1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/OpenCL.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 39 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 40 CGM.getSanOpts().Alignment | 41 CGM.getSanOpts().ObjectSize | 42 CGM.getSanOpts().Vptr), 43 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 44 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 45 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 46 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 47 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 48 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 49 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 50 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 51 CXXThisValue(0), CXXDefaultInitExprThis(0), 52 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 53 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 54 TerminateHandler(0), TrapBB(0) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 } 77 78 79 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 80 return CGM.getTypes().ConvertTypeForMem(T); 81 } 82 83 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 84 return CGM.getTypes().ConvertType(T); 85 } 86 87 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 88 type = type.getCanonicalType(); 89 while (true) { 90 switch (type->getTypeClass()) { 91 #define TYPE(name, parent) 92 #define ABSTRACT_TYPE(name, parent) 93 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 94 #define DEPENDENT_TYPE(name, parent) case Type::name: 95 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 96 #include "clang/AST/TypeNodes.def" 97 llvm_unreachable("non-canonical or dependent type in IR-generation"); 98 99 case Type::Auto: 100 llvm_unreachable("undeduced auto type in IR-generation"); 101 102 // Various scalar types. 103 case Type::Builtin: 104 case Type::Pointer: 105 case Type::BlockPointer: 106 case Type::LValueReference: 107 case Type::RValueReference: 108 case Type::MemberPointer: 109 case Type::Vector: 110 case Type::ExtVector: 111 case Type::FunctionProto: 112 case Type::FunctionNoProto: 113 case Type::Enum: 114 case Type::ObjCObjectPointer: 115 return TEK_Scalar; 116 117 // Complexes. 118 case Type::Complex: 119 return TEK_Complex; 120 121 // Arrays, records, and Objective-C objects. 122 case Type::ConstantArray: 123 case Type::IncompleteArray: 124 case Type::VariableArray: 125 case Type::Record: 126 case Type::ObjCObject: 127 case Type::ObjCInterface: 128 return TEK_Aggregate; 129 130 // We operate on atomic values according to their underlying type. 131 case Type::Atomic: 132 type = cast<AtomicType>(type)->getValueType(); 133 continue; 134 } 135 llvm_unreachable("unknown type kind!"); 136 } 137 } 138 139 void CodeGenFunction::EmitReturnBlock() { 140 // For cleanliness, we try to avoid emitting the return block for 141 // simple cases. 142 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 143 144 if (CurBB) { 145 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 146 147 // We have a valid insert point, reuse it if it is empty or there are no 148 // explicit jumps to the return block. 149 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 150 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 151 delete ReturnBlock.getBlock(); 152 } else 153 EmitBlock(ReturnBlock.getBlock()); 154 return; 155 } 156 157 // Otherwise, if the return block is the target of a single direct 158 // branch then we can just put the code in that block instead. This 159 // cleans up functions which started with a unified return block. 160 if (ReturnBlock.getBlock()->hasOneUse()) { 161 llvm::BranchInst *BI = 162 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 163 if (BI && BI->isUnconditional() && 164 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 165 // Reset insertion point, including debug location, and delete the 166 // branch. This is really subtle and only works because the next change 167 // in location will hit the caching in CGDebugInfo::EmitLocation and not 168 // override this. 169 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 170 Builder.SetInsertPoint(BI->getParent()); 171 BI->eraseFromParent(); 172 delete ReturnBlock.getBlock(); 173 return; 174 } 175 } 176 177 // FIXME: We are at an unreachable point, there is no reason to emit the block 178 // unless it has uses. However, we still need a place to put the debug 179 // region.end for now. 180 181 EmitBlock(ReturnBlock.getBlock()); 182 } 183 184 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 185 if (!BB) return; 186 if (!BB->use_empty()) 187 return CGF.CurFn->getBasicBlockList().push_back(BB); 188 delete BB; 189 } 190 191 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 192 assert(BreakContinueStack.empty() && 193 "mismatched push/pop in break/continue stack!"); 194 195 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 196 && NumSimpleReturnExprs == NumReturnExprs 197 && ReturnBlock.getBlock()->use_empty(); 198 // Usually the return expression is evaluated before the cleanup 199 // code. If the function contains only a simple return statement, 200 // such as a constant, the location before the cleanup code becomes 201 // the last useful breakpoint in the function, because the simple 202 // return expression will be evaluated after the cleanup code. To be 203 // safe, set the debug location for cleanup code to the location of 204 // the return statement. Otherwise the cleanup code should be at the 205 // end of the function's lexical scope. 206 // 207 // If there are multiple branches to the return block, the branch 208 // instructions will get the location of the return statements and 209 // all will be fine. 210 if (CGDebugInfo *DI = getDebugInfo()) { 211 if (OnlySimpleReturnStmts) 212 DI->EmitLocation(Builder, LastStopPoint.first, 213 false, LastStopPoint.second); 214 else 215 DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second); 216 } 217 218 // Pop any cleanups that might have been associated with the 219 // parameters. Do this in whatever block we're currently in; it's 220 // important to do this before we enter the return block or return 221 // edges will be *really* confused. 222 bool EmitRetDbgLoc = true; 223 if (EHStack.stable_begin() != PrologueCleanupDepth) { 224 PopCleanupBlocks(PrologueCleanupDepth); 225 226 // Make sure the line table doesn't jump back into the body for 227 // the ret after it's been at EndLoc. 228 EmitRetDbgLoc = false; 229 230 if (CGDebugInfo *DI = getDebugInfo()) 231 if (OnlySimpleReturnStmts) 232 DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second); 233 } 234 235 // Emit function epilog (to return). 236 EmitReturnBlock(); 237 238 if (ShouldInstrumentFunction()) 239 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 240 241 // Emit debug descriptor for function end. 242 if (CGDebugInfo *DI = getDebugInfo()) { 243 DI->EmitFunctionEnd(Builder); 244 } 245 246 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 247 EmitEndEHSpec(CurCodeDecl); 248 249 assert(EHStack.empty() && 250 "did not remove all scopes from cleanup stack!"); 251 252 // If someone did an indirect goto, emit the indirect goto block at the end of 253 // the function. 254 if (IndirectBranch) { 255 EmitBlock(IndirectBranch->getParent()); 256 Builder.ClearInsertionPoint(); 257 } 258 259 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 260 llvm::Instruction *Ptr = AllocaInsertPt; 261 AllocaInsertPt = 0; 262 Ptr->eraseFromParent(); 263 264 // If someone took the address of a label but never did an indirect goto, we 265 // made a zero entry PHI node, which is illegal, zap it now. 266 if (IndirectBranch) { 267 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 268 if (PN->getNumIncomingValues() == 0) { 269 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 270 PN->eraseFromParent(); 271 } 272 } 273 274 EmitIfUsed(*this, EHResumeBlock); 275 EmitIfUsed(*this, TerminateLandingPad); 276 EmitIfUsed(*this, TerminateHandler); 277 EmitIfUsed(*this, UnreachableBlock); 278 279 if (CGM.getCodeGenOpts().EmitDeclMetadata) 280 EmitDeclMetadata(); 281 } 282 283 /// ShouldInstrumentFunction - Return true if the current function should be 284 /// instrumented with __cyg_profile_func_* calls 285 bool CodeGenFunction::ShouldInstrumentFunction() { 286 if (!CGM.getCodeGenOpts().InstrumentFunctions) 287 return false; 288 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 289 return false; 290 return true; 291 } 292 293 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 294 /// instrumentation function with the current function and the call site, if 295 /// function instrumentation is enabled. 296 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 297 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 298 llvm::PointerType *PointerTy = Int8PtrTy; 299 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 300 llvm::FunctionType *FunctionTy = 301 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 302 303 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 304 llvm::CallInst *CallSite = Builder.CreateCall( 305 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 306 llvm::ConstantInt::get(Int32Ty, 0), 307 "callsite"); 308 309 llvm::Value *args[] = { 310 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 311 CallSite 312 }; 313 314 EmitNounwindRuntimeCall(F, args); 315 } 316 317 void CodeGenFunction::EmitMCountInstrumentation() { 318 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 319 320 llvm::Constant *MCountFn = 321 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 322 EmitNounwindRuntimeCall(MCountFn); 323 } 324 325 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 326 // information in the program executable. The argument information stored 327 // includes the argument name, its type, the address and access qualifiers used. 328 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 329 CodeGenModule &CGM,llvm::LLVMContext &Context, 330 SmallVector <llvm::Value*, 5> &kernelMDArgs, 331 CGBuilderTy& Builder, ASTContext &ASTCtx) { 332 // Create MDNodes that represent the kernel arg metadata. 333 // Each MDNode is a list in the form of "key", N number of values which is 334 // the same number of values as their are kernel arguments. 335 336 // MDNode for the kernel argument address space qualifiers. 337 SmallVector<llvm::Value*, 8> addressQuals; 338 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 339 340 // MDNode for the kernel argument access qualifiers (images only). 341 SmallVector<llvm::Value*, 8> accessQuals; 342 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 343 344 // MDNode for the kernel argument type names. 345 SmallVector<llvm::Value*, 8> argTypeNames; 346 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 347 348 // MDNode for the kernel argument type qualifiers. 349 SmallVector<llvm::Value*, 8> argTypeQuals; 350 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 351 352 // MDNode for the kernel argument names. 353 SmallVector<llvm::Value*, 8> argNames; 354 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 355 356 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 357 const ParmVarDecl *parm = FD->getParamDecl(i); 358 QualType ty = parm->getType(); 359 std::string typeQuals; 360 361 if (ty->isPointerType()) { 362 QualType pointeeTy = ty->getPointeeType(); 363 364 // Get address qualifier. 365 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 366 pointeeTy.getAddressSpace()))); 367 368 // Get argument type name. 369 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 370 371 // Turn "unsigned type" to "utype" 372 std::string::size_type pos = typeName.find("unsigned"); 373 if (pos != std::string::npos) 374 typeName.erase(pos+1, 8); 375 376 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 377 378 // Get argument type qualifiers: 379 if (ty.isRestrictQualified()) 380 typeQuals = "restrict"; 381 if (pointeeTy.isConstQualified() || 382 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 383 typeQuals += typeQuals.empty() ? "const" : " const"; 384 if (pointeeTy.isVolatileQualified()) 385 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 386 } else { 387 addressQuals.push_back(Builder.getInt32(0)); 388 389 // Get argument type name. 390 std::string typeName = ty.getUnqualifiedType().getAsString(); 391 392 // Turn "unsigned type" to "utype" 393 std::string::size_type pos = typeName.find("unsigned"); 394 if (pos != std::string::npos) 395 typeName.erase(pos+1, 8); 396 397 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 398 399 // Get argument type qualifiers: 400 if (ty.isConstQualified()) 401 typeQuals = "const"; 402 if (ty.isVolatileQualified()) 403 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 404 } 405 406 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 407 408 // Get image access qualifier: 409 if (ty->isImageType()) { 410 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 411 if (A && A->getAccess() == CLIA_write_only) 412 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 413 else 414 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 415 } else 416 accessQuals.push_back(llvm::MDString::get(Context, "none")); 417 418 // Get argument name. 419 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 420 } 421 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 424 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 425 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 426 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 427 } 428 429 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 430 llvm::Function *Fn) 431 { 432 if (!FD->hasAttr<OpenCLKernelAttr>()) 433 return; 434 435 llvm::LLVMContext &Context = getLLVMContext(); 436 437 SmallVector <llvm::Value*, 5> kernelMDArgs; 438 kernelMDArgs.push_back(Fn); 439 440 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 441 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 442 Builder, getContext()); 443 444 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 445 QualType hintQTy = A->getTypeHint(); 446 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 447 bool isSignedInteger = 448 hintQTy->isSignedIntegerType() || 449 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 450 llvm::Value *attrMDArgs[] = { 451 llvm::MDString::get(Context, "vec_type_hint"), 452 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 453 llvm::ConstantInt::get( 454 llvm::IntegerType::get(Context, 32), 455 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 456 }; 457 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 458 } 459 460 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 461 llvm::Value *attrMDArgs[] = { 462 llvm::MDString::get(Context, "work_group_size_hint"), 463 Builder.getInt32(A->getXDim()), 464 Builder.getInt32(A->getYDim()), 465 Builder.getInt32(A->getZDim()) 466 }; 467 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 468 } 469 470 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 471 llvm::Value *attrMDArgs[] = { 472 llvm::MDString::get(Context, "reqd_work_group_size"), 473 Builder.getInt32(A->getXDim()), 474 Builder.getInt32(A->getYDim()), 475 Builder.getInt32(A->getZDim()) 476 }; 477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 478 } 479 480 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 481 llvm::NamedMDNode *OpenCLKernelMetadata = 482 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 483 OpenCLKernelMetadata->addOperand(kernelMDNode); 484 } 485 486 void CodeGenFunction::StartFunction(GlobalDecl GD, 487 QualType RetTy, 488 llvm::Function *Fn, 489 const CGFunctionInfo &FnInfo, 490 const FunctionArgList &Args, 491 SourceLocation StartLoc) { 492 const Decl *D = GD.getDecl(); 493 494 DidCallStackSave = false; 495 CurCodeDecl = D; 496 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 497 FnRetTy = RetTy; 498 CurFn = Fn; 499 CurFnInfo = &FnInfo; 500 assert(CurFn->isDeclaration() && "Function already has body?"); 501 502 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 503 SanOpts = &SanitizerOptions::Disabled; 504 SanitizePerformTypeCheck = false; 505 } 506 507 // Pass inline keyword to optimizer if it appears explicitly on any 508 // declaration. 509 if (!CGM.getCodeGenOpts().NoInline) 510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 511 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 512 RE = FD->redecls_end(); RI != RE; ++RI) 513 if (RI->isInlineSpecified()) { 514 Fn->addFnAttr(llvm::Attribute::InlineHint); 515 break; 516 } 517 518 if (getLangOpts().OpenCL) { 519 // Add metadata for a kernel function. 520 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 521 EmitOpenCLKernelMetadata(FD, Fn); 522 } 523 524 // If we are checking function types, emit a function type signature as 525 // prefix data. 526 if (getLangOpts().CPlusPlus && SanOpts->Function) { 527 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 528 if (llvm::Constant *PrefixSig = 529 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 530 llvm::Constant *FTRTTIConst = 531 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 532 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 533 llvm::Constant *PrefixStructConst = 534 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 535 Fn->setPrefixData(PrefixStructConst); 536 } 537 } 538 } 539 540 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 541 542 // Create a marker to make it easy to insert allocas into the entryblock 543 // later. Don't create this with the builder, because we don't want it 544 // folded. 545 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 546 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 547 if (Builder.isNamePreserving()) 548 AllocaInsertPt->setName("allocapt"); 549 550 ReturnBlock = getJumpDestInCurrentScope("return"); 551 552 Builder.SetInsertPoint(EntryBB); 553 554 // Emit subprogram debug descriptor. 555 if (CGDebugInfo *DI = getDebugInfo()) { 556 SmallVector<QualType, 16> ArgTypes; 557 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 558 i != e; ++i) { 559 ArgTypes.push_back((*i)->getType()); 560 } 561 562 QualType FnType = 563 getContext().getFunctionType(RetTy, ArgTypes, 564 FunctionProtoType::ExtProtoInfo()); 565 566 DI->setLocation(StartLoc); 567 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 568 } 569 570 if (ShouldInstrumentFunction()) 571 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 572 573 if (CGM.getCodeGenOpts().InstrumentForProfiling) 574 EmitMCountInstrumentation(); 575 576 PGO.assignRegionCounters(GD); 577 578 if (RetTy->isVoidType()) { 579 // Void type; nothing to return. 580 ReturnValue = 0; 581 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 582 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 583 // Indirect aggregate return; emit returned value directly into sret slot. 584 // This reduces code size, and affects correctness in C++. 585 ReturnValue = CurFn->arg_begin(); 586 } else { 587 ReturnValue = CreateIRTemp(RetTy, "retval"); 588 589 // Tell the epilog emitter to autorelease the result. We do this 590 // now so that various specialized functions can suppress it 591 // during their IR-generation. 592 if (getLangOpts().ObjCAutoRefCount && 593 !CurFnInfo->isReturnsRetained() && 594 RetTy->isObjCRetainableType()) 595 AutoreleaseResult = true; 596 } 597 598 EmitStartEHSpec(CurCodeDecl); 599 600 PrologueCleanupDepth = EHStack.stable_begin(); 601 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 602 603 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 604 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 605 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 606 if (MD->getParent()->isLambda() && 607 MD->getOverloadedOperator() == OO_Call) { 608 // We're in a lambda; figure out the captures. 609 MD->getParent()->getCaptureFields(LambdaCaptureFields, 610 LambdaThisCaptureField); 611 if (LambdaThisCaptureField) { 612 // If this lambda captures this, load it. 613 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 614 CXXThisValue = EmitLoadOfLValue(ThisLValue, 615 SourceLocation()).getScalarVal(); 616 } 617 } else { 618 // Not in a lambda; just use 'this' from the method. 619 // FIXME: Should we generate a new load for each use of 'this'? The 620 // fast register allocator would be happier... 621 CXXThisValue = CXXABIThisValue; 622 } 623 } 624 625 // If any of the arguments have a variably modified type, make sure to 626 // emit the type size. 627 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 628 i != e; ++i) { 629 const VarDecl *VD = *i; 630 631 // Dig out the type as written from ParmVarDecls; it's unclear whether 632 // the standard (C99 6.9.1p10) requires this, but we're following the 633 // precedent set by gcc. 634 QualType Ty; 635 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 636 Ty = PVD->getOriginalType(); 637 else 638 Ty = VD->getType(); 639 640 if (Ty->isVariablyModifiedType()) 641 EmitVariablyModifiedType(Ty); 642 } 643 // Emit a location at the end of the prologue. 644 if (CGDebugInfo *DI = getDebugInfo()) 645 DI->EmitLocation(Builder, StartLoc); 646 } 647 648 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 649 const Stmt *Body) { 650 RegionCounter Cnt = getPGORegionCounter(Body); 651 Cnt.beginRegion(Builder); 652 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 653 EmitCompoundStmtWithoutScope(*S); 654 else 655 EmitStmt(Body); 656 } 657 658 /// Tries to mark the given function nounwind based on the 659 /// non-existence of any throwing calls within it. We believe this is 660 /// lightweight enough to do at -O0. 661 static void TryMarkNoThrow(llvm::Function *F) { 662 // LLVM treats 'nounwind' on a function as part of the type, so we 663 // can't do this on functions that can be overwritten. 664 if (F->mayBeOverridden()) return; 665 666 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 667 for (llvm::BasicBlock::iterator 668 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 669 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 670 if (!Call->doesNotThrow()) 671 return; 672 } else if (isa<llvm::ResumeInst>(&*BI)) { 673 return; 674 } 675 F->setDoesNotThrow(); 676 } 677 678 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 679 const FunctionDecl *UnsizedDealloc) { 680 // This is a weak discardable definition of the sized deallocation function. 681 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 682 683 // Call the unsized deallocation function and forward the first argument 684 // unchanged. 685 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 686 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 687 } 688 689 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 690 const CGFunctionInfo &FnInfo) { 691 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 692 693 // Check if we should generate debug info for this function. 694 if (FD->hasAttr<NoDebugAttr>()) 695 DebugInfo = NULL; // disable debug info indefinitely for this function 696 697 FunctionArgList Args; 698 QualType ResTy = FD->getResultType(); 699 700 CurGD = GD; 701 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 702 if (MD && MD->isInstance()) { 703 if (CGM.getCXXABI().HasThisReturn(GD)) 704 ResTy = MD->getThisType(getContext()); 705 CGM.getCXXABI().buildThisParam(*this, Args); 706 } 707 708 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 709 Args.push_back(FD->getParamDecl(i)); 710 711 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 712 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 713 714 SourceRange BodyRange; 715 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 716 CurEHLocation = BodyRange.getEnd(); 717 718 // Emit the standard function prologue. 719 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 720 721 // Generate the body of the function. 722 if (isa<CXXDestructorDecl>(FD)) 723 EmitDestructorBody(Args); 724 else if (isa<CXXConstructorDecl>(FD)) 725 EmitConstructorBody(Args); 726 else if (getLangOpts().CUDA && 727 !CGM.getCodeGenOpts().CUDAIsDevice && 728 FD->hasAttr<CUDAGlobalAttr>()) 729 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 730 else if (isa<CXXConversionDecl>(FD) && 731 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 732 // The lambda conversion to block pointer is special; the semantics can't be 733 // expressed in the AST, so IRGen needs to special-case it. 734 EmitLambdaToBlockPointerBody(Args); 735 } else if (isa<CXXMethodDecl>(FD) && 736 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 737 // The lambda static invoker function is special, because it forwards or 738 // clones the body of the function call operator (but is actually static). 739 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 740 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 741 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 742 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 743 // Implicit copy-assignment gets the same special treatment as implicit 744 // copy-constructors. 745 emitImplicitAssignmentOperatorBody(Args); 746 } else if (Stmt *Body = FD->getBody()) { 747 EmitFunctionBody(Args, Body); 748 } else if (FunctionDecl *UnsizedDealloc = 749 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 750 // Global sized deallocation functions get an implicit weak definition if 751 // they don't have an explicit definition. 752 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 753 } else 754 llvm_unreachable("no definition for emitted function"); 755 756 // C++11 [stmt.return]p2: 757 // Flowing off the end of a function [...] results in undefined behavior in 758 // a value-returning function. 759 // C11 6.9.1p12: 760 // If the '}' that terminates a function is reached, and the value of the 761 // function call is used by the caller, the behavior is undefined. 762 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 763 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 764 if (SanOpts->Return) 765 EmitCheck(Builder.getFalse(), "missing_return", 766 EmitCheckSourceLocation(FD->getLocation()), 767 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 768 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 769 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 770 Builder.CreateUnreachable(); 771 Builder.ClearInsertionPoint(); 772 } 773 774 // Emit the standard function epilogue. 775 FinishFunction(BodyRange.getEnd()); 776 777 // If we haven't marked the function nothrow through other means, do 778 // a quick pass now to see if we can. 779 if (!CurFn->doesNotThrow()) 780 TryMarkNoThrow(CurFn); 781 782 PGO.emitWriteoutFunction(CurGD); 783 PGO.destroyRegionCounters(); 784 } 785 786 /// ContainsLabel - Return true if the statement contains a label in it. If 787 /// this statement is not executed normally, it not containing a label means 788 /// that we can just remove the code. 789 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 790 // Null statement, not a label! 791 if (S == 0) return false; 792 793 // If this is a label, we have to emit the code, consider something like: 794 // if (0) { ... foo: bar(); } goto foo; 795 // 796 // TODO: If anyone cared, we could track __label__'s, since we know that you 797 // can't jump to one from outside their declared region. 798 if (isa<LabelStmt>(S)) 799 return true; 800 801 // If this is a case/default statement, and we haven't seen a switch, we have 802 // to emit the code. 803 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 804 return true; 805 806 // If this is a switch statement, we want to ignore cases below it. 807 if (isa<SwitchStmt>(S)) 808 IgnoreCaseStmts = true; 809 810 // Scan subexpressions for verboten labels. 811 for (Stmt::const_child_range I = S->children(); I; ++I) 812 if (ContainsLabel(*I, IgnoreCaseStmts)) 813 return true; 814 815 return false; 816 } 817 818 /// containsBreak - Return true if the statement contains a break out of it. 819 /// If the statement (recursively) contains a switch or loop with a break 820 /// inside of it, this is fine. 821 bool CodeGenFunction::containsBreak(const Stmt *S) { 822 // Null statement, not a label! 823 if (S == 0) return false; 824 825 // If this is a switch or loop that defines its own break scope, then we can 826 // include it and anything inside of it. 827 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 828 isa<ForStmt>(S)) 829 return false; 830 831 if (isa<BreakStmt>(S)) 832 return true; 833 834 // Scan subexpressions for verboten breaks. 835 for (Stmt::const_child_range I = S->children(); I; ++I) 836 if (containsBreak(*I)) 837 return true; 838 839 return false; 840 } 841 842 843 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 844 /// to a constant, or if it does but contains a label, return false. If it 845 /// constant folds return true and set the boolean result in Result. 846 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 847 bool &ResultBool) { 848 llvm::APSInt ResultInt; 849 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 850 return false; 851 852 ResultBool = ResultInt.getBoolValue(); 853 return true; 854 } 855 856 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 857 /// to a constant, or if it does but contains a label, return false. If it 858 /// constant folds return true and set the folded value. 859 bool CodeGenFunction:: 860 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 861 // FIXME: Rename and handle conversion of other evaluatable things 862 // to bool. 863 llvm::APSInt Int; 864 if (!Cond->EvaluateAsInt(Int, getContext())) 865 return false; // Not foldable, not integer or not fully evaluatable. 866 867 if (CodeGenFunction::ContainsLabel(Cond)) 868 return false; // Contains a label. 869 870 ResultInt = Int; 871 return true; 872 } 873 874 875 876 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 877 /// statement) to the specified blocks. Based on the condition, this might try 878 /// to simplify the codegen of the conditional based on the branch. 879 /// 880 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 881 llvm::BasicBlock *TrueBlock, 882 llvm::BasicBlock *FalseBlock, 883 uint64_t TrueCount) { 884 Cond = Cond->IgnoreParens(); 885 886 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 887 RegionCounter Cnt = getPGORegionCounter(CondBOp); 888 889 // Handle X && Y in a condition. 890 if (CondBOp->getOpcode() == BO_LAnd) { 891 // If we have "1 && X", simplify the code. "0 && X" would have constant 892 // folded if the case was simple enough. 893 bool ConstantBool = false; 894 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 895 ConstantBool) { 896 // br(1 && X) -> br(X). 897 Cnt.beginRegion(Builder); 898 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 899 TrueCount); 900 } 901 902 // If we have "X && 1", simplify the code to use an uncond branch. 903 // "X && 0" would have been constant folded to 0. 904 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 905 ConstantBool) { 906 // br(X && 1) -> br(X). 907 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 908 TrueCount); 909 } 910 911 // Emit the LHS as a conditional. If the LHS conditional is false, we 912 // want to jump to the FalseBlock. 913 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 914 // The counter tells us how often we evaluate RHS, and all of TrueCount 915 // can be propagated to that branch. 916 uint64_t RHSCount = Cnt.getCount(); 917 918 ConditionalEvaluation eval(*this); 919 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 920 EmitBlock(LHSTrue); 921 922 // Any temporaries created here are conditional. 923 Cnt.beginRegion(Builder); 924 eval.begin(*this); 925 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 926 eval.end(*this); 927 Cnt.adjustFallThroughCount(); 928 Cnt.applyAdjustmentsToRegion(); 929 930 return; 931 } 932 933 if (CondBOp->getOpcode() == BO_LOr) { 934 // If we have "0 || X", simplify the code. "1 || X" would have constant 935 // folded if the case was simple enough. 936 bool ConstantBool = false; 937 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 938 !ConstantBool) { 939 // br(0 || X) -> br(X). 940 Cnt.beginRegion(Builder); 941 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 942 TrueCount); 943 } 944 945 // If we have "X || 0", simplify the code to use an uncond branch. 946 // "X || 1" would have been constant folded to 1. 947 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 948 !ConstantBool) { 949 // br(X || 0) -> br(X). 950 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 951 TrueCount); 952 } 953 954 // Emit the LHS as a conditional. If the LHS conditional is true, we 955 // want to jump to the TrueBlock. 956 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 957 // We have the count for entry to the RHS and for the whole expression 958 // being true, so we can divy up True count between the short circuit and 959 // the RHS. 960 uint64_t LHSCount = TrueCount - Cnt.getCount(); 961 uint64_t RHSCount = TrueCount - LHSCount; 962 963 ConditionalEvaluation eval(*this); 964 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 965 EmitBlock(LHSFalse); 966 967 // Any temporaries created here are conditional. 968 Cnt.beginRegion(Builder); 969 eval.begin(*this); 970 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 971 972 eval.end(*this); 973 Cnt.adjustFallThroughCount(); 974 Cnt.applyAdjustmentsToRegion(); 975 976 return; 977 } 978 } 979 980 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 981 // br(!x, t, f) -> br(x, f, t) 982 if (CondUOp->getOpcode() == UO_LNot) { 983 // Negate the count. 984 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 985 // Negate the condition and swap the destination blocks. 986 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 987 FalseCount); 988 } 989 } 990 991 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 992 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 993 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 994 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 995 996 RegionCounter Cnt = getPGORegionCounter(CondOp); 997 ConditionalEvaluation cond(*this); 998 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 999 1000 // When computing PGO branch weights, we only know the overall count for 1001 // the true block. This code is essentially doing tail duplication of the 1002 // naive code-gen, introducing new edges for which counts are not 1003 // available. Divide the counts proportionally between the LHS and RHS of 1004 // the conditional operator. 1005 uint64_t LHSScaledTrueCount = 0; 1006 if (TrueCount) { 1007 double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount(); 1008 LHSScaledTrueCount = TrueCount * LHSRatio; 1009 } 1010 1011 cond.begin(*this); 1012 EmitBlock(LHSBlock); 1013 Cnt.beginRegion(Builder); 1014 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1015 LHSScaledTrueCount); 1016 cond.end(*this); 1017 1018 cond.begin(*this); 1019 EmitBlock(RHSBlock); 1020 Cnt.beginElseRegion(); 1021 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1022 TrueCount - LHSScaledTrueCount); 1023 cond.end(*this); 1024 1025 return; 1026 } 1027 1028 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1029 // Conditional operator handling can give us a throw expression as a 1030 // condition for a case like: 1031 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1032 // Fold this to: 1033 // br(c, throw x, br(y, t, f)) 1034 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1035 return; 1036 } 1037 1038 // Create branch weights based on the number of times we get here and the 1039 // number of times the condition should be true. 1040 uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount); 1041 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1042 CurrentCount - TrueCount); 1043 1044 // Emit the code with the fully general case. 1045 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1046 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1047 } 1048 1049 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1050 /// specified stmt yet. 1051 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1052 CGM.ErrorUnsupported(S, Type); 1053 } 1054 1055 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1056 /// variable-length array whose elements have a non-zero bit-pattern. 1057 /// 1058 /// \param baseType the inner-most element type of the array 1059 /// \param src - a char* pointing to the bit-pattern for a single 1060 /// base element of the array 1061 /// \param sizeInChars - the total size of the VLA, in chars 1062 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1063 llvm::Value *dest, llvm::Value *src, 1064 llvm::Value *sizeInChars) { 1065 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1066 = CGF.getContext().getTypeInfoInChars(baseType); 1067 1068 CGBuilderTy &Builder = CGF.Builder; 1069 1070 llvm::Value *baseSizeInChars 1071 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1072 1073 llvm::Type *i8p = Builder.getInt8PtrTy(); 1074 1075 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1076 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1077 1078 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1079 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1080 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1081 1082 // Make a loop over the VLA. C99 guarantees that the VLA element 1083 // count must be nonzero. 1084 CGF.EmitBlock(loopBB); 1085 1086 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1087 cur->addIncoming(begin, originBB); 1088 1089 // memcpy the individual element bit-pattern. 1090 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1091 baseSizeAndAlign.second.getQuantity(), 1092 /*volatile*/ false); 1093 1094 // Go to the next element. 1095 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1096 1097 // Leave if that's the end of the VLA. 1098 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1099 Builder.CreateCondBr(done, contBB, loopBB); 1100 cur->addIncoming(next, loopBB); 1101 1102 CGF.EmitBlock(contBB); 1103 } 1104 1105 void 1106 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1107 // Ignore empty classes in C++. 1108 if (getLangOpts().CPlusPlus) { 1109 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1110 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1111 return; 1112 } 1113 } 1114 1115 // Cast the dest ptr to the appropriate i8 pointer type. 1116 unsigned DestAS = 1117 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1118 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1119 if (DestPtr->getType() != BP) 1120 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1121 1122 // Get size and alignment info for this aggregate. 1123 std::pair<CharUnits, CharUnits> TypeInfo = 1124 getContext().getTypeInfoInChars(Ty); 1125 CharUnits Size = TypeInfo.first; 1126 CharUnits Align = TypeInfo.second; 1127 1128 llvm::Value *SizeVal; 1129 const VariableArrayType *vla; 1130 1131 // Don't bother emitting a zero-byte memset. 1132 if (Size.isZero()) { 1133 // But note that getTypeInfo returns 0 for a VLA. 1134 if (const VariableArrayType *vlaType = 1135 dyn_cast_or_null<VariableArrayType>( 1136 getContext().getAsArrayType(Ty))) { 1137 QualType eltType; 1138 llvm::Value *numElts; 1139 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1140 1141 SizeVal = numElts; 1142 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1143 if (!eltSize.isOne()) 1144 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1145 vla = vlaType; 1146 } else { 1147 return; 1148 } 1149 } else { 1150 SizeVal = CGM.getSize(Size); 1151 vla = 0; 1152 } 1153 1154 // If the type contains a pointer to data member we can't memset it to zero. 1155 // Instead, create a null constant and copy it to the destination. 1156 // TODO: there are other patterns besides zero that we can usefully memset, 1157 // like -1, which happens to be the pattern used by member-pointers. 1158 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1159 // For a VLA, emit a single element, then splat that over the VLA. 1160 if (vla) Ty = getContext().getBaseElementType(vla); 1161 1162 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1163 1164 llvm::GlobalVariable *NullVariable = 1165 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1166 /*isConstant=*/true, 1167 llvm::GlobalVariable::PrivateLinkage, 1168 NullConstant, Twine()); 1169 llvm::Value *SrcPtr = 1170 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1171 1172 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1173 1174 // Get and call the appropriate llvm.memcpy overload. 1175 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1176 return; 1177 } 1178 1179 // Otherwise, just memset the whole thing to zero. This is legal 1180 // because in LLVM, all default initializers (other than the ones we just 1181 // handled above) are guaranteed to have a bit pattern of all zeros. 1182 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1183 Align.getQuantity(), false); 1184 } 1185 1186 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1187 // Make sure that there is a block for the indirect goto. 1188 if (IndirectBranch == 0) 1189 GetIndirectGotoBlock(); 1190 1191 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1192 1193 // Make sure the indirect branch includes all of the address-taken blocks. 1194 IndirectBranch->addDestination(BB); 1195 return llvm::BlockAddress::get(CurFn, BB); 1196 } 1197 1198 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1199 // If we already made the indirect branch for indirect goto, return its block. 1200 if (IndirectBranch) return IndirectBranch->getParent(); 1201 1202 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1203 1204 // Create the PHI node that indirect gotos will add entries to. 1205 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1206 "indirect.goto.dest"); 1207 1208 // Create the indirect branch instruction. 1209 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1210 return IndirectBranch->getParent(); 1211 } 1212 1213 /// Computes the length of an array in elements, as well as the base 1214 /// element type and a properly-typed first element pointer. 1215 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1216 QualType &baseType, 1217 llvm::Value *&addr) { 1218 const ArrayType *arrayType = origArrayType; 1219 1220 // If it's a VLA, we have to load the stored size. Note that 1221 // this is the size of the VLA in bytes, not its size in elements. 1222 llvm::Value *numVLAElements = 0; 1223 if (isa<VariableArrayType>(arrayType)) { 1224 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1225 1226 // Walk into all VLAs. This doesn't require changes to addr, 1227 // which has type T* where T is the first non-VLA element type. 1228 do { 1229 QualType elementType = arrayType->getElementType(); 1230 arrayType = getContext().getAsArrayType(elementType); 1231 1232 // If we only have VLA components, 'addr' requires no adjustment. 1233 if (!arrayType) { 1234 baseType = elementType; 1235 return numVLAElements; 1236 } 1237 } while (isa<VariableArrayType>(arrayType)); 1238 1239 // We get out here only if we find a constant array type 1240 // inside the VLA. 1241 } 1242 1243 // We have some number of constant-length arrays, so addr should 1244 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1245 // down to the first element of addr. 1246 SmallVector<llvm::Value*, 8> gepIndices; 1247 1248 // GEP down to the array type. 1249 llvm::ConstantInt *zero = Builder.getInt32(0); 1250 gepIndices.push_back(zero); 1251 1252 uint64_t countFromCLAs = 1; 1253 QualType eltType; 1254 1255 llvm::ArrayType *llvmArrayType = 1256 dyn_cast<llvm::ArrayType>( 1257 cast<llvm::PointerType>(addr->getType())->getElementType()); 1258 while (llvmArrayType) { 1259 assert(isa<ConstantArrayType>(arrayType)); 1260 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1261 == llvmArrayType->getNumElements()); 1262 1263 gepIndices.push_back(zero); 1264 countFromCLAs *= llvmArrayType->getNumElements(); 1265 eltType = arrayType->getElementType(); 1266 1267 llvmArrayType = 1268 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1269 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1270 assert((!llvmArrayType || arrayType) && 1271 "LLVM and Clang types are out-of-synch"); 1272 } 1273 1274 if (arrayType) { 1275 // From this point onwards, the Clang array type has been emitted 1276 // as some other type (probably a packed struct). Compute the array 1277 // size, and just emit the 'begin' expression as a bitcast. 1278 while (arrayType) { 1279 countFromCLAs *= 1280 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1281 eltType = arrayType->getElementType(); 1282 arrayType = getContext().getAsArrayType(eltType); 1283 } 1284 1285 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1286 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1287 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1288 } else { 1289 // Create the actual GEP. 1290 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1291 } 1292 1293 baseType = eltType; 1294 1295 llvm::Value *numElements 1296 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1297 1298 // If we had any VLA dimensions, factor them in. 1299 if (numVLAElements) 1300 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1301 1302 return numElements; 1303 } 1304 1305 std::pair<llvm::Value*, QualType> 1306 CodeGenFunction::getVLASize(QualType type) { 1307 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1308 assert(vla && "type was not a variable array type!"); 1309 return getVLASize(vla); 1310 } 1311 1312 std::pair<llvm::Value*, QualType> 1313 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1314 // The number of elements so far; always size_t. 1315 llvm::Value *numElements = 0; 1316 1317 QualType elementType; 1318 do { 1319 elementType = type->getElementType(); 1320 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1321 assert(vlaSize && "no size for VLA!"); 1322 assert(vlaSize->getType() == SizeTy); 1323 1324 if (!numElements) { 1325 numElements = vlaSize; 1326 } else { 1327 // It's undefined behavior if this wraps around, so mark it that way. 1328 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1329 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1330 } 1331 } while ((type = getContext().getAsVariableArrayType(elementType))); 1332 1333 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1334 } 1335 1336 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1337 assert(type->isVariablyModifiedType() && 1338 "Must pass variably modified type to EmitVLASizes!"); 1339 1340 EnsureInsertPoint(); 1341 1342 // We're going to walk down into the type and look for VLA 1343 // expressions. 1344 do { 1345 assert(type->isVariablyModifiedType()); 1346 1347 const Type *ty = type.getTypePtr(); 1348 switch (ty->getTypeClass()) { 1349 1350 #define TYPE(Class, Base) 1351 #define ABSTRACT_TYPE(Class, Base) 1352 #define NON_CANONICAL_TYPE(Class, Base) 1353 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1354 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1355 #include "clang/AST/TypeNodes.def" 1356 llvm_unreachable("unexpected dependent type!"); 1357 1358 // These types are never variably-modified. 1359 case Type::Builtin: 1360 case Type::Complex: 1361 case Type::Vector: 1362 case Type::ExtVector: 1363 case Type::Record: 1364 case Type::Enum: 1365 case Type::Elaborated: 1366 case Type::TemplateSpecialization: 1367 case Type::ObjCObject: 1368 case Type::ObjCInterface: 1369 case Type::ObjCObjectPointer: 1370 llvm_unreachable("type class is never variably-modified!"); 1371 1372 case Type::Adjusted: 1373 type = cast<AdjustedType>(ty)->getAdjustedType(); 1374 break; 1375 1376 case Type::Decayed: 1377 type = cast<DecayedType>(ty)->getPointeeType(); 1378 break; 1379 1380 case Type::Pointer: 1381 type = cast<PointerType>(ty)->getPointeeType(); 1382 break; 1383 1384 case Type::BlockPointer: 1385 type = cast<BlockPointerType>(ty)->getPointeeType(); 1386 break; 1387 1388 case Type::LValueReference: 1389 case Type::RValueReference: 1390 type = cast<ReferenceType>(ty)->getPointeeType(); 1391 break; 1392 1393 case Type::MemberPointer: 1394 type = cast<MemberPointerType>(ty)->getPointeeType(); 1395 break; 1396 1397 case Type::ConstantArray: 1398 case Type::IncompleteArray: 1399 // Losing element qualification here is fine. 1400 type = cast<ArrayType>(ty)->getElementType(); 1401 break; 1402 1403 case Type::VariableArray: { 1404 // Losing element qualification here is fine. 1405 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1406 1407 // Unknown size indication requires no size computation. 1408 // Otherwise, evaluate and record it. 1409 if (const Expr *size = vat->getSizeExpr()) { 1410 // It's possible that we might have emitted this already, 1411 // e.g. with a typedef and a pointer to it. 1412 llvm::Value *&entry = VLASizeMap[size]; 1413 if (!entry) { 1414 llvm::Value *Size = EmitScalarExpr(size); 1415 1416 // C11 6.7.6.2p5: 1417 // If the size is an expression that is not an integer constant 1418 // expression [...] each time it is evaluated it shall have a value 1419 // greater than zero. 1420 if (SanOpts->VLABound && 1421 size->getType()->isSignedIntegerType()) { 1422 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1423 llvm::Constant *StaticArgs[] = { 1424 EmitCheckSourceLocation(size->getLocStart()), 1425 EmitCheckTypeDescriptor(size->getType()) 1426 }; 1427 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1428 "vla_bound_not_positive", StaticArgs, Size, 1429 CRK_Recoverable); 1430 } 1431 1432 // Always zexting here would be wrong if it weren't 1433 // undefined behavior to have a negative bound. 1434 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1435 } 1436 } 1437 type = vat->getElementType(); 1438 break; 1439 } 1440 1441 case Type::FunctionProto: 1442 case Type::FunctionNoProto: 1443 type = cast<FunctionType>(ty)->getResultType(); 1444 break; 1445 1446 case Type::Paren: 1447 case Type::TypeOf: 1448 case Type::UnaryTransform: 1449 case Type::Attributed: 1450 case Type::SubstTemplateTypeParm: 1451 case Type::PackExpansion: 1452 // Keep walking after single level desugaring. 1453 type = type.getSingleStepDesugaredType(getContext()); 1454 break; 1455 1456 case Type::Typedef: 1457 case Type::Decltype: 1458 case Type::Auto: 1459 // Stop walking: nothing to do. 1460 return; 1461 1462 case Type::TypeOfExpr: 1463 // Stop walking: emit typeof expression. 1464 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1465 return; 1466 1467 case Type::Atomic: 1468 type = cast<AtomicType>(ty)->getValueType(); 1469 break; 1470 } 1471 } while (type->isVariablyModifiedType()); 1472 } 1473 1474 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1475 if (getContext().getBuiltinVaListType()->isArrayType()) 1476 return EmitScalarExpr(E); 1477 return EmitLValue(E).getAddress(); 1478 } 1479 1480 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1481 llvm::Constant *Init) { 1482 assert (Init && "Invalid DeclRefExpr initializer!"); 1483 if (CGDebugInfo *Dbg = getDebugInfo()) 1484 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1485 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1486 } 1487 1488 CodeGenFunction::PeepholeProtection 1489 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1490 // At the moment, the only aggressive peephole we do in IR gen 1491 // is trunc(zext) folding, but if we add more, we can easily 1492 // extend this protection. 1493 1494 if (!rvalue.isScalar()) return PeepholeProtection(); 1495 llvm::Value *value = rvalue.getScalarVal(); 1496 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1497 1498 // Just make an extra bitcast. 1499 assert(HaveInsertPoint()); 1500 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1501 Builder.GetInsertBlock()); 1502 1503 PeepholeProtection protection; 1504 protection.Inst = inst; 1505 return protection; 1506 } 1507 1508 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1509 if (!protection.Inst) return; 1510 1511 // In theory, we could try to duplicate the peepholes now, but whatever. 1512 protection.Inst->eraseFromParent(); 1513 } 1514 1515 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1516 llvm::Value *AnnotatedVal, 1517 StringRef AnnotationStr, 1518 SourceLocation Location) { 1519 llvm::Value *Args[4] = { 1520 AnnotatedVal, 1521 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1522 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1523 CGM.EmitAnnotationLineNo(Location) 1524 }; 1525 return Builder.CreateCall(AnnotationFn, Args); 1526 } 1527 1528 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1529 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1530 // FIXME We create a new bitcast for every annotation because that's what 1531 // llvm-gcc was doing. 1532 for (specific_attr_iterator<AnnotateAttr> 1533 ai = D->specific_attr_begin<AnnotateAttr>(), 1534 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1535 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1536 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1537 (*ai)->getAnnotation(), D->getLocation()); 1538 } 1539 1540 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1541 llvm::Value *V) { 1542 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1543 llvm::Type *VTy = V->getType(); 1544 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1545 CGM.Int8PtrTy); 1546 1547 for (specific_attr_iterator<AnnotateAttr> 1548 ai = D->specific_attr_begin<AnnotateAttr>(), 1549 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1550 // FIXME Always emit the cast inst so we can differentiate between 1551 // annotation on the first field of a struct and annotation on the struct 1552 // itself. 1553 if (VTy != CGM.Int8PtrTy) 1554 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1555 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1556 V = Builder.CreateBitCast(V, VTy); 1557 } 1558 1559 return V; 1560 } 1561 1562 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1563