1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGException.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 36 NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0), 37 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 40 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 41 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 42 TrapBB(0) { 43 44 CatchUndefined = getContext().getLangOptions().CatchUndefined; 45 CGM.getCXXABI().getMangleContext().startNewFunction(); 46 } 47 48 CodeGenFunction::~CodeGenFunction() { 49 // If there are any unclaimed block infos, go ahead and destroy them 50 // now. This can happen if IR-gen gets clever and skips evaluating 51 // something. 52 if (FirstBlockInfo) 53 destroyBlockInfos(FirstBlockInfo); 54 } 55 56 57 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 58 return CGM.getTypes().ConvertTypeForMem(T); 59 } 60 61 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 62 return CGM.getTypes().ConvertType(T); 63 } 64 65 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 66 switch (type.getCanonicalType()->getTypeClass()) { 67 #define TYPE(name, parent) 68 #define ABSTRACT_TYPE(name, parent) 69 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 70 #define DEPENDENT_TYPE(name, parent) case Type::name: 71 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 72 #include "clang/AST/TypeNodes.def" 73 llvm_unreachable("non-canonical or dependent type in IR-generation"); 74 75 case Type::Builtin: 76 case Type::Pointer: 77 case Type::BlockPointer: 78 case Type::LValueReference: 79 case Type::RValueReference: 80 case Type::MemberPointer: 81 case Type::Vector: 82 case Type::ExtVector: 83 case Type::FunctionProto: 84 case Type::FunctionNoProto: 85 case Type::Enum: 86 case Type::ObjCObjectPointer: 87 return false; 88 89 // Complexes, arrays, records, and Objective-C objects. 90 case Type::Complex: 91 case Type::ConstantArray: 92 case Type::IncompleteArray: 93 case Type::VariableArray: 94 case Type::Record: 95 case Type::ObjCObject: 96 case Type::ObjCInterface: 97 return true; 98 99 // In IRGen, atomic types are just the underlying type 100 case Type::Atomic: 101 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 102 } 103 llvm_unreachable("unknown type kind!"); 104 } 105 106 void CodeGenFunction::EmitReturnBlock() { 107 // For cleanliness, we try to avoid emitting the return block for 108 // simple cases. 109 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 110 111 if (CurBB) { 112 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 113 114 // We have a valid insert point, reuse it if it is empty or there are no 115 // explicit jumps to the return block. 116 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 117 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 118 delete ReturnBlock.getBlock(); 119 } else 120 EmitBlock(ReturnBlock.getBlock()); 121 return; 122 } 123 124 // Otherwise, if the return block is the target of a single direct 125 // branch then we can just put the code in that block instead. This 126 // cleans up functions which started with a unified return block. 127 if (ReturnBlock.getBlock()->hasOneUse()) { 128 llvm::BranchInst *BI = 129 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 130 if (BI && BI->isUnconditional() && 131 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 132 // Reset insertion point, including debug location, and delete the branch. 133 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 134 Builder.SetInsertPoint(BI->getParent()); 135 BI->eraseFromParent(); 136 delete ReturnBlock.getBlock(); 137 return; 138 } 139 } 140 141 // FIXME: We are at an unreachable point, there is no reason to emit the block 142 // unless it has uses. However, we still need a place to put the debug 143 // region.end for now. 144 145 EmitBlock(ReturnBlock.getBlock()); 146 } 147 148 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 149 if (!BB) return; 150 if (!BB->use_empty()) 151 return CGF.CurFn->getBasicBlockList().push_back(BB); 152 delete BB; 153 } 154 155 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 156 assert(BreakContinueStack.empty() && 157 "mismatched push/pop in break/continue stack!"); 158 159 // Pop any cleanups that might have been associated with the 160 // parameters. Do this in whatever block we're currently in; it's 161 // important to do this before we enter the return block or return 162 // edges will be *really* confused. 163 if (EHStack.stable_begin() != PrologueCleanupDepth) 164 PopCleanupBlocks(PrologueCleanupDepth); 165 166 // Emit function epilog (to return). 167 EmitReturnBlock(); 168 169 if (ShouldInstrumentFunction()) 170 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 171 172 // Emit debug descriptor for function end. 173 if (CGDebugInfo *DI = getDebugInfo()) { 174 DI->setLocation(EndLoc); 175 DI->EmitFunctionEnd(Builder); 176 } 177 178 EmitFunctionEpilog(*CurFnInfo); 179 EmitEndEHSpec(CurCodeDecl); 180 181 assert(EHStack.empty() && 182 "did not remove all scopes from cleanup stack!"); 183 184 // If someone did an indirect goto, emit the indirect goto block at the end of 185 // the function. 186 if (IndirectBranch) { 187 EmitBlock(IndirectBranch->getParent()); 188 Builder.ClearInsertionPoint(); 189 } 190 191 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 192 llvm::Instruction *Ptr = AllocaInsertPt; 193 AllocaInsertPt = 0; 194 Ptr->eraseFromParent(); 195 196 // If someone took the address of a label but never did an indirect goto, we 197 // made a zero entry PHI node, which is illegal, zap it now. 198 if (IndirectBranch) { 199 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 200 if (PN->getNumIncomingValues() == 0) { 201 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 202 PN->eraseFromParent(); 203 } 204 } 205 206 EmitIfUsed(*this, EHResumeBlock); 207 EmitIfUsed(*this, TerminateLandingPad); 208 EmitIfUsed(*this, TerminateHandler); 209 EmitIfUsed(*this, UnreachableBlock); 210 211 if (CGM.getCodeGenOpts().EmitDeclMetadata) 212 EmitDeclMetadata(); 213 } 214 215 /// ShouldInstrumentFunction - Return true if the current function should be 216 /// instrumented with __cyg_profile_func_* calls 217 bool CodeGenFunction::ShouldInstrumentFunction() { 218 if (!CGM.getCodeGenOpts().InstrumentFunctions) 219 return false; 220 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 221 return false; 222 return true; 223 } 224 225 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 226 /// instrumentation function with the current function and the call site, if 227 /// function instrumentation is enabled. 228 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 229 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 230 llvm::PointerType *PointerTy = Int8PtrTy; 231 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 232 llvm::FunctionType *FunctionTy = 233 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 234 ProfileFuncArgs, false); 235 236 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 237 llvm::CallInst *CallSite = Builder.CreateCall( 238 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 239 llvm::ConstantInt::get(Int32Ty, 0), 240 "callsite"); 241 242 Builder.CreateCall2(F, 243 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 244 CallSite); 245 } 246 247 void CodeGenFunction::EmitMCountInstrumentation() { 248 llvm::FunctionType *FTy = 249 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 250 251 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 252 Target.getMCountName()); 253 Builder.CreateCall(MCountFn); 254 } 255 256 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 257 llvm::Function *Fn, 258 const CGFunctionInfo &FnInfo, 259 const FunctionArgList &Args, 260 SourceLocation StartLoc) { 261 const Decl *D = GD.getDecl(); 262 263 DidCallStackSave = false; 264 CurCodeDecl = CurFuncDecl = D; 265 FnRetTy = RetTy; 266 CurFn = Fn; 267 CurFnInfo = &FnInfo; 268 assert(CurFn->isDeclaration() && "Function already has body?"); 269 270 // Pass inline keyword to optimizer if it appears explicitly on any 271 // declaration. 272 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 273 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 274 RE = FD->redecls_end(); RI != RE; ++RI) 275 if (RI->isInlineSpecified()) { 276 Fn->addFnAttr(llvm::Attribute::InlineHint); 277 break; 278 } 279 280 if (getContext().getLangOptions().OpenCL) { 281 // Add metadata for a kernel function. 282 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 283 if (FD->hasAttr<OpenCLKernelAttr>()) { 284 llvm::LLVMContext &Context = getLLVMContext(); 285 llvm::NamedMDNode *OpenCLMetadata = 286 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 287 288 llvm::Value *Op = Fn; 289 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 290 } 291 } 292 293 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 294 295 // Create a marker to make it easy to insert allocas into the entryblock 296 // later. Don't create this with the builder, because we don't want it 297 // folded. 298 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 299 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 300 if (Builder.isNamePreserving()) 301 AllocaInsertPt->setName("allocapt"); 302 303 ReturnBlock = getJumpDestInCurrentScope("return"); 304 305 Builder.SetInsertPoint(EntryBB); 306 307 // Emit subprogram debug descriptor. 308 if (CGDebugInfo *DI = getDebugInfo()) { 309 unsigned NumArgs = 0; 310 QualType *ArgsArray = new QualType[Args.size()]; 311 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 312 i != e; ++i) { 313 ArgsArray[NumArgs++] = (*i)->getType(); 314 } 315 316 QualType FnType = 317 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 318 FunctionProtoType::ExtProtoInfo()); 319 320 delete[] ArgsArray; 321 322 DI->setLocation(StartLoc); 323 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 324 } 325 326 if (ShouldInstrumentFunction()) 327 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 328 329 if (CGM.getCodeGenOpts().InstrumentForProfiling) 330 EmitMCountInstrumentation(); 331 332 if (RetTy->isVoidType()) { 333 // Void type; nothing to return. 334 ReturnValue = 0; 335 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 336 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 337 // Indirect aggregate return; emit returned value directly into sret slot. 338 // This reduces code size, and affects correctness in C++. 339 ReturnValue = CurFn->arg_begin(); 340 } else { 341 ReturnValue = CreateIRTemp(RetTy, "retval"); 342 343 // Tell the epilog emitter to autorelease the result. We do this 344 // now so that various specialized functions can suppress it 345 // during their IR-generation. 346 if (getLangOptions().ObjCAutoRefCount && 347 !CurFnInfo->isReturnsRetained() && 348 RetTy->isObjCRetainableType()) 349 AutoreleaseResult = true; 350 } 351 352 EmitStartEHSpec(CurCodeDecl); 353 354 PrologueCleanupDepth = EHStack.stable_begin(); 355 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 356 357 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 358 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 359 360 // If any of the arguments have a variably modified type, make sure to 361 // emit the type size. 362 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 363 i != e; ++i) { 364 QualType Ty = (*i)->getType(); 365 366 if (Ty->isVariablyModifiedType()) 367 EmitVariablyModifiedType(Ty); 368 } 369 // Emit a location at the end of the prologue. 370 if (CGDebugInfo *DI = getDebugInfo()) 371 DI->EmitLocation(Builder, StartLoc); 372 } 373 374 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 375 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 376 assert(FD->getBody()); 377 EmitStmt(FD->getBody()); 378 } 379 380 /// Tries to mark the given function nounwind based on the 381 /// non-existence of any throwing calls within it. We believe this is 382 /// lightweight enough to do at -O0. 383 static void TryMarkNoThrow(llvm::Function *F) { 384 // LLVM treats 'nounwind' on a function as part of the type, so we 385 // can't do this on functions that can be overwritten. 386 if (F->mayBeOverridden()) return; 387 388 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 389 for (llvm::BasicBlock::iterator 390 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 391 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 392 if (!Call->doesNotThrow()) 393 return; 394 } else if (isa<llvm::ResumeInst>(&*BI)) { 395 return; 396 } 397 F->setDoesNotThrow(true); 398 } 399 400 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 401 const CGFunctionInfo &FnInfo) { 402 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 403 404 // Check if we should generate debug info for this function. 405 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 406 DebugInfo = CGM.getModuleDebugInfo(); 407 408 FunctionArgList Args; 409 QualType ResTy = FD->getResultType(); 410 411 CurGD = GD; 412 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 413 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 414 415 if (FD->getNumParams()) 416 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 417 Args.push_back(FD->getParamDecl(i)); 418 419 SourceRange BodyRange; 420 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 421 422 // Emit the standard function prologue. 423 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 424 425 // Generate the body of the function. 426 if (isa<CXXDestructorDecl>(FD)) 427 EmitDestructorBody(Args); 428 else if (isa<CXXConstructorDecl>(FD)) 429 EmitConstructorBody(Args); 430 else if (getContext().getLangOptions().CUDA && 431 !CGM.getCodeGenOpts().CUDAIsDevice && 432 FD->hasAttr<CUDAGlobalAttr>()) 433 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 434 else 435 EmitFunctionBody(Args); 436 437 // Emit the standard function epilogue. 438 FinishFunction(BodyRange.getEnd()); 439 440 // If we haven't marked the function nothrow through other means, do 441 // a quick pass now to see if we can. 442 if (!CurFn->doesNotThrow()) 443 TryMarkNoThrow(CurFn); 444 } 445 446 /// ContainsLabel - Return true if the statement contains a label in it. If 447 /// this statement is not executed normally, it not containing a label means 448 /// that we can just remove the code. 449 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 450 // Null statement, not a label! 451 if (S == 0) return false; 452 453 // If this is a label, we have to emit the code, consider something like: 454 // if (0) { ... foo: bar(); } goto foo; 455 // 456 // TODO: If anyone cared, we could track __label__'s, since we know that you 457 // can't jump to one from outside their declared region. 458 if (isa<LabelStmt>(S)) 459 return true; 460 461 // If this is a case/default statement, and we haven't seen a switch, we have 462 // to emit the code. 463 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 464 return true; 465 466 // If this is a switch statement, we want to ignore cases below it. 467 if (isa<SwitchStmt>(S)) 468 IgnoreCaseStmts = true; 469 470 // Scan subexpressions for verboten labels. 471 for (Stmt::const_child_range I = S->children(); I; ++I) 472 if (ContainsLabel(*I, IgnoreCaseStmts)) 473 return true; 474 475 return false; 476 } 477 478 /// containsBreak - Return true if the statement contains a break out of it. 479 /// If the statement (recursively) contains a switch or loop with a break 480 /// inside of it, this is fine. 481 bool CodeGenFunction::containsBreak(const Stmt *S) { 482 // Null statement, not a label! 483 if (S == 0) return false; 484 485 // If this is a switch or loop that defines its own break scope, then we can 486 // include it and anything inside of it. 487 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 488 isa<ForStmt>(S)) 489 return false; 490 491 if (isa<BreakStmt>(S)) 492 return true; 493 494 // Scan subexpressions for verboten breaks. 495 for (Stmt::const_child_range I = S->children(); I; ++I) 496 if (containsBreak(*I)) 497 return true; 498 499 return false; 500 } 501 502 503 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 504 /// to a constant, or if it does but contains a label, return false. If it 505 /// constant folds return true and set the boolean result in Result. 506 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 507 bool &ResultBool) { 508 llvm::APInt ResultInt; 509 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 510 return false; 511 512 ResultBool = ResultInt.getBoolValue(); 513 return true; 514 } 515 516 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 517 /// to a constant, or if it does but contains a label, return false. If it 518 /// constant folds return true and set the folded value. 519 bool CodeGenFunction:: 520 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 521 // FIXME: Rename and handle conversion of other evaluatable things 522 // to bool. 523 Expr::EvalResult Result; 524 if (!Cond->EvaluateAsRValue(Result, getContext()) || !Result.Val.isInt() || 525 Result.HasSideEffects) 526 return false; // Not foldable, not integer or not fully evaluatable. 527 528 if (CodeGenFunction::ContainsLabel(Cond)) 529 return false; // Contains a label. 530 531 ResultInt = Result.Val.getInt(); 532 return true; 533 } 534 535 536 537 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 538 /// statement) to the specified blocks. Based on the condition, this might try 539 /// to simplify the codegen of the conditional based on the branch. 540 /// 541 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 542 llvm::BasicBlock *TrueBlock, 543 llvm::BasicBlock *FalseBlock) { 544 Cond = Cond->IgnoreParens(); 545 546 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 547 // Handle X && Y in a condition. 548 if (CondBOp->getOpcode() == BO_LAnd) { 549 // If we have "1 && X", simplify the code. "0 && X" would have constant 550 // folded if the case was simple enough. 551 bool ConstantBool = false; 552 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 553 ConstantBool) { 554 // br(1 && X) -> br(X). 555 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 556 } 557 558 // If we have "X && 1", simplify the code to use an uncond branch. 559 // "X && 0" would have been constant folded to 0. 560 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 561 ConstantBool) { 562 // br(X && 1) -> br(X). 563 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 564 } 565 566 // Emit the LHS as a conditional. If the LHS conditional is false, we 567 // want to jump to the FalseBlock. 568 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 569 570 ConditionalEvaluation eval(*this); 571 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 572 EmitBlock(LHSTrue); 573 574 // Any temporaries created here are conditional. 575 eval.begin(*this); 576 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 577 eval.end(*this); 578 579 return; 580 } 581 582 if (CondBOp->getOpcode() == BO_LOr) { 583 // If we have "0 || X", simplify the code. "1 || X" would have constant 584 // folded if the case was simple enough. 585 bool ConstantBool = false; 586 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 587 !ConstantBool) { 588 // br(0 || X) -> br(X). 589 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 590 } 591 592 // If we have "X || 0", simplify the code to use an uncond branch. 593 // "X || 1" would have been constant folded to 1. 594 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 595 !ConstantBool) { 596 // br(X || 0) -> br(X). 597 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 598 } 599 600 // Emit the LHS as a conditional. If the LHS conditional is true, we 601 // want to jump to the TrueBlock. 602 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 603 604 ConditionalEvaluation eval(*this); 605 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 606 EmitBlock(LHSFalse); 607 608 // Any temporaries created here are conditional. 609 eval.begin(*this); 610 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 611 eval.end(*this); 612 613 return; 614 } 615 } 616 617 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 618 // br(!x, t, f) -> br(x, f, t) 619 if (CondUOp->getOpcode() == UO_LNot) 620 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 621 } 622 623 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 624 // Handle ?: operator. 625 626 // Just ignore GNU ?: extension. 627 if (CondOp->getLHS()) { 628 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 629 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 630 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 631 632 ConditionalEvaluation cond(*this); 633 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 634 635 cond.begin(*this); 636 EmitBlock(LHSBlock); 637 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 638 cond.end(*this); 639 640 cond.begin(*this); 641 EmitBlock(RHSBlock); 642 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 643 cond.end(*this); 644 645 return; 646 } 647 } 648 649 // Emit the code with the fully general case. 650 llvm::Value *CondV = EvaluateExprAsBool(Cond); 651 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 652 } 653 654 /// ErrorUnsupported - Print out an error that codegen doesn't support the 655 /// specified stmt yet. 656 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 657 bool OmitOnError) { 658 CGM.ErrorUnsupported(S, Type, OmitOnError); 659 } 660 661 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 662 /// variable-length array whose elements have a non-zero bit-pattern. 663 /// 664 /// \param src - a char* pointing to the bit-pattern for a single 665 /// base element of the array 666 /// \param sizeInChars - the total size of the VLA, in chars 667 /// \param align - the total alignment of the VLA 668 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 669 llvm::Value *dest, llvm::Value *src, 670 llvm::Value *sizeInChars) { 671 std::pair<CharUnits,CharUnits> baseSizeAndAlign 672 = CGF.getContext().getTypeInfoInChars(baseType); 673 674 CGBuilderTy &Builder = CGF.Builder; 675 676 llvm::Value *baseSizeInChars 677 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 678 679 llvm::Type *i8p = Builder.getInt8PtrTy(); 680 681 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 682 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 683 684 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 685 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 686 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 687 688 // Make a loop over the VLA. C99 guarantees that the VLA element 689 // count must be nonzero. 690 CGF.EmitBlock(loopBB); 691 692 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 693 cur->addIncoming(begin, originBB); 694 695 // memcpy the individual element bit-pattern. 696 Builder.CreateMemCpy(cur, src, baseSizeInChars, 697 baseSizeAndAlign.second.getQuantity(), 698 /*volatile*/ false); 699 700 // Go to the next element. 701 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 702 703 // Leave if that's the end of the VLA. 704 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 705 Builder.CreateCondBr(done, contBB, loopBB); 706 cur->addIncoming(next, loopBB); 707 708 CGF.EmitBlock(contBB); 709 } 710 711 void 712 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 713 // Ignore empty classes in C++. 714 if (getContext().getLangOptions().CPlusPlus) { 715 if (const RecordType *RT = Ty->getAs<RecordType>()) { 716 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 717 return; 718 } 719 } 720 721 // Cast the dest ptr to the appropriate i8 pointer type. 722 unsigned DestAS = 723 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 724 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 725 if (DestPtr->getType() != BP) 726 DestPtr = Builder.CreateBitCast(DestPtr, BP); 727 728 // Get size and alignment info for this aggregate. 729 std::pair<CharUnits, CharUnits> TypeInfo = 730 getContext().getTypeInfoInChars(Ty); 731 CharUnits Size = TypeInfo.first; 732 CharUnits Align = TypeInfo.second; 733 734 llvm::Value *SizeVal; 735 const VariableArrayType *vla; 736 737 // Don't bother emitting a zero-byte memset. 738 if (Size.isZero()) { 739 // But note that getTypeInfo returns 0 for a VLA. 740 if (const VariableArrayType *vlaType = 741 dyn_cast_or_null<VariableArrayType>( 742 getContext().getAsArrayType(Ty))) { 743 QualType eltType; 744 llvm::Value *numElts; 745 llvm::tie(numElts, eltType) = getVLASize(vlaType); 746 747 SizeVal = numElts; 748 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 749 if (!eltSize.isOne()) 750 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 751 vla = vlaType; 752 } else { 753 return; 754 } 755 } else { 756 SizeVal = CGM.getSize(Size); 757 vla = 0; 758 } 759 760 // If the type contains a pointer to data member we can't memset it to zero. 761 // Instead, create a null constant and copy it to the destination. 762 // TODO: there are other patterns besides zero that we can usefully memset, 763 // like -1, which happens to be the pattern used by member-pointers. 764 if (!CGM.getTypes().isZeroInitializable(Ty)) { 765 // For a VLA, emit a single element, then splat that over the VLA. 766 if (vla) Ty = getContext().getBaseElementType(vla); 767 768 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 769 770 llvm::GlobalVariable *NullVariable = 771 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 772 /*isConstant=*/true, 773 llvm::GlobalVariable::PrivateLinkage, 774 NullConstant, Twine()); 775 llvm::Value *SrcPtr = 776 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 777 778 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 779 780 // Get and call the appropriate llvm.memcpy overload. 781 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 782 return; 783 } 784 785 // Otherwise, just memset the whole thing to zero. This is legal 786 // because in LLVM, all default initializers (other than the ones we just 787 // handled above) are guaranteed to have a bit pattern of all zeros. 788 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 789 Align.getQuantity(), false); 790 } 791 792 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 793 // Make sure that there is a block for the indirect goto. 794 if (IndirectBranch == 0) 795 GetIndirectGotoBlock(); 796 797 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 798 799 // Make sure the indirect branch includes all of the address-taken blocks. 800 IndirectBranch->addDestination(BB); 801 return llvm::BlockAddress::get(CurFn, BB); 802 } 803 804 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 805 // If we already made the indirect branch for indirect goto, return its block. 806 if (IndirectBranch) return IndirectBranch->getParent(); 807 808 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 809 810 // Create the PHI node that indirect gotos will add entries to. 811 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 812 "indirect.goto.dest"); 813 814 // Create the indirect branch instruction. 815 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 816 return IndirectBranch->getParent(); 817 } 818 819 /// Computes the length of an array in elements, as well as the base 820 /// element type and a properly-typed first element pointer. 821 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 822 QualType &baseType, 823 llvm::Value *&addr) { 824 const ArrayType *arrayType = origArrayType; 825 826 // If it's a VLA, we have to load the stored size. Note that 827 // this is the size of the VLA in bytes, not its size in elements. 828 llvm::Value *numVLAElements = 0; 829 if (isa<VariableArrayType>(arrayType)) { 830 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 831 832 // Walk into all VLAs. This doesn't require changes to addr, 833 // which has type T* where T is the first non-VLA element type. 834 do { 835 QualType elementType = arrayType->getElementType(); 836 arrayType = getContext().getAsArrayType(elementType); 837 838 // If we only have VLA components, 'addr' requires no adjustment. 839 if (!arrayType) { 840 baseType = elementType; 841 return numVLAElements; 842 } 843 } while (isa<VariableArrayType>(arrayType)); 844 845 // We get out here only if we find a constant array type 846 // inside the VLA. 847 } 848 849 // We have some number of constant-length arrays, so addr should 850 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 851 // down to the first element of addr. 852 SmallVector<llvm::Value*, 8> gepIndices; 853 854 // GEP down to the array type. 855 llvm::ConstantInt *zero = Builder.getInt32(0); 856 gepIndices.push_back(zero); 857 858 // It's more efficient to calculate the count from the LLVM 859 // constant-length arrays than to re-evaluate the array bounds. 860 uint64_t countFromCLAs = 1; 861 862 llvm::ArrayType *llvmArrayType = 863 cast<llvm::ArrayType>( 864 cast<llvm::PointerType>(addr->getType())->getElementType()); 865 while (true) { 866 assert(isa<ConstantArrayType>(arrayType)); 867 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 868 == llvmArrayType->getNumElements()); 869 870 gepIndices.push_back(zero); 871 countFromCLAs *= llvmArrayType->getNumElements(); 872 873 llvmArrayType = 874 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 875 if (!llvmArrayType) break; 876 877 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 878 assert(arrayType && "LLVM and Clang types are out-of-synch"); 879 } 880 881 baseType = arrayType->getElementType(); 882 883 // Create the actual GEP. 884 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 885 886 llvm::Value *numElements 887 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 888 889 // If we had any VLA dimensions, factor them in. 890 if (numVLAElements) 891 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 892 893 return numElements; 894 } 895 896 std::pair<llvm::Value*, QualType> 897 CodeGenFunction::getVLASize(QualType type) { 898 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 899 assert(vla && "type was not a variable array type!"); 900 return getVLASize(vla); 901 } 902 903 std::pair<llvm::Value*, QualType> 904 CodeGenFunction::getVLASize(const VariableArrayType *type) { 905 // The number of elements so far; always size_t. 906 llvm::Value *numElements = 0; 907 908 QualType elementType; 909 do { 910 elementType = type->getElementType(); 911 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 912 assert(vlaSize && "no size for VLA!"); 913 assert(vlaSize->getType() == SizeTy); 914 915 if (!numElements) { 916 numElements = vlaSize; 917 } else { 918 // It's undefined behavior if this wraps around, so mark it that way. 919 numElements = Builder.CreateNUWMul(numElements, vlaSize); 920 } 921 } while ((type = getContext().getAsVariableArrayType(elementType))); 922 923 return std::pair<llvm::Value*,QualType>(numElements, elementType); 924 } 925 926 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 927 assert(type->isVariablyModifiedType() && 928 "Must pass variably modified type to EmitVLASizes!"); 929 930 EnsureInsertPoint(); 931 932 // We're going to walk down into the type and look for VLA 933 // expressions. 934 type = type.getCanonicalType(); 935 do { 936 assert(type->isVariablyModifiedType()); 937 938 const Type *ty = type.getTypePtr(); 939 switch (ty->getTypeClass()) { 940 #define TYPE(Class, Base) 941 #define ABSTRACT_TYPE(Class, Base) 942 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 943 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 944 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 945 #include "clang/AST/TypeNodes.def" 946 llvm_unreachable("unexpected dependent or non-canonical type!"); 947 948 // These types are never variably-modified. 949 case Type::Builtin: 950 case Type::Complex: 951 case Type::Vector: 952 case Type::ExtVector: 953 case Type::Record: 954 case Type::Enum: 955 case Type::ObjCObject: 956 case Type::ObjCInterface: 957 case Type::ObjCObjectPointer: 958 llvm_unreachable("type class is never variably-modified!"); 959 960 case Type::Pointer: 961 type = cast<PointerType>(ty)->getPointeeType(); 962 break; 963 964 case Type::BlockPointer: 965 type = cast<BlockPointerType>(ty)->getPointeeType(); 966 break; 967 968 case Type::LValueReference: 969 case Type::RValueReference: 970 type = cast<ReferenceType>(ty)->getPointeeType(); 971 break; 972 973 case Type::MemberPointer: 974 type = cast<MemberPointerType>(ty)->getPointeeType(); 975 break; 976 977 case Type::ConstantArray: 978 case Type::IncompleteArray: 979 // Losing element qualification here is fine. 980 type = cast<ArrayType>(ty)->getElementType(); 981 break; 982 983 case Type::VariableArray: { 984 // Losing element qualification here is fine. 985 const VariableArrayType *vat = cast<VariableArrayType>(ty); 986 987 // Unknown size indication requires no size computation. 988 // Otherwise, evaluate and record it. 989 if (const Expr *size = vat->getSizeExpr()) { 990 // It's possible that we might have emitted this already, 991 // e.g. with a typedef and a pointer to it. 992 llvm::Value *&entry = VLASizeMap[size]; 993 if (!entry) { 994 // Always zexting here would be wrong if it weren't 995 // undefined behavior to have a negative bound. 996 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 997 /*signed*/ false); 998 } 999 } 1000 type = vat->getElementType(); 1001 break; 1002 } 1003 1004 case Type::FunctionProto: 1005 case Type::FunctionNoProto: 1006 type = cast<FunctionType>(ty)->getResultType(); 1007 break; 1008 1009 case Type::Atomic: 1010 type = cast<AtomicType>(ty)->getValueType(); 1011 break; 1012 } 1013 } while (type->isVariablyModifiedType()); 1014 } 1015 1016 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1017 if (getContext().getBuiltinVaListType()->isArrayType()) 1018 return EmitScalarExpr(E); 1019 return EmitLValue(E).getAddress(); 1020 } 1021 1022 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1023 llvm::Constant *Init) { 1024 assert (Init && "Invalid DeclRefExpr initializer!"); 1025 if (CGDebugInfo *Dbg = getDebugInfo()) 1026 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1027 } 1028 1029 CodeGenFunction::PeepholeProtection 1030 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1031 // At the moment, the only aggressive peephole we do in IR gen 1032 // is trunc(zext) folding, but if we add more, we can easily 1033 // extend this protection. 1034 1035 if (!rvalue.isScalar()) return PeepholeProtection(); 1036 llvm::Value *value = rvalue.getScalarVal(); 1037 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1038 1039 // Just make an extra bitcast. 1040 assert(HaveInsertPoint()); 1041 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1042 Builder.GetInsertBlock()); 1043 1044 PeepholeProtection protection; 1045 protection.Inst = inst; 1046 return protection; 1047 } 1048 1049 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1050 if (!protection.Inst) return; 1051 1052 // In theory, we could try to duplicate the peepholes now, but whatever. 1053 protection.Inst->eraseFromParent(); 1054 } 1055 1056 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1057 llvm::Value *AnnotatedVal, 1058 llvm::StringRef AnnotationStr, 1059 SourceLocation Location) { 1060 llvm::Value *Args[4] = { 1061 AnnotatedVal, 1062 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1063 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1064 CGM.EmitAnnotationLineNo(Location) 1065 }; 1066 return Builder.CreateCall(AnnotationFn, Args); 1067 } 1068 1069 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1070 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1071 // FIXME We create a new bitcast for every annotation because that's what 1072 // llvm-gcc was doing. 1073 for (specific_attr_iterator<AnnotateAttr> 1074 ai = D->specific_attr_begin<AnnotateAttr>(), 1075 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1076 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1077 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1078 (*ai)->getAnnotation(), D->getLocation()); 1079 } 1080 1081 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1082 llvm::Value *V) { 1083 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1084 llvm::Type *VTy = V->getType(); 1085 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1086 CGM.Int8PtrTy); 1087 1088 for (specific_attr_iterator<AnnotateAttr> 1089 ai = D->specific_attr_begin<AnnotateAttr>(), 1090 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1091 // FIXME Always emit the cast inst so we can differentiate between 1092 // annotation on the first field of a struct and annotation on the struct 1093 // itself. 1094 if (VTy != CGM.Int8PtrTy) 1095 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1096 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1097 V = Builder.CreateBitCast(V, VTy); 1098 } 1099 1100 return V; 1101 } 1102