1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGException.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 34 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 35 NormalCleanupDest(0), NextCleanupDestIndex(1), 36 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 37 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 38 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 39 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 40 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 41 TrapBB(0) { 42 43 CatchUndefined = getContext().getLangOptions().CatchUndefined; 44 CGM.getCXXABI().getMangleContext().startNewFunction(); 45 } 46 47 48 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 49 return CGM.getTypes().ConvertTypeForMem(T); 50 } 51 52 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 53 return CGM.getTypes().ConvertType(T); 54 } 55 56 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 57 switch (type.getCanonicalType()->getTypeClass()) { 58 #define TYPE(name, parent) 59 #define ABSTRACT_TYPE(name, parent) 60 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 61 #define DEPENDENT_TYPE(name, parent) case Type::name: 62 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 63 #include "clang/AST/TypeNodes.def" 64 llvm_unreachable("non-canonical or dependent type in IR-generation"); 65 66 case Type::Builtin: 67 case Type::Pointer: 68 case Type::BlockPointer: 69 case Type::LValueReference: 70 case Type::RValueReference: 71 case Type::MemberPointer: 72 case Type::Vector: 73 case Type::ExtVector: 74 case Type::FunctionProto: 75 case Type::FunctionNoProto: 76 case Type::Enum: 77 case Type::ObjCObjectPointer: 78 return false; 79 80 // Complexes, arrays, records, and Objective-C objects. 81 case Type::Complex: 82 case Type::ConstantArray: 83 case Type::IncompleteArray: 84 case Type::VariableArray: 85 case Type::Record: 86 case Type::ObjCObject: 87 case Type::ObjCInterface: 88 return true; 89 } 90 llvm_unreachable("unknown type kind!"); 91 } 92 93 void CodeGenFunction::EmitReturnBlock() { 94 // For cleanliness, we try to avoid emitting the return block for 95 // simple cases. 96 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 97 98 if (CurBB) { 99 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 100 101 // We have a valid insert point, reuse it if it is empty or there are no 102 // explicit jumps to the return block. 103 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 104 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 105 delete ReturnBlock.getBlock(); 106 } else 107 EmitBlock(ReturnBlock.getBlock()); 108 return; 109 } 110 111 // Otherwise, if the return block is the target of a single direct 112 // branch then we can just put the code in that block instead. This 113 // cleans up functions which started with a unified return block. 114 if (ReturnBlock.getBlock()->hasOneUse()) { 115 llvm::BranchInst *BI = 116 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 117 if (BI && BI->isUnconditional() && 118 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 119 // Reset insertion point, including debug location, and delete the branch. 120 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 121 Builder.SetInsertPoint(BI->getParent()); 122 BI->eraseFromParent(); 123 delete ReturnBlock.getBlock(); 124 return; 125 } 126 } 127 128 // FIXME: We are at an unreachable point, there is no reason to emit the block 129 // unless it has uses. However, we still need a place to put the debug 130 // region.end for now. 131 132 EmitBlock(ReturnBlock.getBlock()); 133 } 134 135 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 136 if (!BB) return; 137 if (!BB->use_empty()) 138 return CGF.CurFn->getBasicBlockList().push_back(BB); 139 delete BB; 140 } 141 142 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 143 assert(BreakContinueStack.empty() && 144 "mismatched push/pop in break/continue stack!"); 145 146 // Pop any cleanups that might have been associated with the 147 // parameters. Do this in whatever block we're currently in; it's 148 // important to do this before we enter the return block or return 149 // edges will be *really* confused. 150 if (EHStack.stable_begin() != PrologueCleanupDepth) 151 PopCleanupBlocks(PrologueCleanupDepth); 152 153 // Emit function epilog (to return). 154 EmitReturnBlock(); 155 156 if (ShouldInstrumentFunction()) 157 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 158 159 // Emit debug descriptor for function end. 160 if (CGDebugInfo *DI = getDebugInfo()) { 161 DI->setLocation(EndLoc); 162 DI->EmitFunctionEnd(Builder); 163 } 164 165 EmitFunctionEpilog(*CurFnInfo); 166 EmitEndEHSpec(CurCodeDecl); 167 168 assert(EHStack.empty() && 169 "did not remove all scopes from cleanup stack!"); 170 171 // If someone did an indirect goto, emit the indirect goto block at the end of 172 // the function. 173 if (IndirectBranch) { 174 EmitBlock(IndirectBranch->getParent()); 175 Builder.ClearInsertionPoint(); 176 } 177 178 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 179 llvm::Instruction *Ptr = AllocaInsertPt; 180 AllocaInsertPt = 0; 181 Ptr->eraseFromParent(); 182 183 // If someone took the address of a label but never did an indirect goto, we 184 // made a zero entry PHI node, which is illegal, zap it now. 185 if (IndirectBranch) { 186 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 187 if (PN->getNumIncomingValues() == 0) { 188 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 189 PN->eraseFromParent(); 190 } 191 } 192 193 EmitIfUsed(*this, EHResumeBlock); 194 EmitIfUsed(*this, TerminateLandingPad); 195 EmitIfUsed(*this, TerminateHandler); 196 EmitIfUsed(*this, UnreachableBlock); 197 198 if (CGM.getCodeGenOpts().EmitDeclMetadata) 199 EmitDeclMetadata(); 200 } 201 202 /// ShouldInstrumentFunction - Return true if the current function should be 203 /// instrumented with __cyg_profile_func_* calls 204 bool CodeGenFunction::ShouldInstrumentFunction() { 205 if (!CGM.getCodeGenOpts().InstrumentFunctions) 206 return false; 207 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 208 return false; 209 return true; 210 } 211 212 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 213 /// instrumentation function with the current function and the call site, if 214 /// function instrumentation is enabled. 215 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 216 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 217 llvm::PointerType *PointerTy = Int8PtrTy; 218 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 219 llvm::FunctionType *FunctionTy = 220 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 221 ProfileFuncArgs, false); 222 223 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 224 llvm::CallInst *CallSite = Builder.CreateCall( 225 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 226 llvm::ConstantInt::get(Int32Ty, 0), 227 "callsite"); 228 229 Builder.CreateCall2(F, 230 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 231 CallSite); 232 } 233 234 void CodeGenFunction::EmitMCountInstrumentation() { 235 llvm::FunctionType *FTy = 236 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 237 238 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 239 Target.getMCountName()); 240 Builder.CreateCall(MCountFn); 241 } 242 243 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 244 llvm::Function *Fn, 245 const CGFunctionInfo &FnInfo, 246 const FunctionArgList &Args, 247 SourceLocation StartLoc) { 248 const Decl *D = GD.getDecl(); 249 250 DidCallStackSave = false; 251 CurCodeDecl = CurFuncDecl = D; 252 FnRetTy = RetTy; 253 CurFn = Fn; 254 CurFnInfo = &FnInfo; 255 assert(CurFn->isDeclaration() && "Function already has body?"); 256 257 // Pass inline keyword to optimizer if it appears explicitly on any 258 // declaration. 259 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 260 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 261 RE = FD->redecls_end(); RI != RE; ++RI) 262 if (RI->isInlineSpecified()) { 263 Fn->addFnAttr(llvm::Attribute::InlineHint); 264 break; 265 } 266 267 if (getContext().getLangOptions().OpenCL) { 268 // Add metadata for a kernel function. 269 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 270 if (FD->hasAttr<OpenCLKernelAttr>()) { 271 llvm::LLVMContext &Context = getLLVMContext(); 272 llvm::NamedMDNode *OpenCLMetadata = 273 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 274 275 llvm::Value *Op = Fn; 276 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 277 } 278 } 279 280 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 281 282 // Create a marker to make it easy to insert allocas into the entryblock 283 // later. Don't create this with the builder, because we don't want it 284 // folded. 285 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 286 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 287 if (Builder.isNamePreserving()) 288 AllocaInsertPt->setName("allocapt"); 289 290 ReturnBlock = getJumpDestInCurrentScope("return"); 291 292 Builder.SetInsertPoint(EntryBB); 293 294 // Emit subprogram debug descriptor. 295 if (CGDebugInfo *DI = getDebugInfo()) { 296 // FIXME: what is going on here and why does it ignore all these 297 // interesting type properties? 298 QualType FnType = 299 getContext().getFunctionType(RetTy, 0, 0, 300 FunctionProtoType::ExtProtoInfo()); 301 302 DI->setLocation(StartLoc); 303 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 304 } 305 306 if (ShouldInstrumentFunction()) 307 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 308 309 if (CGM.getCodeGenOpts().InstrumentForProfiling) 310 EmitMCountInstrumentation(); 311 312 if (RetTy->isVoidType()) { 313 // Void type; nothing to return. 314 ReturnValue = 0; 315 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 316 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 317 // Indirect aggregate return; emit returned value directly into sret slot. 318 // This reduces code size, and affects correctness in C++. 319 ReturnValue = CurFn->arg_begin(); 320 } else { 321 ReturnValue = CreateIRTemp(RetTy, "retval"); 322 323 // Tell the epilog emitter to autorelease the result. We do this 324 // now so that various specialized functions can suppress it 325 // during their IR-generation. 326 if (getLangOptions().ObjCAutoRefCount && 327 !CurFnInfo->isReturnsRetained() && 328 RetTy->isObjCRetainableType()) 329 AutoreleaseResult = true; 330 } 331 332 EmitStartEHSpec(CurCodeDecl); 333 334 PrologueCleanupDepth = EHStack.stable_begin(); 335 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 336 337 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 338 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 339 340 // If any of the arguments have a variably modified type, make sure to 341 // emit the type size. 342 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 343 i != e; ++i) { 344 QualType Ty = (*i)->getType(); 345 346 if (Ty->isVariablyModifiedType()) 347 EmitVariablyModifiedType(Ty); 348 } 349 } 350 351 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 352 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 353 assert(FD->getBody()); 354 EmitStmt(FD->getBody()); 355 } 356 357 /// Tries to mark the given function nounwind based on the 358 /// non-existence of any throwing calls within it. We believe this is 359 /// lightweight enough to do at -O0. 360 static void TryMarkNoThrow(llvm::Function *F) { 361 // LLVM treats 'nounwind' on a function as part of the type, so we 362 // can't do this on functions that can be overwritten. 363 if (F->mayBeOverridden()) return; 364 365 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 366 for (llvm::BasicBlock::iterator 367 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 368 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 369 if (!Call->doesNotThrow()) 370 return; 371 } else if (isa<llvm::ResumeInst>(&*BI)) { 372 return; 373 } 374 F->setDoesNotThrow(true); 375 } 376 377 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 378 const CGFunctionInfo &FnInfo) { 379 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 380 381 // Check if we should generate debug info for this function. 382 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 383 DebugInfo = CGM.getModuleDebugInfo(); 384 385 FunctionArgList Args; 386 QualType ResTy = FD->getResultType(); 387 388 CurGD = GD; 389 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 390 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 391 392 if (FD->getNumParams()) 393 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 394 Args.push_back(FD->getParamDecl(i)); 395 396 SourceRange BodyRange; 397 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 398 399 // Emit the standard function prologue. 400 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 401 402 // Generate the body of the function. 403 if (isa<CXXDestructorDecl>(FD)) 404 EmitDestructorBody(Args); 405 else if (isa<CXXConstructorDecl>(FD)) 406 EmitConstructorBody(Args); 407 else 408 EmitFunctionBody(Args); 409 410 // Emit the standard function epilogue. 411 FinishFunction(BodyRange.getEnd()); 412 413 // If we haven't marked the function nothrow through other means, do 414 // a quick pass now to see if we can. 415 if (!CurFn->doesNotThrow()) 416 TryMarkNoThrow(CurFn); 417 } 418 419 /// ContainsLabel - Return true if the statement contains a label in it. If 420 /// this statement is not executed normally, it not containing a label means 421 /// that we can just remove the code. 422 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 423 // Null statement, not a label! 424 if (S == 0) return false; 425 426 // If this is a label, we have to emit the code, consider something like: 427 // if (0) { ... foo: bar(); } goto foo; 428 // 429 // TODO: If anyone cared, we could track __label__'s, since we know that you 430 // can't jump to one from outside their declared region. 431 if (isa<LabelStmt>(S)) 432 return true; 433 434 // If this is a case/default statement, and we haven't seen a switch, we have 435 // to emit the code. 436 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 437 return true; 438 439 // If this is a switch statement, we want to ignore cases below it. 440 if (isa<SwitchStmt>(S)) 441 IgnoreCaseStmts = true; 442 443 // Scan subexpressions for verboten labels. 444 for (Stmt::const_child_range I = S->children(); I; ++I) 445 if (ContainsLabel(*I, IgnoreCaseStmts)) 446 return true; 447 448 return false; 449 } 450 451 /// containsBreak - Return true if the statement contains a break out of it. 452 /// If the statement (recursively) contains a switch or loop with a break 453 /// inside of it, this is fine. 454 bool CodeGenFunction::containsBreak(const Stmt *S) { 455 // Null statement, not a label! 456 if (S == 0) return false; 457 458 // If this is a switch or loop that defines its own break scope, then we can 459 // include it and anything inside of it. 460 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 461 isa<ForStmt>(S)) 462 return false; 463 464 if (isa<BreakStmt>(S)) 465 return true; 466 467 // Scan subexpressions for verboten breaks. 468 for (Stmt::const_child_range I = S->children(); I; ++I) 469 if (containsBreak(*I)) 470 return true; 471 472 return false; 473 } 474 475 476 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 477 /// to a constant, or if it does but contains a label, return false. If it 478 /// constant folds return true and set the boolean result in Result. 479 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 480 bool &ResultBool) { 481 llvm::APInt ResultInt; 482 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 483 return false; 484 485 ResultBool = ResultInt.getBoolValue(); 486 return true; 487 } 488 489 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 490 /// to a constant, or if it does but contains a label, return false. If it 491 /// constant folds return true and set the folded value. 492 bool CodeGenFunction:: 493 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 494 // FIXME: Rename and handle conversion of other evaluatable things 495 // to bool. 496 Expr::EvalResult Result; 497 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 498 Result.HasSideEffects) 499 return false; // Not foldable, not integer or not fully evaluatable. 500 501 if (CodeGenFunction::ContainsLabel(Cond)) 502 return false; // Contains a label. 503 504 ResultInt = Result.Val.getInt(); 505 return true; 506 } 507 508 509 510 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 511 /// statement) to the specified blocks. Based on the condition, this might try 512 /// to simplify the codegen of the conditional based on the branch. 513 /// 514 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 515 llvm::BasicBlock *TrueBlock, 516 llvm::BasicBlock *FalseBlock) { 517 Cond = Cond->IgnoreParens(); 518 519 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 520 // Handle X && Y in a condition. 521 if (CondBOp->getOpcode() == BO_LAnd) { 522 // If we have "1 && X", simplify the code. "0 && X" would have constant 523 // folded if the case was simple enough. 524 bool ConstantBool = false; 525 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 526 ConstantBool) { 527 // br(1 && X) -> br(X). 528 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 529 } 530 531 // If we have "X && 1", simplify the code to use an uncond branch. 532 // "X && 0" would have been constant folded to 0. 533 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 534 ConstantBool) { 535 // br(X && 1) -> br(X). 536 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 537 } 538 539 // Emit the LHS as a conditional. If the LHS conditional is false, we 540 // want to jump to the FalseBlock. 541 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 542 543 ConditionalEvaluation eval(*this); 544 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 545 EmitBlock(LHSTrue); 546 547 // Any temporaries created here are conditional. 548 eval.begin(*this); 549 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 550 eval.end(*this); 551 552 return; 553 } 554 555 if (CondBOp->getOpcode() == BO_LOr) { 556 // If we have "0 || X", simplify the code. "1 || X" would have constant 557 // folded if the case was simple enough. 558 bool ConstantBool = false; 559 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 560 !ConstantBool) { 561 // br(0 || X) -> br(X). 562 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 563 } 564 565 // If we have "X || 0", simplify the code to use an uncond branch. 566 // "X || 1" would have been constant folded to 1. 567 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 568 !ConstantBool) { 569 // br(X || 0) -> br(X). 570 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 571 } 572 573 // Emit the LHS as a conditional. If the LHS conditional is true, we 574 // want to jump to the TrueBlock. 575 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 576 577 ConditionalEvaluation eval(*this); 578 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 579 EmitBlock(LHSFalse); 580 581 // Any temporaries created here are conditional. 582 eval.begin(*this); 583 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 584 eval.end(*this); 585 586 return; 587 } 588 } 589 590 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 591 // br(!x, t, f) -> br(x, f, t) 592 if (CondUOp->getOpcode() == UO_LNot) 593 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 594 } 595 596 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 597 // Handle ?: operator. 598 599 // Just ignore GNU ?: extension. 600 if (CondOp->getLHS()) { 601 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 602 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 603 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 604 605 ConditionalEvaluation cond(*this); 606 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 607 608 cond.begin(*this); 609 EmitBlock(LHSBlock); 610 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 611 cond.end(*this); 612 613 cond.begin(*this); 614 EmitBlock(RHSBlock); 615 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 616 cond.end(*this); 617 618 return; 619 } 620 } 621 622 // Emit the code with the fully general case. 623 llvm::Value *CondV = EvaluateExprAsBool(Cond); 624 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 625 } 626 627 /// ErrorUnsupported - Print out an error that codegen doesn't support the 628 /// specified stmt yet. 629 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 630 bool OmitOnError) { 631 CGM.ErrorUnsupported(S, Type, OmitOnError); 632 } 633 634 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 635 /// variable-length array whose elements have a non-zero bit-pattern. 636 /// 637 /// \param src - a char* pointing to the bit-pattern for a single 638 /// base element of the array 639 /// \param sizeInChars - the total size of the VLA, in chars 640 /// \param align - the total alignment of the VLA 641 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 642 llvm::Value *dest, llvm::Value *src, 643 llvm::Value *sizeInChars) { 644 std::pair<CharUnits,CharUnits> baseSizeAndAlign 645 = CGF.getContext().getTypeInfoInChars(baseType); 646 647 CGBuilderTy &Builder = CGF.Builder; 648 649 llvm::Value *baseSizeInChars 650 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 651 652 llvm::Type *i8p = Builder.getInt8PtrTy(); 653 654 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 655 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 656 657 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 658 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 659 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 660 661 // Make a loop over the VLA. C99 guarantees that the VLA element 662 // count must be nonzero. 663 CGF.EmitBlock(loopBB); 664 665 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 666 cur->addIncoming(begin, originBB); 667 668 // memcpy the individual element bit-pattern. 669 Builder.CreateMemCpy(cur, src, baseSizeInChars, 670 baseSizeAndAlign.second.getQuantity(), 671 /*volatile*/ false); 672 673 // Go to the next element. 674 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 675 676 // Leave if that's the end of the VLA. 677 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 678 Builder.CreateCondBr(done, contBB, loopBB); 679 cur->addIncoming(next, loopBB); 680 681 CGF.EmitBlock(contBB); 682 } 683 684 void 685 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 686 // Ignore empty classes in C++. 687 if (getContext().getLangOptions().CPlusPlus) { 688 if (const RecordType *RT = Ty->getAs<RecordType>()) { 689 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 690 return; 691 } 692 } 693 694 // Cast the dest ptr to the appropriate i8 pointer type. 695 unsigned DestAS = 696 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 697 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 698 if (DestPtr->getType() != BP) 699 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 700 701 // Get size and alignment info for this aggregate. 702 std::pair<CharUnits, CharUnits> TypeInfo = 703 getContext().getTypeInfoInChars(Ty); 704 CharUnits Size = TypeInfo.first; 705 CharUnits Align = TypeInfo.second; 706 707 llvm::Value *SizeVal; 708 const VariableArrayType *vla; 709 710 // Don't bother emitting a zero-byte memset. 711 if (Size.isZero()) { 712 // But note that getTypeInfo returns 0 for a VLA. 713 if (const VariableArrayType *vlaType = 714 dyn_cast_or_null<VariableArrayType>( 715 getContext().getAsArrayType(Ty))) { 716 QualType eltType; 717 llvm::Value *numElts; 718 llvm::tie(numElts, eltType) = getVLASize(vlaType); 719 720 SizeVal = numElts; 721 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 722 if (!eltSize.isOne()) 723 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 724 vla = vlaType; 725 } else { 726 return; 727 } 728 } else { 729 SizeVal = CGM.getSize(Size); 730 vla = 0; 731 } 732 733 // If the type contains a pointer to data member we can't memset it to zero. 734 // Instead, create a null constant and copy it to the destination. 735 // TODO: there are other patterns besides zero that we can usefully memset, 736 // like -1, which happens to be the pattern used by member-pointers. 737 if (!CGM.getTypes().isZeroInitializable(Ty)) { 738 // For a VLA, emit a single element, then splat that over the VLA. 739 if (vla) Ty = getContext().getBaseElementType(vla); 740 741 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 742 743 llvm::GlobalVariable *NullVariable = 744 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 745 /*isConstant=*/true, 746 llvm::GlobalVariable::PrivateLinkage, 747 NullConstant, Twine()); 748 llvm::Value *SrcPtr = 749 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 750 751 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 752 753 // Get and call the appropriate llvm.memcpy overload. 754 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 755 return; 756 } 757 758 // Otherwise, just memset the whole thing to zero. This is legal 759 // because in LLVM, all default initializers (other than the ones we just 760 // handled above) are guaranteed to have a bit pattern of all zeros. 761 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 762 Align.getQuantity(), false); 763 } 764 765 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 766 // Make sure that there is a block for the indirect goto. 767 if (IndirectBranch == 0) 768 GetIndirectGotoBlock(); 769 770 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 771 772 // Make sure the indirect branch includes all of the address-taken blocks. 773 IndirectBranch->addDestination(BB); 774 return llvm::BlockAddress::get(CurFn, BB); 775 } 776 777 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 778 // If we already made the indirect branch for indirect goto, return its block. 779 if (IndirectBranch) return IndirectBranch->getParent(); 780 781 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 782 783 // Create the PHI node that indirect gotos will add entries to. 784 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 785 "indirect.goto.dest"); 786 787 // Create the indirect branch instruction. 788 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 789 return IndirectBranch->getParent(); 790 } 791 792 /// Computes the length of an array in elements, as well as the base 793 /// element type and a properly-typed first element pointer. 794 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 795 QualType &baseType, 796 llvm::Value *&addr) { 797 const ArrayType *arrayType = origArrayType; 798 799 // If it's a VLA, we have to load the stored size. Note that 800 // this is the size of the VLA in bytes, not its size in elements. 801 llvm::Value *numVLAElements = 0; 802 if (isa<VariableArrayType>(arrayType)) { 803 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 804 805 // Walk into all VLAs. This doesn't require changes to addr, 806 // which has type T* where T is the first non-VLA element type. 807 do { 808 QualType elementType = arrayType->getElementType(); 809 arrayType = getContext().getAsArrayType(elementType); 810 811 // If we only have VLA components, 'addr' requires no adjustment. 812 if (!arrayType) { 813 baseType = elementType; 814 return numVLAElements; 815 } 816 } while (isa<VariableArrayType>(arrayType)); 817 818 // We get out here only if we find a constant array type 819 // inside the VLA. 820 } 821 822 // We have some number of constant-length arrays, so addr should 823 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 824 // down to the first element of addr. 825 SmallVector<llvm::Value*, 8> gepIndices; 826 827 // GEP down to the array type. 828 llvm::ConstantInt *zero = Builder.getInt32(0); 829 gepIndices.push_back(zero); 830 831 // It's more efficient to calculate the count from the LLVM 832 // constant-length arrays than to re-evaluate the array bounds. 833 uint64_t countFromCLAs = 1; 834 835 llvm::ArrayType *llvmArrayType = 836 cast<llvm::ArrayType>( 837 cast<llvm::PointerType>(addr->getType())->getElementType()); 838 while (true) { 839 assert(isa<ConstantArrayType>(arrayType)); 840 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 841 == llvmArrayType->getNumElements()); 842 843 gepIndices.push_back(zero); 844 countFromCLAs *= llvmArrayType->getNumElements(); 845 846 llvmArrayType = 847 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 848 if (!llvmArrayType) break; 849 850 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 851 assert(arrayType && "LLVM and Clang types are out-of-synch"); 852 } 853 854 baseType = arrayType->getElementType(); 855 856 // Create the actual GEP. 857 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 858 859 llvm::Value *numElements 860 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 861 862 // If we had any VLA dimensions, factor them in. 863 if (numVLAElements) 864 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 865 866 return numElements; 867 } 868 869 std::pair<llvm::Value*, QualType> 870 CodeGenFunction::getVLASize(QualType type) { 871 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 872 assert(vla && "type was not a variable array type!"); 873 return getVLASize(vla); 874 } 875 876 std::pair<llvm::Value*, QualType> 877 CodeGenFunction::getVLASize(const VariableArrayType *type) { 878 // The number of elements so far; always size_t. 879 llvm::Value *numElements = 0; 880 881 QualType elementType; 882 do { 883 elementType = type->getElementType(); 884 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 885 assert(vlaSize && "no size for VLA!"); 886 assert(vlaSize->getType() == SizeTy); 887 888 if (!numElements) { 889 numElements = vlaSize; 890 } else { 891 // It's undefined behavior if this wraps around, so mark it that way. 892 numElements = Builder.CreateNUWMul(numElements, vlaSize); 893 } 894 } while ((type = getContext().getAsVariableArrayType(elementType))); 895 896 return std::pair<llvm::Value*,QualType>(numElements, elementType); 897 } 898 899 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 900 assert(type->isVariablyModifiedType() && 901 "Must pass variably modified type to EmitVLASizes!"); 902 903 EnsureInsertPoint(); 904 905 // We're going to walk down into the type and look for VLA 906 // expressions. 907 type = type.getCanonicalType(); 908 do { 909 assert(type->isVariablyModifiedType()); 910 911 const Type *ty = type.getTypePtr(); 912 switch (ty->getTypeClass()) { 913 #define TYPE(Class, Base) 914 #define ABSTRACT_TYPE(Class, Base) 915 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 916 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 917 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 918 #include "clang/AST/TypeNodes.def" 919 llvm_unreachable("unexpected dependent or non-canonical type!"); 920 921 // These types are never variably-modified. 922 case Type::Builtin: 923 case Type::Complex: 924 case Type::Vector: 925 case Type::ExtVector: 926 case Type::Record: 927 case Type::Enum: 928 case Type::ObjCObject: 929 case Type::ObjCInterface: 930 case Type::ObjCObjectPointer: 931 llvm_unreachable("type class is never variably-modified!"); 932 933 case Type::Pointer: 934 type = cast<PointerType>(ty)->getPointeeType(); 935 break; 936 937 case Type::BlockPointer: 938 type = cast<BlockPointerType>(ty)->getPointeeType(); 939 break; 940 941 case Type::LValueReference: 942 case Type::RValueReference: 943 type = cast<ReferenceType>(ty)->getPointeeType(); 944 break; 945 946 case Type::MemberPointer: 947 type = cast<MemberPointerType>(ty)->getPointeeType(); 948 break; 949 950 case Type::ConstantArray: 951 case Type::IncompleteArray: 952 // Losing element qualification here is fine. 953 type = cast<ArrayType>(ty)->getElementType(); 954 break; 955 956 case Type::VariableArray: { 957 // Losing element qualification here is fine. 958 const VariableArrayType *vat = cast<VariableArrayType>(ty); 959 960 // Unknown size indication requires no size computation. 961 // Otherwise, evaluate and record it. 962 if (const Expr *size = vat->getSizeExpr()) { 963 // It's possible that we might have emitted this already, 964 // e.g. with a typedef and a pointer to it. 965 llvm::Value *&entry = VLASizeMap[size]; 966 if (!entry) { 967 // Always zexting here would be wrong if it weren't 968 // undefined behavior to have a negative bound. 969 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 970 /*signed*/ false); 971 } 972 } 973 type = vat->getElementType(); 974 break; 975 } 976 977 case Type::FunctionProto: 978 case Type::FunctionNoProto: 979 type = cast<FunctionType>(ty)->getResultType(); 980 break; 981 } 982 } while (type->isVariablyModifiedType()); 983 } 984 985 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 986 if (getContext().getBuiltinVaListType()->isArrayType()) 987 return EmitScalarExpr(E); 988 return EmitLValue(E).getAddress(); 989 } 990 991 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 992 llvm::Constant *Init) { 993 assert (Init && "Invalid DeclRefExpr initializer!"); 994 if (CGDebugInfo *Dbg = getDebugInfo()) 995 Dbg->EmitGlobalVariable(E->getDecl(), Init); 996 } 997 998 CodeGenFunction::PeepholeProtection 999 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1000 // At the moment, the only aggressive peephole we do in IR gen 1001 // is trunc(zext) folding, but if we add more, we can easily 1002 // extend this protection. 1003 1004 if (!rvalue.isScalar()) return PeepholeProtection(); 1005 llvm::Value *value = rvalue.getScalarVal(); 1006 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1007 1008 // Just make an extra bitcast. 1009 assert(HaveInsertPoint()); 1010 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1011 Builder.GetInsertBlock()); 1012 1013 PeepholeProtection protection; 1014 protection.Inst = inst; 1015 return protection; 1016 } 1017 1018 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1019 if (!protection.Inst) return; 1020 1021 // In theory, we could try to duplicate the peepholes now, but whatever. 1022 protection.Inst->eraseFromParent(); 1023 } 1024 1025 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1026 llvm::Value *AnnotatedVal, 1027 llvm::StringRef AnnotationStr, 1028 SourceLocation Location) { 1029 llvm::Value *Args[4] = { 1030 AnnotatedVal, 1031 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1032 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1033 CGM.EmitAnnotationLineNo(Location) 1034 }; 1035 return Builder.CreateCall(AnnotationFn, Args); 1036 } 1037 1038 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1039 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1040 // FIXME We create a new bitcast for every annotation because that's what 1041 // llvm-gcc was doing. 1042 for (specific_attr_iterator<AnnotateAttr> 1043 ai = D->specific_attr_begin<AnnotateAttr>(), 1044 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1045 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1046 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1047 (*ai)->getAnnotation(), D->getLocation()); 1048 } 1049 1050 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1051 llvm::Value *V) { 1052 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1053 llvm::Type *VTy = V->getType(); 1054 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1055 CGM.Int8PtrTy); 1056 1057 for (specific_attr_iterator<AnnotateAttr> 1058 ai = D->specific_attr_begin<AnnotateAttr>(), 1059 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1060 // FIXME Always emit the cast inst so we can differentiate between 1061 // annotation on the first field of a struct and annotation on the struct 1062 // itself. 1063 if (VTy != CGM.Int8PtrTy) 1064 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1065 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1066 V = Builder.CreateBitCast(V, VTy); 1067 } 1068 1069 return V; 1070 } 1071