1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Operator.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()),
35     Builder(cgm.getModule().getContext()),
36     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
37                              CGM.getSanOpts().Alignment |
38                              CGM.getSanOpts().ObjectSize |
39                              CGM.getSanOpts().Vptr),
40     SanOpts(&CGM.getSanOpts()),
41     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
42     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
43     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
44     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
45     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
46     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
47     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
48     OutermostConditional(0), TerminateLandingPad(0),
49     TerminateHandler(0), TrapBB(0) {
50   if (!suppressNewContext)
51     CGM.getCXXABI().getMangleContext().startNewFunction();
52 
53   llvm::FastMathFlags FMF;
54   if (CGM.getLangOpts().FastMath)
55     FMF.setUnsafeAlgebra();
56   if (CGM.getLangOpts().FiniteMathOnly) {
57     FMF.setNoNaNs();
58     FMF.setNoInfs();
59   }
60   Builder.SetFastMathFlags(FMF);
61 }
62 
63 CodeGenFunction::~CodeGenFunction() {
64   // If there are any unclaimed block infos, go ahead and destroy them
65   // now.  This can happen if IR-gen gets clever and skips evaluating
66   // something.
67   if (FirstBlockInfo)
68     destroyBlockInfos(FirstBlockInfo);
69 }
70 
71 
72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
73   return CGM.getTypes().ConvertTypeForMem(T);
74 }
75 
76 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
77   return CGM.getTypes().ConvertType(T);
78 }
79 
80 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
81   switch (type.getCanonicalType()->getTypeClass()) {
82 #define TYPE(name, parent)
83 #define ABSTRACT_TYPE(name, parent)
84 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
85 #define DEPENDENT_TYPE(name, parent) case Type::name:
86 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
87 #include "clang/AST/TypeNodes.def"
88     llvm_unreachable("non-canonical or dependent type in IR-generation");
89 
90   case Type::Builtin:
91   case Type::Pointer:
92   case Type::BlockPointer:
93   case Type::LValueReference:
94   case Type::RValueReference:
95   case Type::MemberPointer:
96   case Type::Vector:
97   case Type::ExtVector:
98   case Type::FunctionProto:
99   case Type::FunctionNoProto:
100   case Type::Enum:
101   case Type::ObjCObjectPointer:
102     return false;
103 
104   // Complexes, arrays, records, and Objective-C objects.
105   case Type::Complex:
106   case Type::ConstantArray:
107   case Type::IncompleteArray:
108   case Type::VariableArray:
109   case Type::Record:
110   case Type::ObjCObject:
111   case Type::ObjCInterface:
112     return true;
113 
114   // In IRGen, atomic types are just the underlying type
115   case Type::Atomic:
116     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
117   }
118   llvm_unreachable("unknown type kind!");
119 }
120 
121 void CodeGenFunction::EmitReturnBlock() {
122   // For cleanliness, we try to avoid emitting the return block for
123   // simple cases.
124   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
125 
126   if (CurBB) {
127     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
128 
129     // We have a valid insert point, reuse it if it is empty or there are no
130     // explicit jumps to the return block.
131     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
132       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
133       delete ReturnBlock.getBlock();
134     } else
135       EmitBlock(ReturnBlock.getBlock());
136     return;
137   }
138 
139   // Otherwise, if the return block is the target of a single direct
140   // branch then we can just put the code in that block instead. This
141   // cleans up functions which started with a unified return block.
142   if (ReturnBlock.getBlock()->hasOneUse()) {
143     llvm::BranchInst *BI =
144       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
145     if (BI && BI->isUnconditional() &&
146         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
147       // Reset insertion point, including debug location, and delete the branch.
148       // This is really subtle & only works because the next change in location
149       // will hit the caching in CGDebugInfo::EmitLocation & not override this.
150       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
151       Builder.SetInsertPoint(BI->getParent());
152       BI->eraseFromParent();
153       delete ReturnBlock.getBlock();
154       return;
155     }
156   }
157 
158   // FIXME: We are at an unreachable point, there is no reason to emit the block
159   // unless it has uses. However, we still need a place to put the debug
160   // region.end for now.
161 
162   EmitBlock(ReturnBlock.getBlock());
163 }
164 
165 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
166   if (!BB) return;
167   if (!BB->use_empty())
168     return CGF.CurFn->getBasicBlockList().push_back(BB);
169   delete BB;
170 }
171 
172 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
173   assert(BreakContinueStack.empty() &&
174          "mismatched push/pop in break/continue stack!");
175 
176   if (CGDebugInfo *DI = getDebugInfo())
177     DI->EmitLocation(Builder, EndLoc);
178 
179   // Pop any cleanups that might have been associated with the
180   // parameters.  Do this in whatever block we're currently in; it's
181   // important to do this before we enter the return block or return
182   // edges will be *really* confused.
183   if (EHStack.stable_begin() != PrologueCleanupDepth)
184     PopCleanupBlocks(PrologueCleanupDepth);
185 
186   // Emit function epilog (to return).
187   EmitReturnBlock();
188 
189   if (ShouldInstrumentFunction())
190     EmitFunctionInstrumentation("__cyg_profile_func_exit");
191 
192   // Emit debug descriptor for function end.
193   if (CGDebugInfo *DI = getDebugInfo()) {
194     DI->EmitFunctionEnd(Builder);
195   }
196 
197   EmitFunctionEpilog(*CurFnInfo);
198   EmitEndEHSpec(CurCodeDecl);
199 
200   assert(EHStack.empty() &&
201          "did not remove all scopes from cleanup stack!");
202 
203   // If someone did an indirect goto, emit the indirect goto block at the end of
204   // the function.
205   if (IndirectBranch) {
206     EmitBlock(IndirectBranch->getParent());
207     Builder.ClearInsertionPoint();
208   }
209 
210   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
211   llvm::Instruction *Ptr = AllocaInsertPt;
212   AllocaInsertPt = 0;
213   Ptr->eraseFromParent();
214 
215   // If someone took the address of a label but never did an indirect goto, we
216   // made a zero entry PHI node, which is illegal, zap it now.
217   if (IndirectBranch) {
218     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
219     if (PN->getNumIncomingValues() == 0) {
220       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
221       PN->eraseFromParent();
222     }
223   }
224 
225   EmitIfUsed(*this, EHResumeBlock);
226   EmitIfUsed(*this, TerminateLandingPad);
227   EmitIfUsed(*this, TerminateHandler);
228   EmitIfUsed(*this, UnreachableBlock);
229 
230   if (CGM.getCodeGenOpts().EmitDeclMetadata)
231     EmitDeclMetadata();
232 }
233 
234 /// ShouldInstrumentFunction - Return true if the current function should be
235 /// instrumented with __cyg_profile_func_* calls
236 bool CodeGenFunction::ShouldInstrumentFunction() {
237   if (!CGM.getCodeGenOpts().InstrumentFunctions)
238     return false;
239   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
240     return false;
241   return true;
242 }
243 
244 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
245 /// instrumentation function with the current function and the call site, if
246 /// function instrumentation is enabled.
247 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
248   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
249   llvm::PointerType *PointerTy = Int8PtrTy;
250   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
251   llvm::FunctionType *FunctionTy =
252     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
253 
254   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
255   llvm::CallInst *CallSite = Builder.CreateCall(
256     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
257     llvm::ConstantInt::get(Int32Ty, 0),
258     "callsite");
259 
260   Builder.CreateCall2(F,
261                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
262                       CallSite);
263 }
264 
265 void CodeGenFunction::EmitMCountInstrumentation() {
266   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
267 
268   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
269                                                        Target.getMCountName());
270   Builder.CreateCall(MCountFn);
271 }
272 
273 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
274 // information in the program executable. The argument information stored
275 // includes the argument name, its type, the address and access qualifiers used.
276 // FIXME: Add type, address, and access qualifiers.
277 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
278                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
279                                  SmallVector <llvm::Value*, 5> &kernelMDArgs) {
280 
281   // Create MDNodes that represents the kernel arg metadata.
282   // Each MDNode is a list in the form of "key", N number of values which is
283   // the same number of values as their are kernel arguments.
284 
285   // MDNode for the kernel argument names.
286   SmallVector<llvm::Value*, 8> argNames;
287   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
288 
289   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
290     const ParmVarDecl *parm = FD->getParamDecl(i);
291 
292     // Get argument name.
293     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
294 
295   }
296   // Add MDNode to the list of all metadata.
297   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
298 }
299 
300 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
301                                                llvm::Function *Fn)
302 {
303   if (!FD->hasAttr<OpenCLKernelAttr>())
304     return;
305 
306   llvm::LLVMContext &Context = getLLVMContext();
307 
308   SmallVector <llvm::Value*, 5> kernelMDArgs;
309   kernelMDArgs.push_back(Fn);
310 
311   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
312     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
313 
314   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
315     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
316     llvm::Value *attrMDArgs[] = {
317       llvm::MDString::get(Context, "work_group_size_hint"),
318       Builder.getInt32(attr->getXDim()),
319       Builder.getInt32(attr->getYDim()),
320       Builder.getInt32(attr->getZDim())
321     };
322     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
323   }
324 
325   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
326     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
327     llvm::Value *attrMDArgs[] = {
328       llvm::MDString::get(Context, "reqd_work_group_size"),
329       Builder.getInt32(attr->getXDim()),
330       Builder.getInt32(attr->getYDim()),
331       Builder.getInt32(attr->getZDim())
332     };
333     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
334   }
335 
336   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
337   llvm::NamedMDNode *OpenCLKernelMetadata =
338     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
339   OpenCLKernelMetadata->addOperand(kernelMDNode);
340 }
341 
342 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
343                                     llvm::Function *Fn,
344                                     const CGFunctionInfo &FnInfo,
345                                     const FunctionArgList &Args,
346                                     SourceLocation StartLoc) {
347   const Decl *D = GD.getDecl();
348 
349   DidCallStackSave = false;
350   CurCodeDecl = CurFuncDecl = D;
351   FnRetTy = RetTy;
352   CurFn = Fn;
353   CurFnInfo = &FnInfo;
354   assert(CurFn->isDeclaration() && "Function already has body?");
355 
356   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
357     SanOpts = &SanitizerOptions::Disabled;
358     SanitizePerformTypeCheck = false;
359   }
360 
361   // Pass inline keyword to optimizer if it appears explicitly on any
362   // declaration.
363   if (!CGM.getCodeGenOpts().NoInline)
364     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
365       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
366              RE = FD->redecls_end(); RI != RE; ++RI)
367         if (RI->isInlineSpecified()) {
368           Fn->addFnAttr(llvm::Attribute::InlineHint);
369           break;
370         }
371 
372   if (getLangOpts().OpenCL) {
373     // Add metadata for a kernel function.
374     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
375       EmitOpenCLKernelMetadata(FD, Fn);
376   }
377 
378   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
379 
380   // Create a marker to make it easy to insert allocas into the entryblock
381   // later.  Don't create this with the builder, because we don't want it
382   // folded.
383   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
384   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
385   if (Builder.isNamePreserving())
386     AllocaInsertPt->setName("allocapt");
387 
388   ReturnBlock = getJumpDestInCurrentScope("return");
389 
390   Builder.SetInsertPoint(EntryBB);
391 
392   // Emit subprogram debug descriptor.
393   if (CGDebugInfo *DI = getDebugInfo()) {
394     unsigned NumArgs = 0;
395     QualType *ArgsArray = new QualType[Args.size()];
396     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
397 	 i != e; ++i) {
398       ArgsArray[NumArgs++] = (*i)->getType();
399     }
400 
401     QualType FnType =
402       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
403                                    FunctionProtoType::ExtProtoInfo());
404 
405     delete[] ArgsArray;
406 
407     DI->setLocation(StartLoc);
408     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
409   }
410 
411   if (ShouldInstrumentFunction())
412     EmitFunctionInstrumentation("__cyg_profile_func_enter");
413 
414   if (CGM.getCodeGenOpts().InstrumentForProfiling)
415     EmitMCountInstrumentation();
416 
417   if (RetTy->isVoidType()) {
418     // Void type; nothing to return.
419     ReturnValue = 0;
420   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
421              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
422     // Indirect aggregate return; emit returned value directly into sret slot.
423     // This reduces code size, and affects correctness in C++.
424     ReturnValue = CurFn->arg_begin();
425   } else {
426     ReturnValue = CreateIRTemp(RetTy, "retval");
427 
428     // Tell the epilog emitter to autorelease the result.  We do this
429     // now so that various specialized functions can suppress it
430     // during their IR-generation.
431     if (getLangOpts().ObjCAutoRefCount &&
432         !CurFnInfo->isReturnsRetained() &&
433         RetTy->isObjCRetainableType())
434       AutoreleaseResult = true;
435   }
436 
437   EmitStartEHSpec(CurCodeDecl);
438 
439   PrologueCleanupDepth = EHStack.stable_begin();
440   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
441 
442   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
443     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
444     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
445     if (MD->getParent()->isLambda() &&
446         MD->getOverloadedOperator() == OO_Call) {
447       // We're in a lambda; figure out the captures.
448       MD->getParent()->getCaptureFields(LambdaCaptureFields,
449                                         LambdaThisCaptureField);
450       if (LambdaThisCaptureField) {
451         // If this lambda captures this, load it.
452         QualType LambdaTagType =
453             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
454         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
455                                                      LambdaTagType);
456         LValue ThisLValue = EmitLValueForField(LambdaLV,
457                                                LambdaThisCaptureField);
458         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
459       }
460     } else {
461       // Not in a lambda; just use 'this' from the method.
462       // FIXME: Should we generate a new load for each use of 'this'?  The
463       // fast register allocator would be happier...
464       CXXThisValue = CXXABIThisValue;
465     }
466   }
467 
468   // If any of the arguments have a variably modified type, make sure to
469   // emit the type size.
470   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
471        i != e; ++i) {
472     const VarDecl *VD = *i;
473 
474     // Dig out the type as written from ParmVarDecls; it's unclear whether
475     // the standard (C99 6.9.1p10) requires this, but we're following the
476     // precedent set by gcc.
477     QualType Ty;
478     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
479       Ty = PVD->getOriginalType();
480     else
481       Ty = VD->getType();
482 
483     if (Ty->isVariablyModifiedType())
484       EmitVariablyModifiedType(Ty);
485   }
486   // Emit a location at the end of the prologue.
487   if (CGDebugInfo *DI = getDebugInfo())
488     DI->EmitLocation(Builder, StartLoc);
489 }
490 
491 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
492   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
493   assert(FD->getBody());
494   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
495     EmitCompoundStmtWithoutScope(*S);
496   else
497     EmitStmt(FD->getBody());
498 }
499 
500 /// Tries to mark the given function nounwind based on the
501 /// non-existence of any throwing calls within it.  We believe this is
502 /// lightweight enough to do at -O0.
503 static void TryMarkNoThrow(llvm::Function *F) {
504   // LLVM treats 'nounwind' on a function as part of the type, so we
505   // can't do this on functions that can be overwritten.
506   if (F->mayBeOverridden()) return;
507 
508   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
509     for (llvm::BasicBlock::iterator
510            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
511       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
512         if (!Call->doesNotThrow())
513           return;
514       } else if (isa<llvm::ResumeInst>(&*BI)) {
515         return;
516       }
517   F->setDoesNotThrow();
518 }
519 
520 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
521                                    const CGFunctionInfo &FnInfo) {
522   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
523 
524   // Check if we should generate debug info for this function.
525   if (!FD->hasAttr<NoDebugAttr>())
526     maybeInitializeDebugInfo();
527 
528   FunctionArgList Args;
529   QualType ResTy = FD->getResultType();
530 
531   CurGD = GD;
532   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
533     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
534 
535   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
536     Args.push_back(FD->getParamDecl(i));
537 
538   SourceRange BodyRange;
539   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
540 
541   // Emit the standard function prologue.
542   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
543 
544   // Generate the body of the function.
545   if (isa<CXXDestructorDecl>(FD))
546     EmitDestructorBody(Args);
547   else if (isa<CXXConstructorDecl>(FD))
548     EmitConstructorBody(Args);
549   else if (getLangOpts().CUDA &&
550            !CGM.getCodeGenOpts().CUDAIsDevice &&
551            FD->hasAttr<CUDAGlobalAttr>())
552     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
553   else if (isa<CXXConversionDecl>(FD) &&
554            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
555     // The lambda conversion to block pointer is special; the semantics can't be
556     // expressed in the AST, so IRGen needs to special-case it.
557     EmitLambdaToBlockPointerBody(Args);
558   } else if (isa<CXXMethodDecl>(FD) &&
559              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
560     // The lambda "__invoke" function is special, because it forwards or
561     // clones the body of the function call operator (but is actually static).
562     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
563   }
564   else
565     EmitFunctionBody(Args);
566 
567   // C++11 [stmt.return]p2:
568   //   Flowing off the end of a function [...] results in undefined behavior in
569   //   a value-returning function.
570   // C11 6.9.1p12:
571   //   If the '}' that terminates a function is reached, and the value of the
572   //   function call is used by the caller, the behavior is undefined.
573   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
574       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
575     if (SanOpts->Return)
576       EmitCheck(Builder.getFalse(), "missing_return",
577                 EmitCheckSourceLocation(FD->getLocation()),
578                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
579     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
580       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
581     Builder.CreateUnreachable();
582     Builder.ClearInsertionPoint();
583   }
584 
585   // Emit the standard function epilogue.
586   FinishFunction(BodyRange.getEnd());
587 
588   // If we haven't marked the function nothrow through other means, do
589   // a quick pass now to see if we can.
590   if (!CurFn->doesNotThrow())
591     TryMarkNoThrow(CurFn);
592 }
593 
594 /// ContainsLabel - Return true if the statement contains a label in it.  If
595 /// this statement is not executed normally, it not containing a label means
596 /// that we can just remove the code.
597 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
598   // Null statement, not a label!
599   if (S == 0) return false;
600 
601   // If this is a label, we have to emit the code, consider something like:
602   // if (0) {  ...  foo:  bar(); }  goto foo;
603   //
604   // TODO: If anyone cared, we could track __label__'s, since we know that you
605   // can't jump to one from outside their declared region.
606   if (isa<LabelStmt>(S))
607     return true;
608 
609   // If this is a case/default statement, and we haven't seen a switch, we have
610   // to emit the code.
611   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
612     return true;
613 
614   // If this is a switch statement, we want to ignore cases below it.
615   if (isa<SwitchStmt>(S))
616     IgnoreCaseStmts = true;
617 
618   // Scan subexpressions for verboten labels.
619   for (Stmt::const_child_range I = S->children(); I; ++I)
620     if (ContainsLabel(*I, IgnoreCaseStmts))
621       return true;
622 
623   return false;
624 }
625 
626 /// containsBreak - Return true if the statement contains a break out of it.
627 /// If the statement (recursively) contains a switch or loop with a break
628 /// inside of it, this is fine.
629 bool CodeGenFunction::containsBreak(const Stmt *S) {
630   // Null statement, not a label!
631   if (S == 0) return false;
632 
633   // If this is a switch or loop that defines its own break scope, then we can
634   // include it and anything inside of it.
635   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
636       isa<ForStmt>(S))
637     return false;
638 
639   if (isa<BreakStmt>(S))
640     return true;
641 
642   // Scan subexpressions for verboten breaks.
643   for (Stmt::const_child_range I = S->children(); I; ++I)
644     if (containsBreak(*I))
645       return true;
646 
647   return false;
648 }
649 
650 
651 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
652 /// to a constant, or if it does but contains a label, return false.  If it
653 /// constant folds return true and set the boolean result in Result.
654 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
655                                                    bool &ResultBool) {
656   llvm::APSInt ResultInt;
657   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
658     return false;
659 
660   ResultBool = ResultInt.getBoolValue();
661   return true;
662 }
663 
664 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
665 /// to a constant, or if it does but contains a label, return false.  If it
666 /// constant folds return true and set the folded value.
667 bool CodeGenFunction::
668 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
669   // FIXME: Rename and handle conversion of other evaluatable things
670   // to bool.
671   llvm::APSInt Int;
672   if (!Cond->EvaluateAsInt(Int, getContext()))
673     return false;  // Not foldable, not integer or not fully evaluatable.
674 
675   if (CodeGenFunction::ContainsLabel(Cond))
676     return false;  // Contains a label.
677 
678   ResultInt = Int;
679   return true;
680 }
681 
682 
683 
684 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
685 /// statement) to the specified blocks.  Based on the condition, this might try
686 /// to simplify the codegen of the conditional based on the branch.
687 ///
688 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
689                                            llvm::BasicBlock *TrueBlock,
690                                            llvm::BasicBlock *FalseBlock) {
691   Cond = Cond->IgnoreParens();
692 
693   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
694     // Handle X && Y in a condition.
695     if (CondBOp->getOpcode() == BO_LAnd) {
696       // If we have "1 && X", simplify the code.  "0 && X" would have constant
697       // folded if the case was simple enough.
698       bool ConstantBool = false;
699       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
700           ConstantBool) {
701         // br(1 && X) -> br(X).
702         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
703       }
704 
705       // If we have "X && 1", simplify the code to use an uncond branch.
706       // "X && 0" would have been constant folded to 0.
707       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
708           ConstantBool) {
709         // br(X && 1) -> br(X).
710         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
711       }
712 
713       // Emit the LHS as a conditional.  If the LHS conditional is false, we
714       // want to jump to the FalseBlock.
715       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
716 
717       ConditionalEvaluation eval(*this);
718       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
719       EmitBlock(LHSTrue);
720 
721       // Any temporaries created here are conditional.
722       eval.begin(*this);
723       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
724       eval.end(*this);
725 
726       return;
727     }
728 
729     if (CondBOp->getOpcode() == BO_LOr) {
730       // If we have "0 || X", simplify the code.  "1 || X" would have constant
731       // folded if the case was simple enough.
732       bool ConstantBool = false;
733       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
734           !ConstantBool) {
735         // br(0 || X) -> br(X).
736         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
737       }
738 
739       // If we have "X || 0", simplify the code to use an uncond branch.
740       // "X || 1" would have been constant folded to 1.
741       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
742           !ConstantBool) {
743         // br(X || 0) -> br(X).
744         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
745       }
746 
747       // Emit the LHS as a conditional.  If the LHS conditional is true, we
748       // want to jump to the TrueBlock.
749       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
750 
751       ConditionalEvaluation eval(*this);
752       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
753       EmitBlock(LHSFalse);
754 
755       // Any temporaries created here are conditional.
756       eval.begin(*this);
757       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
758       eval.end(*this);
759 
760       return;
761     }
762   }
763 
764   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
765     // br(!x, t, f) -> br(x, f, t)
766     if (CondUOp->getOpcode() == UO_LNot)
767       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
768   }
769 
770   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
771     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
772     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
773     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
774 
775     ConditionalEvaluation cond(*this);
776     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
777 
778     cond.begin(*this);
779     EmitBlock(LHSBlock);
780     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
781     cond.end(*this);
782 
783     cond.begin(*this);
784     EmitBlock(RHSBlock);
785     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
786     cond.end(*this);
787 
788     return;
789   }
790 
791   // Emit the code with the fully general case.
792   llvm::Value *CondV = EvaluateExprAsBool(Cond);
793   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
794 }
795 
796 /// ErrorUnsupported - Print out an error that codegen doesn't support the
797 /// specified stmt yet.
798 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
799                                        bool OmitOnError) {
800   CGM.ErrorUnsupported(S, Type, OmitOnError);
801 }
802 
803 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
804 /// variable-length array whose elements have a non-zero bit-pattern.
805 ///
806 /// \param baseType the inner-most element type of the array
807 /// \param src - a char* pointing to the bit-pattern for a single
808 /// base element of the array
809 /// \param sizeInChars - the total size of the VLA, in chars
810 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
811                                llvm::Value *dest, llvm::Value *src,
812                                llvm::Value *sizeInChars) {
813   std::pair<CharUnits,CharUnits> baseSizeAndAlign
814     = CGF.getContext().getTypeInfoInChars(baseType);
815 
816   CGBuilderTy &Builder = CGF.Builder;
817 
818   llvm::Value *baseSizeInChars
819     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
820 
821   llvm::Type *i8p = Builder.getInt8PtrTy();
822 
823   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
824   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
825 
826   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
827   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
828   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
829 
830   // Make a loop over the VLA.  C99 guarantees that the VLA element
831   // count must be nonzero.
832   CGF.EmitBlock(loopBB);
833 
834   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
835   cur->addIncoming(begin, originBB);
836 
837   // memcpy the individual element bit-pattern.
838   Builder.CreateMemCpy(cur, src, baseSizeInChars,
839                        baseSizeAndAlign.second.getQuantity(),
840                        /*volatile*/ false);
841 
842   // Go to the next element.
843   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
844 
845   // Leave if that's the end of the VLA.
846   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
847   Builder.CreateCondBr(done, contBB, loopBB);
848   cur->addIncoming(next, loopBB);
849 
850   CGF.EmitBlock(contBB);
851 }
852 
853 void
854 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
855   // Ignore empty classes in C++.
856   if (getLangOpts().CPlusPlus) {
857     if (const RecordType *RT = Ty->getAs<RecordType>()) {
858       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
859         return;
860     }
861   }
862 
863   // Cast the dest ptr to the appropriate i8 pointer type.
864   unsigned DestAS =
865     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
866   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
867   if (DestPtr->getType() != BP)
868     DestPtr = Builder.CreateBitCast(DestPtr, BP);
869 
870   // Get size and alignment info for this aggregate.
871   std::pair<CharUnits, CharUnits> TypeInfo =
872     getContext().getTypeInfoInChars(Ty);
873   CharUnits Size = TypeInfo.first;
874   CharUnits Align = TypeInfo.second;
875 
876   llvm::Value *SizeVal;
877   const VariableArrayType *vla;
878 
879   // Don't bother emitting a zero-byte memset.
880   if (Size.isZero()) {
881     // But note that getTypeInfo returns 0 for a VLA.
882     if (const VariableArrayType *vlaType =
883           dyn_cast_or_null<VariableArrayType>(
884                                           getContext().getAsArrayType(Ty))) {
885       QualType eltType;
886       llvm::Value *numElts;
887       llvm::tie(numElts, eltType) = getVLASize(vlaType);
888 
889       SizeVal = numElts;
890       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
891       if (!eltSize.isOne())
892         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
893       vla = vlaType;
894     } else {
895       return;
896     }
897   } else {
898     SizeVal = CGM.getSize(Size);
899     vla = 0;
900   }
901 
902   // If the type contains a pointer to data member we can't memset it to zero.
903   // Instead, create a null constant and copy it to the destination.
904   // TODO: there are other patterns besides zero that we can usefully memset,
905   // like -1, which happens to be the pattern used by member-pointers.
906   if (!CGM.getTypes().isZeroInitializable(Ty)) {
907     // For a VLA, emit a single element, then splat that over the VLA.
908     if (vla) Ty = getContext().getBaseElementType(vla);
909 
910     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
911 
912     llvm::GlobalVariable *NullVariable =
913       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
914                                /*isConstant=*/true,
915                                llvm::GlobalVariable::PrivateLinkage,
916                                NullConstant, Twine());
917     llvm::Value *SrcPtr =
918       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
919 
920     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
921 
922     // Get and call the appropriate llvm.memcpy overload.
923     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
924     return;
925   }
926 
927   // Otherwise, just memset the whole thing to zero.  This is legal
928   // because in LLVM, all default initializers (other than the ones we just
929   // handled above) are guaranteed to have a bit pattern of all zeros.
930   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
931                        Align.getQuantity(), false);
932 }
933 
934 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
935   // Make sure that there is a block for the indirect goto.
936   if (IndirectBranch == 0)
937     GetIndirectGotoBlock();
938 
939   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
940 
941   // Make sure the indirect branch includes all of the address-taken blocks.
942   IndirectBranch->addDestination(BB);
943   return llvm::BlockAddress::get(CurFn, BB);
944 }
945 
946 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
947   // If we already made the indirect branch for indirect goto, return its block.
948   if (IndirectBranch) return IndirectBranch->getParent();
949 
950   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
951 
952   // Create the PHI node that indirect gotos will add entries to.
953   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
954                                               "indirect.goto.dest");
955 
956   // Create the indirect branch instruction.
957   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
958   return IndirectBranch->getParent();
959 }
960 
961 /// Computes the length of an array in elements, as well as the base
962 /// element type and a properly-typed first element pointer.
963 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
964                                               QualType &baseType,
965                                               llvm::Value *&addr) {
966   const ArrayType *arrayType = origArrayType;
967 
968   // If it's a VLA, we have to load the stored size.  Note that
969   // this is the size of the VLA in bytes, not its size in elements.
970   llvm::Value *numVLAElements = 0;
971   if (isa<VariableArrayType>(arrayType)) {
972     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
973 
974     // Walk into all VLAs.  This doesn't require changes to addr,
975     // which has type T* where T is the first non-VLA element type.
976     do {
977       QualType elementType = arrayType->getElementType();
978       arrayType = getContext().getAsArrayType(elementType);
979 
980       // If we only have VLA components, 'addr' requires no adjustment.
981       if (!arrayType) {
982         baseType = elementType;
983         return numVLAElements;
984       }
985     } while (isa<VariableArrayType>(arrayType));
986 
987     // We get out here only if we find a constant array type
988     // inside the VLA.
989   }
990 
991   // We have some number of constant-length arrays, so addr should
992   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
993   // down to the first element of addr.
994   SmallVector<llvm::Value*, 8> gepIndices;
995 
996   // GEP down to the array type.
997   llvm::ConstantInt *zero = Builder.getInt32(0);
998   gepIndices.push_back(zero);
999 
1000   uint64_t countFromCLAs = 1;
1001   QualType eltType;
1002 
1003   llvm::ArrayType *llvmArrayType =
1004     dyn_cast<llvm::ArrayType>(
1005       cast<llvm::PointerType>(addr->getType())->getElementType());
1006   while (llvmArrayType) {
1007     assert(isa<ConstantArrayType>(arrayType));
1008     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1009              == llvmArrayType->getNumElements());
1010 
1011     gepIndices.push_back(zero);
1012     countFromCLAs *= llvmArrayType->getNumElements();
1013     eltType = arrayType->getElementType();
1014 
1015     llvmArrayType =
1016       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1017     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1018     assert((!llvmArrayType || arrayType) &&
1019            "LLVM and Clang types are out-of-synch");
1020   }
1021 
1022   if (arrayType) {
1023     // From this point onwards, the Clang array type has been emitted
1024     // as some other type (probably a packed struct). Compute the array
1025     // size, and just emit the 'begin' expression as a bitcast.
1026     while (arrayType) {
1027       countFromCLAs *=
1028           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1029       eltType = arrayType->getElementType();
1030       arrayType = getContext().getAsArrayType(eltType);
1031     }
1032 
1033     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1034     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1035     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1036   } else {
1037     // Create the actual GEP.
1038     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1039   }
1040 
1041   baseType = eltType;
1042 
1043   llvm::Value *numElements
1044     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1045 
1046   // If we had any VLA dimensions, factor them in.
1047   if (numVLAElements)
1048     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1049 
1050   return numElements;
1051 }
1052 
1053 std::pair<llvm::Value*, QualType>
1054 CodeGenFunction::getVLASize(QualType type) {
1055   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1056   assert(vla && "type was not a variable array type!");
1057   return getVLASize(vla);
1058 }
1059 
1060 std::pair<llvm::Value*, QualType>
1061 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1062   // The number of elements so far; always size_t.
1063   llvm::Value *numElements = 0;
1064 
1065   QualType elementType;
1066   do {
1067     elementType = type->getElementType();
1068     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1069     assert(vlaSize && "no size for VLA!");
1070     assert(vlaSize->getType() == SizeTy);
1071 
1072     if (!numElements) {
1073       numElements = vlaSize;
1074     } else {
1075       // It's undefined behavior if this wraps around, so mark it that way.
1076       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1077       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1078     }
1079   } while ((type = getContext().getAsVariableArrayType(elementType)));
1080 
1081   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1082 }
1083 
1084 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1085   assert(type->isVariablyModifiedType() &&
1086          "Must pass variably modified type to EmitVLASizes!");
1087 
1088   EnsureInsertPoint();
1089 
1090   // We're going to walk down into the type and look for VLA
1091   // expressions.
1092   do {
1093     assert(type->isVariablyModifiedType());
1094 
1095     const Type *ty = type.getTypePtr();
1096     switch (ty->getTypeClass()) {
1097 
1098 #define TYPE(Class, Base)
1099 #define ABSTRACT_TYPE(Class, Base)
1100 #define NON_CANONICAL_TYPE(Class, Base)
1101 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1102 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1103 #include "clang/AST/TypeNodes.def"
1104       llvm_unreachable("unexpected dependent type!");
1105 
1106     // These types are never variably-modified.
1107     case Type::Builtin:
1108     case Type::Complex:
1109     case Type::Vector:
1110     case Type::ExtVector:
1111     case Type::Record:
1112     case Type::Enum:
1113     case Type::Elaborated:
1114     case Type::TemplateSpecialization:
1115     case Type::ObjCObject:
1116     case Type::ObjCInterface:
1117     case Type::ObjCObjectPointer:
1118       llvm_unreachable("type class is never variably-modified!");
1119 
1120     case Type::Pointer:
1121       type = cast<PointerType>(ty)->getPointeeType();
1122       break;
1123 
1124     case Type::BlockPointer:
1125       type = cast<BlockPointerType>(ty)->getPointeeType();
1126       break;
1127 
1128     case Type::LValueReference:
1129     case Type::RValueReference:
1130       type = cast<ReferenceType>(ty)->getPointeeType();
1131       break;
1132 
1133     case Type::MemberPointer:
1134       type = cast<MemberPointerType>(ty)->getPointeeType();
1135       break;
1136 
1137     case Type::ConstantArray:
1138     case Type::IncompleteArray:
1139       // Losing element qualification here is fine.
1140       type = cast<ArrayType>(ty)->getElementType();
1141       break;
1142 
1143     case Type::VariableArray: {
1144       // Losing element qualification here is fine.
1145       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1146 
1147       // Unknown size indication requires no size computation.
1148       // Otherwise, evaluate and record it.
1149       if (const Expr *size = vat->getSizeExpr()) {
1150         // It's possible that we might have emitted this already,
1151         // e.g. with a typedef and a pointer to it.
1152         llvm::Value *&entry = VLASizeMap[size];
1153         if (!entry) {
1154           llvm::Value *Size = EmitScalarExpr(size);
1155 
1156           // C11 6.7.6.2p5:
1157           //   If the size is an expression that is not an integer constant
1158           //   expression [...] each time it is evaluated it shall have a value
1159           //   greater than zero.
1160           if (SanOpts->VLABound &&
1161               size->getType()->isSignedIntegerType()) {
1162             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1163             llvm::Constant *StaticArgs[] = {
1164               EmitCheckSourceLocation(size->getLocStart()),
1165               EmitCheckTypeDescriptor(size->getType())
1166             };
1167             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1168                       "vla_bound_not_positive", StaticArgs, Size,
1169                       CRK_Recoverable);
1170           }
1171 
1172           // Always zexting here would be wrong if it weren't
1173           // undefined behavior to have a negative bound.
1174           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1175         }
1176       }
1177       type = vat->getElementType();
1178       break;
1179     }
1180 
1181     case Type::FunctionProto:
1182     case Type::FunctionNoProto:
1183       type = cast<FunctionType>(ty)->getResultType();
1184       break;
1185 
1186     case Type::Paren:
1187     case Type::TypeOf:
1188     case Type::UnaryTransform:
1189     case Type::Attributed:
1190     case Type::SubstTemplateTypeParm:
1191       // Keep walking after single level desugaring.
1192       type = type.getSingleStepDesugaredType(getContext());
1193       break;
1194 
1195     case Type::Typedef:
1196     case Type::Decltype:
1197     case Type::Auto:
1198       // Stop walking: nothing to do.
1199       return;
1200 
1201     case Type::TypeOfExpr:
1202       // Stop walking: emit typeof expression.
1203       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1204       return;
1205 
1206     case Type::Atomic:
1207       type = cast<AtomicType>(ty)->getValueType();
1208       break;
1209     }
1210   } while (type->isVariablyModifiedType());
1211 }
1212 
1213 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1214   if (getContext().getBuiltinVaListType()->isArrayType())
1215     return EmitScalarExpr(E);
1216   return EmitLValue(E).getAddress();
1217 }
1218 
1219 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1220                                               llvm::Constant *Init) {
1221   assert (Init && "Invalid DeclRefExpr initializer!");
1222   if (CGDebugInfo *Dbg = getDebugInfo())
1223     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1224       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1225 }
1226 
1227 CodeGenFunction::PeepholeProtection
1228 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1229   // At the moment, the only aggressive peephole we do in IR gen
1230   // is trunc(zext) folding, but if we add more, we can easily
1231   // extend this protection.
1232 
1233   if (!rvalue.isScalar()) return PeepholeProtection();
1234   llvm::Value *value = rvalue.getScalarVal();
1235   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1236 
1237   // Just make an extra bitcast.
1238   assert(HaveInsertPoint());
1239   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1240                                                   Builder.GetInsertBlock());
1241 
1242   PeepholeProtection protection;
1243   protection.Inst = inst;
1244   return protection;
1245 }
1246 
1247 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1248   if (!protection.Inst) return;
1249 
1250   // In theory, we could try to duplicate the peepholes now, but whatever.
1251   protection.Inst->eraseFromParent();
1252 }
1253 
1254 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1255                                                  llvm::Value *AnnotatedVal,
1256                                                  StringRef AnnotationStr,
1257                                                  SourceLocation Location) {
1258   llvm::Value *Args[4] = {
1259     AnnotatedVal,
1260     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1261     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1262     CGM.EmitAnnotationLineNo(Location)
1263   };
1264   return Builder.CreateCall(AnnotationFn, Args);
1265 }
1266 
1267 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1268   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1269   // FIXME We create a new bitcast for every annotation because that's what
1270   // llvm-gcc was doing.
1271   for (specific_attr_iterator<AnnotateAttr>
1272        ai = D->specific_attr_begin<AnnotateAttr>(),
1273        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1274     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1275                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1276                        (*ai)->getAnnotation(), D->getLocation());
1277 }
1278 
1279 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1280                                                    llvm::Value *V) {
1281   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1282   llvm::Type *VTy = V->getType();
1283   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1284                                     CGM.Int8PtrTy);
1285 
1286   for (specific_attr_iterator<AnnotateAttr>
1287        ai = D->specific_attr_begin<AnnotateAttr>(),
1288        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1289     // FIXME Always emit the cast inst so we can differentiate between
1290     // annotation on the first field of a struct and annotation on the struct
1291     // itself.
1292     if (VTy != CGM.Int8PtrTy)
1293       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1294     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1295     V = Builder.CreateBitCast(V, VTy);
1296   }
1297 
1298   return V;
1299 }
1300