1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "CodeGenPGO.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/OpenCL.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
39       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
40                                CGM.getSanOpts().Alignment |
41                                CGM.getSanOpts().ObjectSize |
42                                CGM.getSanOpts().Vptr),
43       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
44       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
45       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
46       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
47       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
48       PGO(cgm), SwitchInsn(0), SwitchWeights(0),
49       CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
50       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
51       CXXThisValue(0), CXXDefaultInitExprThis(0),
52       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
53       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
54       TerminateHandler(0), TrapBB(0) {
55   if (!suppressNewContext)
56     CGM.getCXXABI().getMangleContext().startNewFunction();
57 
58   llvm::FastMathFlags FMF;
59   if (CGM.getLangOpts().FastMath)
60     FMF.setUnsafeAlgebra();
61   if (CGM.getLangOpts().FiniteMathOnly) {
62     FMF.setNoNaNs();
63     FMF.setNoInfs();
64   }
65   Builder.SetFastMathFlags(FMF);
66 }
67 
68 CodeGenFunction::~CodeGenFunction() {
69   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
70 
71   // If there are any unclaimed block infos, go ahead and destroy them
72   // now.  This can happen if IR-gen gets clever and skips evaluating
73   // something.
74   if (FirstBlockInfo)
75     destroyBlockInfos(FirstBlockInfo);
76 }
77 
78 
79 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
80   return CGM.getTypes().ConvertTypeForMem(T);
81 }
82 
83 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
84   return CGM.getTypes().ConvertType(T);
85 }
86 
87 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
88   type = type.getCanonicalType();
89   while (true) {
90     switch (type->getTypeClass()) {
91 #define TYPE(name, parent)
92 #define ABSTRACT_TYPE(name, parent)
93 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
94 #define DEPENDENT_TYPE(name, parent) case Type::name:
95 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
96 #include "clang/AST/TypeNodes.def"
97       llvm_unreachable("non-canonical or dependent type in IR-generation");
98 
99     case Type::Auto:
100       llvm_unreachable("undeduced auto type in IR-generation");
101 
102     // Various scalar types.
103     case Type::Builtin:
104     case Type::Pointer:
105     case Type::BlockPointer:
106     case Type::LValueReference:
107     case Type::RValueReference:
108     case Type::MemberPointer:
109     case Type::Vector:
110     case Type::ExtVector:
111     case Type::FunctionProto:
112     case Type::FunctionNoProto:
113     case Type::Enum:
114     case Type::ObjCObjectPointer:
115       return TEK_Scalar;
116 
117     // Complexes.
118     case Type::Complex:
119       return TEK_Complex;
120 
121     // Arrays, records, and Objective-C objects.
122     case Type::ConstantArray:
123     case Type::IncompleteArray:
124     case Type::VariableArray:
125     case Type::Record:
126     case Type::ObjCObject:
127     case Type::ObjCInterface:
128       return TEK_Aggregate;
129 
130     // We operate on atomic values according to their underlying type.
131     case Type::Atomic:
132       type = cast<AtomicType>(type)->getValueType();
133       continue;
134     }
135     llvm_unreachable("unknown type kind!");
136   }
137 }
138 
139 void CodeGenFunction::EmitReturnBlock() {
140   // For cleanliness, we try to avoid emitting the return block for
141   // simple cases.
142   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
143 
144   if (CurBB) {
145     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
146 
147     // We have a valid insert point, reuse it if it is empty or there are no
148     // explicit jumps to the return block.
149     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
150       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
151       delete ReturnBlock.getBlock();
152     } else
153       EmitBlock(ReturnBlock.getBlock());
154     return;
155   }
156 
157   // Otherwise, if the return block is the target of a single direct
158   // branch then we can just put the code in that block instead. This
159   // cleans up functions which started with a unified return block.
160   if (ReturnBlock.getBlock()->hasOneUse()) {
161     llvm::BranchInst *BI =
162       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
163     if (BI && BI->isUnconditional() &&
164         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
165       // Reset insertion point, including debug location, and delete the
166       // branch.  This is really subtle and only works because the next change
167       // in location will hit the caching in CGDebugInfo::EmitLocation and not
168       // override this.
169       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
170       Builder.SetInsertPoint(BI->getParent());
171       BI->eraseFromParent();
172       delete ReturnBlock.getBlock();
173       return;
174     }
175   }
176 
177   // FIXME: We are at an unreachable point, there is no reason to emit the block
178   // unless it has uses. However, we still need a place to put the debug
179   // region.end for now.
180 
181   EmitBlock(ReturnBlock.getBlock());
182 }
183 
184 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
185   if (!BB) return;
186   if (!BB->use_empty())
187     return CGF.CurFn->getBasicBlockList().push_back(BB);
188   delete BB;
189 }
190 
191 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
192   assert(BreakContinueStack.empty() &&
193          "mismatched push/pop in break/continue stack!");
194 
195   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
196     && NumSimpleReturnExprs == NumReturnExprs
197     && ReturnBlock.getBlock()->use_empty();
198   // Usually the return expression is evaluated before the cleanup
199   // code.  If the function contains only a simple return statement,
200   // such as a constant, the location before the cleanup code becomes
201   // the last useful breakpoint in the function, because the simple
202   // return expression will be evaluated after the cleanup code. To be
203   // safe, set the debug location for cleanup code to the location of
204   // the return statement.  Otherwise the cleanup code should be at the
205   // end of the function's lexical scope.
206   //
207   // If there are multiple branches to the return block, the branch
208   // instructions will get the location of the return statements and
209   // all will be fine.
210   if (CGDebugInfo *DI = getDebugInfo()) {
211     if (OnlySimpleReturnStmts)
212       DI->EmitLocation(Builder, LastStopPoint.first,
213                        false, LastStopPoint.second);
214     else
215       DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second);
216   }
217 
218   // Pop any cleanups that might have been associated with the
219   // parameters.  Do this in whatever block we're currently in; it's
220   // important to do this before we enter the return block or return
221   // edges will be *really* confused.
222   bool EmitRetDbgLoc = true;
223   if (EHStack.stable_begin() != PrologueCleanupDepth) {
224     PopCleanupBlocks(PrologueCleanupDepth);
225 
226     // Make sure the line table doesn't jump back into the body for
227     // the ret after it's been at EndLoc.
228     EmitRetDbgLoc = false;
229 
230     if (CGDebugInfo *DI = getDebugInfo())
231       if (OnlySimpleReturnStmts)
232         DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second);
233   }
234 
235   // Emit function epilog (to return).
236   EmitReturnBlock();
237 
238   if (ShouldInstrumentFunction())
239     EmitFunctionInstrumentation("__cyg_profile_func_exit");
240 
241   // Emit debug descriptor for function end.
242   if (CGDebugInfo *DI = getDebugInfo()) {
243     DI->EmitFunctionEnd(Builder);
244   }
245 
246   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
247   EmitEndEHSpec(CurCodeDecl);
248 
249   assert(EHStack.empty() &&
250          "did not remove all scopes from cleanup stack!");
251 
252   // If someone did an indirect goto, emit the indirect goto block at the end of
253   // the function.
254   if (IndirectBranch) {
255     EmitBlock(IndirectBranch->getParent());
256     Builder.ClearInsertionPoint();
257   }
258 
259   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
260   llvm::Instruction *Ptr = AllocaInsertPt;
261   AllocaInsertPt = 0;
262   Ptr->eraseFromParent();
263 
264   // If someone took the address of a label but never did an indirect goto, we
265   // made a zero entry PHI node, which is illegal, zap it now.
266   if (IndirectBranch) {
267     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
268     if (PN->getNumIncomingValues() == 0) {
269       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
270       PN->eraseFromParent();
271     }
272   }
273 
274   EmitIfUsed(*this, EHResumeBlock);
275   EmitIfUsed(*this, TerminateLandingPad);
276   EmitIfUsed(*this, TerminateHandler);
277   EmitIfUsed(*this, UnreachableBlock);
278 
279   if (CGM.getCodeGenOpts().EmitDeclMetadata)
280     EmitDeclMetadata();
281 }
282 
283 /// ShouldInstrumentFunction - Return true if the current function should be
284 /// instrumented with __cyg_profile_func_* calls
285 bool CodeGenFunction::ShouldInstrumentFunction() {
286   if (!CGM.getCodeGenOpts().InstrumentFunctions)
287     return false;
288   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
289     return false;
290   return true;
291 }
292 
293 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
294 /// instrumentation function with the current function and the call site, if
295 /// function instrumentation is enabled.
296 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
297   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
298   llvm::PointerType *PointerTy = Int8PtrTy;
299   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
300   llvm::FunctionType *FunctionTy =
301     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
302 
303   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
304   llvm::CallInst *CallSite = Builder.CreateCall(
305     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
306     llvm::ConstantInt::get(Int32Ty, 0),
307     "callsite");
308 
309   llvm::Value *args[] = {
310     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
311     CallSite
312   };
313 
314   EmitNounwindRuntimeCall(F, args);
315 }
316 
317 void CodeGenFunction::EmitMCountInstrumentation() {
318   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
319 
320   llvm::Constant *MCountFn =
321     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
322   EmitNounwindRuntimeCall(MCountFn);
323 }
324 
325 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
326 // information in the program executable. The argument information stored
327 // includes the argument name, its type, the address and access qualifiers used.
328 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
329                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
330                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
331                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
332   // Create MDNodes that represent the kernel arg metadata.
333   // Each MDNode is a list in the form of "key", N number of values which is
334   // the same number of values as their are kernel arguments.
335 
336   // MDNode for the kernel argument address space qualifiers.
337   SmallVector<llvm::Value*, 8> addressQuals;
338   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
339 
340   // MDNode for the kernel argument access qualifiers (images only).
341   SmallVector<llvm::Value*, 8> accessQuals;
342   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
343 
344   // MDNode for the kernel argument type names.
345   SmallVector<llvm::Value*, 8> argTypeNames;
346   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
347 
348   // MDNode for the kernel argument type qualifiers.
349   SmallVector<llvm::Value*, 8> argTypeQuals;
350   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
351 
352   // MDNode for the kernel argument names.
353   SmallVector<llvm::Value*, 8> argNames;
354   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
355 
356   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
357     const ParmVarDecl *parm = FD->getParamDecl(i);
358     QualType ty = parm->getType();
359     std::string typeQuals;
360 
361     if (ty->isPointerType()) {
362       QualType pointeeTy = ty->getPointeeType();
363 
364       // Get address qualifier.
365       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
366         pointeeTy.getAddressSpace())));
367 
368       // Get argument type name.
369       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
370 
371       // Turn "unsigned type" to "utype"
372       std::string::size_type pos = typeName.find("unsigned");
373       if (pos != std::string::npos)
374         typeName.erase(pos+1, 8);
375 
376       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
377 
378       // Get argument type qualifiers:
379       if (ty.isRestrictQualified())
380         typeQuals = "restrict";
381       if (pointeeTy.isConstQualified() ||
382           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
383         typeQuals += typeQuals.empty() ? "const" : " const";
384       if (pointeeTy.isVolatileQualified())
385         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
386     } else {
387       addressQuals.push_back(Builder.getInt32(0));
388 
389       // Get argument type name.
390       std::string typeName = ty.getUnqualifiedType().getAsString();
391 
392       // Turn "unsigned type" to "utype"
393       std::string::size_type pos = typeName.find("unsigned");
394       if (pos != std::string::npos)
395         typeName.erase(pos+1, 8);
396 
397       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
398 
399       // Get argument type qualifiers:
400       if (ty.isConstQualified())
401         typeQuals = "const";
402       if (ty.isVolatileQualified())
403         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
404     }
405 
406     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
407 
408     // Get image access qualifier:
409     if (ty->isImageType()) {
410       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
411       if (A && A->getAccess() == CLIA_write_only)
412         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
413       else
414         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
415     } else
416       accessQuals.push_back(llvm::MDString::get(Context, "none"));
417 
418     // Get argument name.
419     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
420   }
421 
422   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
423   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
424   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
425   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
426   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
427 }
428 
429 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
430                                                llvm::Function *Fn)
431 {
432   if (!FD->hasAttr<OpenCLKernelAttr>())
433     return;
434 
435   llvm::LLVMContext &Context = getLLVMContext();
436 
437   SmallVector <llvm::Value*, 5> kernelMDArgs;
438   kernelMDArgs.push_back(Fn);
439 
440   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
441     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
442                          Builder, getContext());
443 
444   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
445     QualType hintQTy = A->getTypeHint();
446     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
447     bool isSignedInteger =
448         hintQTy->isSignedIntegerType() ||
449         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
450     llvm::Value *attrMDArgs[] = {
451       llvm::MDString::get(Context, "vec_type_hint"),
452       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
453       llvm::ConstantInt::get(
454           llvm::IntegerType::get(Context, 32),
455           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
456     };
457     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
458   }
459 
460   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
461     llvm::Value *attrMDArgs[] = {
462       llvm::MDString::get(Context, "work_group_size_hint"),
463       Builder.getInt32(A->getXDim()),
464       Builder.getInt32(A->getYDim()),
465       Builder.getInt32(A->getZDim())
466     };
467     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
468   }
469 
470   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
471     llvm::Value *attrMDArgs[] = {
472       llvm::MDString::get(Context, "reqd_work_group_size"),
473       Builder.getInt32(A->getXDim()),
474       Builder.getInt32(A->getYDim()),
475       Builder.getInt32(A->getZDim())
476     };
477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478   }
479 
480   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481   llvm::NamedMDNode *OpenCLKernelMetadata =
482     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483   OpenCLKernelMetadata->addOperand(kernelMDNode);
484 }
485 
486 void CodeGenFunction::StartFunction(GlobalDecl GD,
487                                     QualType RetTy,
488                                     llvm::Function *Fn,
489                                     const CGFunctionInfo &FnInfo,
490                                     const FunctionArgList &Args,
491                                     SourceLocation StartLoc) {
492   const Decl *D = GD.getDecl();
493 
494   DidCallStackSave = false;
495   CurCodeDecl = D;
496   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497   FnRetTy = RetTy;
498   CurFn = Fn;
499   CurFnInfo = &FnInfo;
500   assert(CurFn->isDeclaration() && "Function already has body?");
501 
502   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503     SanOpts = &SanitizerOptions::Disabled;
504     SanitizePerformTypeCheck = false;
505   }
506 
507   // Pass inline keyword to optimizer if it appears explicitly on any
508   // declaration.
509   if (!CGM.getCodeGenOpts().NoInline)
510     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512              RE = FD->redecls_end(); RI != RE; ++RI)
513         if (RI->isInlineSpecified()) {
514           Fn->addFnAttr(llvm::Attribute::InlineHint);
515           break;
516         }
517 
518   if (getLangOpts().OpenCL) {
519     // Add metadata for a kernel function.
520     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521       EmitOpenCLKernelMetadata(FD, Fn);
522   }
523 
524   // If we are checking function types, emit a function type signature as
525   // prefix data.
526   if (getLangOpts().CPlusPlus && SanOpts->Function) {
527     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
528       if (llvm::Constant *PrefixSig =
529               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
530         llvm::Constant *FTRTTIConst =
531             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
532         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
533         llvm::Constant *PrefixStructConst =
534             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
535         Fn->setPrefixData(PrefixStructConst);
536       }
537     }
538   }
539 
540   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
541 
542   // Create a marker to make it easy to insert allocas into the entryblock
543   // later.  Don't create this with the builder, because we don't want it
544   // folded.
545   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
546   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
547   if (Builder.isNamePreserving())
548     AllocaInsertPt->setName("allocapt");
549 
550   ReturnBlock = getJumpDestInCurrentScope("return");
551 
552   Builder.SetInsertPoint(EntryBB);
553 
554   // Emit subprogram debug descriptor.
555   if (CGDebugInfo *DI = getDebugInfo()) {
556     SmallVector<QualType, 16> ArgTypes;
557     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
558 	 i != e; ++i) {
559       ArgTypes.push_back((*i)->getType());
560     }
561 
562     QualType FnType =
563       getContext().getFunctionType(RetTy, ArgTypes,
564                                    FunctionProtoType::ExtProtoInfo());
565 
566     DI->setLocation(StartLoc);
567     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
568   }
569 
570   if (ShouldInstrumentFunction())
571     EmitFunctionInstrumentation("__cyg_profile_func_enter");
572 
573   if (CGM.getCodeGenOpts().InstrumentForProfiling)
574     EmitMCountInstrumentation();
575 
576   PGO.assignRegionCounters(GD);
577 
578   if (RetTy->isVoidType()) {
579     // Void type; nothing to return.
580     ReturnValue = 0;
581   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
582              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
583     // Indirect aggregate return; emit returned value directly into sret slot.
584     // This reduces code size, and affects correctness in C++.
585     ReturnValue = CurFn->arg_begin();
586   } else {
587     ReturnValue = CreateIRTemp(RetTy, "retval");
588 
589     // Tell the epilog emitter to autorelease the result.  We do this
590     // now so that various specialized functions can suppress it
591     // during their IR-generation.
592     if (getLangOpts().ObjCAutoRefCount &&
593         !CurFnInfo->isReturnsRetained() &&
594         RetTy->isObjCRetainableType())
595       AutoreleaseResult = true;
596   }
597 
598   EmitStartEHSpec(CurCodeDecl);
599 
600   PrologueCleanupDepth = EHStack.stable_begin();
601   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
602 
603   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
604     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
605     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
606     if (MD->getParent()->isLambda() &&
607         MD->getOverloadedOperator() == OO_Call) {
608       // We're in a lambda; figure out the captures.
609       MD->getParent()->getCaptureFields(LambdaCaptureFields,
610                                         LambdaThisCaptureField);
611       if (LambdaThisCaptureField) {
612         // If this lambda captures this, load it.
613         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
614         CXXThisValue = EmitLoadOfLValue(ThisLValue,
615                                         SourceLocation()).getScalarVal();
616       }
617     } else {
618       // Not in a lambda; just use 'this' from the method.
619       // FIXME: Should we generate a new load for each use of 'this'?  The
620       // fast register allocator would be happier...
621       CXXThisValue = CXXABIThisValue;
622     }
623   }
624 
625   // If any of the arguments have a variably modified type, make sure to
626   // emit the type size.
627   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
628        i != e; ++i) {
629     const VarDecl *VD = *i;
630 
631     // Dig out the type as written from ParmVarDecls; it's unclear whether
632     // the standard (C99 6.9.1p10) requires this, but we're following the
633     // precedent set by gcc.
634     QualType Ty;
635     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
636       Ty = PVD->getOriginalType();
637     else
638       Ty = VD->getType();
639 
640     if (Ty->isVariablyModifiedType())
641       EmitVariablyModifiedType(Ty);
642   }
643   // Emit a location at the end of the prologue.
644   if (CGDebugInfo *DI = getDebugInfo())
645     DI->EmitLocation(Builder, StartLoc);
646 }
647 
648 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
649                                        const Stmt *Body) {
650   RegionCounter Cnt = getPGORegionCounter(Body);
651   Cnt.beginRegion(Builder);
652   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
653     EmitCompoundStmtWithoutScope(*S);
654   else
655     EmitStmt(Body);
656 }
657 
658 /// Tries to mark the given function nounwind based on the
659 /// non-existence of any throwing calls within it.  We believe this is
660 /// lightweight enough to do at -O0.
661 static void TryMarkNoThrow(llvm::Function *F) {
662   // LLVM treats 'nounwind' on a function as part of the type, so we
663   // can't do this on functions that can be overwritten.
664   if (F->mayBeOverridden()) return;
665 
666   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
667     for (llvm::BasicBlock::iterator
668            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
669       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
670         if (!Call->doesNotThrow())
671           return;
672       } else if (isa<llvm::ResumeInst>(&*BI)) {
673         return;
674       }
675   F->setDoesNotThrow();
676 }
677 
678 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
679                                           const FunctionDecl *UnsizedDealloc) {
680   // This is a weak discardable definition of the sized deallocation function.
681   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
682 
683   // Call the unsized deallocation function and forward the first argument
684   // unchanged.
685   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
686   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
687 }
688 
689 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
690                                    const CGFunctionInfo &FnInfo) {
691   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
692 
693   // Check if we should generate debug info for this function.
694   if (FD->hasAttr<NoDebugAttr>())
695     DebugInfo = NULL; // disable debug info indefinitely for this function
696 
697   FunctionArgList Args;
698   QualType ResTy = FD->getResultType();
699 
700   CurGD = GD;
701   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
702   if (MD && MD->isInstance()) {
703     if (CGM.getCXXABI().HasThisReturn(GD))
704       ResTy = MD->getThisType(getContext());
705     CGM.getCXXABI().buildThisParam(*this, Args);
706   }
707 
708   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
709     Args.push_back(FD->getParamDecl(i));
710 
711   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
712     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
713 
714   SourceRange BodyRange;
715   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
716   CurEHLocation = BodyRange.getEnd();
717 
718   // Emit the standard function prologue.
719   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
720 
721   // Generate the body of the function.
722   if (isa<CXXDestructorDecl>(FD))
723     EmitDestructorBody(Args);
724   else if (isa<CXXConstructorDecl>(FD))
725     EmitConstructorBody(Args);
726   else if (getLangOpts().CUDA &&
727            !CGM.getCodeGenOpts().CUDAIsDevice &&
728            FD->hasAttr<CUDAGlobalAttr>())
729     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
730   else if (isa<CXXConversionDecl>(FD) &&
731            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
732     // The lambda conversion to block pointer is special; the semantics can't be
733     // expressed in the AST, so IRGen needs to special-case it.
734     EmitLambdaToBlockPointerBody(Args);
735   } else if (isa<CXXMethodDecl>(FD) &&
736              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
737     // The lambda static invoker function is special, because it forwards or
738     // clones the body of the function call operator (but is actually static).
739     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
740   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
741              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
742               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
743     // Implicit copy-assignment gets the same special treatment as implicit
744     // copy-constructors.
745     emitImplicitAssignmentOperatorBody(Args);
746   } else if (Stmt *Body = FD->getBody()) {
747     EmitFunctionBody(Args, Body);
748   } else if (FunctionDecl *UnsizedDealloc =
749                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
750     // Global sized deallocation functions get an implicit weak definition if
751     // they don't have an explicit definition.
752     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
753   } else
754     llvm_unreachable("no definition for emitted function");
755 
756   // C++11 [stmt.return]p2:
757   //   Flowing off the end of a function [...] results in undefined behavior in
758   //   a value-returning function.
759   // C11 6.9.1p12:
760   //   If the '}' that terminates a function is reached, and the value of the
761   //   function call is used by the caller, the behavior is undefined.
762   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
763       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
764     if (SanOpts->Return)
765       EmitCheck(Builder.getFalse(), "missing_return",
766                 EmitCheckSourceLocation(FD->getLocation()),
767                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
768     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
769       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
770     Builder.CreateUnreachable();
771     Builder.ClearInsertionPoint();
772   }
773 
774   // Emit the standard function epilogue.
775   FinishFunction(BodyRange.getEnd());
776 
777   // If we haven't marked the function nothrow through other means, do
778   // a quick pass now to see if we can.
779   if (!CurFn->doesNotThrow())
780     TryMarkNoThrow(CurFn);
781 
782   PGO.emitWriteoutFunction(CurGD);
783   PGO.destroyRegionCounters();
784 }
785 
786 /// ContainsLabel - Return true if the statement contains a label in it.  If
787 /// this statement is not executed normally, it not containing a label means
788 /// that we can just remove the code.
789 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
790   // Null statement, not a label!
791   if (S == 0) return false;
792 
793   // If this is a label, we have to emit the code, consider something like:
794   // if (0) {  ...  foo:  bar(); }  goto foo;
795   //
796   // TODO: If anyone cared, we could track __label__'s, since we know that you
797   // can't jump to one from outside their declared region.
798   if (isa<LabelStmt>(S))
799     return true;
800 
801   // If this is a case/default statement, and we haven't seen a switch, we have
802   // to emit the code.
803   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
804     return true;
805 
806   // If this is a switch statement, we want to ignore cases below it.
807   if (isa<SwitchStmt>(S))
808     IgnoreCaseStmts = true;
809 
810   // Scan subexpressions for verboten labels.
811   for (Stmt::const_child_range I = S->children(); I; ++I)
812     if (ContainsLabel(*I, IgnoreCaseStmts))
813       return true;
814 
815   return false;
816 }
817 
818 /// containsBreak - Return true if the statement contains a break out of it.
819 /// If the statement (recursively) contains a switch or loop with a break
820 /// inside of it, this is fine.
821 bool CodeGenFunction::containsBreak(const Stmt *S) {
822   // Null statement, not a label!
823   if (S == 0) return false;
824 
825   // If this is a switch or loop that defines its own break scope, then we can
826   // include it and anything inside of it.
827   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
828       isa<ForStmt>(S))
829     return false;
830 
831   if (isa<BreakStmt>(S))
832     return true;
833 
834   // Scan subexpressions for verboten breaks.
835   for (Stmt::const_child_range I = S->children(); I; ++I)
836     if (containsBreak(*I))
837       return true;
838 
839   return false;
840 }
841 
842 
843 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
844 /// to a constant, or if it does but contains a label, return false.  If it
845 /// constant folds return true and set the boolean result in Result.
846 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
847                                                    bool &ResultBool) {
848   llvm::APSInt ResultInt;
849   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
850     return false;
851 
852   ResultBool = ResultInt.getBoolValue();
853   return true;
854 }
855 
856 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
857 /// to a constant, or if it does but contains a label, return false.  If it
858 /// constant folds return true and set the folded value.
859 bool CodeGenFunction::
860 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
861   // FIXME: Rename and handle conversion of other evaluatable things
862   // to bool.
863   llvm::APSInt Int;
864   if (!Cond->EvaluateAsInt(Int, getContext()))
865     return false;  // Not foldable, not integer or not fully evaluatable.
866 
867   if (CodeGenFunction::ContainsLabel(Cond))
868     return false;  // Contains a label.
869 
870   ResultInt = Int;
871   return true;
872 }
873 
874 
875 
876 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
877 /// statement) to the specified blocks.  Based on the condition, this might try
878 /// to simplify the codegen of the conditional based on the branch.
879 ///
880 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
881                                            llvm::BasicBlock *TrueBlock,
882                                            llvm::BasicBlock *FalseBlock,
883                                            uint64_t TrueCount) {
884   Cond = Cond->IgnoreParens();
885 
886   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
887     RegionCounter Cnt = getPGORegionCounter(CondBOp);
888 
889     // Handle X && Y in a condition.
890     if (CondBOp->getOpcode() == BO_LAnd) {
891       // If we have "1 && X", simplify the code.  "0 && X" would have constant
892       // folded if the case was simple enough.
893       bool ConstantBool = false;
894       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
895           ConstantBool) {
896         // br(1 && X) -> br(X).
897         Cnt.beginRegion(Builder);
898         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
899                                     TrueCount);
900       }
901 
902       // If we have "X && 1", simplify the code to use an uncond branch.
903       // "X && 0" would have been constant folded to 0.
904       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
905           ConstantBool) {
906         // br(X && 1) -> br(X).
907         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
908                                     TrueCount);
909       }
910 
911       // Emit the LHS as a conditional.  If the LHS conditional is false, we
912       // want to jump to the FalseBlock.
913       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
914       // The counter tells us how often we evaluate RHS, and all of TrueCount
915       // can be propagated to that branch.
916       uint64_t RHSCount = Cnt.getCount();
917 
918       ConditionalEvaluation eval(*this);
919       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
920       EmitBlock(LHSTrue);
921 
922       // Any temporaries created here are conditional.
923       Cnt.beginRegion(Builder);
924       eval.begin(*this);
925       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
926       eval.end(*this);
927       Cnt.adjustFallThroughCount();
928       Cnt.applyAdjustmentsToRegion();
929 
930       return;
931     }
932 
933     if (CondBOp->getOpcode() == BO_LOr) {
934       // If we have "0 || X", simplify the code.  "1 || X" would have constant
935       // folded if the case was simple enough.
936       bool ConstantBool = false;
937       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
938           !ConstantBool) {
939         // br(0 || X) -> br(X).
940         Cnt.beginRegion(Builder);
941         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
942                                     TrueCount);
943       }
944 
945       // If we have "X || 0", simplify the code to use an uncond branch.
946       // "X || 1" would have been constant folded to 1.
947       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
948           !ConstantBool) {
949         // br(X || 0) -> br(X).
950         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
951                                     TrueCount);
952       }
953 
954       // Emit the LHS as a conditional.  If the LHS conditional is true, we
955       // want to jump to the TrueBlock.
956       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
957       // We have the count for entry to the RHS and for the whole expression
958       // being true, so we can divy up True count between the short circuit and
959       // the RHS.
960       uint64_t LHSCount = TrueCount - Cnt.getCount();
961       uint64_t RHSCount = TrueCount - LHSCount;
962 
963       ConditionalEvaluation eval(*this);
964       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
965       EmitBlock(LHSFalse);
966 
967       // Any temporaries created here are conditional.
968       Cnt.beginRegion(Builder);
969       eval.begin(*this);
970       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
971 
972       eval.end(*this);
973       Cnt.adjustFallThroughCount();
974       Cnt.applyAdjustmentsToRegion();
975 
976       return;
977     }
978   }
979 
980   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
981     // br(!x, t, f) -> br(x, f, t)
982     if (CondUOp->getOpcode() == UO_LNot) {
983       // Negate the count.
984       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
985       // Negate the condition and swap the destination blocks.
986       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
987                                   FalseCount);
988     }
989   }
990 
991   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
992     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
993     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
994     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
995 
996     RegionCounter Cnt = getPGORegionCounter(CondOp);
997     ConditionalEvaluation cond(*this);
998     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
999 
1000     // When computing PGO branch weights, we only know the overall count for
1001     // the true block. This code is essentially doing tail duplication of the
1002     // naive code-gen, introducing new edges for which counts are not
1003     // available. Divide the counts proportionally between the LHS and RHS of
1004     // the conditional operator.
1005     uint64_t LHSScaledTrueCount = 0;
1006     if (TrueCount) {
1007       double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount();
1008       LHSScaledTrueCount = TrueCount * LHSRatio;
1009     }
1010 
1011     cond.begin(*this);
1012     EmitBlock(LHSBlock);
1013     Cnt.beginRegion(Builder);
1014     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1015                          LHSScaledTrueCount);
1016     cond.end(*this);
1017 
1018     cond.begin(*this);
1019     EmitBlock(RHSBlock);
1020     Cnt.beginElseRegion();
1021     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1022                          TrueCount - LHSScaledTrueCount);
1023     cond.end(*this);
1024 
1025     return;
1026   }
1027 
1028   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1029     // Conditional operator handling can give us a throw expression as a
1030     // condition for a case like:
1031     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1032     // Fold this to:
1033     //   br(c, throw x, br(y, t, f))
1034     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1035     return;
1036   }
1037 
1038   // Create branch weights based on the number of times we get here and the
1039   // number of times the condition should be true.
1040   uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount);
1041   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1042                                                   CurrentCount - TrueCount);
1043 
1044   // Emit the code with the fully general case.
1045   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1046   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1047 }
1048 
1049 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1050 /// specified stmt yet.
1051 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1052   CGM.ErrorUnsupported(S, Type);
1053 }
1054 
1055 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1056 /// variable-length array whose elements have a non-zero bit-pattern.
1057 ///
1058 /// \param baseType the inner-most element type of the array
1059 /// \param src - a char* pointing to the bit-pattern for a single
1060 /// base element of the array
1061 /// \param sizeInChars - the total size of the VLA, in chars
1062 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1063                                llvm::Value *dest, llvm::Value *src,
1064                                llvm::Value *sizeInChars) {
1065   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1066     = CGF.getContext().getTypeInfoInChars(baseType);
1067 
1068   CGBuilderTy &Builder = CGF.Builder;
1069 
1070   llvm::Value *baseSizeInChars
1071     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1072 
1073   llvm::Type *i8p = Builder.getInt8PtrTy();
1074 
1075   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1076   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1077 
1078   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1079   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1080   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1081 
1082   // Make a loop over the VLA.  C99 guarantees that the VLA element
1083   // count must be nonzero.
1084   CGF.EmitBlock(loopBB);
1085 
1086   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1087   cur->addIncoming(begin, originBB);
1088 
1089   // memcpy the individual element bit-pattern.
1090   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1091                        baseSizeAndAlign.second.getQuantity(),
1092                        /*volatile*/ false);
1093 
1094   // Go to the next element.
1095   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1096 
1097   // Leave if that's the end of the VLA.
1098   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1099   Builder.CreateCondBr(done, contBB, loopBB);
1100   cur->addIncoming(next, loopBB);
1101 
1102   CGF.EmitBlock(contBB);
1103 }
1104 
1105 void
1106 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1107   // Ignore empty classes in C++.
1108   if (getLangOpts().CPlusPlus) {
1109     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1110       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1111         return;
1112     }
1113   }
1114 
1115   // Cast the dest ptr to the appropriate i8 pointer type.
1116   unsigned DestAS =
1117     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1118   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1119   if (DestPtr->getType() != BP)
1120     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1121 
1122   // Get size and alignment info for this aggregate.
1123   std::pair<CharUnits, CharUnits> TypeInfo =
1124     getContext().getTypeInfoInChars(Ty);
1125   CharUnits Size = TypeInfo.first;
1126   CharUnits Align = TypeInfo.second;
1127 
1128   llvm::Value *SizeVal;
1129   const VariableArrayType *vla;
1130 
1131   // Don't bother emitting a zero-byte memset.
1132   if (Size.isZero()) {
1133     // But note that getTypeInfo returns 0 for a VLA.
1134     if (const VariableArrayType *vlaType =
1135           dyn_cast_or_null<VariableArrayType>(
1136                                           getContext().getAsArrayType(Ty))) {
1137       QualType eltType;
1138       llvm::Value *numElts;
1139       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1140 
1141       SizeVal = numElts;
1142       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1143       if (!eltSize.isOne())
1144         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1145       vla = vlaType;
1146     } else {
1147       return;
1148     }
1149   } else {
1150     SizeVal = CGM.getSize(Size);
1151     vla = 0;
1152   }
1153 
1154   // If the type contains a pointer to data member we can't memset it to zero.
1155   // Instead, create a null constant and copy it to the destination.
1156   // TODO: there are other patterns besides zero that we can usefully memset,
1157   // like -1, which happens to be the pattern used by member-pointers.
1158   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1159     // For a VLA, emit a single element, then splat that over the VLA.
1160     if (vla) Ty = getContext().getBaseElementType(vla);
1161 
1162     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1163 
1164     llvm::GlobalVariable *NullVariable =
1165       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1166                                /*isConstant=*/true,
1167                                llvm::GlobalVariable::PrivateLinkage,
1168                                NullConstant, Twine());
1169     llvm::Value *SrcPtr =
1170       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1171 
1172     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1173 
1174     // Get and call the appropriate llvm.memcpy overload.
1175     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1176     return;
1177   }
1178 
1179   // Otherwise, just memset the whole thing to zero.  This is legal
1180   // because in LLVM, all default initializers (other than the ones we just
1181   // handled above) are guaranteed to have a bit pattern of all zeros.
1182   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1183                        Align.getQuantity(), false);
1184 }
1185 
1186 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1187   // Make sure that there is a block for the indirect goto.
1188   if (IndirectBranch == 0)
1189     GetIndirectGotoBlock();
1190 
1191   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1192 
1193   // Make sure the indirect branch includes all of the address-taken blocks.
1194   IndirectBranch->addDestination(BB);
1195   return llvm::BlockAddress::get(CurFn, BB);
1196 }
1197 
1198 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1199   // If we already made the indirect branch for indirect goto, return its block.
1200   if (IndirectBranch) return IndirectBranch->getParent();
1201 
1202   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1203 
1204   // Create the PHI node that indirect gotos will add entries to.
1205   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1206                                               "indirect.goto.dest");
1207 
1208   // Create the indirect branch instruction.
1209   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1210   return IndirectBranch->getParent();
1211 }
1212 
1213 /// Computes the length of an array in elements, as well as the base
1214 /// element type and a properly-typed first element pointer.
1215 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1216                                               QualType &baseType,
1217                                               llvm::Value *&addr) {
1218   const ArrayType *arrayType = origArrayType;
1219 
1220   // If it's a VLA, we have to load the stored size.  Note that
1221   // this is the size of the VLA in bytes, not its size in elements.
1222   llvm::Value *numVLAElements = 0;
1223   if (isa<VariableArrayType>(arrayType)) {
1224     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1225 
1226     // Walk into all VLAs.  This doesn't require changes to addr,
1227     // which has type T* where T is the first non-VLA element type.
1228     do {
1229       QualType elementType = arrayType->getElementType();
1230       arrayType = getContext().getAsArrayType(elementType);
1231 
1232       // If we only have VLA components, 'addr' requires no adjustment.
1233       if (!arrayType) {
1234         baseType = elementType;
1235         return numVLAElements;
1236       }
1237     } while (isa<VariableArrayType>(arrayType));
1238 
1239     // We get out here only if we find a constant array type
1240     // inside the VLA.
1241   }
1242 
1243   // We have some number of constant-length arrays, so addr should
1244   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1245   // down to the first element of addr.
1246   SmallVector<llvm::Value*, 8> gepIndices;
1247 
1248   // GEP down to the array type.
1249   llvm::ConstantInt *zero = Builder.getInt32(0);
1250   gepIndices.push_back(zero);
1251 
1252   uint64_t countFromCLAs = 1;
1253   QualType eltType;
1254 
1255   llvm::ArrayType *llvmArrayType =
1256     dyn_cast<llvm::ArrayType>(
1257       cast<llvm::PointerType>(addr->getType())->getElementType());
1258   while (llvmArrayType) {
1259     assert(isa<ConstantArrayType>(arrayType));
1260     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1261              == llvmArrayType->getNumElements());
1262 
1263     gepIndices.push_back(zero);
1264     countFromCLAs *= llvmArrayType->getNumElements();
1265     eltType = arrayType->getElementType();
1266 
1267     llvmArrayType =
1268       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1269     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1270     assert((!llvmArrayType || arrayType) &&
1271            "LLVM and Clang types are out-of-synch");
1272   }
1273 
1274   if (arrayType) {
1275     // From this point onwards, the Clang array type has been emitted
1276     // as some other type (probably a packed struct). Compute the array
1277     // size, and just emit the 'begin' expression as a bitcast.
1278     while (arrayType) {
1279       countFromCLAs *=
1280           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1281       eltType = arrayType->getElementType();
1282       arrayType = getContext().getAsArrayType(eltType);
1283     }
1284 
1285     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1286     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1287     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1288   } else {
1289     // Create the actual GEP.
1290     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1291   }
1292 
1293   baseType = eltType;
1294 
1295   llvm::Value *numElements
1296     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1297 
1298   // If we had any VLA dimensions, factor them in.
1299   if (numVLAElements)
1300     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1301 
1302   return numElements;
1303 }
1304 
1305 std::pair<llvm::Value*, QualType>
1306 CodeGenFunction::getVLASize(QualType type) {
1307   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1308   assert(vla && "type was not a variable array type!");
1309   return getVLASize(vla);
1310 }
1311 
1312 std::pair<llvm::Value*, QualType>
1313 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1314   // The number of elements so far; always size_t.
1315   llvm::Value *numElements = 0;
1316 
1317   QualType elementType;
1318   do {
1319     elementType = type->getElementType();
1320     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1321     assert(vlaSize && "no size for VLA!");
1322     assert(vlaSize->getType() == SizeTy);
1323 
1324     if (!numElements) {
1325       numElements = vlaSize;
1326     } else {
1327       // It's undefined behavior if this wraps around, so mark it that way.
1328       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1329       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1330     }
1331   } while ((type = getContext().getAsVariableArrayType(elementType)));
1332 
1333   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1334 }
1335 
1336 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1337   assert(type->isVariablyModifiedType() &&
1338          "Must pass variably modified type to EmitVLASizes!");
1339 
1340   EnsureInsertPoint();
1341 
1342   // We're going to walk down into the type and look for VLA
1343   // expressions.
1344   do {
1345     assert(type->isVariablyModifiedType());
1346 
1347     const Type *ty = type.getTypePtr();
1348     switch (ty->getTypeClass()) {
1349 
1350 #define TYPE(Class, Base)
1351 #define ABSTRACT_TYPE(Class, Base)
1352 #define NON_CANONICAL_TYPE(Class, Base)
1353 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1354 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1355 #include "clang/AST/TypeNodes.def"
1356       llvm_unreachable("unexpected dependent type!");
1357 
1358     // These types are never variably-modified.
1359     case Type::Builtin:
1360     case Type::Complex:
1361     case Type::Vector:
1362     case Type::ExtVector:
1363     case Type::Record:
1364     case Type::Enum:
1365     case Type::Elaborated:
1366     case Type::TemplateSpecialization:
1367     case Type::ObjCObject:
1368     case Type::ObjCInterface:
1369     case Type::ObjCObjectPointer:
1370       llvm_unreachable("type class is never variably-modified!");
1371 
1372     case Type::Adjusted:
1373       type = cast<AdjustedType>(ty)->getAdjustedType();
1374       break;
1375 
1376     case Type::Decayed:
1377       type = cast<DecayedType>(ty)->getPointeeType();
1378       break;
1379 
1380     case Type::Pointer:
1381       type = cast<PointerType>(ty)->getPointeeType();
1382       break;
1383 
1384     case Type::BlockPointer:
1385       type = cast<BlockPointerType>(ty)->getPointeeType();
1386       break;
1387 
1388     case Type::LValueReference:
1389     case Type::RValueReference:
1390       type = cast<ReferenceType>(ty)->getPointeeType();
1391       break;
1392 
1393     case Type::MemberPointer:
1394       type = cast<MemberPointerType>(ty)->getPointeeType();
1395       break;
1396 
1397     case Type::ConstantArray:
1398     case Type::IncompleteArray:
1399       // Losing element qualification here is fine.
1400       type = cast<ArrayType>(ty)->getElementType();
1401       break;
1402 
1403     case Type::VariableArray: {
1404       // Losing element qualification here is fine.
1405       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1406 
1407       // Unknown size indication requires no size computation.
1408       // Otherwise, evaluate and record it.
1409       if (const Expr *size = vat->getSizeExpr()) {
1410         // It's possible that we might have emitted this already,
1411         // e.g. with a typedef and a pointer to it.
1412         llvm::Value *&entry = VLASizeMap[size];
1413         if (!entry) {
1414           llvm::Value *Size = EmitScalarExpr(size);
1415 
1416           // C11 6.7.6.2p5:
1417           //   If the size is an expression that is not an integer constant
1418           //   expression [...] each time it is evaluated it shall have a value
1419           //   greater than zero.
1420           if (SanOpts->VLABound &&
1421               size->getType()->isSignedIntegerType()) {
1422             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1423             llvm::Constant *StaticArgs[] = {
1424               EmitCheckSourceLocation(size->getLocStart()),
1425               EmitCheckTypeDescriptor(size->getType())
1426             };
1427             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1428                       "vla_bound_not_positive", StaticArgs, Size,
1429                       CRK_Recoverable);
1430           }
1431 
1432           // Always zexting here would be wrong if it weren't
1433           // undefined behavior to have a negative bound.
1434           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1435         }
1436       }
1437       type = vat->getElementType();
1438       break;
1439     }
1440 
1441     case Type::FunctionProto:
1442     case Type::FunctionNoProto:
1443       type = cast<FunctionType>(ty)->getResultType();
1444       break;
1445 
1446     case Type::Paren:
1447     case Type::TypeOf:
1448     case Type::UnaryTransform:
1449     case Type::Attributed:
1450     case Type::SubstTemplateTypeParm:
1451     case Type::PackExpansion:
1452       // Keep walking after single level desugaring.
1453       type = type.getSingleStepDesugaredType(getContext());
1454       break;
1455 
1456     case Type::Typedef:
1457     case Type::Decltype:
1458     case Type::Auto:
1459       // Stop walking: nothing to do.
1460       return;
1461 
1462     case Type::TypeOfExpr:
1463       // Stop walking: emit typeof expression.
1464       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1465       return;
1466 
1467     case Type::Atomic:
1468       type = cast<AtomicType>(ty)->getValueType();
1469       break;
1470     }
1471   } while (type->isVariablyModifiedType());
1472 }
1473 
1474 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1475   if (getContext().getBuiltinVaListType()->isArrayType())
1476     return EmitScalarExpr(E);
1477   return EmitLValue(E).getAddress();
1478 }
1479 
1480 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1481                                               llvm::Constant *Init) {
1482   assert (Init && "Invalid DeclRefExpr initializer!");
1483   if (CGDebugInfo *Dbg = getDebugInfo())
1484     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1485       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1486 }
1487 
1488 CodeGenFunction::PeepholeProtection
1489 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1490   // At the moment, the only aggressive peephole we do in IR gen
1491   // is trunc(zext) folding, but if we add more, we can easily
1492   // extend this protection.
1493 
1494   if (!rvalue.isScalar()) return PeepholeProtection();
1495   llvm::Value *value = rvalue.getScalarVal();
1496   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1497 
1498   // Just make an extra bitcast.
1499   assert(HaveInsertPoint());
1500   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1501                                                   Builder.GetInsertBlock());
1502 
1503   PeepholeProtection protection;
1504   protection.Inst = inst;
1505   return protection;
1506 }
1507 
1508 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1509   if (!protection.Inst) return;
1510 
1511   // In theory, we could try to duplicate the peepholes now, but whatever.
1512   protection.Inst->eraseFromParent();
1513 }
1514 
1515 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1516                                                  llvm::Value *AnnotatedVal,
1517                                                  StringRef AnnotationStr,
1518                                                  SourceLocation Location) {
1519   llvm::Value *Args[4] = {
1520     AnnotatedVal,
1521     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1522     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1523     CGM.EmitAnnotationLineNo(Location)
1524   };
1525   return Builder.CreateCall(AnnotationFn, Args);
1526 }
1527 
1528 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1529   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1530   // FIXME We create a new bitcast for every annotation because that's what
1531   // llvm-gcc was doing.
1532   for (specific_attr_iterator<AnnotateAttr>
1533        ai = D->specific_attr_begin<AnnotateAttr>(),
1534        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1535     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1536                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1537                        (*ai)->getAnnotation(), D->getLocation());
1538 }
1539 
1540 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1541                                                    llvm::Value *V) {
1542   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1543   llvm::Type *VTy = V->getType();
1544   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1545                                     CGM.Int8PtrTy);
1546 
1547   for (specific_attr_iterator<AnnotateAttr>
1548        ai = D->specific_attr_begin<AnnotateAttr>(),
1549        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1550     // FIXME Always emit the cast inst so we can differentiate between
1551     // annotation on the first field of a struct and annotation on the struct
1552     // itself.
1553     if (VTy != CGM.Int8PtrTy)
1554       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1555     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1556     V = Builder.CreateBitCast(V, VTy);
1557   }
1558 
1559   return V;
1560 }
1561 
1562 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1563