1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 47 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 48 OutermostConditional(0), TerminateLandingPad(0), 49 TerminateHandler(0), TrapBB(0) { 50 if (!suppressNewContext) 51 CGM.getCXXABI().getMangleContext().startNewFunction(); 52 53 llvm::FastMathFlags FMF; 54 if (CGM.getLangOpts().FastMath) 55 FMF.setUnsafeAlgebra(); 56 if (CGM.getLangOpts().FiniteMathOnly) { 57 FMF.setNoNaNs(); 58 FMF.setNoInfs(); 59 } 60 Builder.SetFastMathFlags(FMF); 61 } 62 63 CodeGenFunction::~CodeGenFunction() { 64 // If there are any unclaimed block infos, go ahead and destroy them 65 // now. This can happen if IR-gen gets clever and skips evaluating 66 // something. 67 if (FirstBlockInfo) 68 destroyBlockInfos(FirstBlockInfo); 69 } 70 71 72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 73 return CGM.getTypes().ConvertTypeForMem(T); 74 } 75 76 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 77 return CGM.getTypes().ConvertType(T); 78 } 79 80 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 81 switch (type.getCanonicalType()->getTypeClass()) { 82 #define TYPE(name, parent) 83 #define ABSTRACT_TYPE(name, parent) 84 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 85 #define DEPENDENT_TYPE(name, parent) case Type::name: 86 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 87 #include "clang/AST/TypeNodes.def" 88 llvm_unreachable("non-canonical or dependent type in IR-generation"); 89 90 case Type::Builtin: 91 case Type::Pointer: 92 case Type::BlockPointer: 93 case Type::LValueReference: 94 case Type::RValueReference: 95 case Type::MemberPointer: 96 case Type::Vector: 97 case Type::ExtVector: 98 case Type::FunctionProto: 99 case Type::FunctionNoProto: 100 case Type::Enum: 101 case Type::ObjCObjectPointer: 102 return false; 103 104 // Complexes, arrays, records, and Objective-C objects. 105 case Type::Complex: 106 case Type::ConstantArray: 107 case Type::IncompleteArray: 108 case Type::VariableArray: 109 case Type::Record: 110 case Type::ObjCObject: 111 case Type::ObjCInterface: 112 return true; 113 114 // In IRGen, atomic types are just the underlying type 115 case Type::Atomic: 116 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 117 } 118 llvm_unreachable("unknown type kind!"); 119 } 120 121 void CodeGenFunction::EmitReturnBlock() { 122 // For cleanliness, we try to avoid emitting the return block for 123 // simple cases. 124 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 125 126 if (CurBB) { 127 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 128 129 // We have a valid insert point, reuse it if it is empty or there are no 130 // explicit jumps to the return block. 131 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 132 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 133 delete ReturnBlock.getBlock(); 134 } else 135 EmitBlock(ReturnBlock.getBlock()); 136 return; 137 } 138 139 // Otherwise, if the return block is the target of a single direct 140 // branch then we can just put the code in that block instead. This 141 // cleans up functions which started with a unified return block. 142 if (ReturnBlock.getBlock()->hasOneUse()) { 143 llvm::BranchInst *BI = 144 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 145 if (BI && BI->isUnconditional() && 146 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 147 // Reset insertion point, including debug location, and delete the branch. 148 // This is really subtle & only works because the next change in location 149 // will hit the caching in CGDebugInfo::EmitLocation & not override this. 150 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 151 Builder.SetInsertPoint(BI->getParent()); 152 BI->eraseFromParent(); 153 delete ReturnBlock.getBlock(); 154 return; 155 } 156 } 157 158 // FIXME: We are at an unreachable point, there is no reason to emit the block 159 // unless it has uses. However, we still need a place to put the debug 160 // region.end for now. 161 162 EmitBlock(ReturnBlock.getBlock()); 163 } 164 165 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 166 if (!BB) return; 167 if (!BB->use_empty()) 168 return CGF.CurFn->getBasicBlockList().push_back(BB); 169 delete BB; 170 } 171 172 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 173 assert(BreakContinueStack.empty() && 174 "mismatched push/pop in break/continue stack!"); 175 176 if (CGDebugInfo *DI = getDebugInfo()) 177 DI->EmitLocation(Builder, EndLoc); 178 179 // Pop any cleanups that might have been associated with the 180 // parameters. Do this in whatever block we're currently in; it's 181 // important to do this before we enter the return block or return 182 // edges will be *really* confused. 183 if (EHStack.stable_begin() != PrologueCleanupDepth) 184 PopCleanupBlocks(PrologueCleanupDepth); 185 186 // Emit function epilog (to return). 187 EmitReturnBlock(); 188 189 if (ShouldInstrumentFunction()) 190 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 191 192 // Emit debug descriptor for function end. 193 if (CGDebugInfo *DI = getDebugInfo()) { 194 DI->EmitFunctionEnd(Builder); 195 } 196 197 EmitFunctionEpilog(*CurFnInfo); 198 EmitEndEHSpec(CurCodeDecl); 199 200 assert(EHStack.empty() && 201 "did not remove all scopes from cleanup stack!"); 202 203 // If someone did an indirect goto, emit the indirect goto block at the end of 204 // the function. 205 if (IndirectBranch) { 206 EmitBlock(IndirectBranch->getParent()); 207 Builder.ClearInsertionPoint(); 208 } 209 210 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 211 llvm::Instruction *Ptr = AllocaInsertPt; 212 AllocaInsertPt = 0; 213 Ptr->eraseFromParent(); 214 215 // If someone took the address of a label but never did an indirect goto, we 216 // made a zero entry PHI node, which is illegal, zap it now. 217 if (IndirectBranch) { 218 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 219 if (PN->getNumIncomingValues() == 0) { 220 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 221 PN->eraseFromParent(); 222 } 223 } 224 225 EmitIfUsed(*this, EHResumeBlock); 226 EmitIfUsed(*this, TerminateLandingPad); 227 EmitIfUsed(*this, TerminateHandler); 228 EmitIfUsed(*this, UnreachableBlock); 229 230 if (CGM.getCodeGenOpts().EmitDeclMetadata) 231 EmitDeclMetadata(); 232 } 233 234 /// ShouldInstrumentFunction - Return true if the current function should be 235 /// instrumented with __cyg_profile_func_* calls 236 bool CodeGenFunction::ShouldInstrumentFunction() { 237 if (!CGM.getCodeGenOpts().InstrumentFunctions) 238 return false; 239 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 240 return false; 241 return true; 242 } 243 244 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 245 /// instrumentation function with the current function and the call site, if 246 /// function instrumentation is enabled. 247 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 248 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 249 llvm::PointerType *PointerTy = Int8PtrTy; 250 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 251 llvm::FunctionType *FunctionTy = 252 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 253 254 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 255 llvm::CallInst *CallSite = Builder.CreateCall( 256 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 257 llvm::ConstantInt::get(Int32Ty, 0), 258 "callsite"); 259 260 Builder.CreateCall2(F, 261 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 262 CallSite); 263 } 264 265 void CodeGenFunction::EmitMCountInstrumentation() { 266 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 267 268 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 269 Target.getMCountName()); 270 Builder.CreateCall(MCountFn); 271 } 272 273 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 274 // information in the program executable. The argument information stored 275 // includes the argument name, its type, the address and access qualifiers used. 276 // FIXME: Add type, address, and access qualifiers. 277 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 278 CodeGenModule &CGM,llvm::LLVMContext &Context, 279 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 280 281 // Create MDNodes that represents the kernel arg metadata. 282 // Each MDNode is a list in the form of "key", N number of values which is 283 // the same number of values as their are kernel arguments. 284 285 // MDNode for the kernel argument names. 286 SmallVector<llvm::Value*, 8> argNames; 287 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 288 289 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 290 const ParmVarDecl *parm = FD->getParamDecl(i); 291 292 // Get argument name. 293 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 294 295 } 296 // Add MDNode to the list of all metadata. 297 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 298 } 299 300 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 301 llvm::Function *Fn) 302 { 303 if (!FD->hasAttr<OpenCLKernelAttr>()) 304 return; 305 306 llvm::LLVMContext &Context = getLLVMContext(); 307 308 SmallVector <llvm::Value*, 5> kernelMDArgs; 309 kernelMDArgs.push_back(Fn); 310 311 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 312 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 313 314 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 315 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 316 llvm::Value *attrMDArgs[] = { 317 llvm::MDString::get(Context, "work_group_size_hint"), 318 Builder.getInt32(attr->getXDim()), 319 Builder.getInt32(attr->getYDim()), 320 Builder.getInt32(attr->getZDim()) 321 }; 322 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 323 } 324 325 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 326 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 327 llvm::Value *attrMDArgs[] = { 328 llvm::MDString::get(Context, "reqd_work_group_size"), 329 Builder.getInt32(attr->getXDim()), 330 Builder.getInt32(attr->getYDim()), 331 Builder.getInt32(attr->getZDim()) 332 }; 333 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 334 } 335 336 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 337 llvm::NamedMDNode *OpenCLKernelMetadata = 338 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 339 OpenCLKernelMetadata->addOperand(kernelMDNode); 340 } 341 342 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 343 llvm::Function *Fn, 344 const CGFunctionInfo &FnInfo, 345 const FunctionArgList &Args, 346 SourceLocation StartLoc) { 347 const Decl *D = GD.getDecl(); 348 349 DidCallStackSave = false; 350 CurCodeDecl = CurFuncDecl = D; 351 FnRetTy = RetTy; 352 CurFn = Fn; 353 CurFnInfo = &FnInfo; 354 assert(CurFn->isDeclaration() && "Function already has body?"); 355 356 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 357 SanOpts = &SanitizerOptions::Disabled; 358 SanitizePerformTypeCheck = false; 359 } 360 361 // Pass inline keyword to optimizer if it appears explicitly on any 362 // declaration. 363 if (!CGM.getCodeGenOpts().NoInline) 364 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 365 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 366 RE = FD->redecls_end(); RI != RE; ++RI) 367 if (RI->isInlineSpecified()) { 368 Fn->addFnAttr(llvm::Attribute::InlineHint); 369 break; 370 } 371 372 if (getLangOpts().OpenCL) { 373 // Add metadata for a kernel function. 374 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 375 EmitOpenCLKernelMetadata(FD, Fn); 376 } 377 378 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 379 380 // Create a marker to make it easy to insert allocas into the entryblock 381 // later. Don't create this with the builder, because we don't want it 382 // folded. 383 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 384 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 385 if (Builder.isNamePreserving()) 386 AllocaInsertPt->setName("allocapt"); 387 388 ReturnBlock = getJumpDestInCurrentScope("return"); 389 390 Builder.SetInsertPoint(EntryBB); 391 392 // Emit subprogram debug descriptor. 393 if (CGDebugInfo *DI = getDebugInfo()) { 394 unsigned NumArgs = 0; 395 QualType *ArgsArray = new QualType[Args.size()]; 396 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 397 i != e; ++i) { 398 ArgsArray[NumArgs++] = (*i)->getType(); 399 } 400 401 QualType FnType = 402 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 403 FunctionProtoType::ExtProtoInfo()); 404 405 delete[] ArgsArray; 406 407 DI->setLocation(StartLoc); 408 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 409 } 410 411 if (ShouldInstrumentFunction()) 412 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 413 414 if (CGM.getCodeGenOpts().InstrumentForProfiling) 415 EmitMCountInstrumentation(); 416 417 if (RetTy->isVoidType()) { 418 // Void type; nothing to return. 419 ReturnValue = 0; 420 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 421 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 422 // Indirect aggregate return; emit returned value directly into sret slot. 423 // This reduces code size, and affects correctness in C++. 424 ReturnValue = CurFn->arg_begin(); 425 } else { 426 ReturnValue = CreateIRTemp(RetTy, "retval"); 427 428 // Tell the epilog emitter to autorelease the result. We do this 429 // now so that various specialized functions can suppress it 430 // during their IR-generation. 431 if (getLangOpts().ObjCAutoRefCount && 432 !CurFnInfo->isReturnsRetained() && 433 RetTy->isObjCRetainableType()) 434 AutoreleaseResult = true; 435 } 436 437 EmitStartEHSpec(CurCodeDecl); 438 439 PrologueCleanupDepth = EHStack.stable_begin(); 440 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 441 442 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 443 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 444 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 445 if (MD->getParent()->isLambda() && 446 MD->getOverloadedOperator() == OO_Call) { 447 // We're in a lambda; figure out the captures. 448 MD->getParent()->getCaptureFields(LambdaCaptureFields, 449 LambdaThisCaptureField); 450 if (LambdaThisCaptureField) { 451 // If this lambda captures this, load it. 452 QualType LambdaTagType = 453 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 454 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 455 LambdaTagType); 456 LValue ThisLValue = EmitLValueForField(LambdaLV, 457 LambdaThisCaptureField); 458 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 459 } 460 } else { 461 // Not in a lambda; just use 'this' from the method. 462 // FIXME: Should we generate a new load for each use of 'this'? The 463 // fast register allocator would be happier... 464 CXXThisValue = CXXABIThisValue; 465 } 466 } 467 468 // If any of the arguments have a variably modified type, make sure to 469 // emit the type size. 470 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 471 i != e; ++i) { 472 const VarDecl *VD = *i; 473 474 // Dig out the type as written from ParmVarDecls; it's unclear whether 475 // the standard (C99 6.9.1p10) requires this, but we're following the 476 // precedent set by gcc. 477 QualType Ty; 478 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 479 Ty = PVD->getOriginalType(); 480 else 481 Ty = VD->getType(); 482 483 if (Ty->isVariablyModifiedType()) 484 EmitVariablyModifiedType(Ty); 485 } 486 // Emit a location at the end of the prologue. 487 if (CGDebugInfo *DI = getDebugInfo()) 488 DI->EmitLocation(Builder, StartLoc); 489 } 490 491 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 492 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 493 assert(FD->getBody()); 494 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 495 EmitCompoundStmtWithoutScope(*S); 496 else 497 EmitStmt(FD->getBody()); 498 } 499 500 /// Tries to mark the given function nounwind based on the 501 /// non-existence of any throwing calls within it. We believe this is 502 /// lightweight enough to do at -O0. 503 static void TryMarkNoThrow(llvm::Function *F) { 504 // LLVM treats 'nounwind' on a function as part of the type, so we 505 // can't do this on functions that can be overwritten. 506 if (F->mayBeOverridden()) return; 507 508 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 509 for (llvm::BasicBlock::iterator 510 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 511 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 512 if (!Call->doesNotThrow()) 513 return; 514 } else if (isa<llvm::ResumeInst>(&*BI)) { 515 return; 516 } 517 F->setDoesNotThrow(); 518 } 519 520 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 521 const CGFunctionInfo &FnInfo) { 522 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 523 524 // Check if we should generate debug info for this function. 525 if (!FD->hasAttr<NoDebugAttr>()) 526 maybeInitializeDebugInfo(); 527 528 FunctionArgList Args; 529 QualType ResTy = FD->getResultType(); 530 531 CurGD = GD; 532 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 533 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 534 535 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 536 Args.push_back(FD->getParamDecl(i)); 537 538 SourceRange BodyRange; 539 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 540 541 // Emit the standard function prologue. 542 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 543 544 // Generate the body of the function. 545 if (isa<CXXDestructorDecl>(FD)) 546 EmitDestructorBody(Args); 547 else if (isa<CXXConstructorDecl>(FD)) 548 EmitConstructorBody(Args); 549 else if (getLangOpts().CUDA && 550 !CGM.getCodeGenOpts().CUDAIsDevice && 551 FD->hasAttr<CUDAGlobalAttr>()) 552 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 553 else if (isa<CXXConversionDecl>(FD) && 554 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 555 // The lambda conversion to block pointer is special; the semantics can't be 556 // expressed in the AST, so IRGen needs to special-case it. 557 EmitLambdaToBlockPointerBody(Args); 558 } else if (isa<CXXMethodDecl>(FD) && 559 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 560 // The lambda "__invoke" function is special, because it forwards or 561 // clones the body of the function call operator (but is actually static). 562 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 563 } 564 else 565 EmitFunctionBody(Args); 566 567 // C++11 [stmt.return]p2: 568 // Flowing off the end of a function [...] results in undefined behavior in 569 // a value-returning function. 570 // C11 6.9.1p12: 571 // If the '}' that terminates a function is reached, and the value of the 572 // function call is used by the caller, the behavior is undefined. 573 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 574 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 575 if (SanOpts->Return) 576 EmitCheck(Builder.getFalse(), "missing_return", 577 EmitCheckSourceLocation(FD->getLocation()), 578 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 579 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 580 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 581 Builder.CreateUnreachable(); 582 Builder.ClearInsertionPoint(); 583 } 584 585 // Emit the standard function epilogue. 586 FinishFunction(BodyRange.getEnd()); 587 588 // If we haven't marked the function nothrow through other means, do 589 // a quick pass now to see if we can. 590 if (!CurFn->doesNotThrow()) 591 TryMarkNoThrow(CurFn); 592 } 593 594 /// ContainsLabel - Return true if the statement contains a label in it. If 595 /// this statement is not executed normally, it not containing a label means 596 /// that we can just remove the code. 597 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 598 // Null statement, not a label! 599 if (S == 0) return false; 600 601 // If this is a label, we have to emit the code, consider something like: 602 // if (0) { ... foo: bar(); } goto foo; 603 // 604 // TODO: If anyone cared, we could track __label__'s, since we know that you 605 // can't jump to one from outside their declared region. 606 if (isa<LabelStmt>(S)) 607 return true; 608 609 // If this is a case/default statement, and we haven't seen a switch, we have 610 // to emit the code. 611 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 612 return true; 613 614 // If this is a switch statement, we want to ignore cases below it. 615 if (isa<SwitchStmt>(S)) 616 IgnoreCaseStmts = true; 617 618 // Scan subexpressions for verboten labels. 619 for (Stmt::const_child_range I = S->children(); I; ++I) 620 if (ContainsLabel(*I, IgnoreCaseStmts)) 621 return true; 622 623 return false; 624 } 625 626 /// containsBreak - Return true if the statement contains a break out of it. 627 /// If the statement (recursively) contains a switch or loop with a break 628 /// inside of it, this is fine. 629 bool CodeGenFunction::containsBreak(const Stmt *S) { 630 // Null statement, not a label! 631 if (S == 0) return false; 632 633 // If this is a switch or loop that defines its own break scope, then we can 634 // include it and anything inside of it. 635 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 636 isa<ForStmt>(S)) 637 return false; 638 639 if (isa<BreakStmt>(S)) 640 return true; 641 642 // Scan subexpressions for verboten breaks. 643 for (Stmt::const_child_range I = S->children(); I; ++I) 644 if (containsBreak(*I)) 645 return true; 646 647 return false; 648 } 649 650 651 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 652 /// to a constant, or if it does but contains a label, return false. If it 653 /// constant folds return true and set the boolean result in Result. 654 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 655 bool &ResultBool) { 656 llvm::APSInt ResultInt; 657 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 658 return false; 659 660 ResultBool = ResultInt.getBoolValue(); 661 return true; 662 } 663 664 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 665 /// to a constant, or if it does but contains a label, return false. If it 666 /// constant folds return true and set the folded value. 667 bool CodeGenFunction:: 668 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 669 // FIXME: Rename and handle conversion of other evaluatable things 670 // to bool. 671 llvm::APSInt Int; 672 if (!Cond->EvaluateAsInt(Int, getContext())) 673 return false; // Not foldable, not integer or not fully evaluatable. 674 675 if (CodeGenFunction::ContainsLabel(Cond)) 676 return false; // Contains a label. 677 678 ResultInt = Int; 679 return true; 680 } 681 682 683 684 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 685 /// statement) to the specified blocks. Based on the condition, this might try 686 /// to simplify the codegen of the conditional based on the branch. 687 /// 688 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 689 llvm::BasicBlock *TrueBlock, 690 llvm::BasicBlock *FalseBlock) { 691 Cond = Cond->IgnoreParens(); 692 693 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 694 // Handle X && Y in a condition. 695 if (CondBOp->getOpcode() == BO_LAnd) { 696 // If we have "1 && X", simplify the code. "0 && X" would have constant 697 // folded if the case was simple enough. 698 bool ConstantBool = false; 699 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 700 ConstantBool) { 701 // br(1 && X) -> br(X). 702 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 703 } 704 705 // If we have "X && 1", simplify the code to use an uncond branch. 706 // "X && 0" would have been constant folded to 0. 707 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 708 ConstantBool) { 709 // br(X && 1) -> br(X). 710 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 711 } 712 713 // Emit the LHS as a conditional. If the LHS conditional is false, we 714 // want to jump to the FalseBlock. 715 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 716 717 ConditionalEvaluation eval(*this); 718 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 719 EmitBlock(LHSTrue); 720 721 // Any temporaries created here are conditional. 722 eval.begin(*this); 723 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 724 eval.end(*this); 725 726 return; 727 } 728 729 if (CondBOp->getOpcode() == BO_LOr) { 730 // If we have "0 || X", simplify the code. "1 || X" would have constant 731 // folded if the case was simple enough. 732 bool ConstantBool = false; 733 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 734 !ConstantBool) { 735 // br(0 || X) -> br(X). 736 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 737 } 738 739 // If we have "X || 0", simplify the code to use an uncond branch. 740 // "X || 1" would have been constant folded to 1. 741 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 742 !ConstantBool) { 743 // br(X || 0) -> br(X). 744 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 745 } 746 747 // Emit the LHS as a conditional. If the LHS conditional is true, we 748 // want to jump to the TrueBlock. 749 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 750 751 ConditionalEvaluation eval(*this); 752 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 753 EmitBlock(LHSFalse); 754 755 // Any temporaries created here are conditional. 756 eval.begin(*this); 757 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 758 eval.end(*this); 759 760 return; 761 } 762 } 763 764 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 765 // br(!x, t, f) -> br(x, f, t) 766 if (CondUOp->getOpcode() == UO_LNot) 767 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 768 } 769 770 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 771 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 772 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 773 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 774 775 ConditionalEvaluation cond(*this); 776 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 777 778 cond.begin(*this); 779 EmitBlock(LHSBlock); 780 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 781 cond.end(*this); 782 783 cond.begin(*this); 784 EmitBlock(RHSBlock); 785 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 786 cond.end(*this); 787 788 return; 789 } 790 791 // Emit the code with the fully general case. 792 llvm::Value *CondV = EvaluateExprAsBool(Cond); 793 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 794 } 795 796 /// ErrorUnsupported - Print out an error that codegen doesn't support the 797 /// specified stmt yet. 798 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 799 bool OmitOnError) { 800 CGM.ErrorUnsupported(S, Type, OmitOnError); 801 } 802 803 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 804 /// variable-length array whose elements have a non-zero bit-pattern. 805 /// 806 /// \param baseType the inner-most element type of the array 807 /// \param src - a char* pointing to the bit-pattern for a single 808 /// base element of the array 809 /// \param sizeInChars - the total size of the VLA, in chars 810 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 811 llvm::Value *dest, llvm::Value *src, 812 llvm::Value *sizeInChars) { 813 std::pair<CharUnits,CharUnits> baseSizeAndAlign 814 = CGF.getContext().getTypeInfoInChars(baseType); 815 816 CGBuilderTy &Builder = CGF.Builder; 817 818 llvm::Value *baseSizeInChars 819 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 820 821 llvm::Type *i8p = Builder.getInt8PtrTy(); 822 823 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 824 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 825 826 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 827 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 828 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 829 830 // Make a loop over the VLA. C99 guarantees that the VLA element 831 // count must be nonzero. 832 CGF.EmitBlock(loopBB); 833 834 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 835 cur->addIncoming(begin, originBB); 836 837 // memcpy the individual element bit-pattern. 838 Builder.CreateMemCpy(cur, src, baseSizeInChars, 839 baseSizeAndAlign.second.getQuantity(), 840 /*volatile*/ false); 841 842 // Go to the next element. 843 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 844 845 // Leave if that's the end of the VLA. 846 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 847 Builder.CreateCondBr(done, contBB, loopBB); 848 cur->addIncoming(next, loopBB); 849 850 CGF.EmitBlock(contBB); 851 } 852 853 void 854 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 855 // Ignore empty classes in C++. 856 if (getLangOpts().CPlusPlus) { 857 if (const RecordType *RT = Ty->getAs<RecordType>()) { 858 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 859 return; 860 } 861 } 862 863 // Cast the dest ptr to the appropriate i8 pointer type. 864 unsigned DestAS = 865 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 866 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 867 if (DestPtr->getType() != BP) 868 DestPtr = Builder.CreateBitCast(DestPtr, BP); 869 870 // Get size and alignment info for this aggregate. 871 std::pair<CharUnits, CharUnits> TypeInfo = 872 getContext().getTypeInfoInChars(Ty); 873 CharUnits Size = TypeInfo.first; 874 CharUnits Align = TypeInfo.second; 875 876 llvm::Value *SizeVal; 877 const VariableArrayType *vla; 878 879 // Don't bother emitting a zero-byte memset. 880 if (Size.isZero()) { 881 // But note that getTypeInfo returns 0 for a VLA. 882 if (const VariableArrayType *vlaType = 883 dyn_cast_or_null<VariableArrayType>( 884 getContext().getAsArrayType(Ty))) { 885 QualType eltType; 886 llvm::Value *numElts; 887 llvm::tie(numElts, eltType) = getVLASize(vlaType); 888 889 SizeVal = numElts; 890 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 891 if (!eltSize.isOne()) 892 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 893 vla = vlaType; 894 } else { 895 return; 896 } 897 } else { 898 SizeVal = CGM.getSize(Size); 899 vla = 0; 900 } 901 902 // If the type contains a pointer to data member we can't memset it to zero. 903 // Instead, create a null constant and copy it to the destination. 904 // TODO: there are other patterns besides zero that we can usefully memset, 905 // like -1, which happens to be the pattern used by member-pointers. 906 if (!CGM.getTypes().isZeroInitializable(Ty)) { 907 // For a VLA, emit a single element, then splat that over the VLA. 908 if (vla) Ty = getContext().getBaseElementType(vla); 909 910 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 911 912 llvm::GlobalVariable *NullVariable = 913 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 914 /*isConstant=*/true, 915 llvm::GlobalVariable::PrivateLinkage, 916 NullConstant, Twine()); 917 llvm::Value *SrcPtr = 918 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 919 920 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 921 922 // Get and call the appropriate llvm.memcpy overload. 923 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 924 return; 925 } 926 927 // Otherwise, just memset the whole thing to zero. This is legal 928 // because in LLVM, all default initializers (other than the ones we just 929 // handled above) are guaranteed to have a bit pattern of all zeros. 930 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 931 Align.getQuantity(), false); 932 } 933 934 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 935 // Make sure that there is a block for the indirect goto. 936 if (IndirectBranch == 0) 937 GetIndirectGotoBlock(); 938 939 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 940 941 // Make sure the indirect branch includes all of the address-taken blocks. 942 IndirectBranch->addDestination(BB); 943 return llvm::BlockAddress::get(CurFn, BB); 944 } 945 946 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 947 // If we already made the indirect branch for indirect goto, return its block. 948 if (IndirectBranch) return IndirectBranch->getParent(); 949 950 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 951 952 // Create the PHI node that indirect gotos will add entries to. 953 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 954 "indirect.goto.dest"); 955 956 // Create the indirect branch instruction. 957 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 958 return IndirectBranch->getParent(); 959 } 960 961 /// Computes the length of an array in elements, as well as the base 962 /// element type and a properly-typed first element pointer. 963 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 964 QualType &baseType, 965 llvm::Value *&addr) { 966 const ArrayType *arrayType = origArrayType; 967 968 // If it's a VLA, we have to load the stored size. Note that 969 // this is the size of the VLA in bytes, not its size in elements. 970 llvm::Value *numVLAElements = 0; 971 if (isa<VariableArrayType>(arrayType)) { 972 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 973 974 // Walk into all VLAs. This doesn't require changes to addr, 975 // which has type T* where T is the first non-VLA element type. 976 do { 977 QualType elementType = arrayType->getElementType(); 978 arrayType = getContext().getAsArrayType(elementType); 979 980 // If we only have VLA components, 'addr' requires no adjustment. 981 if (!arrayType) { 982 baseType = elementType; 983 return numVLAElements; 984 } 985 } while (isa<VariableArrayType>(arrayType)); 986 987 // We get out here only if we find a constant array type 988 // inside the VLA. 989 } 990 991 // We have some number of constant-length arrays, so addr should 992 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 993 // down to the first element of addr. 994 SmallVector<llvm::Value*, 8> gepIndices; 995 996 // GEP down to the array type. 997 llvm::ConstantInt *zero = Builder.getInt32(0); 998 gepIndices.push_back(zero); 999 1000 uint64_t countFromCLAs = 1; 1001 QualType eltType; 1002 1003 llvm::ArrayType *llvmArrayType = 1004 dyn_cast<llvm::ArrayType>( 1005 cast<llvm::PointerType>(addr->getType())->getElementType()); 1006 while (llvmArrayType) { 1007 assert(isa<ConstantArrayType>(arrayType)); 1008 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1009 == llvmArrayType->getNumElements()); 1010 1011 gepIndices.push_back(zero); 1012 countFromCLAs *= llvmArrayType->getNumElements(); 1013 eltType = arrayType->getElementType(); 1014 1015 llvmArrayType = 1016 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1017 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1018 assert((!llvmArrayType || arrayType) && 1019 "LLVM and Clang types are out-of-synch"); 1020 } 1021 1022 if (arrayType) { 1023 // From this point onwards, the Clang array type has been emitted 1024 // as some other type (probably a packed struct). Compute the array 1025 // size, and just emit the 'begin' expression as a bitcast. 1026 while (arrayType) { 1027 countFromCLAs *= 1028 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1029 eltType = arrayType->getElementType(); 1030 arrayType = getContext().getAsArrayType(eltType); 1031 } 1032 1033 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1034 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1035 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1036 } else { 1037 // Create the actual GEP. 1038 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1039 } 1040 1041 baseType = eltType; 1042 1043 llvm::Value *numElements 1044 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1045 1046 // If we had any VLA dimensions, factor them in. 1047 if (numVLAElements) 1048 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1049 1050 return numElements; 1051 } 1052 1053 std::pair<llvm::Value*, QualType> 1054 CodeGenFunction::getVLASize(QualType type) { 1055 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1056 assert(vla && "type was not a variable array type!"); 1057 return getVLASize(vla); 1058 } 1059 1060 std::pair<llvm::Value*, QualType> 1061 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1062 // The number of elements so far; always size_t. 1063 llvm::Value *numElements = 0; 1064 1065 QualType elementType; 1066 do { 1067 elementType = type->getElementType(); 1068 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1069 assert(vlaSize && "no size for VLA!"); 1070 assert(vlaSize->getType() == SizeTy); 1071 1072 if (!numElements) { 1073 numElements = vlaSize; 1074 } else { 1075 // It's undefined behavior if this wraps around, so mark it that way. 1076 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1077 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1078 } 1079 } while ((type = getContext().getAsVariableArrayType(elementType))); 1080 1081 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1082 } 1083 1084 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1085 assert(type->isVariablyModifiedType() && 1086 "Must pass variably modified type to EmitVLASizes!"); 1087 1088 EnsureInsertPoint(); 1089 1090 // We're going to walk down into the type and look for VLA 1091 // expressions. 1092 do { 1093 assert(type->isVariablyModifiedType()); 1094 1095 const Type *ty = type.getTypePtr(); 1096 switch (ty->getTypeClass()) { 1097 1098 #define TYPE(Class, Base) 1099 #define ABSTRACT_TYPE(Class, Base) 1100 #define NON_CANONICAL_TYPE(Class, Base) 1101 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1102 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1103 #include "clang/AST/TypeNodes.def" 1104 llvm_unreachable("unexpected dependent type!"); 1105 1106 // These types are never variably-modified. 1107 case Type::Builtin: 1108 case Type::Complex: 1109 case Type::Vector: 1110 case Type::ExtVector: 1111 case Type::Record: 1112 case Type::Enum: 1113 case Type::Elaborated: 1114 case Type::TemplateSpecialization: 1115 case Type::ObjCObject: 1116 case Type::ObjCInterface: 1117 case Type::ObjCObjectPointer: 1118 llvm_unreachable("type class is never variably-modified!"); 1119 1120 case Type::Pointer: 1121 type = cast<PointerType>(ty)->getPointeeType(); 1122 break; 1123 1124 case Type::BlockPointer: 1125 type = cast<BlockPointerType>(ty)->getPointeeType(); 1126 break; 1127 1128 case Type::LValueReference: 1129 case Type::RValueReference: 1130 type = cast<ReferenceType>(ty)->getPointeeType(); 1131 break; 1132 1133 case Type::MemberPointer: 1134 type = cast<MemberPointerType>(ty)->getPointeeType(); 1135 break; 1136 1137 case Type::ConstantArray: 1138 case Type::IncompleteArray: 1139 // Losing element qualification here is fine. 1140 type = cast<ArrayType>(ty)->getElementType(); 1141 break; 1142 1143 case Type::VariableArray: { 1144 // Losing element qualification here is fine. 1145 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1146 1147 // Unknown size indication requires no size computation. 1148 // Otherwise, evaluate and record it. 1149 if (const Expr *size = vat->getSizeExpr()) { 1150 // It's possible that we might have emitted this already, 1151 // e.g. with a typedef and a pointer to it. 1152 llvm::Value *&entry = VLASizeMap[size]; 1153 if (!entry) { 1154 llvm::Value *Size = EmitScalarExpr(size); 1155 1156 // C11 6.7.6.2p5: 1157 // If the size is an expression that is not an integer constant 1158 // expression [...] each time it is evaluated it shall have a value 1159 // greater than zero. 1160 if (SanOpts->VLABound && 1161 size->getType()->isSignedIntegerType()) { 1162 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1163 llvm::Constant *StaticArgs[] = { 1164 EmitCheckSourceLocation(size->getLocStart()), 1165 EmitCheckTypeDescriptor(size->getType()) 1166 }; 1167 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1168 "vla_bound_not_positive", StaticArgs, Size, 1169 CRK_Recoverable); 1170 } 1171 1172 // Always zexting here would be wrong if it weren't 1173 // undefined behavior to have a negative bound. 1174 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1175 } 1176 } 1177 type = vat->getElementType(); 1178 break; 1179 } 1180 1181 case Type::FunctionProto: 1182 case Type::FunctionNoProto: 1183 type = cast<FunctionType>(ty)->getResultType(); 1184 break; 1185 1186 case Type::Paren: 1187 case Type::TypeOf: 1188 case Type::UnaryTransform: 1189 case Type::Attributed: 1190 case Type::SubstTemplateTypeParm: 1191 // Keep walking after single level desugaring. 1192 type = type.getSingleStepDesugaredType(getContext()); 1193 break; 1194 1195 case Type::Typedef: 1196 case Type::Decltype: 1197 case Type::Auto: 1198 // Stop walking: nothing to do. 1199 return; 1200 1201 case Type::TypeOfExpr: 1202 // Stop walking: emit typeof expression. 1203 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1204 return; 1205 1206 case Type::Atomic: 1207 type = cast<AtomicType>(ty)->getValueType(); 1208 break; 1209 } 1210 } while (type->isVariablyModifiedType()); 1211 } 1212 1213 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1214 if (getContext().getBuiltinVaListType()->isArrayType()) 1215 return EmitScalarExpr(E); 1216 return EmitLValue(E).getAddress(); 1217 } 1218 1219 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1220 llvm::Constant *Init) { 1221 assert (Init && "Invalid DeclRefExpr initializer!"); 1222 if (CGDebugInfo *Dbg = getDebugInfo()) 1223 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1224 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1225 } 1226 1227 CodeGenFunction::PeepholeProtection 1228 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1229 // At the moment, the only aggressive peephole we do in IR gen 1230 // is trunc(zext) folding, but if we add more, we can easily 1231 // extend this protection. 1232 1233 if (!rvalue.isScalar()) return PeepholeProtection(); 1234 llvm::Value *value = rvalue.getScalarVal(); 1235 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1236 1237 // Just make an extra bitcast. 1238 assert(HaveInsertPoint()); 1239 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1240 Builder.GetInsertBlock()); 1241 1242 PeepholeProtection protection; 1243 protection.Inst = inst; 1244 return protection; 1245 } 1246 1247 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1248 if (!protection.Inst) return; 1249 1250 // In theory, we could try to duplicate the peepholes now, but whatever. 1251 protection.Inst->eraseFromParent(); 1252 } 1253 1254 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1255 llvm::Value *AnnotatedVal, 1256 StringRef AnnotationStr, 1257 SourceLocation Location) { 1258 llvm::Value *Args[4] = { 1259 AnnotatedVal, 1260 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1261 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1262 CGM.EmitAnnotationLineNo(Location) 1263 }; 1264 return Builder.CreateCall(AnnotationFn, Args); 1265 } 1266 1267 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1268 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1269 // FIXME We create a new bitcast for every annotation because that's what 1270 // llvm-gcc was doing. 1271 for (specific_attr_iterator<AnnotateAttr> 1272 ai = D->specific_attr_begin<AnnotateAttr>(), 1273 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1274 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1275 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1276 (*ai)->getAnnotation(), D->getLocation()); 1277 } 1278 1279 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1280 llvm::Value *V) { 1281 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1282 llvm::Type *VTy = V->getType(); 1283 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1284 CGM.Int8PtrTy); 1285 1286 for (specific_attr_iterator<AnnotateAttr> 1287 ai = D->specific_attr_begin<AnnotateAttr>(), 1288 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1289 // FIXME Always emit the cast inst so we can differentiate between 1290 // annotation on the first field of a struct and annotation on the struct 1291 // itself. 1292 if (VTy != CGM.Int8PtrTy) 1293 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1294 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1295 V = Builder.CreateBitCast(V, VTy); 1296 } 1297 1298 return V; 1299 } 1300