1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGException.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0),
36     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
41     TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 CodeGenFunction::~CodeGenFunction() {
48   // If there are any unclaimed block infos, go ahead and destroy them
49   // now.  This can happen if IR-gen gets clever and skips evaluating
50   // something.
51   if (FirstBlockInfo)
52     destroyBlockInfos(FirstBlockInfo);
53 }
54 
55 
56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57   return CGM.getTypes().ConvertTypeForMem(T);
58 }
59 
60 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61   return CGM.getTypes().ConvertType(T);
62 }
63 
64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65   switch (type.getCanonicalType()->getTypeClass()) {
66 #define TYPE(name, parent)
67 #define ABSTRACT_TYPE(name, parent)
68 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
69 #define DEPENDENT_TYPE(name, parent) case Type::name:
70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71 #include "clang/AST/TypeNodes.def"
72     llvm_unreachable("non-canonical or dependent type in IR-generation");
73 
74   case Type::Builtin:
75   case Type::Pointer:
76   case Type::BlockPointer:
77   case Type::LValueReference:
78   case Type::RValueReference:
79   case Type::MemberPointer:
80   case Type::Vector:
81   case Type::ExtVector:
82   case Type::FunctionProto:
83   case Type::FunctionNoProto:
84   case Type::Enum:
85   case Type::ObjCObjectPointer:
86     return false;
87 
88   // Complexes, arrays, records, and Objective-C objects.
89   case Type::Complex:
90   case Type::ConstantArray:
91   case Type::IncompleteArray:
92   case Type::VariableArray:
93   case Type::Record:
94   case Type::ObjCObject:
95   case Type::ObjCInterface:
96     return true;
97 
98   // In IRGen, atomic types are just the underlying type
99   case Type::Atomic:
100     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101   }
102   llvm_unreachable("unknown type kind!");
103 }
104 
105 void CodeGenFunction::EmitReturnBlock() {
106   // For cleanliness, we try to avoid emitting the return block for
107   // simple cases.
108   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109 
110   if (CurBB) {
111     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112 
113     // We have a valid insert point, reuse it if it is empty or there are no
114     // explicit jumps to the return block.
115     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117       delete ReturnBlock.getBlock();
118     } else
119       EmitBlock(ReturnBlock.getBlock());
120     return;
121   }
122 
123   // Otherwise, if the return block is the target of a single direct
124   // branch then we can just put the code in that block instead. This
125   // cleans up functions which started with a unified return block.
126   if (ReturnBlock.getBlock()->hasOneUse()) {
127     llvm::BranchInst *BI =
128       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129     if (BI && BI->isUnconditional() &&
130         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131       // Reset insertion point, including debug location, and delete the branch.
132       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133       Builder.SetInsertPoint(BI->getParent());
134       BI->eraseFromParent();
135       delete ReturnBlock.getBlock();
136       return;
137     }
138   }
139 
140   // FIXME: We are at an unreachable point, there is no reason to emit the block
141   // unless it has uses. However, we still need a place to put the debug
142   // region.end for now.
143 
144   EmitBlock(ReturnBlock.getBlock());
145 }
146 
147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148   if (!BB) return;
149   if (!BB->use_empty())
150     return CGF.CurFn->getBasicBlockList().push_back(BB);
151   delete BB;
152 }
153 
154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155   assert(BreakContinueStack.empty() &&
156          "mismatched push/pop in break/continue stack!");
157 
158   // Pop any cleanups that might have been associated with the
159   // parameters.  Do this in whatever block we're currently in; it's
160   // important to do this before we enter the return block or return
161   // edges will be *really* confused.
162   if (EHStack.stable_begin() != PrologueCleanupDepth)
163     PopCleanupBlocks(PrologueCleanupDepth);
164 
165   // Emit function epilog (to return).
166   EmitReturnBlock();
167 
168   if (ShouldInstrumentFunction())
169     EmitFunctionInstrumentation("__cyg_profile_func_exit");
170 
171   // Emit debug descriptor for function end.
172   if (CGDebugInfo *DI = getDebugInfo()) {
173     DI->setLocation(EndLoc);
174     DI->EmitFunctionEnd(Builder);
175   }
176 
177   EmitFunctionEpilog(*CurFnInfo);
178   EmitEndEHSpec(CurCodeDecl);
179 
180   assert(EHStack.empty() &&
181          "did not remove all scopes from cleanup stack!");
182 
183   // If someone did an indirect goto, emit the indirect goto block at the end of
184   // the function.
185   if (IndirectBranch) {
186     EmitBlock(IndirectBranch->getParent());
187     Builder.ClearInsertionPoint();
188   }
189 
190   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191   llvm::Instruction *Ptr = AllocaInsertPt;
192   AllocaInsertPt = 0;
193   Ptr->eraseFromParent();
194 
195   // If someone took the address of a label but never did an indirect goto, we
196   // made a zero entry PHI node, which is illegal, zap it now.
197   if (IndirectBranch) {
198     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199     if (PN->getNumIncomingValues() == 0) {
200       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201       PN->eraseFromParent();
202     }
203   }
204 
205   EmitIfUsed(*this, EHResumeBlock);
206   EmitIfUsed(*this, TerminateLandingPad);
207   EmitIfUsed(*this, TerminateHandler);
208   EmitIfUsed(*this, UnreachableBlock);
209 
210   if (CGM.getCodeGenOpts().EmitDeclMetadata)
211     EmitDeclMetadata();
212 }
213 
214 /// ShouldInstrumentFunction - Return true if the current function should be
215 /// instrumented with __cyg_profile_func_* calls
216 bool CodeGenFunction::ShouldInstrumentFunction() {
217   if (!CGM.getCodeGenOpts().InstrumentFunctions)
218     return false;
219   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220     return false;
221   return true;
222 }
223 
224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225 /// instrumentation function with the current function and the call site, if
226 /// function instrumentation is enabled.
227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229   llvm::PointerType *PointerTy = Int8PtrTy;
230   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231   llvm::FunctionType *FunctionTy =
232     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233 
234   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235   llvm::CallInst *CallSite = Builder.CreateCall(
236     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237     llvm::ConstantInt::get(Int32Ty, 0),
238     "callsite");
239 
240   Builder.CreateCall2(F,
241                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                       CallSite);
243 }
244 
245 void CodeGenFunction::EmitMCountInstrumentation() {
246   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247 
248   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                        Target.getMCountName());
250   Builder.CreateCall(MCountFn);
251 }
252 
253 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                     llvm::Function *Fn,
255                                     const CGFunctionInfo &FnInfo,
256                                     const FunctionArgList &Args,
257                                     SourceLocation StartLoc) {
258   const Decl *D = GD.getDecl();
259 
260   DidCallStackSave = false;
261   CurCodeDecl = CurFuncDecl = D;
262   FnRetTy = RetTy;
263   CurFn = Fn;
264   CurFnInfo = &FnInfo;
265   assert(CurFn->isDeclaration() && "Function already has body?");
266 
267   // Pass inline keyword to optimizer if it appears explicitly on any
268   // declaration.
269   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
271            RE = FD->redecls_end(); RI != RE; ++RI)
272       if (RI->isInlineSpecified()) {
273         Fn->addFnAttr(llvm::Attribute::InlineHint);
274         break;
275       }
276 
277   if (getContext().getLangOptions().OpenCL) {
278     // Add metadata for a kernel function.
279     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
280       if (FD->hasAttr<OpenCLKernelAttr>()) {
281         llvm::LLVMContext &Context = getLLVMContext();
282         llvm::NamedMDNode *OpenCLMetadata =
283           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
284 
285         llvm::Value *Op = Fn;
286         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
287       }
288   }
289 
290   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
291 
292   // Create a marker to make it easy to insert allocas into the entryblock
293   // later.  Don't create this with the builder, because we don't want it
294   // folded.
295   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
296   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
297   if (Builder.isNamePreserving())
298     AllocaInsertPt->setName("allocapt");
299 
300   ReturnBlock = getJumpDestInCurrentScope("return");
301 
302   Builder.SetInsertPoint(EntryBB);
303 
304   // Emit subprogram debug descriptor.
305   if (CGDebugInfo *DI = getDebugInfo()) {
306     unsigned NumArgs = 0;
307     QualType *ArgsArray = new QualType[Args.size()];
308     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
309 	 i != e; ++i) {
310       ArgsArray[NumArgs++] = (*i)->getType();
311     }
312 
313     QualType FnType =
314       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
315                                    FunctionProtoType::ExtProtoInfo());
316 
317     delete[] ArgsArray;
318 
319     DI->setLocation(StartLoc);
320     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
321   }
322 
323   if (ShouldInstrumentFunction())
324     EmitFunctionInstrumentation("__cyg_profile_func_enter");
325 
326   if (CGM.getCodeGenOpts().InstrumentForProfiling)
327     EmitMCountInstrumentation();
328 
329   if (RetTy->isVoidType()) {
330     // Void type; nothing to return.
331     ReturnValue = 0;
332   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
333              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
334     // Indirect aggregate return; emit returned value directly into sret slot.
335     // This reduces code size, and affects correctness in C++.
336     ReturnValue = CurFn->arg_begin();
337   } else {
338     ReturnValue = CreateIRTemp(RetTy, "retval");
339 
340     // Tell the epilog emitter to autorelease the result.  We do this
341     // now so that various specialized functions can suppress it
342     // during their IR-generation.
343     if (getLangOptions().ObjCAutoRefCount &&
344         !CurFnInfo->isReturnsRetained() &&
345         RetTy->isObjCRetainableType())
346       AutoreleaseResult = true;
347   }
348 
349   EmitStartEHSpec(CurCodeDecl);
350 
351   PrologueCleanupDepth = EHStack.stable_begin();
352   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
353 
354   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
355     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
356 
357   // If any of the arguments have a variably modified type, make sure to
358   // emit the type size.
359   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
360        i != e; ++i) {
361     QualType Ty = (*i)->getType();
362 
363     if (Ty->isVariablyModifiedType())
364       EmitVariablyModifiedType(Ty);
365   }
366   // Emit a location at the end of the prologue.
367   if (CGDebugInfo *DI = getDebugInfo())
368     DI->EmitLocation(Builder, StartLoc);
369 }
370 
371 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
372   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
373   assert(FD->getBody());
374   EmitStmt(FD->getBody());
375 }
376 
377 /// Tries to mark the given function nounwind based on the
378 /// non-existence of any throwing calls within it.  We believe this is
379 /// lightweight enough to do at -O0.
380 static void TryMarkNoThrow(llvm::Function *F) {
381   // LLVM treats 'nounwind' on a function as part of the type, so we
382   // can't do this on functions that can be overwritten.
383   if (F->mayBeOverridden()) return;
384 
385   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
386     for (llvm::BasicBlock::iterator
387            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
388       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
389         if (!Call->doesNotThrow())
390           return;
391       } else if (isa<llvm::ResumeInst>(&*BI)) {
392         return;
393       }
394   F->setDoesNotThrow(true);
395 }
396 
397 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
398                                    const CGFunctionInfo &FnInfo) {
399   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
400 
401   // Check if we should generate debug info for this function.
402   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
403     DebugInfo = CGM.getModuleDebugInfo();
404 
405   FunctionArgList Args;
406   QualType ResTy = FD->getResultType();
407 
408   CurGD = GD;
409   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
410     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
411 
412   if (FD->getNumParams())
413     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
414       Args.push_back(FD->getParamDecl(i));
415 
416   SourceRange BodyRange;
417   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
418 
419   // Emit the standard function prologue.
420   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
421 
422   // Generate the body of the function.
423   if (isa<CXXDestructorDecl>(FD))
424     EmitDestructorBody(Args);
425   else if (isa<CXXConstructorDecl>(FD))
426     EmitConstructorBody(Args);
427   else if (getContext().getLangOptions().CUDA &&
428            !CGM.getCodeGenOpts().CUDAIsDevice &&
429            FD->hasAttr<CUDAGlobalAttr>())
430     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
431   else
432     EmitFunctionBody(Args);
433 
434   // Emit the standard function epilogue.
435   FinishFunction(BodyRange.getEnd());
436 
437   // If we haven't marked the function nothrow through other means, do
438   // a quick pass now to see if we can.
439   if (!CurFn->doesNotThrow())
440     TryMarkNoThrow(CurFn);
441 }
442 
443 /// ContainsLabel - Return true if the statement contains a label in it.  If
444 /// this statement is not executed normally, it not containing a label means
445 /// that we can just remove the code.
446 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
447   // Null statement, not a label!
448   if (S == 0) return false;
449 
450   // If this is a label, we have to emit the code, consider something like:
451   // if (0) {  ...  foo:  bar(); }  goto foo;
452   //
453   // TODO: If anyone cared, we could track __label__'s, since we know that you
454   // can't jump to one from outside their declared region.
455   if (isa<LabelStmt>(S))
456     return true;
457 
458   // If this is a case/default statement, and we haven't seen a switch, we have
459   // to emit the code.
460   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
461     return true;
462 
463   // If this is a switch statement, we want to ignore cases below it.
464   if (isa<SwitchStmt>(S))
465     IgnoreCaseStmts = true;
466 
467   // Scan subexpressions for verboten labels.
468   for (Stmt::const_child_range I = S->children(); I; ++I)
469     if (ContainsLabel(*I, IgnoreCaseStmts))
470       return true;
471 
472   return false;
473 }
474 
475 /// containsBreak - Return true if the statement contains a break out of it.
476 /// If the statement (recursively) contains a switch or loop with a break
477 /// inside of it, this is fine.
478 bool CodeGenFunction::containsBreak(const Stmt *S) {
479   // Null statement, not a label!
480   if (S == 0) return false;
481 
482   // If this is a switch or loop that defines its own break scope, then we can
483   // include it and anything inside of it.
484   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
485       isa<ForStmt>(S))
486     return false;
487 
488   if (isa<BreakStmt>(S))
489     return true;
490 
491   // Scan subexpressions for verboten breaks.
492   for (Stmt::const_child_range I = S->children(); I; ++I)
493     if (containsBreak(*I))
494       return true;
495 
496   return false;
497 }
498 
499 
500 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
501 /// to a constant, or if it does but contains a label, return false.  If it
502 /// constant folds return true and set the boolean result in Result.
503 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
504                                                    bool &ResultBool) {
505   llvm::APInt ResultInt;
506   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
507     return false;
508 
509   ResultBool = ResultInt.getBoolValue();
510   return true;
511 }
512 
513 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
514 /// to a constant, or if it does but contains a label, return false.  If it
515 /// constant folds return true and set the folded value.
516 bool CodeGenFunction::
517 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
518   // FIXME: Rename and handle conversion of other evaluatable things
519   // to bool.
520   llvm::APSInt Int;
521   if (!Cond->EvaluateAsInt(Int, getContext()))
522     return false;  // Not foldable, not integer or not fully evaluatable.
523 
524   if (CodeGenFunction::ContainsLabel(Cond))
525     return false;  // Contains a label.
526 
527   ResultInt = Int;
528   return true;
529 }
530 
531 
532 
533 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
534 /// statement) to the specified blocks.  Based on the condition, this might try
535 /// to simplify the codegen of the conditional based on the branch.
536 ///
537 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
538                                            llvm::BasicBlock *TrueBlock,
539                                            llvm::BasicBlock *FalseBlock) {
540   Cond = Cond->IgnoreParens();
541 
542   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
543     // Handle X && Y in a condition.
544     if (CondBOp->getOpcode() == BO_LAnd) {
545       // If we have "1 && X", simplify the code.  "0 && X" would have constant
546       // folded if the case was simple enough.
547       bool ConstantBool = false;
548       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
549           ConstantBool) {
550         // br(1 && X) -> br(X).
551         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
552       }
553 
554       // If we have "X && 1", simplify the code to use an uncond branch.
555       // "X && 0" would have been constant folded to 0.
556       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
557           ConstantBool) {
558         // br(X && 1) -> br(X).
559         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
560       }
561 
562       // Emit the LHS as a conditional.  If the LHS conditional is false, we
563       // want to jump to the FalseBlock.
564       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
565 
566       ConditionalEvaluation eval(*this);
567       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
568       EmitBlock(LHSTrue);
569 
570       // Any temporaries created here are conditional.
571       eval.begin(*this);
572       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
573       eval.end(*this);
574 
575       return;
576     }
577 
578     if (CondBOp->getOpcode() == BO_LOr) {
579       // If we have "0 || X", simplify the code.  "1 || X" would have constant
580       // folded if the case was simple enough.
581       bool ConstantBool = false;
582       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
583           !ConstantBool) {
584         // br(0 || X) -> br(X).
585         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
586       }
587 
588       // If we have "X || 0", simplify the code to use an uncond branch.
589       // "X || 1" would have been constant folded to 1.
590       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
591           !ConstantBool) {
592         // br(X || 0) -> br(X).
593         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
594       }
595 
596       // Emit the LHS as a conditional.  If the LHS conditional is true, we
597       // want to jump to the TrueBlock.
598       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
599 
600       ConditionalEvaluation eval(*this);
601       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
602       EmitBlock(LHSFalse);
603 
604       // Any temporaries created here are conditional.
605       eval.begin(*this);
606       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
607       eval.end(*this);
608 
609       return;
610     }
611   }
612 
613   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
614     // br(!x, t, f) -> br(x, f, t)
615     if (CondUOp->getOpcode() == UO_LNot)
616       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
617   }
618 
619   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
620     // Handle ?: operator.
621 
622     // Just ignore GNU ?: extension.
623     if (CondOp->getLHS()) {
624       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
625       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
626       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
627 
628       ConditionalEvaluation cond(*this);
629       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
630 
631       cond.begin(*this);
632       EmitBlock(LHSBlock);
633       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
634       cond.end(*this);
635 
636       cond.begin(*this);
637       EmitBlock(RHSBlock);
638       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
639       cond.end(*this);
640 
641       return;
642     }
643   }
644 
645   // Emit the code with the fully general case.
646   llvm::Value *CondV = EvaluateExprAsBool(Cond);
647   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
648 }
649 
650 /// ErrorUnsupported - Print out an error that codegen doesn't support the
651 /// specified stmt yet.
652 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
653                                        bool OmitOnError) {
654   CGM.ErrorUnsupported(S, Type, OmitOnError);
655 }
656 
657 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
658 /// variable-length array whose elements have a non-zero bit-pattern.
659 ///
660 /// \param src - a char* pointing to the bit-pattern for a single
661 /// base element of the array
662 /// \param sizeInChars - the total size of the VLA, in chars
663 /// \param align - the total alignment of the VLA
664 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
665                                llvm::Value *dest, llvm::Value *src,
666                                llvm::Value *sizeInChars) {
667   std::pair<CharUnits,CharUnits> baseSizeAndAlign
668     = CGF.getContext().getTypeInfoInChars(baseType);
669 
670   CGBuilderTy &Builder = CGF.Builder;
671 
672   llvm::Value *baseSizeInChars
673     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
674 
675   llvm::Type *i8p = Builder.getInt8PtrTy();
676 
677   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
678   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
679 
680   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
681   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
682   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
683 
684   // Make a loop over the VLA.  C99 guarantees that the VLA element
685   // count must be nonzero.
686   CGF.EmitBlock(loopBB);
687 
688   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
689   cur->addIncoming(begin, originBB);
690 
691   // memcpy the individual element bit-pattern.
692   Builder.CreateMemCpy(cur, src, baseSizeInChars,
693                        baseSizeAndAlign.second.getQuantity(),
694                        /*volatile*/ false);
695 
696   // Go to the next element.
697   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
698 
699   // Leave if that's the end of the VLA.
700   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
701   Builder.CreateCondBr(done, contBB, loopBB);
702   cur->addIncoming(next, loopBB);
703 
704   CGF.EmitBlock(contBB);
705 }
706 
707 void
708 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
709   // Ignore empty classes in C++.
710   if (getContext().getLangOptions().CPlusPlus) {
711     if (const RecordType *RT = Ty->getAs<RecordType>()) {
712       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
713         return;
714     }
715   }
716 
717   // Cast the dest ptr to the appropriate i8 pointer type.
718   unsigned DestAS =
719     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
720   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
721   if (DestPtr->getType() != BP)
722     DestPtr = Builder.CreateBitCast(DestPtr, BP);
723 
724   // Get size and alignment info for this aggregate.
725   std::pair<CharUnits, CharUnits> TypeInfo =
726     getContext().getTypeInfoInChars(Ty);
727   CharUnits Size = TypeInfo.first;
728   CharUnits Align = TypeInfo.second;
729 
730   llvm::Value *SizeVal;
731   const VariableArrayType *vla;
732 
733   // Don't bother emitting a zero-byte memset.
734   if (Size.isZero()) {
735     // But note that getTypeInfo returns 0 for a VLA.
736     if (const VariableArrayType *vlaType =
737           dyn_cast_or_null<VariableArrayType>(
738                                           getContext().getAsArrayType(Ty))) {
739       QualType eltType;
740       llvm::Value *numElts;
741       llvm::tie(numElts, eltType) = getVLASize(vlaType);
742 
743       SizeVal = numElts;
744       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
745       if (!eltSize.isOne())
746         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
747       vla = vlaType;
748     } else {
749       return;
750     }
751   } else {
752     SizeVal = CGM.getSize(Size);
753     vla = 0;
754   }
755 
756   // If the type contains a pointer to data member we can't memset it to zero.
757   // Instead, create a null constant and copy it to the destination.
758   // TODO: there are other patterns besides zero that we can usefully memset,
759   // like -1, which happens to be the pattern used by member-pointers.
760   if (!CGM.getTypes().isZeroInitializable(Ty)) {
761     // For a VLA, emit a single element, then splat that over the VLA.
762     if (vla) Ty = getContext().getBaseElementType(vla);
763 
764     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
765 
766     llvm::GlobalVariable *NullVariable =
767       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
768                                /*isConstant=*/true,
769                                llvm::GlobalVariable::PrivateLinkage,
770                                NullConstant, Twine());
771     llvm::Value *SrcPtr =
772       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
773 
774     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
775 
776     // Get and call the appropriate llvm.memcpy overload.
777     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
778     return;
779   }
780 
781   // Otherwise, just memset the whole thing to zero.  This is legal
782   // because in LLVM, all default initializers (other than the ones we just
783   // handled above) are guaranteed to have a bit pattern of all zeros.
784   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
785                        Align.getQuantity(), false);
786 }
787 
788 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
789   // Make sure that there is a block for the indirect goto.
790   if (IndirectBranch == 0)
791     GetIndirectGotoBlock();
792 
793   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
794 
795   // Make sure the indirect branch includes all of the address-taken blocks.
796   IndirectBranch->addDestination(BB);
797   return llvm::BlockAddress::get(CurFn, BB);
798 }
799 
800 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
801   // If we already made the indirect branch for indirect goto, return its block.
802   if (IndirectBranch) return IndirectBranch->getParent();
803 
804   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
805 
806   // Create the PHI node that indirect gotos will add entries to.
807   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
808                                               "indirect.goto.dest");
809 
810   // Create the indirect branch instruction.
811   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
812   return IndirectBranch->getParent();
813 }
814 
815 /// Computes the length of an array in elements, as well as the base
816 /// element type and a properly-typed first element pointer.
817 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
818                                               QualType &baseType,
819                                               llvm::Value *&addr) {
820   const ArrayType *arrayType = origArrayType;
821 
822   // If it's a VLA, we have to load the stored size.  Note that
823   // this is the size of the VLA in bytes, not its size in elements.
824   llvm::Value *numVLAElements = 0;
825   if (isa<VariableArrayType>(arrayType)) {
826     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
827 
828     // Walk into all VLAs.  This doesn't require changes to addr,
829     // which has type T* where T is the first non-VLA element type.
830     do {
831       QualType elementType = arrayType->getElementType();
832       arrayType = getContext().getAsArrayType(elementType);
833 
834       // If we only have VLA components, 'addr' requires no adjustment.
835       if (!arrayType) {
836         baseType = elementType;
837         return numVLAElements;
838       }
839     } while (isa<VariableArrayType>(arrayType));
840 
841     // We get out here only if we find a constant array type
842     // inside the VLA.
843   }
844 
845   // We have some number of constant-length arrays, so addr should
846   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
847   // down to the first element of addr.
848   SmallVector<llvm::Value*, 8> gepIndices;
849 
850   // GEP down to the array type.
851   llvm::ConstantInt *zero = Builder.getInt32(0);
852   gepIndices.push_back(zero);
853 
854   // It's more efficient to calculate the count from the LLVM
855   // constant-length arrays than to re-evaluate the array bounds.
856   uint64_t countFromCLAs = 1;
857 
858   llvm::ArrayType *llvmArrayType =
859     cast<llvm::ArrayType>(
860       cast<llvm::PointerType>(addr->getType())->getElementType());
861   while (true) {
862     assert(isa<ConstantArrayType>(arrayType));
863     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
864              == llvmArrayType->getNumElements());
865 
866     gepIndices.push_back(zero);
867     countFromCLAs *= llvmArrayType->getNumElements();
868 
869     llvmArrayType =
870       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
871     if (!llvmArrayType) break;
872 
873     arrayType = getContext().getAsArrayType(arrayType->getElementType());
874     assert(arrayType && "LLVM and Clang types are out-of-synch");
875   }
876 
877   baseType = arrayType->getElementType();
878 
879   // Create the actual GEP.
880   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
881 
882   llvm::Value *numElements
883     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
884 
885   // If we had any VLA dimensions, factor them in.
886   if (numVLAElements)
887     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
888 
889   return numElements;
890 }
891 
892 std::pair<llvm::Value*, QualType>
893 CodeGenFunction::getVLASize(QualType type) {
894   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
895   assert(vla && "type was not a variable array type!");
896   return getVLASize(vla);
897 }
898 
899 std::pair<llvm::Value*, QualType>
900 CodeGenFunction::getVLASize(const VariableArrayType *type) {
901   // The number of elements so far; always size_t.
902   llvm::Value *numElements = 0;
903 
904   QualType elementType;
905   do {
906     elementType = type->getElementType();
907     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
908     assert(vlaSize && "no size for VLA!");
909     assert(vlaSize->getType() == SizeTy);
910 
911     if (!numElements) {
912       numElements = vlaSize;
913     } else {
914       // It's undefined behavior if this wraps around, so mark it that way.
915       numElements = Builder.CreateNUWMul(numElements, vlaSize);
916     }
917   } while ((type = getContext().getAsVariableArrayType(elementType)));
918 
919   return std::pair<llvm::Value*,QualType>(numElements, elementType);
920 }
921 
922 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
923   assert(type->isVariablyModifiedType() &&
924          "Must pass variably modified type to EmitVLASizes!");
925 
926   EnsureInsertPoint();
927 
928   // We're going to walk down into the type and look for VLA
929   // expressions.
930   do {
931     assert(type->isVariablyModifiedType());
932 
933     const Type *ty = type.getTypePtr();
934     switch (ty->getTypeClass()) {
935 
936 #define TYPE(Class, Base)
937 #define ABSTRACT_TYPE(Class, Base)
938 #define NON_CANONICAL_TYPE(Class, Base)
939 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
940 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
941 #include "clang/AST/TypeNodes.def"
942       llvm_unreachable("unexpected dependent type!");
943 
944     // These types are never variably-modified.
945     case Type::Builtin:
946     case Type::Complex:
947     case Type::Vector:
948     case Type::ExtVector:
949     case Type::Record:
950     case Type::Enum:
951     case Type::Elaborated:
952     case Type::TemplateSpecialization:
953     case Type::ObjCObject:
954     case Type::ObjCInterface:
955     case Type::ObjCObjectPointer:
956       llvm_unreachable("type class is never variably-modified!");
957 
958     case Type::Pointer:
959       type = cast<PointerType>(ty)->getPointeeType();
960       break;
961 
962     case Type::BlockPointer:
963       type = cast<BlockPointerType>(ty)->getPointeeType();
964       break;
965 
966     case Type::LValueReference:
967     case Type::RValueReference:
968       type = cast<ReferenceType>(ty)->getPointeeType();
969       break;
970 
971     case Type::MemberPointer:
972       type = cast<MemberPointerType>(ty)->getPointeeType();
973       break;
974 
975     case Type::ConstantArray:
976     case Type::IncompleteArray:
977       // Losing element qualification here is fine.
978       type = cast<ArrayType>(ty)->getElementType();
979       break;
980 
981     case Type::VariableArray: {
982       // Losing element qualification here is fine.
983       const VariableArrayType *vat = cast<VariableArrayType>(ty);
984 
985       // Unknown size indication requires no size computation.
986       // Otherwise, evaluate and record it.
987       if (const Expr *size = vat->getSizeExpr()) {
988         // It's possible that we might have emitted this already,
989         // e.g. with a typedef and a pointer to it.
990         llvm::Value *&entry = VLASizeMap[size];
991         if (!entry) {
992           // Always zexting here would be wrong if it weren't
993           // undefined behavior to have a negative bound.
994           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
995                                         /*signed*/ false);
996         }
997       }
998       type = vat->getElementType();
999       break;
1000     }
1001 
1002     case Type::FunctionProto:
1003     case Type::FunctionNoProto:
1004       type = cast<FunctionType>(ty)->getResultType();
1005       break;
1006 
1007     case Type::Paren:
1008     case Type::TypeOf:
1009     case Type::UnaryTransform:
1010     case Type::Attributed:
1011     case Type::SubstTemplateTypeParm:
1012       // Keep walking after single level desugaring.
1013       type = type.getSingleStepDesugaredType(getContext());
1014       break;
1015 
1016     case Type::Typedef:
1017     case Type::Decltype:
1018     case Type::Auto:
1019       // Stop walking: nothing to do.
1020       return;
1021 
1022     case Type::TypeOfExpr:
1023       // Stop walking: emit typeof expression.
1024       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1025       return;
1026 
1027     case Type::Atomic:
1028       type = cast<AtomicType>(ty)->getValueType();
1029       break;
1030     }
1031   } while (type->isVariablyModifiedType());
1032 }
1033 
1034 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1035   if (getContext().getBuiltinVaListType()->isArrayType())
1036     return EmitScalarExpr(E);
1037   return EmitLValue(E).getAddress();
1038 }
1039 
1040 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1041                                               llvm::Constant *Init) {
1042   assert (Init && "Invalid DeclRefExpr initializer!");
1043   if (CGDebugInfo *Dbg = getDebugInfo())
1044     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1045 }
1046 
1047 CodeGenFunction::PeepholeProtection
1048 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1049   // At the moment, the only aggressive peephole we do in IR gen
1050   // is trunc(zext) folding, but if we add more, we can easily
1051   // extend this protection.
1052 
1053   if (!rvalue.isScalar()) return PeepholeProtection();
1054   llvm::Value *value = rvalue.getScalarVal();
1055   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1056 
1057   // Just make an extra bitcast.
1058   assert(HaveInsertPoint());
1059   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1060                                                   Builder.GetInsertBlock());
1061 
1062   PeepholeProtection protection;
1063   protection.Inst = inst;
1064   return protection;
1065 }
1066 
1067 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1068   if (!protection.Inst) return;
1069 
1070   // In theory, we could try to duplicate the peepholes now, but whatever.
1071   protection.Inst->eraseFromParent();
1072 }
1073 
1074 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1075                                                  llvm::Value *AnnotatedVal,
1076                                                  llvm::StringRef AnnotationStr,
1077                                                  SourceLocation Location) {
1078   llvm::Value *Args[4] = {
1079     AnnotatedVal,
1080     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1081     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1082     CGM.EmitAnnotationLineNo(Location)
1083   };
1084   return Builder.CreateCall(AnnotationFn, Args);
1085 }
1086 
1087 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1088   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1089   // FIXME We create a new bitcast for every annotation because that's what
1090   // llvm-gcc was doing.
1091   for (specific_attr_iterator<AnnotateAttr>
1092        ai = D->specific_attr_begin<AnnotateAttr>(),
1093        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1094     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1095                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1096                        (*ai)->getAnnotation(), D->getLocation());
1097 }
1098 
1099 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1100                                                    llvm::Value *V) {
1101   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1102   llvm::Type *VTy = V->getType();
1103   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1104                                     CGM.Int8PtrTy);
1105 
1106   for (specific_attr_iterator<AnnotateAttr>
1107        ai = D->specific_attr_begin<AnnotateAttr>(),
1108        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1109     // FIXME Always emit the cast inst so we can differentiate between
1110     // annotation on the first field of a struct and annotation on the struct
1111     // itself.
1112     if (VTy != CGM.Int8PtrTy)
1113       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1114     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1115     V = Builder.CreateBitCast(V, VTy);
1116   }
1117 
1118   return V;
1119 }
1120