case like: 1311 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1312 // Fold this to: 1313 // br(c, throw x, br(y, t, f)) 1314 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1315 return; 1316 } 1317 1318 // If the branch has a condition wrapped by __builtin_unpredictable, 1319 // create metadata that specifies that the branch is unpredictable. 1320 // Don't bother if not optimizing because that metadata would not be used. 1321 llvm::MDNode *Unpredictable = nullptr; 1322 auto *Call = dyn_cast<CallExpr>(Cond); 1323 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1324 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1325 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1326 llvm::MDBuilder MDHelper(getLLVMContext()); 1327 Unpredictable = MDHelper.createUnpredictable(); 1328 } 1329 } 1330 1331 // Create branch weights based on the number of times we get here and the 1332 // number of times the condition should be true. 1333 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1334 llvm::MDNode *Weights = 1335 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1336 1337 // Emit the code with the fully general case. 1338 llvm::Value *CondV; 1339 { 1340 ApplyDebugLocation DL(*this, Cond); 1341 CondV = EvaluateExprAsBool(Cond); 1342 } 1343 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1344 } 1345 1346 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1347 /// specified stmt yet. 1348 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1349 CGM.ErrorUnsupported(S, Type); 1350 } 1351 1352 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1353 /// variable-length array whose elements have a non-zero bit-pattern. 1354 /// 1355 /// \param baseType the inner-most element type of the array 1356 /// \param src - a char* pointing to the bit-pattern for a single 1357 /// base element of the array 1358 /// \param sizeInChars - the total size of the VLA, in chars 1359 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1360 Address dest, Address src, 1361 llvm::Value *sizeInChars) { 1362 CGBuilderTy &Builder = CGF.Builder; 1363 1364 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1365 llvm::Value *baseSizeInChars 1366 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1367 1368 Address begin = 1369 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1370 llvm::Value *end = 1371 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1372 1373 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1374 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1375 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1376 1377 // Make a loop over the VLA. C99 guarantees that the VLA element 1378 // count must be nonzero. 1379 CGF.EmitBlock(loopBB); 1380 1381 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1382 cur->addIncoming(begin.getPointer(), originBB); 1383 1384 CharUnits curAlign = 1385 dest.getAlignment().alignmentOfArrayElement(baseSize); 1386 1387 // memcpy the individual element bit-pattern. 1388 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1389 /*volatile*/ false); 1390 1391 // Go to the next element. 1392 llvm::Value *next = 1393 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1394 1395 // Leave if that's the end of the VLA. 1396 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1397 Builder.CreateCondBr(done, contBB, loopBB); 1398 cur->addIncoming(next, loopBB); 1399 1400 CGF.EmitBlock(contBB); 1401 } 1402 1403 void 1404 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1405 // Ignore empty classes in C++. 1406 if (getLangOpts().CPlusPlus) { 1407 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1408 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1409 return; 1410 } 1411 } 1412 1413 // Cast the dest ptr to the appropriate i8 pointer type. 1414 if (DestPtr.getElementType() != Int8Ty) 1415 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1416 1417 // Get size and alignment info for this aggregate. 1418 CharUnits size = getContext().getTypeSizeInChars(Ty); 1419 1420 llvm::Value *SizeVal; 1421 const VariableArrayType *vla; 1422 1423 // Don't bother emitting a zero-byte memset. 1424 if (size.isZero()) { 1425 // But note that getTypeInfo returns 0 for a VLA. 1426 if (const VariableArrayType *vlaType = 1427 dyn_cast_or_null<VariableArrayType>( 1428 getContext().getAsArrayType(Ty))) { 1429 QualType eltType; 1430 llvm::Value *numElts; 1431 std::tie(numElts, eltType) = getVLASize(vlaType); 1432 1433 SizeVal = numElts; 1434 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1435 if (!eltSize.isOne()) 1436 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1437 vla = vlaType; 1438 } else { 1439 return; 1440 } 1441 } else { 1442 SizeVal = CGM.getSize(size); 1443 vla = nullptr; 1444 } 1445 1446 // If the type contains a pointer to data member we can't memset it to zero. 1447 // Instead, create a null constant and copy it to the destination. 1448 // TODO: there are other patterns besides zero that we can usefully memset, 1449 // like -1, which happens to be the pattern used by member-pointers. 1450 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1451 // For a VLA, emit a single element, then splat that over the VLA. 1452 if (vla) Ty = getContext().getBaseElementType(vla); 1453 1454 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1455 1456 llvm::GlobalVariable *NullVariable = 1457 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1458 /*isConstant=*/true, 1459 llvm::GlobalVariable::PrivateLinkage, 1460 NullConstant, Twine()); 1461 CharUnits NullAlign = DestPtr.getAlignment(); 1462 NullVariable->setAlignment(NullAlign.getQuantity()); 1463 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1464 NullAlign); 1465 1466 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1467 1468 // Get and call the appropriate llvm.memcpy overload. 1469 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1470 return; 1471 } 1472 1473 // Otherwise, just memset the whole thing to zero. This is legal 1474 // because in LLVM, all default initializers (other than the ones we just 1475 // handled above) are guaranteed to have a bit pattern of all zeros. 1476 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1477 } 1478 1479 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1480 // Make sure that there is a block for the indirect goto. 1481 if (!IndirectBranch) 1482 GetIndirectGotoBlock(); 1483 1484 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1485 1486 // Make sure the indirect branch includes all of the address-taken blocks. 1487 IndirectBranch->addDestination(BB); 1488 return llvm::BlockAddress::get(CurFn, BB); 1489 } 1490 1491 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1492 // If we already made the indirect branch for indirect goto, return its block. 1493 if (IndirectBranch) return IndirectBranch->getParent(); 1494 1495 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1496 1497 // Create the PHI node that indirect gotos will add entries to. 1498 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1499 "indirect.goto.dest"); 1500 1501 // Create the indirect branch instruction. 1502 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1503 return IndirectBranch->getParent(); 1504 } 1505 1506 /// Computes the length of an array in elements, as well as the base 1507 /// element type and a properly-typed first element pointer. 1508 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1509 QualType &baseType, 1510 Address &addr) { 1511 const ArrayType *arrayType = origArrayType; 1512 1513 // If it's a VLA, we have to load the stored size. Note that 1514 // this is the size of the VLA in bytes, not its size in elements. 1515 llvm::Value *numVLAElements = nullptr; 1516 if (isa<VariableArrayType>(arrayType)) { 1517 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1518 1519 // Walk into all VLAs. This doesn't require changes to addr, 1520 // which has type T* where T is the first non-VLA element type. 1521 do { 1522 QualType elementType = arrayType->getElementType(); 1523 arrayType = getContext().getAsArrayType(elementType); 1524 1525 // If we only have VLA components, 'addr' requires no adjustment. 1526 if (!arrayType) { 1527 baseType = elementType; 1528 return numVLAElements; 1529 } 1530 } while (isa<VariableArrayType>(arrayType)); 1531 1532 // We get out here only if we find a constant array type 1533 // inside the VLA. 1534 } 1535 1536 // We have some number of constant-length arrays, so addr should 1537 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1538 // down to the first element of addr. 1539 SmallVector<llvm::Value*, 8> gepIndices; 1540 1541 // GEP down to the array type. 1542 llvm::ConstantInt *zero = Builder.getInt32(0); 1543 gepIndices.push_back(zero); 1544 1545 uint64_t countFromCLAs = 1; 1546 QualType eltType; 1547 1548 llvm::ArrayType *llvmArrayType = 1549 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1550 while (llvmArrayType) { 1551 assert(isa<ConstantArrayType>(arrayType)); 1552 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1553 == llvmArrayType->getNumElements()); 1554 1555 gepIndices.push_back(zero); 1556 countFromCLAs *= llvmArrayType->getNumElements(); 1557 eltType = arrayType->getElementType(); 1558 1559 llvmArrayType = 1560 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1561 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1562 assert((!llvmArrayType || arrayType) && 1563 "LLVM and Clang types are out-of-synch"); 1564 } 1565 1566 if (arrayType) { 1567 // From this point onwards, the Clang array type has been emitted 1568 // as some other type (probably a packed struct). Compute the array 1569 // size, and just emit the 'begin' expression as a bitcast. 1570 while (arrayType) { 1571 countFromCLAs *= 1572 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1573 eltType = arrayType->getElementType(); 1574 arrayType = getContext().getAsArrayType(eltType); 1575 } 1576 1577 llvm::Type *baseType = ConvertType(eltType); 1578 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1579 } else { 1580 // Create the actual GEP. 1581 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1582 gepIndices, "array.begin"), 1583 addr.getAlignment()); 1584 } 1585 1586 baseType = eltType; 1587 1588 llvm::Value *numElements 1589 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1590 1591 // If we had any VLA dimensions, factor them in. 1592 if (numVLAElements) 1593 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1594 1595 return numElements; 1596 } 1597 1598 std::pair<llvm::Value*, QualType> 1599 CodeGenFunction::getVLASize(QualType type) { 1600 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1601 assert(vla && "type was not a variable array type!"); 1602 return getVLASize(vla); 1603 } 1604 1605 std::pair<llvm::Value*, QualType> 1606 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1607 // The number of elements so far; always size_t. 1608 llvm::Value *numElements = nullptr; 1609 1610 QualType elementType; 1611 do { 1612 elementType = type->getElementType(); 1613 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1614 assert(vlaSize && "no size for VLA!"); 1615 assert(vlaSize->getType() == SizeTy); 1616 1617 if (!numElements) { 1618 numElements = vlaSize; 1619 } else { 1620 // It's undefined behavior if this wraps around, so mark it that way. 1621 // FIXME: Teach -fsanitize=undefined to trap this. 1622 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1623 } 1624 } while ((type = getContext().getAsVariableArrayType(elementType))); 1625 1626 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1627 } 1628 1629 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1630 assert(type->isVariablyModifiedType() && 1631 "Must pass variably modified type to EmitVLASizes!"); 1632 1633 EnsureInsertPoint(); 1634 1635 // We're going to walk down into the type and look for VLA 1636 // expressions. 1637 do { 1638 assert(type->isVariablyModifiedType()); 1639 1640 const Type *ty = type.getTypePtr(); 1641 switch (ty->getTypeClass()) { 1642 1643 #define TYPE(Class, Base) 1644 #define ABSTRACT_TYPE(Class, Base) 1645 #define NON_CANONICAL_TYPE(Class, Base) 1646 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1647 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1648 #include "clang/AST/TypeNodes.def" 1649 llvm_unreachable("unexpected dependent type!"); 1650 1651 // These types are never variably-modified. 1652 case Type::Builtin: 1653 case Type::Complex: 1654 case Type::Vector: 1655 case Type::ExtVector: 1656 case Type::Record: 1657 case Type::Enum: 1658 case Type::Elaborated: 1659 case Type::TemplateSpecialization: 1660 case Type::ObjCObject: 1661 case Type::ObjCInterface: 1662 case Type::ObjCObjectPointer: 1663 llvm_unreachable("type class is never variably-modified!"); 1664 1665 case Type::Adjusted: 1666 type = cast<AdjustedType>(ty)->getAdjustedType(); 1667 break; 1668 1669 case Type::Decayed: 1670 type = cast<DecayedType>(ty)->getPointeeType(); 1671 break; 1672 1673 case Type::Pointer: 1674 type = cast<PointerType>(ty)->getPointeeType(); 1675 break; 1676 1677 case Type::BlockPointer: 1678 type = cast<BlockPointerType>(ty)->getPointeeType(); 1679 break; 1680 1681 case Type::LValueReference: 1682 case Type::RValueReference: 1683 type = cast<ReferenceType>(ty)->getPointeeType(); 1684 break; 1685 1686 case Type::MemberPointer: 1687 type = cast<MemberPointerType>(ty)->getPointeeType(); 1688 break; 1689 1690 case Type::ConstantArray: 1691 case Type::IncompleteArray: 1692 // Losing element qualification here is fine. 1693 type = cast<ArrayType>(ty)->getElementType(); 1694 break; 1695 1696 case Type::VariableArray: { 1697 // Losing element qualification here is fine. 1698 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1699 1700 // Unknown size indication requires no size computation. 1701 // Otherwise, evaluate and record it. 1702 if (const Expr *size = vat->getSizeExpr()) { 1703 // It's possible that we might have emitted this already, 1704 // e.g. with a typedef and a pointer to it. 1705 llvm::Value *&entry = VLASizeMap[size]; 1706 if (!entry) { 1707 llvm::Value *Size = EmitScalarExpr(size); 1708 1709 // C11 6.7.6.2p5: 1710 // If the size is an expression that is not an integer constant 1711 // expression [...] each time it is evaluated it shall have a value 1712 // greater than zero. 1713 if (SanOpts.has(SanitizerKind::VLABound) && 1714 size->getType()->isSignedIntegerType()) { 1715 SanitizerScope SanScope(this); 1716 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1717 llvm::Constant *StaticArgs[] = { 1718 EmitCheckSourceLocation(size->getLocStart()), 1719 EmitCheckTypeDescriptor(size->getType()) 1720 }; 1721 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1722 SanitizerKind::VLABound), 1723 "vla_bound_not_positive", StaticArgs, Size); 1724 } 1725 1726 // Always zexting here would be wrong if it weren't 1727 // undefined behavior to have a negative bound. 1728 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1729 } 1730 } 1731 type = vat->getElementType(); 1732 break; 1733 } 1734 1735 case Type::FunctionProto: 1736 case Type::FunctionNoProto: 1737 type = cast<FunctionType>(ty)->getReturnType(); 1738 break; 1739 1740 case Type::Paren: 1741 case Type::TypeOf: 1742 case Type::UnaryTransform: 1743 case Type::Attributed: 1744 case Type::SubstTemplateTypeParm: 1745 case Type::PackExpansion: 1746 // Keep walking after single level desugaring. 1747 type = type.getSingleStepDesugaredType(getContext()); 1748 break; 1749 1750 case Type::Typedef: 1751 case Type::Decltype: 1752 case Type::Auto: 1753 // Stop walking: nothing to do. 1754 return; 1755 1756 case Type::TypeOfExpr: 1757 // Stop walking: emit typeof expression. 1758 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1759 return; 1760 1761 case Type::Atomic: 1762 type = cast<AtomicType>(ty)->getValueType(); 1763 break; 1764 1765 case Type::Pipe: 1766 type = cast<PipeType>(ty)->getElementType(); 1767 break; 1768 } 1769 } while (type->isVariablyModifiedType()); 1770 } 1771 1772 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1773 if (getContext().getBuiltinVaListType()->isArrayType()) 1774 return EmitPointerWithAlignment(E); 1775 return EmitLValue(E).getAddress(); 1776 } 1777 1778 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1779 return EmitLValue(E).getAddress(); 1780 } 1781 1782 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1783 llvm::Constant *Init) { 1784 assert (Init && "Invalid DeclRefExpr initializer!"); 1785 if (CGDebugInfo *Dbg = getDebugInfo()) 1786 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1787 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1788 } 1789 1790 CodeGenFunction::PeepholeProtection 1791 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1792 // At the moment, the only aggressive peephole we do in IR gen 1793 // is trunc(zext) folding, but if we add more, we can easily 1794 // extend this protection. 1795 1796 if (!rvalue.isScalar()) return PeepholeProtection(); 1797 llvm::Value *value = rvalue.getScalarVal(); 1798 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1799 1800 // Just make an extra bitcast. 1801 assert(HaveInsertPoint()); 1802 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1803 Builder.GetInsertBlock()); 1804 1805 PeepholeProtection protection; 1806 protection.Inst = inst; 1807 return protection; 1808 } 1809 1810 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1811 if (!protection.Inst) return; 1812 1813 // In theory, we could try to duplicate the peepholes now, but whatever. 1814 protection.Inst->eraseFromParent(); 1815 } 1816 1817 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1818 llvm::Value *AnnotatedVal, 1819 StringRef AnnotationStr, 1820 SourceLocation Location) { 1821 llvm::Value *Args[4] = { 1822 AnnotatedVal, 1823 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1824 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1825 CGM.EmitAnnotationLineNo(Location) 1826 }; 1827 return Builder.CreateCall(AnnotationFn, Args); 1828 } 1829 1830 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1831 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1832 // FIXME We create a new bitcast for every annotation because that's what 1833 // llvm-gcc was doing. 1834 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1835 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1836 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1837 I->getAnnotation(), D->getLocation()); 1838 } 1839 1840 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1841 Address Addr) { 1842 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1843 llvm::Value *V = Addr.getPointer(); 1844 llvm::Type *VTy = V->getType(); 1845 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1846 CGM.Int8PtrTy); 1847 1848 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1849 // FIXME Always emit the cast inst so we can differentiate between 1850 // annotation on the first field of a struct and annotation on the struct 1851 // itself. 1852 if (VTy != CGM.Int8PtrTy) 1853 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1854 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1855 V = Builder.CreateBitCast(V, VTy); 1856 } 1857 1858 return Address(V, Addr.getAlignment()); 1859 } 1860 1861 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1862 1863 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1864 : CGF(CGF) { 1865 assert(!CGF->IsSanitizerScope); 1866 CGF->IsSanitizerScope = true; 1867 } 1868 1869 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1870 CGF->IsSanitizerScope = false; 1871 } 1872 1873 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1874 const llvm::Twine &Name, 1875 llvm::BasicBlock *BB, 1876 llvm::BasicBlock::iterator InsertPt) const { 1877 LoopStack.InsertHelper(I); 1878 if (IsSanitizerScope) 1879 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1880 } 1881 1882 void CGBuilderInserter::InsertHelper( 1883 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1884 llvm::BasicBlock::iterator InsertPt) const { 1885 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1886 if (CGF) 1887 CGF->InsertHelper(I, Name, BB, InsertPt); 1888 } 1889 1890 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1891 CodeGenModule &CGM, const FunctionDecl *FD, 1892 std::string &FirstMissing) { 1893 // If there aren't any required features listed then go ahead and return. 1894 if (ReqFeatures.empty()) 1895 return false; 1896 1897 // Now build up the set of caller features and verify that all the required 1898 // features are there. 1899 llvm::StringMap<bool> CallerFeatureMap; 1900 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1901 1902 // If we have at least one of the features in the feature list return 1903 // true, otherwise return false. 1904 return std::all_of( 1905 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1906 SmallVector<StringRef, 1> OrFeatures; 1907 Feature.split(OrFeatures, "|"); 1908 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1909 [&](StringRef Feature) { 1910 if (!CallerFeatureMap.lookup(Feature)) { 1911 FirstMissing = Feature.str(); 1912 return false; 1913 } 1914 return true; 1915 }); 1916 }); 1917 } 1918 1919 // Emits an error if we don't have a valid set of target features for the 1920 // called function. 1921 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1922 const FunctionDecl *TargetDecl) { 1923 // Early exit if this is an indirect call. 1924 if (!TargetDecl) 1925 return; 1926 1927 // Get the current enclosing function if it exists. If it doesn't 1928 // we can't check the target features anyhow. 1929 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1930 if (!FD) 1931 return; 1932 1933 // Grab the required features for the call. For a builtin this is listed in 1934 // the td file with the default cpu, for an always_inline function this is any 1935 // listed cpu and any listed features. 1936 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1937 std::string MissingFeature; 1938 if (BuiltinID) { 1939 SmallVector<StringRef, 1> ReqFeatures; 1940 const char *FeatureList = 1941 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1942 // Return if the builtin doesn't have any required features. 1943 if (!FeatureList || StringRef(FeatureList) == "") 1944 return; 1945 StringRef(FeatureList).split(ReqFeatures, ","); 1946 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1947 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1948 << TargetDecl->getDeclName() 1949 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1950 1951 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1952 // Get the required features for the callee. 1953 SmallVector<StringRef, 1> ReqFeatures; 1954 llvm::StringMap<bool> CalleeFeatureMap; 1955 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1956 for (const auto &F : CalleeFeatureMap) { 1957 // Only positive features are "required". 1958 if (F.getValue()) 1959 ReqFeatures.push_back(F.getKey()); 1960 } 1961 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1962 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1963 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1964 } 1965 } 1966 1967 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1968 if (!CGM.getCodeGenOpts().SanitizeStats) 1969 return; 1970 1971 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1972 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1973 CGM.getSanStats().create(IRB, SSK); 1974 } 1975