1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGException.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36     NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0),
37     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
41     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
42     TrapBB(0) {
43 
44   CatchUndefined = getContext().getLangOptions().CatchUndefined;
45   CGM.getCXXABI().getMangleContext().startNewFunction();
46 }
47 
48 CodeGenFunction::~CodeGenFunction() {
49   // If there are any unclaimed block infos, go ahead and destroy them
50   // now.  This can happen if IR-gen gets clever and skips evaluating
51   // something.
52   if (FirstBlockInfo)
53     destroyBlockInfos(FirstBlockInfo);
54 }
55 
56 
57 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
58   return CGM.getTypes().ConvertTypeForMem(T);
59 }
60 
61 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
62   return CGM.getTypes().ConvertType(T);
63 }
64 
65 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
66   switch (type.getCanonicalType()->getTypeClass()) {
67 #define TYPE(name, parent)
68 #define ABSTRACT_TYPE(name, parent)
69 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
70 #define DEPENDENT_TYPE(name, parent) case Type::name:
71 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
72 #include "clang/AST/TypeNodes.def"
73     llvm_unreachable("non-canonical or dependent type in IR-generation");
74 
75   case Type::Builtin:
76   case Type::Pointer:
77   case Type::BlockPointer:
78   case Type::LValueReference:
79   case Type::RValueReference:
80   case Type::MemberPointer:
81   case Type::Vector:
82   case Type::ExtVector:
83   case Type::FunctionProto:
84   case Type::FunctionNoProto:
85   case Type::Enum:
86   case Type::ObjCObjectPointer:
87     return false;
88 
89   // Complexes, arrays, records, and Objective-C objects.
90   case Type::Complex:
91   case Type::ConstantArray:
92   case Type::IncompleteArray:
93   case Type::VariableArray:
94   case Type::Record:
95   case Type::ObjCObject:
96   case Type::ObjCInterface:
97     return true;
98 
99   // In IRGen, atomic types are just the underlying type
100   case Type::Atomic:
101     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
102   }
103   llvm_unreachable("unknown type kind!");
104 }
105 
106 void CodeGenFunction::EmitReturnBlock() {
107   // For cleanliness, we try to avoid emitting the return block for
108   // simple cases.
109   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
110 
111   if (CurBB) {
112     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
113 
114     // We have a valid insert point, reuse it if it is empty or there are no
115     // explicit jumps to the return block.
116     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
117       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
118       delete ReturnBlock.getBlock();
119     } else
120       EmitBlock(ReturnBlock.getBlock());
121     return;
122   }
123 
124   // Otherwise, if the return block is the target of a single direct
125   // branch then we can just put the code in that block instead. This
126   // cleans up functions which started with a unified return block.
127   if (ReturnBlock.getBlock()->hasOneUse()) {
128     llvm::BranchInst *BI =
129       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
130     if (BI && BI->isUnconditional() &&
131         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
132       // Reset insertion point, including debug location, and delete the branch.
133       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
134       Builder.SetInsertPoint(BI->getParent());
135       BI->eraseFromParent();
136       delete ReturnBlock.getBlock();
137       return;
138     }
139   }
140 
141   // FIXME: We are at an unreachable point, there is no reason to emit the block
142   // unless it has uses. However, we still need a place to put the debug
143   // region.end for now.
144 
145   EmitBlock(ReturnBlock.getBlock());
146 }
147 
148 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
149   if (!BB) return;
150   if (!BB->use_empty())
151     return CGF.CurFn->getBasicBlockList().push_back(BB);
152   delete BB;
153 }
154 
155 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
156   assert(BreakContinueStack.empty() &&
157          "mismatched push/pop in break/continue stack!");
158 
159   // Pop any cleanups that might have been associated with the
160   // parameters.  Do this in whatever block we're currently in; it's
161   // important to do this before we enter the return block or return
162   // edges will be *really* confused.
163   if (EHStack.stable_begin() != PrologueCleanupDepth)
164     PopCleanupBlocks(PrologueCleanupDepth);
165 
166   // Emit function epilog (to return).
167   EmitReturnBlock();
168 
169   if (ShouldInstrumentFunction())
170     EmitFunctionInstrumentation("__cyg_profile_func_exit");
171 
172   // Emit debug descriptor for function end.
173   if (CGDebugInfo *DI = getDebugInfo()) {
174     DI->setLocation(EndLoc);
175     DI->EmitFunctionEnd(Builder);
176   }
177 
178   EmitFunctionEpilog(*CurFnInfo);
179   EmitEndEHSpec(CurCodeDecl);
180 
181   assert(EHStack.empty() &&
182          "did not remove all scopes from cleanup stack!");
183 
184   // If someone did an indirect goto, emit the indirect goto block at the end of
185   // the function.
186   if (IndirectBranch) {
187     EmitBlock(IndirectBranch->getParent());
188     Builder.ClearInsertionPoint();
189   }
190 
191   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
192   llvm::Instruction *Ptr = AllocaInsertPt;
193   AllocaInsertPt = 0;
194   Ptr->eraseFromParent();
195 
196   // If someone took the address of a label but never did an indirect goto, we
197   // made a zero entry PHI node, which is illegal, zap it now.
198   if (IndirectBranch) {
199     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
200     if (PN->getNumIncomingValues() == 0) {
201       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
202       PN->eraseFromParent();
203     }
204   }
205 
206   EmitIfUsed(*this, EHResumeBlock);
207   EmitIfUsed(*this, TerminateLandingPad);
208   EmitIfUsed(*this, TerminateHandler);
209   EmitIfUsed(*this, UnreachableBlock);
210 
211   if (CGM.getCodeGenOpts().EmitDeclMetadata)
212     EmitDeclMetadata();
213 }
214 
215 /// ShouldInstrumentFunction - Return true if the current function should be
216 /// instrumented with __cyg_profile_func_* calls
217 bool CodeGenFunction::ShouldInstrumentFunction() {
218   if (!CGM.getCodeGenOpts().InstrumentFunctions)
219     return false;
220   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
221     return false;
222   return true;
223 }
224 
225 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
226 /// instrumentation function with the current function and the call site, if
227 /// function instrumentation is enabled.
228 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
229   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
230   llvm::PointerType *PointerTy = Int8PtrTy;
231   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
232   llvm::FunctionType *FunctionTy =
233     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
234                             ProfileFuncArgs, false);
235 
236   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
237   llvm::CallInst *CallSite = Builder.CreateCall(
238     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
239     llvm::ConstantInt::get(Int32Ty, 0),
240     "callsite");
241 
242   Builder.CreateCall2(F,
243                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
244                       CallSite);
245 }
246 
247 void CodeGenFunction::EmitMCountInstrumentation() {
248   llvm::FunctionType *FTy =
249     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
250 
251   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
252                                                        Target.getMCountName());
253   Builder.CreateCall(MCountFn);
254 }
255 
256 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
257                                     llvm::Function *Fn,
258                                     const CGFunctionInfo &FnInfo,
259                                     const FunctionArgList &Args,
260                                     SourceLocation StartLoc) {
261   const Decl *D = GD.getDecl();
262 
263   DidCallStackSave = false;
264   CurCodeDecl = CurFuncDecl = D;
265   FnRetTy = RetTy;
266   CurFn = Fn;
267   CurFnInfo = &FnInfo;
268   assert(CurFn->isDeclaration() && "Function already has body?");
269 
270   // Pass inline keyword to optimizer if it appears explicitly on any
271   // declaration.
272   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
273     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
274            RE = FD->redecls_end(); RI != RE; ++RI)
275       if (RI->isInlineSpecified()) {
276         Fn->addFnAttr(llvm::Attribute::InlineHint);
277         break;
278       }
279 
280   if (getContext().getLangOptions().OpenCL) {
281     // Add metadata for a kernel function.
282     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
283       if (FD->hasAttr<OpenCLKernelAttr>()) {
284         llvm::LLVMContext &Context = getLLVMContext();
285         llvm::NamedMDNode *OpenCLMetadata =
286           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
287 
288         llvm::Value *Op = Fn;
289         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
290       }
291   }
292 
293   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
294 
295   // Create a marker to make it easy to insert allocas into the entryblock
296   // later.  Don't create this with the builder, because we don't want it
297   // folded.
298   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
299   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
300   if (Builder.isNamePreserving())
301     AllocaInsertPt->setName("allocapt");
302 
303   ReturnBlock = getJumpDestInCurrentScope("return");
304 
305   Builder.SetInsertPoint(EntryBB);
306 
307   // Emit subprogram debug descriptor.
308   if (CGDebugInfo *DI = getDebugInfo()) {
309     unsigned NumArgs = 0;
310     QualType *ArgsArray = new QualType[Args.size()];
311     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
312 	 i != e; ++i) {
313       ArgsArray[NumArgs++] = (*i)->getType();
314     }
315 
316     QualType FnType =
317       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
318                                    FunctionProtoType::ExtProtoInfo());
319 
320     delete[] ArgsArray;
321 
322     DI->setLocation(StartLoc);
323     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
324   }
325 
326   if (ShouldInstrumentFunction())
327     EmitFunctionInstrumentation("__cyg_profile_func_enter");
328 
329   if (CGM.getCodeGenOpts().InstrumentForProfiling)
330     EmitMCountInstrumentation();
331 
332   if (RetTy->isVoidType()) {
333     // Void type; nothing to return.
334     ReturnValue = 0;
335   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
336              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
337     // Indirect aggregate return; emit returned value directly into sret slot.
338     // This reduces code size, and affects correctness in C++.
339     ReturnValue = CurFn->arg_begin();
340   } else {
341     ReturnValue = CreateIRTemp(RetTy, "retval");
342 
343     // Tell the epilog emitter to autorelease the result.  We do this
344     // now so that various specialized functions can suppress it
345     // during their IR-generation.
346     if (getLangOptions().ObjCAutoRefCount &&
347         !CurFnInfo->isReturnsRetained() &&
348         RetTy->isObjCRetainableType())
349       AutoreleaseResult = true;
350   }
351 
352   EmitStartEHSpec(CurCodeDecl);
353 
354   PrologueCleanupDepth = EHStack.stable_begin();
355   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
356 
357   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
358     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
359 
360   // If any of the arguments have a variably modified type, make sure to
361   // emit the type size.
362   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
363        i != e; ++i) {
364     QualType Ty = (*i)->getType();
365 
366     if (Ty->isVariablyModifiedType())
367       EmitVariablyModifiedType(Ty);
368   }
369   // Emit a location at the end of the prologue.
370   if (CGDebugInfo *DI = getDebugInfo())
371     DI->EmitLocation(Builder, StartLoc);
372 }
373 
374 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
375   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
376   assert(FD->getBody());
377   EmitStmt(FD->getBody());
378 }
379 
380 /// Tries to mark the given function nounwind based on the
381 /// non-existence of any throwing calls within it.  We believe this is
382 /// lightweight enough to do at -O0.
383 static void TryMarkNoThrow(llvm::Function *F) {
384   // LLVM treats 'nounwind' on a function as part of the type, so we
385   // can't do this on functions that can be overwritten.
386   if (F->mayBeOverridden()) return;
387 
388   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
389     for (llvm::BasicBlock::iterator
390            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
391       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
392         if (!Call->doesNotThrow())
393           return;
394       } else if (isa<llvm::ResumeInst>(&*BI)) {
395         return;
396       }
397   F->setDoesNotThrow(true);
398 }
399 
400 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
401                                    const CGFunctionInfo &FnInfo) {
402   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
403 
404   // Check if we should generate debug info for this function.
405   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
406     DebugInfo = CGM.getModuleDebugInfo();
407 
408   FunctionArgList Args;
409   QualType ResTy = FD->getResultType();
410 
411   CurGD = GD;
412   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
413     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
414 
415   if (FD->getNumParams())
416     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
417       Args.push_back(FD->getParamDecl(i));
418 
419   SourceRange BodyRange;
420   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
421 
422   // Emit the standard function prologue.
423   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
424 
425   // Generate the body of the function.
426   if (isa<CXXDestructorDecl>(FD))
427     EmitDestructorBody(Args);
428   else if (isa<CXXConstructorDecl>(FD))
429     EmitConstructorBody(Args);
430   else if (getContext().getLangOptions().CUDA &&
431            !CGM.getCodeGenOpts().CUDAIsDevice &&
432            FD->hasAttr<CUDAGlobalAttr>())
433     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
434   else
435     EmitFunctionBody(Args);
436 
437   // Emit the standard function epilogue.
438   FinishFunction(BodyRange.getEnd());
439 
440   // If we haven't marked the function nothrow through other means, do
441   // a quick pass now to see if we can.
442   if (!CurFn->doesNotThrow())
443     TryMarkNoThrow(CurFn);
444 }
445 
446 /// ContainsLabel - Return true if the statement contains a label in it.  If
447 /// this statement is not executed normally, it not containing a label means
448 /// that we can just remove the code.
449 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
450   // Null statement, not a label!
451   if (S == 0) return false;
452 
453   // If this is a label, we have to emit the code, consider something like:
454   // if (0) {  ...  foo:  bar(); }  goto foo;
455   //
456   // TODO: If anyone cared, we could track __label__'s, since we know that you
457   // can't jump to one from outside their declared region.
458   if (isa<LabelStmt>(S))
459     return true;
460 
461   // If this is a case/default statement, and we haven't seen a switch, we have
462   // to emit the code.
463   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
464     return true;
465 
466   // If this is a switch statement, we want to ignore cases below it.
467   if (isa<SwitchStmt>(S))
468     IgnoreCaseStmts = true;
469 
470   // Scan subexpressions for verboten labels.
471   for (Stmt::const_child_range I = S->children(); I; ++I)
472     if (ContainsLabel(*I, IgnoreCaseStmts))
473       return true;
474 
475   return false;
476 }
477 
478 /// containsBreak - Return true if the statement contains a break out of it.
479 /// If the statement (recursively) contains a switch or loop with a break
480 /// inside of it, this is fine.
481 bool CodeGenFunction::containsBreak(const Stmt *S) {
482   // Null statement, not a label!
483   if (S == 0) return false;
484 
485   // If this is a switch or loop that defines its own break scope, then we can
486   // include it and anything inside of it.
487   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
488       isa<ForStmt>(S))
489     return false;
490 
491   if (isa<BreakStmt>(S))
492     return true;
493 
494   // Scan subexpressions for verboten breaks.
495   for (Stmt::const_child_range I = S->children(); I; ++I)
496     if (containsBreak(*I))
497       return true;
498 
499   return false;
500 }
501 
502 
503 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
504 /// to a constant, or if it does but contains a label, return false.  If it
505 /// constant folds return true and set the boolean result in Result.
506 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
507                                                    bool &ResultBool) {
508   llvm::APInt ResultInt;
509   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
510     return false;
511 
512   ResultBool = ResultInt.getBoolValue();
513   return true;
514 }
515 
516 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
517 /// to a constant, or if it does but contains a label, return false.  If it
518 /// constant folds return true and set the folded value.
519 bool CodeGenFunction::
520 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
521   // FIXME: Rename and handle conversion of other evaluatable things
522   // to bool.
523   Expr::EvalResult Result;
524   if (!Cond->EvaluateAsRValue(Result, getContext()) || !Result.Val.isInt() ||
525       Result.HasSideEffects)
526     return false;  // Not foldable, not integer or not fully evaluatable.
527 
528   if (CodeGenFunction::ContainsLabel(Cond))
529     return false;  // Contains a label.
530 
531   ResultInt = Result.Val.getInt();
532   return true;
533 }
534 
535 
536 
537 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
538 /// statement) to the specified blocks.  Based on the condition, this might try
539 /// to simplify the codegen of the conditional based on the branch.
540 ///
541 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
542                                            llvm::BasicBlock *TrueBlock,
543                                            llvm::BasicBlock *FalseBlock) {
544   Cond = Cond->IgnoreParens();
545 
546   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
547     // Handle X && Y in a condition.
548     if (CondBOp->getOpcode() == BO_LAnd) {
549       // If we have "1 && X", simplify the code.  "0 && X" would have constant
550       // folded if the case was simple enough.
551       bool ConstantBool = false;
552       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
553           ConstantBool) {
554         // br(1 && X) -> br(X).
555         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
556       }
557 
558       // If we have "X && 1", simplify the code to use an uncond branch.
559       // "X && 0" would have been constant folded to 0.
560       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
561           ConstantBool) {
562         // br(X && 1) -> br(X).
563         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
564       }
565 
566       // Emit the LHS as a conditional.  If the LHS conditional is false, we
567       // want to jump to the FalseBlock.
568       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
569 
570       ConditionalEvaluation eval(*this);
571       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
572       EmitBlock(LHSTrue);
573 
574       // Any temporaries created here are conditional.
575       eval.begin(*this);
576       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
577       eval.end(*this);
578 
579       return;
580     }
581 
582     if (CondBOp->getOpcode() == BO_LOr) {
583       // If we have "0 || X", simplify the code.  "1 || X" would have constant
584       // folded if the case was simple enough.
585       bool ConstantBool = false;
586       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
587           !ConstantBool) {
588         // br(0 || X) -> br(X).
589         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
590       }
591 
592       // If we have "X || 0", simplify the code to use an uncond branch.
593       // "X || 1" would have been constant folded to 1.
594       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
595           !ConstantBool) {
596         // br(X || 0) -> br(X).
597         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
598       }
599 
600       // Emit the LHS as a conditional.  If the LHS conditional is true, we
601       // want to jump to the TrueBlock.
602       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
603 
604       ConditionalEvaluation eval(*this);
605       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
606       EmitBlock(LHSFalse);
607 
608       // Any temporaries created here are conditional.
609       eval.begin(*this);
610       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
611       eval.end(*this);
612 
613       return;
614     }
615   }
616 
617   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
618     // br(!x, t, f) -> br(x, f, t)
619     if (CondUOp->getOpcode() == UO_LNot)
620       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
621   }
622 
623   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
624     // Handle ?: operator.
625 
626     // Just ignore GNU ?: extension.
627     if (CondOp->getLHS()) {
628       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
629       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
630       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
631 
632       ConditionalEvaluation cond(*this);
633       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
634 
635       cond.begin(*this);
636       EmitBlock(LHSBlock);
637       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
638       cond.end(*this);
639 
640       cond.begin(*this);
641       EmitBlock(RHSBlock);
642       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
643       cond.end(*this);
644 
645       return;
646     }
647   }
648 
649   // Emit the code with the fully general case.
650   llvm::Value *CondV = EvaluateExprAsBool(Cond);
651   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
652 }
653 
654 /// ErrorUnsupported - Print out an error that codegen doesn't support the
655 /// specified stmt yet.
656 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
657                                        bool OmitOnError) {
658   CGM.ErrorUnsupported(S, Type, OmitOnError);
659 }
660 
661 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
662 /// variable-length array whose elements have a non-zero bit-pattern.
663 ///
664 /// \param src - a char* pointing to the bit-pattern for a single
665 /// base element of the array
666 /// \param sizeInChars - the total size of the VLA, in chars
667 /// \param align - the total alignment of the VLA
668 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
669                                llvm::Value *dest, llvm::Value *src,
670                                llvm::Value *sizeInChars) {
671   std::pair<CharUnits,CharUnits> baseSizeAndAlign
672     = CGF.getContext().getTypeInfoInChars(baseType);
673 
674   CGBuilderTy &Builder = CGF.Builder;
675 
676   llvm::Value *baseSizeInChars
677     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
678 
679   llvm::Type *i8p = Builder.getInt8PtrTy();
680 
681   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
682   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
683 
684   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
685   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
686   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
687 
688   // Make a loop over the VLA.  C99 guarantees that the VLA element
689   // count must be nonzero.
690   CGF.EmitBlock(loopBB);
691 
692   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
693   cur->addIncoming(begin, originBB);
694 
695   // memcpy the individual element bit-pattern.
696   Builder.CreateMemCpy(cur, src, baseSizeInChars,
697                        baseSizeAndAlign.second.getQuantity(),
698                        /*volatile*/ false);
699 
700   // Go to the next element.
701   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
702 
703   // Leave if that's the end of the VLA.
704   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
705   Builder.CreateCondBr(done, contBB, loopBB);
706   cur->addIncoming(next, loopBB);
707 
708   CGF.EmitBlock(contBB);
709 }
710 
711 void
712 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
713   // Ignore empty classes in C++.
714   if (getContext().getLangOptions().CPlusPlus) {
715     if (const RecordType *RT = Ty->getAs<RecordType>()) {
716       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
717         return;
718     }
719   }
720 
721   // Cast the dest ptr to the appropriate i8 pointer type.
722   unsigned DestAS =
723     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
724   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
725   if (DestPtr->getType() != BP)
726     DestPtr = Builder.CreateBitCast(DestPtr, BP);
727 
728   // Get size and alignment info for this aggregate.
729   std::pair<CharUnits, CharUnits> TypeInfo =
730     getContext().getTypeInfoInChars(Ty);
731   CharUnits Size = TypeInfo.first;
732   CharUnits Align = TypeInfo.second;
733 
734   llvm::Value *SizeVal;
735   const VariableArrayType *vla;
736 
737   // Don't bother emitting a zero-byte memset.
738   if (Size.isZero()) {
739     // But note that getTypeInfo returns 0 for a VLA.
740     if (const VariableArrayType *vlaType =
741           dyn_cast_or_null<VariableArrayType>(
742                                           getContext().getAsArrayType(Ty))) {
743       QualType eltType;
744       llvm::Value *numElts;
745       llvm::tie(numElts, eltType) = getVLASize(vlaType);
746 
747       SizeVal = numElts;
748       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
749       if (!eltSize.isOne())
750         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
751       vla = vlaType;
752     } else {
753       return;
754     }
755   } else {
756     SizeVal = CGM.getSize(Size);
757     vla = 0;
758   }
759 
760   // If the type contains a pointer to data member we can't memset it to zero.
761   // Instead, create a null constant and copy it to the destination.
762   // TODO: there are other patterns besides zero that we can usefully memset,
763   // like -1, which happens to be the pattern used by member-pointers.
764   if (!CGM.getTypes().isZeroInitializable(Ty)) {
765     // For a VLA, emit a single element, then splat that over the VLA.
766     if (vla) Ty = getContext().getBaseElementType(vla);
767 
768     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
769 
770     llvm::GlobalVariable *NullVariable =
771       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
772                                /*isConstant=*/true,
773                                llvm::GlobalVariable::PrivateLinkage,
774                                NullConstant, Twine());
775     llvm::Value *SrcPtr =
776       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
777 
778     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
779 
780     // Get and call the appropriate llvm.memcpy overload.
781     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
782     return;
783   }
784 
785   // Otherwise, just memset the whole thing to zero.  This is legal
786   // because in LLVM, all default initializers (other than the ones we just
787   // handled above) are guaranteed to have a bit pattern of all zeros.
788   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
789                        Align.getQuantity(), false);
790 }
791 
792 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
793   // Make sure that there is a block for the indirect goto.
794   if (IndirectBranch == 0)
795     GetIndirectGotoBlock();
796 
797   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
798 
799   // Make sure the indirect branch includes all of the address-taken blocks.
800   IndirectBranch->addDestination(BB);
801   return llvm::BlockAddress::get(CurFn, BB);
802 }
803 
804 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
805   // If we already made the indirect branch for indirect goto, return its block.
806   if (IndirectBranch) return IndirectBranch->getParent();
807 
808   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
809 
810   // Create the PHI node that indirect gotos will add entries to.
811   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
812                                               "indirect.goto.dest");
813 
814   // Create the indirect branch instruction.
815   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
816   return IndirectBranch->getParent();
817 }
818 
819 /// Computes the length of an array in elements, as well as the base
820 /// element type and a properly-typed first element pointer.
821 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
822                                               QualType &baseType,
823                                               llvm::Value *&addr) {
824   const ArrayType *arrayType = origArrayType;
825 
826   // If it's a VLA, we have to load the stored size.  Note that
827   // this is the size of the VLA in bytes, not its size in elements.
828   llvm::Value *numVLAElements = 0;
829   if (isa<VariableArrayType>(arrayType)) {
830     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
831 
832     // Walk into all VLAs.  This doesn't require changes to addr,
833     // which has type T* where T is the first non-VLA element type.
834     do {
835       QualType elementType = arrayType->getElementType();
836       arrayType = getContext().getAsArrayType(elementType);
837 
838       // If we only have VLA components, 'addr' requires no adjustment.
839       if (!arrayType) {
840         baseType = elementType;
841         return numVLAElements;
842       }
843     } while (isa<VariableArrayType>(arrayType));
844 
845     // We get out here only if we find a constant array type
846     // inside the VLA.
847   }
848 
849   // We have some number of constant-length arrays, so addr should
850   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
851   // down to the first element of addr.
852   SmallVector<llvm::Value*, 8> gepIndices;
853 
854   // GEP down to the array type.
855   llvm::ConstantInt *zero = Builder.getInt32(0);
856   gepIndices.push_back(zero);
857 
858   // It's more efficient to calculate the count from the LLVM
859   // constant-length arrays than to re-evaluate the array bounds.
860   uint64_t countFromCLAs = 1;
861 
862   llvm::ArrayType *llvmArrayType =
863     cast<llvm::ArrayType>(
864       cast<llvm::PointerType>(addr->getType())->getElementType());
865   while (true) {
866     assert(isa<ConstantArrayType>(arrayType));
867     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
868              == llvmArrayType->getNumElements());
869 
870     gepIndices.push_back(zero);
871     countFromCLAs *= llvmArrayType->getNumElements();
872 
873     llvmArrayType =
874       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
875     if (!llvmArrayType) break;
876 
877     arrayType = getContext().getAsArrayType(arrayType->getElementType());
878     assert(arrayType && "LLVM and Clang types are out-of-synch");
879   }
880 
881   baseType = arrayType->getElementType();
882 
883   // Create the actual GEP.
884   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
885 
886   llvm::Value *numElements
887     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
888 
889   // If we had any VLA dimensions, factor them in.
890   if (numVLAElements)
891     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
892 
893   return numElements;
894 }
895 
896 std::pair<llvm::Value*, QualType>
897 CodeGenFunction::getVLASize(QualType type) {
898   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
899   assert(vla && "type was not a variable array type!");
900   return getVLASize(vla);
901 }
902 
903 std::pair<llvm::Value*, QualType>
904 CodeGenFunction::getVLASize(const VariableArrayType *type) {
905   // The number of elements so far; always size_t.
906   llvm::Value *numElements = 0;
907 
908   QualType elementType;
909   do {
910     elementType = type->getElementType();
911     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
912     assert(vlaSize && "no size for VLA!");
913     assert(vlaSize->getType() == SizeTy);
914 
915     if (!numElements) {
916       numElements = vlaSize;
917     } else {
918       // It's undefined behavior if this wraps around, so mark it that way.
919       numElements = Builder.CreateNUWMul(numElements, vlaSize);
920     }
921   } while ((type = getContext().getAsVariableArrayType(elementType)));
922 
923   return std::pair<llvm::Value*,QualType>(numElements, elementType);
924 }
925 
926 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
927   assert(type->isVariablyModifiedType() &&
928          "Must pass variably modified type to EmitVLASizes!");
929 
930   EnsureInsertPoint();
931 
932   // We're going to walk down into the type and look for VLA
933   // expressions.
934   type = type.getCanonicalType();
935   do {
936     assert(type->isVariablyModifiedType());
937 
938     const Type *ty = type.getTypePtr();
939     switch (ty->getTypeClass()) {
940 #define TYPE(Class, Base)
941 #define ABSTRACT_TYPE(Class, Base)
942 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
943 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
944 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
945 #include "clang/AST/TypeNodes.def"
946       llvm_unreachable("unexpected dependent or non-canonical type!");
947 
948     // These types are never variably-modified.
949     case Type::Builtin:
950     case Type::Complex:
951     case Type::Vector:
952     case Type::ExtVector:
953     case Type::Record:
954     case Type::Enum:
955     case Type::ObjCObject:
956     case Type::ObjCInterface:
957     case Type::ObjCObjectPointer:
958       llvm_unreachable("type class is never variably-modified!");
959 
960     case Type::Pointer:
961       type = cast<PointerType>(ty)->getPointeeType();
962       break;
963 
964     case Type::BlockPointer:
965       type = cast<BlockPointerType>(ty)->getPointeeType();
966       break;
967 
968     case Type::LValueReference:
969     case Type::RValueReference:
970       type = cast<ReferenceType>(ty)->getPointeeType();
971       break;
972 
973     case Type::MemberPointer:
974       type = cast<MemberPointerType>(ty)->getPointeeType();
975       break;
976 
977     case Type::ConstantArray:
978     case Type::IncompleteArray:
979       // Losing element qualification here is fine.
980       type = cast<ArrayType>(ty)->getElementType();
981       break;
982 
983     case Type::VariableArray: {
984       // Losing element qualification here is fine.
985       const VariableArrayType *vat = cast<VariableArrayType>(ty);
986 
987       // Unknown size indication requires no size computation.
988       // Otherwise, evaluate and record it.
989       if (const Expr *size = vat->getSizeExpr()) {
990         // It's possible that we might have emitted this already,
991         // e.g. with a typedef and a pointer to it.
992         llvm::Value *&entry = VLASizeMap[size];
993         if (!entry) {
994           // Always zexting here would be wrong if it weren't
995           // undefined behavior to have a negative bound.
996           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
997                                         /*signed*/ false);
998         }
999       }
1000       type = vat->getElementType();
1001       break;
1002     }
1003 
1004     case Type::FunctionProto:
1005     case Type::FunctionNoProto:
1006       type = cast<FunctionType>(ty)->getResultType();
1007       break;
1008 
1009     case Type::Atomic:
1010       type = cast<AtomicType>(ty)->getValueType();
1011       break;
1012     }
1013   } while (type->isVariablyModifiedType());
1014 }
1015 
1016 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1017   if (getContext().getBuiltinVaListType()->isArrayType())
1018     return EmitScalarExpr(E);
1019   return EmitLValue(E).getAddress();
1020 }
1021 
1022 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1023                                               llvm::Constant *Init) {
1024   assert (Init && "Invalid DeclRefExpr initializer!");
1025   if (CGDebugInfo *Dbg = getDebugInfo())
1026     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1027 }
1028 
1029 CodeGenFunction::PeepholeProtection
1030 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1031   // At the moment, the only aggressive peephole we do in IR gen
1032   // is trunc(zext) folding, but if we add more, we can easily
1033   // extend this protection.
1034 
1035   if (!rvalue.isScalar()) return PeepholeProtection();
1036   llvm::Value *value = rvalue.getScalarVal();
1037   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1038 
1039   // Just make an extra bitcast.
1040   assert(HaveInsertPoint());
1041   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1042                                                   Builder.GetInsertBlock());
1043 
1044   PeepholeProtection protection;
1045   protection.Inst = inst;
1046   return protection;
1047 }
1048 
1049 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1050   if (!protection.Inst) return;
1051 
1052   // In theory, we could try to duplicate the peepholes now, but whatever.
1053   protection.Inst->eraseFromParent();
1054 }
1055 
1056 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1057                                                  llvm::Value *AnnotatedVal,
1058                                                  llvm::StringRef AnnotationStr,
1059                                                  SourceLocation Location) {
1060   llvm::Value *Args[4] = {
1061     AnnotatedVal,
1062     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1063     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1064     CGM.EmitAnnotationLineNo(Location)
1065   };
1066   return Builder.CreateCall(AnnotationFn, Args);
1067 }
1068 
1069 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1070   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1071   // FIXME We create a new bitcast for every annotation because that's what
1072   // llvm-gcc was doing.
1073   for (specific_attr_iterator<AnnotateAttr>
1074        ai = D->specific_attr_begin<AnnotateAttr>(),
1075        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1076     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1077                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1078                        (*ai)->getAnnotation(), D->getLocation());
1079 }
1080 
1081 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1082                                                    llvm::Value *V) {
1083   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1084   llvm::Type *VTy = V->getType();
1085   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1086                                     CGM.Int8PtrTy);
1087 
1088   for (specific_attr_iterator<AnnotateAttr>
1089        ai = D->specific_attr_begin<AnnotateAttr>(),
1090        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1091     // FIXME Always emit the cast inst so we can differentiate between
1092     // annotation on the first field of a struct and annotation on the struct
1093     // itself.
1094     if (VTy != CGM.Int8PtrTy)
1095       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1096     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1097     V = Builder.CreateBitCast(V, VTy);
1098   }
1099 
1100   return V;
1101 }
1102