1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     NormalCleanupDest(0), NextCleanupDestIndex(1),
36     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
41     TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 
48 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
49   return CGM.getTypes().ConvertTypeForMem(T);
50 }
51 
52 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
53   return CGM.getTypes().ConvertType(T);
54 }
55 
56 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
57   switch (type.getCanonicalType()->getTypeClass()) {
58 #define TYPE(name, parent)
59 #define ABSTRACT_TYPE(name, parent)
60 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
61 #define DEPENDENT_TYPE(name, parent) case Type::name:
62 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
63 #include "clang/AST/TypeNodes.def"
64     llvm_unreachable("non-canonical or dependent type in IR-generation");
65 
66   case Type::Builtin:
67   case Type::Pointer:
68   case Type::BlockPointer:
69   case Type::LValueReference:
70   case Type::RValueReference:
71   case Type::MemberPointer:
72   case Type::Vector:
73   case Type::ExtVector:
74   case Type::FunctionProto:
75   case Type::FunctionNoProto:
76   case Type::Enum:
77   case Type::ObjCObjectPointer:
78     return false;
79 
80   // Complexes, arrays, records, and Objective-C objects.
81   case Type::Complex:
82   case Type::ConstantArray:
83   case Type::IncompleteArray:
84   case Type::VariableArray:
85   case Type::Record:
86   case Type::ObjCObject:
87   case Type::ObjCInterface:
88     return true;
89   }
90   llvm_unreachable("unknown type kind!");
91 }
92 
93 void CodeGenFunction::EmitReturnBlock() {
94   // For cleanliness, we try to avoid emitting the return block for
95   // simple cases.
96   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
97 
98   if (CurBB) {
99     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
100 
101     // We have a valid insert point, reuse it if it is empty or there are no
102     // explicit jumps to the return block.
103     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
104       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
105       delete ReturnBlock.getBlock();
106     } else
107       EmitBlock(ReturnBlock.getBlock());
108     return;
109   }
110 
111   // Otherwise, if the return block is the target of a single direct
112   // branch then we can just put the code in that block instead. This
113   // cleans up functions which started with a unified return block.
114   if (ReturnBlock.getBlock()->hasOneUse()) {
115     llvm::BranchInst *BI =
116       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
117     if (BI && BI->isUnconditional() &&
118         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
119       // Reset insertion point, including debug location, and delete the branch.
120       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
121       Builder.SetInsertPoint(BI->getParent());
122       BI->eraseFromParent();
123       delete ReturnBlock.getBlock();
124       return;
125     }
126   }
127 
128   // FIXME: We are at an unreachable point, there is no reason to emit the block
129   // unless it has uses. However, we still need a place to put the debug
130   // region.end for now.
131 
132   EmitBlock(ReturnBlock.getBlock());
133 }
134 
135 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
136   if (!BB) return;
137   if (!BB->use_empty())
138     return CGF.CurFn->getBasicBlockList().push_back(BB);
139   delete BB;
140 }
141 
142 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
143   assert(BreakContinueStack.empty() &&
144          "mismatched push/pop in break/continue stack!");
145 
146   // Pop any cleanups that might have been associated with the
147   // parameters.  Do this in whatever block we're currently in; it's
148   // important to do this before we enter the return block or return
149   // edges will be *really* confused.
150   if (EHStack.stable_begin() != PrologueCleanupDepth)
151     PopCleanupBlocks(PrologueCleanupDepth);
152 
153   // Emit function epilog (to return).
154   EmitReturnBlock();
155 
156   if (ShouldInstrumentFunction())
157     EmitFunctionInstrumentation("__cyg_profile_func_exit");
158 
159   // Emit debug descriptor for function end.
160   if (CGDebugInfo *DI = getDebugInfo()) {
161     DI->setLocation(EndLoc);
162     DI->EmitFunctionEnd(Builder);
163   }
164 
165   EmitFunctionEpilog(*CurFnInfo);
166   EmitEndEHSpec(CurCodeDecl);
167 
168   assert(EHStack.empty() &&
169          "did not remove all scopes from cleanup stack!");
170 
171   // If someone did an indirect goto, emit the indirect goto block at the end of
172   // the function.
173   if (IndirectBranch) {
174     EmitBlock(IndirectBranch->getParent());
175     Builder.ClearInsertionPoint();
176   }
177 
178   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
179   llvm::Instruction *Ptr = AllocaInsertPt;
180   AllocaInsertPt = 0;
181   Ptr->eraseFromParent();
182 
183   // If someone took the address of a label but never did an indirect goto, we
184   // made a zero entry PHI node, which is illegal, zap it now.
185   if (IndirectBranch) {
186     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
187     if (PN->getNumIncomingValues() == 0) {
188       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
189       PN->eraseFromParent();
190     }
191   }
192 
193   EmitIfUsed(*this, EHResumeBlock);
194   EmitIfUsed(*this, TerminateLandingPad);
195   EmitIfUsed(*this, TerminateHandler);
196   EmitIfUsed(*this, UnreachableBlock);
197 
198   if (CGM.getCodeGenOpts().EmitDeclMetadata)
199     EmitDeclMetadata();
200 }
201 
202 /// ShouldInstrumentFunction - Return true if the current function should be
203 /// instrumented with __cyg_profile_func_* calls
204 bool CodeGenFunction::ShouldInstrumentFunction() {
205   if (!CGM.getCodeGenOpts().InstrumentFunctions)
206     return false;
207   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
208     return false;
209   return true;
210 }
211 
212 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
213 /// instrumentation function with the current function and the call site, if
214 /// function instrumentation is enabled.
215 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
216   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
217   llvm::PointerType *PointerTy = Int8PtrTy;
218   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
219   llvm::FunctionType *FunctionTy =
220     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
221                             ProfileFuncArgs, false);
222 
223   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
224   llvm::CallInst *CallSite = Builder.CreateCall(
225     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
226     llvm::ConstantInt::get(Int32Ty, 0),
227     "callsite");
228 
229   Builder.CreateCall2(F,
230                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
231                       CallSite);
232 }
233 
234 void CodeGenFunction::EmitMCountInstrumentation() {
235   llvm::FunctionType *FTy =
236     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
237 
238   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
239                                                        Target.getMCountName());
240   Builder.CreateCall(MCountFn);
241 }
242 
243 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
244                                     llvm::Function *Fn,
245                                     const CGFunctionInfo &FnInfo,
246                                     const FunctionArgList &Args,
247                                     SourceLocation StartLoc) {
248   const Decl *D = GD.getDecl();
249 
250   DidCallStackSave = false;
251   CurCodeDecl = CurFuncDecl = D;
252   FnRetTy = RetTy;
253   CurFn = Fn;
254   CurFnInfo = &FnInfo;
255   assert(CurFn->isDeclaration() && "Function already has body?");
256 
257   // Pass inline keyword to optimizer if it appears explicitly on any
258   // declaration.
259   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
260     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
261            RE = FD->redecls_end(); RI != RE; ++RI)
262       if (RI->isInlineSpecified()) {
263         Fn->addFnAttr(llvm::Attribute::InlineHint);
264         break;
265       }
266 
267   if (getContext().getLangOptions().OpenCL) {
268     // Add metadata for a kernel function.
269     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270       if (FD->hasAttr<OpenCLKernelAttr>()) {
271         llvm::LLVMContext &Context = getLLVMContext();
272         llvm::NamedMDNode *OpenCLMetadata =
273           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
274 
275         llvm::Value *Op = Fn;
276         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
277       }
278   }
279 
280   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
281 
282   // Create a marker to make it easy to insert allocas into the entryblock
283   // later.  Don't create this with the builder, because we don't want it
284   // folded.
285   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
286   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
287   if (Builder.isNamePreserving())
288     AllocaInsertPt->setName("allocapt");
289 
290   ReturnBlock = getJumpDestInCurrentScope("return");
291 
292   Builder.SetInsertPoint(EntryBB);
293 
294   // Emit subprogram debug descriptor.
295   if (CGDebugInfo *DI = getDebugInfo()) {
296     // FIXME: what is going on here and why does it ignore all these
297     // interesting type properties?
298     QualType FnType =
299       getContext().getFunctionType(RetTy, 0, 0,
300                                    FunctionProtoType::ExtProtoInfo());
301 
302     DI->setLocation(StartLoc);
303     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
304   }
305 
306   if (ShouldInstrumentFunction())
307     EmitFunctionInstrumentation("__cyg_profile_func_enter");
308 
309   if (CGM.getCodeGenOpts().InstrumentForProfiling)
310     EmitMCountInstrumentation();
311 
312   if (RetTy->isVoidType()) {
313     // Void type; nothing to return.
314     ReturnValue = 0;
315   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
316              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
317     // Indirect aggregate return; emit returned value directly into sret slot.
318     // This reduces code size, and affects correctness in C++.
319     ReturnValue = CurFn->arg_begin();
320   } else {
321     ReturnValue = CreateIRTemp(RetTy, "retval");
322 
323     // Tell the epilog emitter to autorelease the result.  We do this
324     // now so that various specialized functions can suppress it
325     // during their IR-generation.
326     if (getLangOptions().ObjCAutoRefCount &&
327         !CurFnInfo->isReturnsRetained() &&
328         RetTy->isObjCRetainableType())
329       AutoreleaseResult = true;
330   }
331 
332   EmitStartEHSpec(CurCodeDecl);
333 
334   PrologueCleanupDepth = EHStack.stable_begin();
335   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
336 
337   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
338     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
339 
340   // If any of the arguments have a variably modified type, make sure to
341   // emit the type size.
342   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
343        i != e; ++i) {
344     QualType Ty = (*i)->getType();
345 
346     if (Ty->isVariablyModifiedType())
347       EmitVariablyModifiedType(Ty);
348   }
349 }
350 
351 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
352   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
353   assert(FD->getBody());
354   EmitStmt(FD->getBody());
355 }
356 
357 /// Tries to mark the given function nounwind based on the
358 /// non-existence of any throwing calls within it.  We believe this is
359 /// lightweight enough to do at -O0.
360 static void TryMarkNoThrow(llvm::Function *F) {
361   // LLVM treats 'nounwind' on a function as part of the type, so we
362   // can't do this on functions that can be overwritten.
363   if (F->mayBeOverridden()) return;
364 
365   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
366     for (llvm::BasicBlock::iterator
367            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
368       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
369         if (!Call->doesNotThrow())
370           return;
371       } else if (isa<llvm::ResumeInst>(&*BI)) {
372         return;
373       }
374   F->setDoesNotThrow(true);
375 }
376 
377 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
378                                    const CGFunctionInfo &FnInfo) {
379   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
380 
381   // Check if we should generate debug info for this function.
382   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
383     DebugInfo = CGM.getModuleDebugInfo();
384 
385   FunctionArgList Args;
386   QualType ResTy = FD->getResultType();
387 
388   CurGD = GD;
389   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
390     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
391 
392   if (FD->getNumParams())
393     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
394       Args.push_back(FD->getParamDecl(i));
395 
396   SourceRange BodyRange;
397   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
398 
399   // Emit the standard function prologue.
400   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
401 
402   // Generate the body of the function.
403   if (isa<CXXDestructorDecl>(FD))
404     EmitDestructorBody(Args);
405   else if (isa<CXXConstructorDecl>(FD))
406     EmitConstructorBody(Args);
407   else
408     EmitFunctionBody(Args);
409 
410   // Emit the standard function epilogue.
411   FinishFunction(BodyRange.getEnd());
412 
413   // If we haven't marked the function nothrow through other means, do
414   // a quick pass now to see if we can.
415   if (!CurFn->doesNotThrow())
416     TryMarkNoThrow(CurFn);
417 }
418 
419 /// ContainsLabel - Return true if the statement contains a label in it.  If
420 /// this statement is not executed normally, it not containing a label means
421 /// that we can just remove the code.
422 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
423   // Null statement, not a label!
424   if (S == 0) return false;
425 
426   // If this is a label, we have to emit the code, consider something like:
427   // if (0) {  ...  foo:  bar(); }  goto foo;
428   //
429   // TODO: If anyone cared, we could track __label__'s, since we know that you
430   // can't jump to one from outside their declared region.
431   if (isa<LabelStmt>(S))
432     return true;
433 
434   // If this is a case/default statement, and we haven't seen a switch, we have
435   // to emit the code.
436   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
437     return true;
438 
439   // If this is a switch statement, we want to ignore cases below it.
440   if (isa<SwitchStmt>(S))
441     IgnoreCaseStmts = true;
442 
443   // Scan subexpressions for verboten labels.
444   for (Stmt::const_child_range I = S->children(); I; ++I)
445     if (ContainsLabel(*I, IgnoreCaseStmts))
446       return true;
447 
448   return false;
449 }
450 
451 /// containsBreak - Return true if the statement contains a break out of it.
452 /// If the statement (recursively) contains a switch or loop with a break
453 /// inside of it, this is fine.
454 bool CodeGenFunction::containsBreak(const Stmt *S) {
455   // Null statement, not a label!
456   if (S == 0) return false;
457 
458   // If this is a switch or loop that defines its own break scope, then we can
459   // include it and anything inside of it.
460   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
461       isa<ForStmt>(S))
462     return false;
463 
464   if (isa<BreakStmt>(S))
465     return true;
466 
467   // Scan subexpressions for verboten breaks.
468   for (Stmt::const_child_range I = S->children(); I; ++I)
469     if (containsBreak(*I))
470       return true;
471 
472   return false;
473 }
474 
475 
476 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
477 /// to a constant, or if it does but contains a label, return false.  If it
478 /// constant folds return true and set the boolean result in Result.
479 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
480                                                    bool &ResultBool) {
481   llvm::APInt ResultInt;
482   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
483     return false;
484 
485   ResultBool = ResultInt.getBoolValue();
486   return true;
487 }
488 
489 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
490 /// to a constant, or if it does but contains a label, return false.  If it
491 /// constant folds return true and set the folded value.
492 bool CodeGenFunction::
493 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
494   // FIXME: Rename and handle conversion of other evaluatable things
495   // to bool.
496   Expr::EvalResult Result;
497   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
498       Result.HasSideEffects)
499     return false;  // Not foldable, not integer or not fully evaluatable.
500 
501   if (CodeGenFunction::ContainsLabel(Cond))
502     return false;  // Contains a label.
503 
504   ResultInt = Result.Val.getInt();
505   return true;
506 }
507 
508 
509 
510 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
511 /// statement) to the specified blocks.  Based on the condition, this might try
512 /// to simplify the codegen of the conditional based on the branch.
513 ///
514 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
515                                            llvm::BasicBlock *TrueBlock,
516                                            llvm::BasicBlock *FalseBlock) {
517   Cond = Cond->IgnoreParens();
518 
519   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
520     // Handle X && Y in a condition.
521     if (CondBOp->getOpcode() == BO_LAnd) {
522       // If we have "1 && X", simplify the code.  "0 && X" would have constant
523       // folded if the case was simple enough.
524       bool ConstantBool = false;
525       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
526           ConstantBool) {
527         // br(1 && X) -> br(X).
528         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
529       }
530 
531       // If we have "X && 1", simplify the code to use an uncond branch.
532       // "X && 0" would have been constant folded to 0.
533       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
534           ConstantBool) {
535         // br(X && 1) -> br(X).
536         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
537       }
538 
539       // Emit the LHS as a conditional.  If the LHS conditional is false, we
540       // want to jump to the FalseBlock.
541       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
542 
543       ConditionalEvaluation eval(*this);
544       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
545       EmitBlock(LHSTrue);
546 
547       // Any temporaries created here are conditional.
548       eval.begin(*this);
549       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
550       eval.end(*this);
551 
552       return;
553     }
554 
555     if (CondBOp->getOpcode() == BO_LOr) {
556       // If we have "0 || X", simplify the code.  "1 || X" would have constant
557       // folded if the case was simple enough.
558       bool ConstantBool = false;
559       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
560           !ConstantBool) {
561         // br(0 || X) -> br(X).
562         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
563       }
564 
565       // If we have "X || 0", simplify the code to use an uncond branch.
566       // "X || 1" would have been constant folded to 1.
567       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
568           !ConstantBool) {
569         // br(X || 0) -> br(X).
570         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
571       }
572 
573       // Emit the LHS as a conditional.  If the LHS conditional is true, we
574       // want to jump to the TrueBlock.
575       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
576 
577       ConditionalEvaluation eval(*this);
578       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
579       EmitBlock(LHSFalse);
580 
581       // Any temporaries created here are conditional.
582       eval.begin(*this);
583       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
584       eval.end(*this);
585 
586       return;
587     }
588   }
589 
590   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
591     // br(!x, t, f) -> br(x, f, t)
592     if (CondUOp->getOpcode() == UO_LNot)
593       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
594   }
595 
596   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
597     // Handle ?: operator.
598 
599     // Just ignore GNU ?: extension.
600     if (CondOp->getLHS()) {
601       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
602       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
603       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
604 
605       ConditionalEvaluation cond(*this);
606       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
607 
608       cond.begin(*this);
609       EmitBlock(LHSBlock);
610       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
611       cond.end(*this);
612 
613       cond.begin(*this);
614       EmitBlock(RHSBlock);
615       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
616       cond.end(*this);
617 
618       return;
619     }
620   }
621 
622   // Emit the code with the fully general case.
623   llvm::Value *CondV = EvaluateExprAsBool(Cond);
624   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
625 }
626 
627 /// ErrorUnsupported - Print out an error that codegen doesn't support the
628 /// specified stmt yet.
629 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
630                                        bool OmitOnError) {
631   CGM.ErrorUnsupported(S, Type, OmitOnError);
632 }
633 
634 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
635 /// variable-length array whose elements have a non-zero bit-pattern.
636 ///
637 /// \param src - a char* pointing to the bit-pattern for a single
638 /// base element of the array
639 /// \param sizeInChars - the total size of the VLA, in chars
640 /// \param align - the total alignment of the VLA
641 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
642                                llvm::Value *dest, llvm::Value *src,
643                                llvm::Value *sizeInChars) {
644   std::pair<CharUnits,CharUnits> baseSizeAndAlign
645     = CGF.getContext().getTypeInfoInChars(baseType);
646 
647   CGBuilderTy &Builder = CGF.Builder;
648 
649   llvm::Value *baseSizeInChars
650     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
651 
652   llvm::Type *i8p = Builder.getInt8PtrTy();
653 
654   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
655   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
656 
657   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
658   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
659   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
660 
661   // Make a loop over the VLA.  C99 guarantees that the VLA element
662   // count must be nonzero.
663   CGF.EmitBlock(loopBB);
664 
665   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
666   cur->addIncoming(begin, originBB);
667 
668   // memcpy the individual element bit-pattern.
669   Builder.CreateMemCpy(cur, src, baseSizeInChars,
670                        baseSizeAndAlign.second.getQuantity(),
671                        /*volatile*/ false);
672 
673   // Go to the next element.
674   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
675 
676   // Leave if that's the end of the VLA.
677   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
678   Builder.CreateCondBr(done, contBB, loopBB);
679   cur->addIncoming(next, loopBB);
680 
681   CGF.EmitBlock(contBB);
682 }
683 
684 void
685 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
686   // Ignore empty classes in C++.
687   if (getContext().getLangOptions().CPlusPlus) {
688     if (const RecordType *RT = Ty->getAs<RecordType>()) {
689       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
690         return;
691     }
692   }
693 
694   // Cast the dest ptr to the appropriate i8 pointer type.
695   unsigned DestAS =
696     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
697   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
698   if (DestPtr->getType() != BP)
699     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
700 
701   // Get size and alignment info for this aggregate.
702   std::pair<CharUnits, CharUnits> TypeInfo =
703     getContext().getTypeInfoInChars(Ty);
704   CharUnits Size = TypeInfo.first;
705   CharUnits Align = TypeInfo.second;
706 
707   llvm::Value *SizeVal;
708   const VariableArrayType *vla;
709 
710   // Don't bother emitting a zero-byte memset.
711   if (Size.isZero()) {
712     // But note that getTypeInfo returns 0 for a VLA.
713     if (const VariableArrayType *vlaType =
714           dyn_cast_or_null<VariableArrayType>(
715                                           getContext().getAsArrayType(Ty))) {
716       QualType eltType;
717       llvm::Value *numElts;
718       llvm::tie(numElts, eltType) = getVLASize(vlaType);
719 
720       SizeVal = numElts;
721       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
722       if (!eltSize.isOne())
723         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
724       vla = vlaType;
725     } else {
726       return;
727     }
728   } else {
729     SizeVal = CGM.getSize(Size);
730     vla = 0;
731   }
732 
733   // If the type contains a pointer to data member we can't memset it to zero.
734   // Instead, create a null constant and copy it to the destination.
735   // TODO: there are other patterns besides zero that we can usefully memset,
736   // like -1, which happens to be the pattern used by member-pointers.
737   if (!CGM.getTypes().isZeroInitializable(Ty)) {
738     // For a VLA, emit a single element, then splat that over the VLA.
739     if (vla) Ty = getContext().getBaseElementType(vla);
740 
741     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
742 
743     llvm::GlobalVariable *NullVariable =
744       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
745                                /*isConstant=*/true,
746                                llvm::GlobalVariable::PrivateLinkage,
747                                NullConstant, Twine());
748     llvm::Value *SrcPtr =
749       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
750 
751     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
752 
753     // Get and call the appropriate llvm.memcpy overload.
754     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
755     return;
756   }
757 
758   // Otherwise, just memset the whole thing to zero.  This is legal
759   // because in LLVM, all default initializers (other than the ones we just
760   // handled above) are guaranteed to have a bit pattern of all zeros.
761   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
762                        Align.getQuantity(), false);
763 }
764 
765 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
766   // Make sure that there is a block for the indirect goto.
767   if (IndirectBranch == 0)
768     GetIndirectGotoBlock();
769 
770   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
771 
772   // Make sure the indirect branch includes all of the address-taken blocks.
773   IndirectBranch->addDestination(BB);
774   return llvm::BlockAddress::get(CurFn, BB);
775 }
776 
777 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
778   // If we already made the indirect branch for indirect goto, return its block.
779   if (IndirectBranch) return IndirectBranch->getParent();
780 
781   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
782 
783   // Create the PHI node that indirect gotos will add entries to.
784   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
785                                               "indirect.goto.dest");
786 
787   // Create the indirect branch instruction.
788   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
789   return IndirectBranch->getParent();
790 }
791 
792 /// Computes the length of an array in elements, as well as the base
793 /// element type and a properly-typed first element pointer.
794 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
795                                               QualType &baseType,
796                                               llvm::Value *&addr) {
797   const ArrayType *arrayType = origArrayType;
798 
799   // If it's a VLA, we have to load the stored size.  Note that
800   // this is the size of the VLA in bytes, not its size in elements.
801   llvm::Value *numVLAElements = 0;
802   if (isa<VariableArrayType>(arrayType)) {
803     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
804 
805     // Walk into all VLAs.  This doesn't require changes to addr,
806     // which has type T* where T is the first non-VLA element type.
807     do {
808       QualType elementType = arrayType->getElementType();
809       arrayType = getContext().getAsArrayType(elementType);
810 
811       // If we only have VLA components, 'addr' requires no adjustment.
812       if (!arrayType) {
813         baseType = elementType;
814         return numVLAElements;
815       }
816     } while (isa<VariableArrayType>(arrayType));
817 
818     // We get out here only if we find a constant array type
819     // inside the VLA.
820   }
821 
822   // We have some number of constant-length arrays, so addr should
823   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
824   // down to the first element of addr.
825   SmallVector<llvm::Value*, 8> gepIndices;
826 
827   // GEP down to the array type.
828   llvm::ConstantInt *zero = Builder.getInt32(0);
829   gepIndices.push_back(zero);
830 
831   // It's more efficient to calculate the count from the LLVM
832   // constant-length arrays than to re-evaluate the array bounds.
833   uint64_t countFromCLAs = 1;
834 
835   llvm::ArrayType *llvmArrayType =
836     cast<llvm::ArrayType>(
837       cast<llvm::PointerType>(addr->getType())->getElementType());
838   while (true) {
839     assert(isa<ConstantArrayType>(arrayType));
840     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
841              == llvmArrayType->getNumElements());
842 
843     gepIndices.push_back(zero);
844     countFromCLAs *= llvmArrayType->getNumElements();
845 
846     llvmArrayType =
847       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
848     if (!llvmArrayType) break;
849 
850     arrayType = getContext().getAsArrayType(arrayType->getElementType());
851     assert(arrayType && "LLVM and Clang types are out-of-synch");
852   }
853 
854   baseType = arrayType->getElementType();
855 
856   // Create the actual GEP.
857   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
858 
859   llvm::Value *numElements
860     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
861 
862   // If we had any VLA dimensions, factor them in.
863   if (numVLAElements)
864     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
865 
866   return numElements;
867 }
868 
869 std::pair<llvm::Value*, QualType>
870 CodeGenFunction::getVLASize(QualType type) {
871   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
872   assert(vla && "type was not a variable array type!");
873   return getVLASize(vla);
874 }
875 
876 std::pair<llvm::Value*, QualType>
877 CodeGenFunction::getVLASize(const VariableArrayType *type) {
878   // The number of elements so far; always size_t.
879   llvm::Value *numElements = 0;
880 
881   QualType elementType;
882   do {
883     elementType = type->getElementType();
884     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
885     assert(vlaSize && "no size for VLA!");
886     assert(vlaSize->getType() == SizeTy);
887 
888     if (!numElements) {
889       numElements = vlaSize;
890     } else {
891       // It's undefined behavior if this wraps around, so mark it that way.
892       numElements = Builder.CreateNUWMul(numElements, vlaSize);
893     }
894   } while ((type = getContext().getAsVariableArrayType(elementType)));
895 
896   return std::pair<llvm::Value*,QualType>(numElements, elementType);
897 }
898 
899 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
900   assert(type->isVariablyModifiedType() &&
901          "Must pass variably modified type to EmitVLASizes!");
902 
903   EnsureInsertPoint();
904 
905   // We're going to walk down into the type and look for VLA
906   // expressions.
907   type = type.getCanonicalType();
908   do {
909     assert(type->isVariablyModifiedType());
910 
911     const Type *ty = type.getTypePtr();
912     switch (ty->getTypeClass()) {
913 #define TYPE(Class, Base)
914 #define ABSTRACT_TYPE(Class, Base)
915 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
916 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
917 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
918 #include "clang/AST/TypeNodes.def"
919       llvm_unreachable("unexpected dependent or non-canonical type!");
920 
921     // These types are never variably-modified.
922     case Type::Builtin:
923     case Type::Complex:
924     case Type::Vector:
925     case Type::ExtVector:
926     case Type::Record:
927     case Type::Enum:
928     case Type::ObjCObject:
929     case Type::ObjCInterface:
930     case Type::ObjCObjectPointer:
931       llvm_unreachable("type class is never variably-modified!");
932 
933     case Type::Pointer:
934       type = cast<PointerType>(ty)->getPointeeType();
935       break;
936 
937     case Type::BlockPointer:
938       type = cast<BlockPointerType>(ty)->getPointeeType();
939       break;
940 
941     case Type::LValueReference:
942     case Type::RValueReference:
943       type = cast<ReferenceType>(ty)->getPointeeType();
944       break;
945 
946     case Type::MemberPointer:
947       type = cast<MemberPointerType>(ty)->getPointeeType();
948       break;
949 
950     case Type::ConstantArray:
951     case Type::IncompleteArray:
952       // Losing element qualification here is fine.
953       type = cast<ArrayType>(ty)->getElementType();
954       break;
955 
956     case Type::VariableArray: {
957       // Losing element qualification here is fine.
958       const VariableArrayType *vat = cast<VariableArrayType>(ty);
959 
960       // Unknown size indication requires no size computation.
961       // Otherwise, evaluate and record it.
962       if (const Expr *size = vat->getSizeExpr()) {
963         // It's possible that we might have emitted this already,
964         // e.g. with a typedef and a pointer to it.
965         llvm::Value *&entry = VLASizeMap[size];
966         if (!entry) {
967           // Always zexting here would be wrong if it weren't
968           // undefined behavior to have a negative bound.
969           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
970                                         /*signed*/ false);
971         }
972       }
973       type = vat->getElementType();
974       break;
975     }
976 
977     case Type::FunctionProto:
978     case Type::FunctionNoProto:
979       type = cast<FunctionType>(ty)->getResultType();
980       break;
981     }
982   } while (type->isVariablyModifiedType());
983 }
984 
985 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
986   if (getContext().getBuiltinVaListType()->isArrayType())
987     return EmitScalarExpr(E);
988   return EmitLValue(E).getAddress();
989 }
990 
991 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
992                                               llvm::Constant *Init) {
993   assert (Init && "Invalid DeclRefExpr initializer!");
994   if (CGDebugInfo *Dbg = getDebugInfo())
995     Dbg->EmitGlobalVariable(E->getDecl(), Init);
996 }
997 
998 CodeGenFunction::PeepholeProtection
999 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1000   // At the moment, the only aggressive peephole we do in IR gen
1001   // is trunc(zext) folding, but if we add more, we can easily
1002   // extend this protection.
1003 
1004   if (!rvalue.isScalar()) return PeepholeProtection();
1005   llvm::Value *value = rvalue.getScalarVal();
1006   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1007 
1008   // Just make an extra bitcast.
1009   assert(HaveInsertPoint());
1010   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1011                                                   Builder.GetInsertBlock());
1012 
1013   PeepholeProtection protection;
1014   protection.Inst = inst;
1015   return protection;
1016 }
1017 
1018 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1019   if (!protection.Inst) return;
1020 
1021   // In theory, we could try to duplicate the peepholes now, but whatever.
1022   protection.Inst->eraseFromParent();
1023 }
1024 
1025 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1026                                                  llvm::Value *AnnotatedVal,
1027                                                  llvm::StringRef AnnotationStr,
1028                                                  SourceLocation Location) {
1029   llvm::Value *Args[4] = {
1030     AnnotatedVal,
1031     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1032     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1033     CGM.EmitAnnotationLineNo(Location)
1034   };
1035   return Builder.CreateCall(AnnotationFn, Args);
1036 }
1037 
1038 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1039   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1040   // FIXME We create a new bitcast for every annotation because that's what
1041   // llvm-gcc was doing.
1042   for (specific_attr_iterator<AnnotateAttr>
1043        ai = D->specific_attr_begin<AnnotateAttr>(),
1044        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1045     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1046                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1047                        (*ai)->getAnnotation(), D->getLocation());
1048 }
1049 
1050 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1051                                                    llvm::Value *V) {
1052   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1053   llvm::Type *VTy = V->getType();
1054   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1055                                     CGM.Int8PtrTy);
1056 
1057   for (specific_attr_iterator<AnnotateAttr>
1058        ai = D->specific_attr_begin<AnnotateAttr>(),
1059        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1060     // FIXME Always emit the cast inst so we can differentiate between
1061     // annotation on the first field of a struct and annotation on the struct
1062     // itself.
1063     if (VTy != CGM.Int8PtrTy)
1064       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1065     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1066     V = Builder.CreateBitCast(V, VTy);
1067   }
1068 
1069   return V;
1070 }
1071