1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize), 41 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 42 BlockInfo(nullptr), BlockPointer(nullptr), 43 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 44 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 45 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 46 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 47 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 48 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 49 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 50 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 51 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 52 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 53 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 54 TerminateHandler(nullptr), TrapBB(nullptr) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 77 if (getLangOpts().OpenMP) { 78 CGM.getOpenMPRuntime().FunctionFinished(*this); 79 } 80 } 81 82 83 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 84 return CGM.getTypes().ConvertTypeForMem(T); 85 } 86 87 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 88 return CGM.getTypes().ConvertType(T); 89 } 90 91 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 92 type = type.getCanonicalType(); 93 while (true) { 94 switch (type->getTypeClass()) { 95 #define TYPE(name, parent) 96 #define ABSTRACT_TYPE(name, parent) 97 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 98 #define DEPENDENT_TYPE(name, parent) case Type::name: 99 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 100 #include "clang/AST/TypeNodes.def" 101 llvm_unreachable("non-canonical or dependent type in IR-generation"); 102 103 case Type::Auto: 104 llvm_unreachable("undeduced auto type in IR-generation"); 105 106 // Various scalar types. 107 case Type::Builtin: 108 case Type::Pointer: 109 case Type::BlockPointer: 110 case Type::LValueReference: 111 case Type::RValueReference: 112 case Type::MemberPointer: 113 case Type::Vector: 114 case Type::ExtVector: 115 case Type::FunctionProto: 116 case Type::FunctionNoProto: 117 case Type::Enum: 118 case Type::ObjCObjectPointer: 119 return TEK_Scalar; 120 121 // Complexes. 122 case Type::Complex: 123 return TEK_Complex; 124 125 // Arrays, records, and Objective-C objects. 126 case Type::ConstantArray: 127 case Type::IncompleteArray: 128 case Type::VariableArray: 129 case Type::Record: 130 case Type::ObjCObject: 131 case Type::ObjCInterface: 132 return TEK_Aggregate; 133 134 // We operate on atomic values according to their underlying type. 135 case Type::Atomic: 136 type = cast<AtomicType>(type)->getValueType(); 137 continue; 138 } 139 llvm_unreachable("unknown type kind!"); 140 } 141 } 142 143 void CodeGenFunction::EmitReturnBlock() { 144 // For cleanliness, we try to avoid emitting the return block for 145 // simple cases. 146 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 147 148 if (CurBB) { 149 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 150 151 // We have a valid insert point, reuse it if it is empty or there are no 152 // explicit jumps to the return block. 153 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 154 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 155 delete ReturnBlock.getBlock(); 156 } else 157 EmitBlock(ReturnBlock.getBlock()); 158 return; 159 } 160 161 // Otherwise, if the return block is the target of a single direct 162 // branch then we can just put the code in that block instead. This 163 // cleans up functions which started with a unified return block. 164 if (ReturnBlock.getBlock()->hasOneUse()) { 165 llvm::BranchInst *BI = 166 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 167 if (BI && BI->isUnconditional() && 168 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 169 // Reset insertion point, including debug location, and delete the 170 // branch. This is really subtle and only works because the next change 171 // in location will hit the caching in CGDebugInfo::EmitLocation and not 172 // override this. 173 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 174 Builder.SetInsertPoint(BI->getParent()); 175 BI->eraseFromParent(); 176 delete ReturnBlock.getBlock(); 177 return; 178 } 179 } 180 181 // FIXME: We are at an unreachable point, there is no reason to emit the block 182 // unless it has uses. However, we still need a place to put the debug 183 // region.end for now. 184 185 EmitBlock(ReturnBlock.getBlock()); 186 } 187 188 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 189 if (!BB) return; 190 if (!BB->use_empty()) 191 return CGF.CurFn->getBasicBlockList().push_back(BB); 192 delete BB; 193 } 194 195 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 196 assert(BreakContinueStack.empty() && 197 "mismatched push/pop in break/continue stack!"); 198 199 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 200 && NumSimpleReturnExprs == NumReturnExprs 201 && ReturnBlock.getBlock()->use_empty(); 202 // Usually the return expression is evaluated before the cleanup 203 // code. If the function contains only a simple return statement, 204 // such as a constant, the location before the cleanup code becomes 205 // the last useful breakpoint in the function, because the simple 206 // return expression will be evaluated after the cleanup code. To be 207 // safe, set the debug location for cleanup code to the location of 208 // the return statement. Otherwise the cleanup code should be at the 209 // end of the function's lexical scope. 210 // 211 // If there are multiple branches to the return block, the branch 212 // instructions will get the location of the return statements and 213 // all will be fine. 214 if (CGDebugInfo *DI = getDebugInfo()) { 215 if (OnlySimpleReturnStmts) 216 DI->EmitLocation(Builder, LastStopPoint); 217 else 218 DI->EmitLocation(Builder, EndLoc); 219 } 220 221 // Pop any cleanups that might have been associated with the 222 // parameters. Do this in whatever block we're currently in; it's 223 // important to do this before we enter the return block or return 224 // edges will be *really* confused. 225 bool EmitRetDbgLoc = true; 226 if (EHStack.stable_begin() != PrologueCleanupDepth) { 227 PopCleanupBlocks(PrologueCleanupDepth); 228 229 // Make sure the line table doesn't jump back into the body for 230 // the ret after it's been at EndLoc. 231 EmitRetDbgLoc = false; 232 233 if (CGDebugInfo *DI = getDebugInfo()) 234 if (OnlySimpleReturnStmts) 235 DI->EmitLocation(Builder, EndLoc); 236 } 237 238 // Emit function epilog (to return). 239 EmitReturnBlock(); 240 241 if (ShouldInstrumentFunction()) 242 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 243 244 // Emit debug descriptor for function end. 245 if (CGDebugInfo *DI = getDebugInfo()) { 246 DI->EmitFunctionEnd(Builder); 247 } 248 249 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 250 EmitEndEHSpec(CurCodeDecl); 251 252 assert(EHStack.empty() && 253 "did not remove all scopes from cleanup stack!"); 254 255 // If someone did an indirect goto, emit the indirect goto block at the end of 256 // the function. 257 if (IndirectBranch) { 258 EmitBlock(IndirectBranch->getParent()); 259 Builder.ClearInsertionPoint(); 260 } 261 262 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 263 llvm::Instruction *Ptr = AllocaInsertPt; 264 AllocaInsertPt = nullptr; 265 Ptr->eraseFromParent(); 266 267 // If someone took the address of a label but never did an indirect goto, we 268 // made a zero entry PHI node, which is illegal, zap it now. 269 if (IndirectBranch) { 270 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 271 if (PN->getNumIncomingValues() == 0) { 272 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 273 PN->eraseFromParent(); 274 } 275 } 276 277 EmitIfUsed(*this, EHResumeBlock); 278 EmitIfUsed(*this, TerminateLandingPad); 279 EmitIfUsed(*this, TerminateHandler); 280 EmitIfUsed(*this, UnreachableBlock); 281 282 if (CGM.getCodeGenOpts().EmitDeclMetadata) 283 EmitDeclMetadata(); 284 285 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 286 I = DeferredReplacements.begin(), 287 E = DeferredReplacements.end(); 288 I != E; ++I) { 289 I->first->replaceAllUsesWith(I->second); 290 I->first->eraseFromParent(); 291 } 292 } 293 294 /// ShouldInstrumentFunction - Return true if the current function should be 295 /// instrumented with __cyg_profile_func_* calls 296 bool CodeGenFunction::ShouldInstrumentFunction() { 297 if (!CGM.getCodeGenOpts().InstrumentFunctions) 298 return false; 299 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 300 return false; 301 return true; 302 } 303 304 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 305 /// instrumentation function with the current function and the call site, if 306 /// function instrumentation is enabled. 307 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 308 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 309 llvm::PointerType *PointerTy = Int8PtrTy; 310 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 311 llvm::FunctionType *FunctionTy = 312 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 313 314 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 315 llvm::CallInst *CallSite = Builder.CreateCall( 316 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 317 llvm::ConstantInt::get(Int32Ty, 0), 318 "callsite"); 319 320 llvm::Value *args[] = { 321 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 322 CallSite 323 }; 324 325 EmitNounwindRuntimeCall(F, args); 326 } 327 328 void CodeGenFunction::EmitMCountInstrumentation() { 329 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 330 331 llvm::Constant *MCountFn = 332 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 333 EmitNounwindRuntimeCall(MCountFn); 334 } 335 336 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 337 // information in the program executable. The argument information stored 338 // includes the argument name, its type, the address and access qualifiers used. 339 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 340 CodeGenModule &CGM,llvm::LLVMContext &Context, 341 SmallVector <llvm::Value*, 5> &kernelMDArgs, 342 CGBuilderTy& Builder, ASTContext &ASTCtx) { 343 // Create MDNodes that represent the kernel arg metadata. 344 // Each MDNode is a list in the form of "key", N number of values which is 345 // the same number of values as their are kernel arguments. 346 347 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 348 349 // MDNode for the kernel argument address space qualifiers. 350 SmallVector<llvm::Value*, 8> addressQuals; 351 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 352 353 // MDNode for the kernel argument access qualifiers (images only). 354 SmallVector<llvm::Value*, 8> accessQuals; 355 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 356 357 // MDNode for the kernel argument type names. 358 SmallVector<llvm::Value*, 8> argTypeNames; 359 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 360 361 // MDNode for the kernel argument base type names. 362 SmallVector<llvm::Value*, 8> argBaseTypeNames; 363 argBaseTypeNames.push_back( 364 llvm::MDString::get(Context, "kernel_arg_base_type")); 365 366 // MDNode for the kernel argument type qualifiers. 367 SmallVector<llvm::Value*, 8> argTypeQuals; 368 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 369 370 // MDNode for the kernel argument names. 371 SmallVector<llvm::Value*, 8> argNames; 372 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 373 374 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 375 const ParmVarDecl *parm = FD->getParamDecl(i); 376 QualType ty = parm->getType(); 377 std::string typeQuals; 378 379 if (ty->isPointerType()) { 380 QualType pointeeTy = ty->getPointeeType(); 381 382 // Get address qualifier. 383 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 384 pointeeTy.getAddressSpace()))); 385 386 // Get argument type name. 387 std::string typeName = 388 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 389 390 // Turn "unsigned type" to "utype" 391 std::string::size_type pos = typeName.find("unsigned"); 392 if (pointeeTy.isCanonical() && pos != std::string::npos) 393 typeName.erase(pos+1, 8); 394 395 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 396 397 std::string baseTypeName = 398 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 399 Policy) + 400 "*"; 401 402 // Turn "unsigned type" to "utype" 403 pos = baseTypeName.find("unsigned"); 404 if (pos != std::string::npos) 405 baseTypeName.erase(pos+1, 8); 406 407 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 408 409 // Get argument type qualifiers: 410 if (ty.isRestrictQualified()) 411 typeQuals = "restrict"; 412 if (pointeeTy.isConstQualified() || 413 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 414 typeQuals += typeQuals.empty() ? "const" : " const"; 415 if (pointeeTy.isVolatileQualified()) 416 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 417 } else { 418 uint32_t AddrSpc = 0; 419 if (ty->isImageType()) 420 AddrSpc = 421 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 422 423 addressQuals.push_back(Builder.getInt32(AddrSpc)); 424 425 // Get argument type name. 426 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 427 428 // Turn "unsigned type" to "utype" 429 std::string::size_type pos = typeName.find("unsigned"); 430 if (ty.isCanonical() && pos != std::string::npos) 431 typeName.erase(pos+1, 8); 432 433 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 434 435 std::string baseTypeName = 436 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 437 438 // Turn "unsigned type" to "utype" 439 pos = baseTypeName.find("unsigned"); 440 if (pos != std::string::npos) 441 baseTypeName.erase(pos+1, 8); 442 443 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 444 445 // Get argument type qualifiers: 446 if (ty.isConstQualified()) 447 typeQuals = "const"; 448 if (ty.isVolatileQualified()) 449 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 450 } 451 452 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 453 454 // Get image access qualifier: 455 if (ty->isImageType()) { 456 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 457 if (A && A->isWriteOnly()) 458 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 459 else 460 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 461 // FIXME: what about read_write? 462 } else 463 accessQuals.push_back(llvm::MDString::get(Context, "none")); 464 465 // Get argument name. 466 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 467 } 468 469 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 470 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 471 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 472 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 473 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 474 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 475 } 476 477 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 478 llvm::Function *Fn) 479 { 480 if (!FD->hasAttr<OpenCLKernelAttr>()) 481 return; 482 483 llvm::LLVMContext &Context = getLLVMContext(); 484 485 SmallVector <llvm::Value*, 5> kernelMDArgs; 486 kernelMDArgs.push_back(Fn); 487 488 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 489 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 490 Builder, getContext()); 491 492 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 493 QualType hintQTy = A->getTypeHint(); 494 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 495 bool isSignedInteger = 496 hintQTy->isSignedIntegerType() || 497 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 498 llvm::Value *attrMDArgs[] = { 499 llvm::MDString::get(Context, "vec_type_hint"), 500 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 501 llvm::ConstantInt::get( 502 llvm::IntegerType::get(Context, 32), 503 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 504 }; 505 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 506 } 507 508 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 509 llvm::Value *attrMDArgs[] = { 510 llvm::MDString::get(Context, "work_group_size_hint"), 511 Builder.getInt32(A->getXDim()), 512 Builder.getInt32(A->getYDim()), 513 Builder.getInt32(A->getZDim()) 514 }; 515 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 516 } 517 518 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 519 llvm::Value *attrMDArgs[] = { 520 llvm::MDString::get(Context, "reqd_work_group_size"), 521 Builder.getInt32(A->getXDim()), 522 Builder.getInt32(A->getYDim()), 523 Builder.getInt32(A->getZDim()) 524 }; 525 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 526 } 527 528 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 529 llvm::NamedMDNode *OpenCLKernelMetadata = 530 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 531 OpenCLKernelMetadata->addOperand(kernelMDNode); 532 } 533 534 /// Determine whether the function F ends with a return stmt. 535 static bool endsWithReturn(const Decl* F) { 536 const Stmt *Body = nullptr; 537 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 538 Body = FD->getBody(); 539 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 540 Body = OMD->getBody(); 541 542 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 543 auto LastStmt = CS->body_rbegin(); 544 if (LastStmt != CS->body_rend()) 545 return isa<ReturnStmt>(*LastStmt); 546 } 547 return false; 548 } 549 550 void CodeGenFunction::StartFunction(GlobalDecl GD, 551 QualType RetTy, 552 llvm::Function *Fn, 553 const CGFunctionInfo &FnInfo, 554 const FunctionArgList &Args, 555 SourceLocation Loc, 556 SourceLocation StartLoc) { 557 const Decl *D = GD.getDecl(); 558 559 DidCallStackSave = false; 560 CurCodeDecl = D; 561 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 562 FnRetTy = RetTy; 563 CurFn = Fn; 564 CurFnInfo = &FnInfo; 565 assert(CurFn->isDeclaration() && "Function already has body?"); 566 567 if (CGM.getSanitizerBlacklist().isIn(*Fn)) 568 SanOpts = &SanitizerOptions::Disabled; 569 570 // Pass inline keyword to optimizer if it appears explicitly on any 571 // declaration. Also, in the case of -fno-inline attach NoInline 572 // attribute to all function that are not marked AlwaysInline. 573 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 574 if (!CGM.getCodeGenOpts().NoInline) { 575 for (auto RI : FD->redecls()) 576 if (RI->isInlineSpecified()) { 577 Fn->addFnAttr(llvm::Attribute::InlineHint); 578 break; 579 } 580 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 581 Fn->addFnAttr(llvm::Attribute::NoInline); 582 } 583 584 if (getLangOpts().OpenCL) { 585 // Add metadata for a kernel function. 586 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 587 EmitOpenCLKernelMetadata(FD, Fn); 588 } 589 590 // If we are checking function types, emit a function type signature as 591 // prefix data. 592 if (getLangOpts().CPlusPlus && SanOpts->Function) { 593 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 594 if (llvm::Constant *PrefixSig = 595 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 596 llvm::Constant *FTRTTIConst = 597 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 598 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 599 llvm::Constant *PrefixStructConst = 600 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 601 Fn->setPrefixData(PrefixStructConst); 602 } 603 } 604 } 605 606 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 607 608 // Create a marker to make it easy to insert allocas into the entryblock 609 // later. Don't create this with the builder, because we don't want it 610 // folded. 611 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 612 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 613 if (Builder.isNamePreserving()) 614 AllocaInsertPt->setName("allocapt"); 615 616 ReturnBlock = getJumpDestInCurrentScope("return"); 617 618 Builder.SetInsertPoint(EntryBB); 619 620 // Emit subprogram debug descriptor. 621 if (CGDebugInfo *DI = getDebugInfo()) { 622 SmallVector<QualType, 16> ArgTypes; 623 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 624 i != e; ++i) { 625 ArgTypes.push_back((*i)->getType()); 626 } 627 628 QualType FnType = 629 getContext().getFunctionType(RetTy, ArgTypes, 630 FunctionProtoType::ExtProtoInfo()); 631 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 632 } 633 634 if (ShouldInstrumentFunction()) 635 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 636 637 if (CGM.getCodeGenOpts().InstrumentForProfiling) 638 EmitMCountInstrumentation(); 639 640 if (RetTy->isVoidType()) { 641 // Void type; nothing to return. 642 ReturnValue = nullptr; 643 644 // Count the implicit return. 645 if (!endsWithReturn(D)) 646 ++NumReturnExprs; 647 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 648 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 649 // Indirect aggregate return; emit returned value directly into sret slot. 650 // This reduces code size, and affects correctness in C++. 651 auto AI = CurFn->arg_begin(); 652 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 653 ++AI; 654 ReturnValue = AI; 655 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 656 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 657 // Load the sret pointer from the argument struct and return into that. 658 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 659 llvm::Function::arg_iterator EI = CurFn->arg_end(); 660 --EI; 661 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 662 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 663 } else { 664 ReturnValue = CreateIRTemp(RetTy, "retval"); 665 666 // Tell the epilog emitter to autorelease the result. We do this 667 // now so that various specialized functions can suppress it 668 // during their IR-generation. 669 if (getLangOpts().ObjCAutoRefCount && 670 !CurFnInfo->isReturnsRetained() && 671 RetTy->isObjCRetainableType()) 672 AutoreleaseResult = true; 673 } 674 675 EmitStartEHSpec(CurCodeDecl); 676 677 PrologueCleanupDepth = EHStack.stable_begin(); 678 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 679 680 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 681 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 682 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 683 if (MD->getParent()->isLambda() && 684 MD->getOverloadedOperator() == OO_Call) { 685 // We're in a lambda; figure out the captures. 686 MD->getParent()->getCaptureFields(LambdaCaptureFields, 687 LambdaThisCaptureField); 688 if (LambdaThisCaptureField) { 689 // If this lambda captures this, load it. 690 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 691 CXXThisValue = EmitLoadOfLValue(ThisLValue, 692 SourceLocation()).getScalarVal(); 693 } 694 for (auto *FD : MD->getParent()->fields()) { 695 if (FD->hasCapturedVLAType()) { 696 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 697 SourceLocation()).getScalarVal(); 698 auto VAT = FD->getCapturedVLAType(); 699 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 700 } 701 } 702 } else { 703 // Not in a lambda; just use 'this' from the method. 704 // FIXME: Should we generate a new load for each use of 'this'? The 705 // fast register allocator would be happier... 706 CXXThisValue = CXXABIThisValue; 707 } 708 } 709 710 // If any of the arguments have a variably modified type, make sure to 711 // emit the type size. 712 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 713 i != e; ++i) { 714 const VarDecl *VD = *i; 715 716 // Dig out the type as written from ParmVarDecls; it's unclear whether 717 // the standard (C99 6.9.1p10) requires this, but we're following the 718 // precedent set by gcc. 719 QualType Ty; 720 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 721 Ty = PVD->getOriginalType(); 722 else 723 Ty = VD->getType(); 724 725 if (Ty->isVariablyModifiedType()) 726 EmitVariablyModifiedType(Ty); 727 } 728 // Emit a location at the end of the prologue. 729 if (CGDebugInfo *DI = getDebugInfo()) 730 DI->EmitLocation(Builder, StartLoc); 731 } 732 733 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 734 const Stmt *Body) { 735 RegionCounter Cnt = getPGORegionCounter(Body); 736 Cnt.beginRegion(Builder); 737 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 738 EmitCompoundStmtWithoutScope(*S); 739 else 740 EmitStmt(Body); 741 } 742 743 /// When instrumenting to collect profile data, the counts for some blocks 744 /// such as switch cases need to not include the fall-through counts, so 745 /// emit a branch around the instrumentation code. When not instrumenting, 746 /// this just calls EmitBlock(). 747 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 748 RegionCounter &Cnt) { 749 llvm::BasicBlock *SkipCountBB = nullptr; 750 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 751 // When instrumenting for profiling, the fallthrough to certain 752 // statements needs to skip over the instrumentation code so that we 753 // get an accurate count. 754 SkipCountBB = createBasicBlock("skipcount"); 755 EmitBranch(SkipCountBB); 756 } 757 EmitBlock(BB); 758 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 759 if (SkipCountBB) 760 EmitBlock(SkipCountBB); 761 } 762 763 /// Tries to mark the given function nounwind based on the 764 /// non-existence of any throwing calls within it. We believe this is 765 /// lightweight enough to do at -O0. 766 static void TryMarkNoThrow(llvm::Function *F) { 767 // LLVM treats 'nounwind' on a function as part of the type, so we 768 // can't do this on functions that can be overwritten. 769 if (F->mayBeOverridden()) return; 770 771 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 772 for (llvm::BasicBlock::iterator 773 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 774 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 775 if (!Call->doesNotThrow()) 776 return; 777 } else if (isa<llvm::ResumeInst>(&*BI)) { 778 return; 779 } 780 F->setDoesNotThrow(); 781 } 782 783 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 784 const FunctionDecl *UnsizedDealloc) { 785 // This is a weak discardable definition of the sized deallocation function. 786 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 787 788 // Call the unsized deallocation function and forward the first argument 789 // unchanged. 790 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 791 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 792 } 793 794 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 795 const CGFunctionInfo &FnInfo) { 796 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 797 798 // Check if we should generate debug info for this function. 799 if (FD->hasAttr<NoDebugAttr>()) 800 DebugInfo = nullptr; // disable debug info indefinitely for this function 801 802 FunctionArgList Args; 803 QualType ResTy = FD->getReturnType(); 804 805 CurGD = GD; 806 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 807 if (MD && MD->isInstance()) { 808 if (CGM.getCXXABI().HasThisReturn(GD)) 809 ResTy = MD->getThisType(getContext()); 810 CGM.getCXXABI().buildThisParam(*this, Args); 811 } 812 813 Args.append(FD->param_begin(), FD->param_end()); 814 815 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 816 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 817 818 SourceRange BodyRange; 819 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 820 CurEHLocation = BodyRange.getEnd(); 821 822 // Use the location of the start of the function to determine where 823 // the function definition is located. By default use the location 824 // of the declaration as the location for the subprogram. A function 825 // may lack a declaration in the source code if it is created by code 826 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 827 SourceLocation Loc = FD->getLocation(); 828 829 // If this is a function specialization then use the pattern body 830 // as the location for the function. 831 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 832 if (SpecDecl->hasBody(SpecDecl)) 833 Loc = SpecDecl->getLocation(); 834 835 // Emit the standard function prologue. 836 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 837 838 // Generate the body of the function. 839 PGO.checkGlobalDecl(GD); 840 PGO.assignRegionCounters(GD.getDecl(), CurFn); 841 if (isa<CXXDestructorDecl>(FD)) 842 EmitDestructorBody(Args); 843 else if (isa<CXXConstructorDecl>(FD)) 844 EmitConstructorBody(Args); 845 else if (getLangOpts().CUDA && 846 !CGM.getCodeGenOpts().CUDAIsDevice && 847 FD->hasAttr<CUDAGlobalAttr>()) 848 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 849 else if (isa<CXXConversionDecl>(FD) && 850 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 851 // The lambda conversion to block pointer is special; the semantics can't be 852 // expressed in the AST, so IRGen needs to special-case it. 853 EmitLambdaToBlockPointerBody(Args); 854 } else if (isa<CXXMethodDecl>(FD) && 855 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 856 // The lambda static invoker function is special, because it forwards or 857 // clones the body of the function call operator (but is actually static). 858 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 859 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 860 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 861 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 862 // Implicit copy-assignment gets the same special treatment as implicit 863 // copy-constructors. 864 emitImplicitAssignmentOperatorBody(Args); 865 } else if (Stmt *Body = FD->getBody()) { 866 EmitFunctionBody(Args, Body); 867 } else if (FunctionDecl *UnsizedDealloc = 868 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 869 // Global sized deallocation functions get an implicit weak definition if 870 // they don't have an explicit definition. 871 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 872 } else 873 llvm_unreachable("no definition for emitted function"); 874 875 // C++11 [stmt.return]p2: 876 // Flowing off the end of a function [...] results in undefined behavior in 877 // a value-returning function. 878 // C11 6.9.1p12: 879 // If the '}' that terminates a function is reached, and the value of the 880 // function call is used by the caller, the behavior is undefined. 881 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 882 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 883 if (SanOpts->Return) { 884 SanitizerScope SanScope(this); 885 EmitCheck(Builder.getFalse(), "missing_return", 886 EmitCheckSourceLocation(FD->getLocation()), 887 None, CRK_Unrecoverable); 888 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 889 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 890 Builder.CreateUnreachable(); 891 Builder.ClearInsertionPoint(); 892 } 893 894 // Emit the standard function epilogue. 895 FinishFunction(BodyRange.getEnd()); 896 897 // If we haven't marked the function nothrow through other means, do 898 // a quick pass now to see if we can. 899 if (!CurFn->doesNotThrow()) 900 TryMarkNoThrow(CurFn); 901 902 PGO.emitInstrumentationData(); 903 PGO.destroyRegionCounters(); 904 } 905 906 /// ContainsLabel - Return true if the statement contains a label in it. If 907 /// this statement is not executed normally, it not containing a label means 908 /// that we can just remove the code. 909 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 910 // Null statement, not a label! 911 if (!S) return false; 912 913 // If this is a label, we have to emit the code, consider something like: 914 // if (0) { ... foo: bar(); } goto foo; 915 // 916 // TODO: If anyone cared, we could track __label__'s, since we know that you 917 // can't jump to one from outside their declared region. 918 if (isa<LabelStmt>(S)) 919 return true; 920 921 // If this is a case/default statement, and we haven't seen a switch, we have 922 // to emit the code. 923 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 924 return true; 925 926 // If this is a switch statement, we want to ignore cases below it. 927 if (isa<SwitchStmt>(S)) 928 IgnoreCaseStmts = true; 929 930 // Scan subexpressions for verboten labels. 931 for (Stmt::const_child_range I = S->children(); I; ++I) 932 if (ContainsLabel(*I, IgnoreCaseStmts)) 933 return true; 934 935 return false; 936 } 937 938 /// containsBreak - Return true if the statement contains a break out of it. 939 /// If the statement (recursively) contains a switch or loop with a break 940 /// inside of it, this is fine. 941 bool CodeGenFunction::containsBreak(const Stmt *S) { 942 // Null statement, not a label! 943 if (!S) return false; 944 945 // If this is a switch or loop that defines its own break scope, then we can 946 // include it and anything inside of it. 947 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 948 isa<ForStmt>(S)) 949 return false; 950 951 if (isa<BreakStmt>(S)) 952 return true; 953 954 // Scan subexpressions for verboten breaks. 955 for (Stmt::const_child_range I = S->children(); I; ++I) 956 if (containsBreak(*I)) 957 return true; 958 959 return false; 960 } 961 962 963 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 964 /// to a constant, or if it does but contains a label, return false. If it 965 /// constant folds return true and set the boolean result in Result. 966 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 967 bool &ResultBool) { 968 llvm::APSInt ResultInt; 969 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 970 return false; 971 972 ResultBool = ResultInt.getBoolValue(); 973 return true; 974 } 975 976 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 977 /// to a constant, or if it does but contains a label, return false. If it 978 /// constant folds return true and set the folded value. 979 bool CodeGenFunction:: 980 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 981 // FIXME: Rename and handle conversion of other evaluatable things 982 // to bool. 983 llvm::APSInt Int; 984 if (!Cond->EvaluateAsInt(Int, getContext())) 985 return false; // Not foldable, not integer or not fully evaluatable. 986 987 if (CodeGenFunction::ContainsLabel(Cond)) 988 return false; // Contains a label. 989 990 ResultInt = Int; 991 return true; 992 } 993 994 995 996 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 997 /// statement) to the specified blocks. Based on the condition, this might try 998 /// to simplify the codegen of the conditional based on the branch. 999 /// 1000 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1001 llvm::BasicBlock *TrueBlock, 1002 llvm::BasicBlock *FalseBlock, 1003 uint64_t TrueCount) { 1004 Cond = Cond->IgnoreParens(); 1005 1006 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1007 1008 // Handle X && Y in a condition. 1009 if (CondBOp->getOpcode() == BO_LAnd) { 1010 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1011 1012 // If we have "1 && X", simplify the code. "0 && X" would have constant 1013 // folded if the case was simple enough. 1014 bool ConstantBool = false; 1015 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1016 ConstantBool) { 1017 // br(1 && X) -> br(X). 1018 Cnt.beginRegion(Builder); 1019 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1020 TrueCount); 1021 } 1022 1023 // If we have "X && 1", simplify the code to use an uncond branch. 1024 // "X && 0" would have been constant folded to 0. 1025 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1026 ConstantBool) { 1027 // br(X && 1) -> br(X). 1028 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1029 TrueCount); 1030 } 1031 1032 // Emit the LHS as a conditional. If the LHS conditional is false, we 1033 // want to jump to the FalseBlock. 1034 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1035 // The counter tells us how often we evaluate RHS, and all of TrueCount 1036 // can be propagated to that branch. 1037 uint64_t RHSCount = Cnt.getCount(); 1038 1039 ConditionalEvaluation eval(*this); 1040 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1041 EmitBlock(LHSTrue); 1042 1043 // Any temporaries created here are conditional. 1044 Cnt.beginRegion(Builder); 1045 eval.begin(*this); 1046 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1047 eval.end(*this); 1048 1049 return; 1050 } 1051 1052 if (CondBOp->getOpcode() == BO_LOr) { 1053 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1054 1055 // If we have "0 || X", simplify the code. "1 || X" would have constant 1056 // folded if the case was simple enough. 1057 bool ConstantBool = false; 1058 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1059 !ConstantBool) { 1060 // br(0 || X) -> br(X). 1061 Cnt.beginRegion(Builder); 1062 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1063 TrueCount); 1064 } 1065 1066 // If we have "X || 0", simplify the code to use an uncond branch. 1067 // "X || 1" would have been constant folded to 1. 1068 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1069 !ConstantBool) { 1070 // br(X || 0) -> br(X). 1071 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1072 TrueCount); 1073 } 1074 1075 // Emit the LHS as a conditional. If the LHS conditional is true, we 1076 // want to jump to the TrueBlock. 1077 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1078 // We have the count for entry to the RHS and for the whole expression 1079 // being true, so we can divy up True count between the short circuit and 1080 // the RHS. 1081 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1082 uint64_t RHSCount = TrueCount - LHSCount; 1083 1084 ConditionalEvaluation eval(*this); 1085 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1086 EmitBlock(LHSFalse); 1087 1088 // Any temporaries created here are conditional. 1089 Cnt.beginRegion(Builder); 1090 eval.begin(*this); 1091 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1092 1093 eval.end(*this); 1094 1095 return; 1096 } 1097 } 1098 1099 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1100 // br(!x, t, f) -> br(x, f, t) 1101 if (CondUOp->getOpcode() == UO_LNot) { 1102 // Negate the count. 1103 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1104 // Negate the condition and swap the destination blocks. 1105 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1106 FalseCount); 1107 } 1108 } 1109 1110 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1111 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1112 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1113 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1114 1115 RegionCounter Cnt = getPGORegionCounter(CondOp); 1116 ConditionalEvaluation cond(*this); 1117 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1118 1119 // When computing PGO branch weights, we only know the overall count for 1120 // the true block. This code is essentially doing tail duplication of the 1121 // naive code-gen, introducing new edges for which counts are not 1122 // available. Divide the counts proportionally between the LHS and RHS of 1123 // the conditional operator. 1124 uint64_t LHSScaledTrueCount = 0; 1125 if (TrueCount) { 1126 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1127 LHSScaledTrueCount = TrueCount * LHSRatio; 1128 } 1129 1130 cond.begin(*this); 1131 EmitBlock(LHSBlock); 1132 Cnt.beginRegion(Builder); 1133 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1134 LHSScaledTrueCount); 1135 cond.end(*this); 1136 1137 cond.begin(*this); 1138 EmitBlock(RHSBlock); 1139 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1140 TrueCount - LHSScaledTrueCount); 1141 cond.end(*this); 1142 1143 return; 1144 } 1145 1146 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1147 // Conditional operator handling can give us a throw expression as a 1148 // condition for a case like: 1149 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1150 // Fold this to: 1151 // br(c, throw x, br(y, t, f)) 1152 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1153 return; 1154 } 1155 1156 // Create branch weights based on the number of times we get here and the 1157 // number of times the condition should be true. 1158 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1159 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1160 CurrentCount - TrueCount); 1161 1162 // Emit the code with the fully general case. 1163 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1164 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1165 } 1166 1167 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1168 /// specified stmt yet. 1169 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1170 CGM.ErrorUnsupported(S, Type); 1171 } 1172 1173 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1174 /// variable-length array whose elements have a non-zero bit-pattern. 1175 /// 1176 /// \param baseType the inner-most element type of the array 1177 /// \param src - a char* pointing to the bit-pattern for a single 1178 /// base element of the array 1179 /// \param sizeInChars - the total size of the VLA, in chars 1180 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1181 llvm::Value *dest, llvm::Value *src, 1182 llvm::Value *sizeInChars) { 1183 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1184 = CGF.getContext().getTypeInfoInChars(baseType); 1185 1186 CGBuilderTy &Builder = CGF.Builder; 1187 1188 llvm::Value *baseSizeInChars 1189 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1190 1191 llvm::Type *i8p = Builder.getInt8PtrTy(); 1192 1193 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1194 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1195 1196 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1197 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1198 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1199 1200 // Make a loop over the VLA. C99 guarantees that the VLA element 1201 // count must be nonzero. 1202 CGF.EmitBlock(loopBB); 1203 1204 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1205 cur->addIncoming(begin, originBB); 1206 1207 // memcpy the individual element bit-pattern. 1208 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1209 baseSizeAndAlign.second.getQuantity(), 1210 /*volatile*/ false); 1211 1212 // Go to the next element. 1213 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1214 1215 // Leave if that's the end of the VLA. 1216 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1217 Builder.CreateCondBr(done, contBB, loopBB); 1218 cur->addIncoming(next, loopBB); 1219 1220 CGF.EmitBlock(contBB); 1221 } 1222 1223 void 1224 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1225 // Ignore empty classes in C++. 1226 if (getLangOpts().CPlusPlus) { 1227 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1228 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1229 return; 1230 } 1231 } 1232 1233 // Cast the dest ptr to the appropriate i8 pointer type. 1234 unsigned DestAS = 1235 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1236 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1237 if (DestPtr->getType() != BP) 1238 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1239 1240 // Get size and alignment info for this aggregate. 1241 std::pair<CharUnits, CharUnits> TypeInfo = 1242 getContext().getTypeInfoInChars(Ty); 1243 CharUnits Size = TypeInfo.first; 1244 CharUnits Align = TypeInfo.second; 1245 1246 llvm::Value *SizeVal; 1247 const VariableArrayType *vla; 1248 1249 // Don't bother emitting a zero-byte memset. 1250 if (Size.isZero()) { 1251 // But note that getTypeInfo returns 0 for a VLA. 1252 if (const VariableArrayType *vlaType = 1253 dyn_cast_or_null<VariableArrayType>( 1254 getContext().getAsArrayType(Ty))) { 1255 QualType eltType; 1256 llvm::Value *numElts; 1257 std::tie(numElts, eltType) = getVLASize(vlaType); 1258 1259 SizeVal = numElts; 1260 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1261 if (!eltSize.isOne()) 1262 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1263 vla = vlaType; 1264 } else { 1265 return; 1266 } 1267 } else { 1268 SizeVal = CGM.getSize(Size); 1269 vla = nullptr; 1270 } 1271 1272 // If the type contains a pointer to data member we can't memset it to zero. 1273 // Instead, create a null constant and copy it to the destination. 1274 // TODO: there are other patterns besides zero that we can usefully memset, 1275 // like -1, which happens to be the pattern used by member-pointers. 1276 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1277 // For a VLA, emit a single element, then splat that over the VLA. 1278 if (vla) Ty = getContext().getBaseElementType(vla); 1279 1280 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1281 1282 llvm::GlobalVariable *NullVariable = 1283 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1284 /*isConstant=*/true, 1285 llvm::GlobalVariable::PrivateLinkage, 1286 NullConstant, Twine()); 1287 llvm::Value *SrcPtr = 1288 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1289 1290 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1291 1292 // Get and call the appropriate llvm.memcpy overload. 1293 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1294 return; 1295 } 1296 1297 // Otherwise, just memset the whole thing to zero. This is legal 1298 // because in LLVM, all default initializers (other than the ones we just 1299 // handled above) are guaranteed to have a bit pattern of all zeros. 1300 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1301 Align.getQuantity(), false); 1302 } 1303 1304 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1305 // Make sure that there is a block for the indirect goto. 1306 if (!IndirectBranch) 1307 GetIndirectGotoBlock(); 1308 1309 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1310 1311 // Make sure the indirect branch includes all of the address-taken blocks. 1312 IndirectBranch->addDestination(BB); 1313 return llvm::BlockAddress::get(CurFn, BB); 1314 } 1315 1316 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1317 // If we already made the indirect branch for indirect goto, return its block. 1318 if (IndirectBranch) return IndirectBranch->getParent(); 1319 1320 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1321 1322 // Create the PHI node that indirect gotos will add entries to. 1323 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1324 "indirect.goto.dest"); 1325 1326 // Create the indirect branch instruction. 1327 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1328 return IndirectBranch->getParent(); 1329 } 1330 1331 /// Computes the length of an array in elements, as well as the base 1332 /// element type and a properly-typed first element pointer. 1333 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1334 QualType &baseType, 1335 llvm::Value *&addr) { 1336 const ArrayType *arrayType = origArrayType; 1337 1338 // If it's a VLA, we have to load the stored size. Note that 1339 // this is the size of the VLA in bytes, not its size in elements. 1340 llvm::Value *numVLAElements = nullptr; 1341 if (isa<VariableArrayType>(arrayType)) { 1342 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1343 1344 // Walk into all VLAs. This doesn't require changes to addr, 1345 // which has type T* where T is the first non-VLA element type. 1346 do { 1347 QualType elementType = arrayType->getElementType(); 1348 arrayType = getContext().getAsArrayType(elementType); 1349 1350 // If we only have VLA components, 'addr' requires no adjustment. 1351 if (!arrayType) { 1352 baseType = elementType; 1353 return numVLAElements; 1354 } 1355 } while (isa<VariableArrayType>(arrayType)); 1356 1357 // We get out here only if we find a constant array type 1358 // inside the VLA. 1359 } 1360 1361 // We have some number of constant-length arrays, so addr should 1362 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1363 // down to the first element of addr. 1364 SmallVector<llvm::Value*, 8> gepIndices; 1365 1366 // GEP down to the array type. 1367 llvm::ConstantInt *zero = Builder.getInt32(0); 1368 gepIndices.push_back(zero); 1369 1370 uint64_t countFromCLAs = 1; 1371 QualType eltType; 1372 1373 llvm::ArrayType *llvmArrayType = 1374 dyn_cast<llvm::ArrayType>( 1375 cast<llvm::PointerType>(addr->getType())->getElementType()); 1376 while (llvmArrayType) { 1377 assert(isa<ConstantArrayType>(arrayType)); 1378 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1379 == llvmArrayType->getNumElements()); 1380 1381 gepIndices.push_back(zero); 1382 countFromCLAs *= llvmArrayType->getNumElements(); 1383 eltType = arrayType->getElementType(); 1384 1385 llvmArrayType = 1386 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1387 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1388 assert((!llvmArrayType || arrayType) && 1389 "LLVM and Clang types are out-of-synch"); 1390 } 1391 1392 if (arrayType) { 1393 // From this point onwards, the Clang array type has been emitted 1394 // as some other type (probably a packed struct). Compute the array 1395 // size, and just emit the 'begin' expression as a bitcast. 1396 while (arrayType) { 1397 countFromCLAs *= 1398 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1399 eltType = arrayType->getElementType(); 1400 arrayType = getContext().getAsArrayType(eltType); 1401 } 1402 1403 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1404 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1405 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1406 } else { 1407 // Create the actual GEP. 1408 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1409 } 1410 1411 baseType = eltType; 1412 1413 llvm::Value *numElements 1414 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1415 1416 // If we had any VLA dimensions, factor them in. 1417 if (numVLAElements) 1418 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1419 1420 return numElements; 1421 } 1422 1423 std::pair<llvm::Value*, QualType> 1424 CodeGenFunction::getVLASize(QualType type) { 1425 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1426 assert(vla && "type was not a variable array type!"); 1427 return getVLASize(vla); 1428 } 1429 1430 std::pair<llvm::Value*, QualType> 1431 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1432 // The number of elements so far; always size_t. 1433 llvm::Value *numElements = nullptr; 1434 1435 QualType elementType; 1436 do { 1437 elementType = type->getElementType(); 1438 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1439 assert(vlaSize && "no size for VLA!"); 1440 assert(vlaSize->getType() == SizeTy); 1441 1442 if (!numElements) { 1443 numElements = vlaSize; 1444 } else { 1445 // It's undefined behavior if this wraps around, so mark it that way. 1446 // FIXME: Teach -fsanitize=undefined to trap this. 1447 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1448 } 1449 } while ((type = getContext().getAsVariableArrayType(elementType))); 1450 1451 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1452 } 1453 1454 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1455 assert(type->isVariablyModifiedType() && 1456 "Must pass variably modified type to EmitVLASizes!"); 1457 1458 EnsureInsertPoint(); 1459 1460 // We're going to walk down into the type and look for VLA 1461 // expressions. 1462 do { 1463 assert(type->isVariablyModifiedType()); 1464 1465 const Type *ty = type.getTypePtr(); 1466 switch (ty->getTypeClass()) { 1467 1468 #define TYPE(Class, Base) 1469 #define ABSTRACT_TYPE(Class, Base) 1470 #define NON_CANONICAL_TYPE(Class, Base) 1471 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1472 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1473 #include "clang/AST/TypeNodes.def" 1474 llvm_unreachable("unexpected dependent type!"); 1475 1476 // These types are never variably-modified. 1477 case Type::Builtin: 1478 case Type::Complex: 1479 case Type::Vector: 1480 case Type::ExtVector: 1481 case Type::Record: 1482 case Type::Enum: 1483 case Type::Elaborated: 1484 case Type::TemplateSpecialization: 1485 case Type::ObjCObject: 1486 case Type::ObjCInterface: 1487 case Type::ObjCObjectPointer: 1488 llvm_unreachable("type class is never variably-modified!"); 1489 1490 case Type::Adjusted: 1491 type = cast<AdjustedType>(ty)->getAdjustedType(); 1492 break; 1493 1494 case Type::Decayed: 1495 type = cast<DecayedType>(ty)->getPointeeType(); 1496 break; 1497 1498 case Type::Pointer: 1499 type = cast<PointerType>(ty)->getPointeeType(); 1500 break; 1501 1502 case Type::BlockPointer: 1503 type = cast<BlockPointerType>(ty)->getPointeeType(); 1504 break; 1505 1506 case Type::LValueReference: 1507 case Type::RValueReference: 1508 type = cast<ReferenceType>(ty)->getPointeeType(); 1509 break; 1510 1511 case Type::MemberPointer: 1512 type = cast<MemberPointerType>(ty)->getPointeeType(); 1513 break; 1514 1515 case Type::ConstantArray: 1516 case Type::IncompleteArray: 1517 // Losing element qualification here is fine. 1518 type = cast<ArrayType>(ty)->getElementType(); 1519 break; 1520 1521 case Type::VariableArray: { 1522 // Losing element qualification here is fine. 1523 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1524 1525 // Unknown size indication requires no size computation. 1526 // Otherwise, evaluate and record it. 1527 if (const Expr *size = vat->getSizeExpr()) { 1528 // It's possible that we might have emitted this already, 1529 // e.g. with a typedef and a pointer to it. 1530 llvm::Value *&entry = VLASizeMap[size]; 1531 if (!entry) { 1532 llvm::Value *Size = EmitScalarExpr(size); 1533 1534 // C11 6.7.6.2p5: 1535 // If the size is an expression that is not an integer constant 1536 // expression [...] each time it is evaluated it shall have a value 1537 // greater than zero. 1538 if (SanOpts->VLABound && 1539 size->getType()->isSignedIntegerType()) { 1540 SanitizerScope SanScope(this); 1541 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1542 llvm::Constant *StaticArgs[] = { 1543 EmitCheckSourceLocation(size->getLocStart()), 1544 EmitCheckTypeDescriptor(size->getType()) 1545 }; 1546 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1547 "vla_bound_not_positive", StaticArgs, Size, 1548 CRK_Recoverable); 1549 } 1550 1551 // Always zexting here would be wrong if it weren't 1552 // undefined behavior to have a negative bound. 1553 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1554 } 1555 } 1556 type = vat->getElementType(); 1557 break; 1558 } 1559 1560 case Type::FunctionProto: 1561 case Type::FunctionNoProto: 1562 type = cast<FunctionType>(ty)->getReturnType(); 1563 break; 1564 1565 case Type::Paren: 1566 case Type::TypeOf: 1567 case Type::UnaryTransform: 1568 case Type::Attributed: 1569 case Type::SubstTemplateTypeParm: 1570 case Type::PackExpansion: 1571 // Keep walking after single level desugaring. 1572 type = type.getSingleStepDesugaredType(getContext()); 1573 break; 1574 1575 case Type::Typedef: 1576 case Type::Decltype: 1577 case Type::Auto: 1578 // Stop walking: nothing to do. 1579 return; 1580 1581 case Type::TypeOfExpr: 1582 // Stop walking: emit typeof expression. 1583 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1584 return; 1585 1586 case Type::Atomic: 1587 type = cast<AtomicType>(ty)->getValueType(); 1588 break; 1589 } 1590 } while (type->isVariablyModifiedType()); 1591 } 1592 1593 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1594 if (getContext().getBuiltinVaListType()->isArrayType()) 1595 return EmitScalarExpr(E); 1596 return EmitLValue(E).getAddress(); 1597 } 1598 1599 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1600 llvm::Constant *Init) { 1601 assert (Init && "Invalid DeclRefExpr initializer!"); 1602 if (CGDebugInfo *Dbg = getDebugInfo()) 1603 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1604 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1605 } 1606 1607 CodeGenFunction::PeepholeProtection 1608 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1609 // At the moment, the only aggressive peephole we do in IR gen 1610 // is trunc(zext) folding, but if we add more, we can easily 1611 // extend this protection. 1612 1613 if (!rvalue.isScalar()) return PeepholeProtection(); 1614 llvm::Value *value = rvalue.getScalarVal(); 1615 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1616 1617 // Just make an extra bitcast. 1618 assert(HaveInsertPoint()); 1619 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1620 Builder.GetInsertBlock()); 1621 1622 PeepholeProtection protection; 1623 protection.Inst = inst; 1624 return protection; 1625 } 1626 1627 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1628 if (!protection.Inst) return; 1629 1630 // In theory, we could try to duplicate the peepholes now, but whatever. 1631 protection.Inst->eraseFromParent(); 1632 } 1633 1634 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1635 llvm::Value *AnnotatedVal, 1636 StringRef AnnotationStr, 1637 SourceLocation Location) { 1638 llvm::Value *Args[4] = { 1639 AnnotatedVal, 1640 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1641 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1642 CGM.EmitAnnotationLineNo(Location) 1643 }; 1644 return Builder.CreateCall(AnnotationFn, Args); 1645 } 1646 1647 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1648 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1649 // FIXME We create a new bitcast for every annotation because that's what 1650 // llvm-gcc was doing. 1651 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1652 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1653 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1654 I->getAnnotation(), D->getLocation()); 1655 } 1656 1657 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1658 llvm::Value *V) { 1659 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1660 llvm::Type *VTy = V->getType(); 1661 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1662 CGM.Int8PtrTy); 1663 1664 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1665 // FIXME Always emit the cast inst so we can differentiate between 1666 // annotation on the first field of a struct and annotation on the struct 1667 // itself. 1668 if (VTy != CGM.Int8PtrTy) 1669 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1670 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1671 V = Builder.CreateBitCast(V, VTy); 1672 } 1673 1674 return V; 1675 } 1676 1677 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1678 1679 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1680 : CGF(CGF) { 1681 assert(!CGF->IsSanitizerScope); 1682 CGF->IsSanitizerScope = true; 1683 } 1684 1685 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1686 CGF->IsSanitizerScope = false; 1687 } 1688 1689 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1690 const llvm::Twine &Name, 1691 llvm::BasicBlock *BB, 1692 llvm::BasicBlock::iterator InsertPt) const { 1693 LoopStack.InsertHelper(I); 1694 if (IsSanitizerScope) 1695 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1696 } 1697 1698 template <bool PreserveNames> 1699 void CGBuilderInserter<PreserveNames>::InsertHelper( 1700 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1701 llvm::BasicBlock::iterator InsertPt) const { 1702 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1703 InsertPt); 1704 if (CGF) 1705 CGF->InsertHelper(I, Name, BB, InsertPt); 1706 } 1707 1708 #ifdef NDEBUG 1709 #define PreserveNames false 1710 #else 1711 #define PreserveNames true 1712 #endif 1713 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1714 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1715 llvm::BasicBlock::iterator InsertPt) const; 1716 #undef PreserveNames 1717