1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/FPEnv.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 46 /// markers. 47 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 48 const LangOptions &LangOpts) { 49 if (CGOpts.DisableLifetimeMarkers) 50 return false; 51 52 // Sanitizers may use markers. 53 if (CGOpts.SanitizeAddressUseAfterScope || 54 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 55 LangOpts.Sanitize.has(SanitizerKind::Memory)) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 67 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 68 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 69 if (!suppressNewContext) 70 CGM.getCXXABI().getMangleContext().startNewFunction(); 71 72 llvm::FastMathFlags FMF; 73 if (CGM.getLangOpts().FastMath) 74 FMF.setFast(); 75 if (CGM.getLangOpts().FiniteMathOnly) { 76 FMF.setNoNaNs(); 77 FMF.setNoInfs(); 78 } 79 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 80 FMF.setNoNaNs(); 81 } 82 if (CGM.getCodeGenOpts().NoSignedZeros) { 83 FMF.setNoSignedZeros(); 84 } 85 if (CGM.getCodeGenOpts().ReciprocalMath) { 86 FMF.setAllowReciprocal(); 87 } 88 if (CGM.getCodeGenOpts().Reassociate) { 89 FMF.setAllowReassoc(); 90 } 91 Builder.setFastMathFlags(FMF); 92 SetFPModel(); 93 } 94 95 CodeGenFunction::~CodeGenFunction() { 96 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 97 98 // If there are any unclaimed block infos, go ahead and destroy them 99 // now. This can happen if IR-gen gets clever and skips evaluating 100 // something. 101 if (FirstBlockInfo) 102 destroyBlockInfos(FirstBlockInfo); 103 104 if (getLangOpts().OpenMP && CurFn) 105 CGM.getOpenMPRuntime().functionFinished(*this); 106 } 107 108 // Map the LangOption for rounding mode into 109 // the corresponding enum in the IR. 110 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 111 LangOptions::FPRoundingModeKind Kind) { 112 113 switch (Kind) { 114 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 115 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 116 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 117 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 118 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 119 } 120 llvm_unreachable("Unsupported FP RoundingMode"); 121 } 122 123 // Map the LangOption for exception behavior into 124 // the corresponding enum in the IR. 125 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 126 LangOptions::FPExceptionModeKind Kind) { 127 128 switch (Kind) { 129 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 130 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 131 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 132 } 133 llvm_unreachable("Unsupported FP Exception Behavior"); 134 } 135 136 void CodeGenFunction::SetFPModel() { 137 auto fpRoundingMode = ToConstrainedRoundingMD( 138 getLangOpts().getFPRoundingMode()); 139 auto fpExceptionBehavior = ToConstrainedExceptMD( 140 getLangOpts().getFPExceptionMode()); 141 142 if (fpExceptionBehavior == llvm::fp::ebIgnore && 143 fpRoundingMode == llvm::fp::rmToNearest) 144 // Constrained intrinsics are not used. 145 ; 146 else { 147 Builder.setIsFPConstrained(true); 148 Builder.setDefaultConstrainedRounding(fpRoundingMode); 149 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 150 } 151 } 152 153 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 154 LValueBaseInfo *BaseInfo, 155 TBAAAccessInfo *TBAAInfo) { 156 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 157 /* forPointeeType= */ true); 158 } 159 160 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 161 LValueBaseInfo *BaseInfo, 162 TBAAAccessInfo *TBAAInfo, 163 bool forPointeeType) { 164 if (TBAAInfo) 165 *TBAAInfo = CGM.getTBAAAccessInfo(T); 166 167 // Honor alignment typedef attributes even on incomplete types. 168 // We also honor them straight for C++ class types, even as pointees; 169 // there's an expressivity gap here. 170 if (auto TT = T->getAs<TypedefType>()) { 171 if (auto Align = TT->getDecl()->getMaxAlignment()) { 172 if (BaseInfo) 173 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 174 return getContext().toCharUnitsFromBits(Align); 175 } 176 } 177 178 if (BaseInfo) 179 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 180 181 CharUnits Alignment; 182 if (T->isIncompleteType()) { 183 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 184 } else { 185 // For C++ class pointees, we don't know whether we're pointing at a 186 // base or a complete object, so we generally need to use the 187 // non-virtual alignment. 188 const CXXRecordDecl *RD; 189 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 190 Alignment = CGM.getClassPointerAlignment(RD); 191 } else { 192 Alignment = getContext().getTypeAlignInChars(T); 193 if (T.getQualifiers().hasUnaligned()) 194 Alignment = CharUnits::One(); 195 } 196 197 // Cap to the global maximum type alignment unless the alignment 198 // was somehow explicit on the type. 199 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 200 if (Alignment.getQuantity() > MaxAlign && 201 !getContext().isAlignmentRequired(T)) 202 Alignment = CharUnits::fromQuantity(MaxAlign); 203 } 204 } 205 return Alignment; 206 } 207 208 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 212 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 213 TBAAInfo); 214 } 215 216 /// Given a value of type T* that may not be to a complete object, 217 /// construct an l-value with the natural pointee alignment of T. 218 LValue 219 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 220 LValueBaseInfo BaseInfo; 221 TBAAAccessInfo TBAAInfo; 222 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 223 /* forPointeeType= */ true); 224 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 225 } 226 227 228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 229 return CGM.getTypes().ConvertTypeForMem(T); 230 } 231 232 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 233 return CGM.getTypes().ConvertType(T); 234 } 235 236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 237 type = type.getCanonicalType(); 238 while (true) { 239 switch (type->getTypeClass()) { 240 #define TYPE(name, parent) 241 #define ABSTRACT_TYPE(name, parent) 242 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 243 #define DEPENDENT_TYPE(name, parent) case Type::name: 244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 245 #include "clang/AST/TypeNodes.inc" 246 llvm_unreachable("non-canonical or dependent type in IR-generation"); 247 248 case Type::Auto: 249 case Type::DeducedTemplateSpecialization: 250 llvm_unreachable("undeduced type in IR-generation"); 251 252 // Various scalar types. 253 case Type::Builtin: 254 case Type::Pointer: 255 case Type::BlockPointer: 256 case Type::LValueReference: 257 case Type::RValueReference: 258 case Type::MemberPointer: 259 case Type::Vector: 260 case Type::ExtVector: 261 case Type::FunctionProto: 262 case Type::FunctionNoProto: 263 case Type::Enum: 264 case Type::ObjCObjectPointer: 265 case Type::Pipe: 266 return TEK_Scalar; 267 268 // Complexes. 269 case Type::Complex: 270 return TEK_Complex; 271 272 // Arrays, records, and Objective-C objects. 273 case Type::ConstantArray: 274 case Type::IncompleteArray: 275 case Type::VariableArray: 276 case Type::Record: 277 case Type::ObjCObject: 278 case Type::ObjCInterface: 279 return TEK_Aggregate; 280 281 // We operate on atomic values according to their underlying type. 282 case Type::Atomic: 283 type = cast<AtomicType>(type)->getValueType(); 284 continue; 285 } 286 llvm_unreachable("unknown type kind!"); 287 } 288 } 289 290 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 291 // For cleanliness, we try to avoid emitting the return block for 292 // simple cases. 293 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 294 295 if (CurBB) { 296 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 297 298 // We have a valid insert point, reuse it if it is empty or there are no 299 // explicit jumps to the return block. 300 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 301 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 302 delete ReturnBlock.getBlock(); 303 ReturnBlock = JumpDest(); 304 } else 305 EmitBlock(ReturnBlock.getBlock()); 306 return llvm::DebugLoc(); 307 } 308 309 // Otherwise, if the return block is the target of a single direct 310 // branch then we can just put the code in that block instead. This 311 // cleans up functions which started with a unified return block. 312 if (ReturnBlock.getBlock()->hasOneUse()) { 313 llvm::BranchInst *BI = 314 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 315 if (BI && BI->isUnconditional() && 316 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 317 // Record/return the DebugLoc of the simple 'return' expression to be used 318 // later by the actual 'ret' instruction. 319 llvm::DebugLoc Loc = BI->getDebugLoc(); 320 Builder.SetInsertPoint(BI->getParent()); 321 BI->eraseFromParent(); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 return Loc; 325 } 326 } 327 328 // FIXME: We are at an unreachable point, there is no reason to emit the block 329 // unless it has uses. However, we still need a place to put the debug 330 // region.end for now. 331 332 EmitBlock(ReturnBlock.getBlock()); 333 return llvm::DebugLoc(); 334 } 335 336 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 337 if (!BB) return; 338 if (!BB->use_empty()) 339 return CGF.CurFn->getBasicBlockList().push_back(BB); 340 delete BB; 341 } 342 343 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 344 assert(BreakContinueStack.empty() && 345 "mismatched push/pop in break/continue stack!"); 346 347 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 348 && NumSimpleReturnExprs == NumReturnExprs 349 && ReturnBlock.getBlock()->use_empty(); 350 // Usually the return expression is evaluated before the cleanup 351 // code. If the function contains only a simple return statement, 352 // such as a constant, the location before the cleanup code becomes 353 // the last useful breakpoint in the function, because the simple 354 // return expression will be evaluated after the cleanup code. To be 355 // safe, set the debug location for cleanup code to the location of 356 // the return statement. Otherwise the cleanup code should be at the 357 // end of the function's lexical scope. 358 // 359 // If there are multiple branches to the return block, the branch 360 // instructions will get the location of the return statements and 361 // all will be fine. 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, LastStopPoint); 365 else 366 DI->EmitLocation(Builder, EndLoc); 367 } 368 369 // Pop any cleanups that might have been associated with the 370 // parameters. Do this in whatever block we're currently in; it's 371 // important to do this before we enter the return block or return 372 // edges will be *really* confused. 373 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 374 bool HasOnlyLifetimeMarkers = 375 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 376 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 377 if (HasCleanups) { 378 // Make sure the line table doesn't jump back into the body for 379 // the ret after it's been at EndLoc. 380 if (CGDebugInfo *DI = getDebugInfo()) 381 if (OnlySimpleReturnStmts) 382 DI->EmitLocation(Builder, EndLoc); 383 384 PopCleanupBlocks(PrologueCleanupDepth); 385 } 386 387 // Emit function epilog (to return). 388 llvm::DebugLoc Loc = EmitReturnBlock(); 389 390 if (ShouldInstrumentFunction()) { 391 if (CGM.getCodeGenOpts().InstrumentFunctions) 392 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 393 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 394 CurFn->addFnAttr("instrument-function-exit-inlined", 395 "__cyg_profile_func_exit"); 396 } 397 398 // Emit debug descriptor for function end. 399 if (CGDebugInfo *DI = getDebugInfo()) 400 DI->EmitFunctionEnd(Builder, CurFn); 401 402 // Reset the debug location to that of the simple 'return' expression, if any 403 // rather than that of the end of the function's scope '}'. 404 ApplyDebugLocation AL(*this, Loc); 405 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 406 EmitEndEHSpec(CurCodeDecl); 407 408 assert(EHStack.empty() && 409 "did not remove all scopes from cleanup stack!"); 410 411 // If someone did an indirect goto, emit the indirect goto block at the end of 412 // the function. 413 if (IndirectBranch) { 414 EmitBlock(IndirectBranch->getParent()); 415 Builder.ClearInsertionPoint(); 416 } 417 418 // If some of our locals escaped, insert a call to llvm.localescape in the 419 // entry block. 420 if (!EscapedLocals.empty()) { 421 // Invert the map from local to index into a simple vector. There should be 422 // no holes. 423 SmallVector<llvm::Value *, 4> EscapeArgs; 424 EscapeArgs.resize(EscapedLocals.size()); 425 for (auto &Pair : EscapedLocals) 426 EscapeArgs[Pair.second] = Pair.first; 427 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 428 &CGM.getModule(), llvm::Intrinsic::localescape); 429 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 430 } 431 432 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 433 llvm::Instruction *Ptr = AllocaInsertPt; 434 AllocaInsertPt = nullptr; 435 Ptr->eraseFromParent(); 436 437 // If someone took the address of a label but never did an indirect goto, we 438 // made a zero entry PHI node, which is illegal, zap it now. 439 if (IndirectBranch) { 440 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 441 if (PN->getNumIncomingValues() == 0) { 442 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 443 PN->eraseFromParent(); 444 } 445 } 446 447 EmitIfUsed(*this, EHResumeBlock); 448 EmitIfUsed(*this, TerminateLandingPad); 449 EmitIfUsed(*this, TerminateHandler); 450 EmitIfUsed(*this, UnreachableBlock); 451 452 for (const auto &FuncletAndParent : TerminateFunclets) 453 EmitIfUsed(*this, FuncletAndParent.second); 454 455 if (CGM.getCodeGenOpts().EmitDeclMetadata) 456 EmitDeclMetadata(); 457 458 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 459 I = DeferredReplacements.begin(), 460 E = DeferredReplacements.end(); 461 I != E; ++I) { 462 I->first->replaceAllUsesWith(I->second); 463 I->first->eraseFromParent(); 464 } 465 466 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 467 // PHIs if the current function is a coroutine. We don't do it for all 468 // functions as it may result in slight increase in numbers of instructions 469 // if compiled with no optimizations. We do it for coroutine as the lifetime 470 // of CleanupDestSlot alloca make correct coroutine frame building very 471 // difficult. 472 if (NormalCleanupDest.isValid() && isCoroutine()) { 473 llvm::DominatorTree DT(*CurFn); 474 llvm::PromoteMemToReg( 475 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 476 NormalCleanupDest = Address::invalid(); 477 } 478 479 // Scan function arguments for vector width. 480 for (llvm::Argument &A : CurFn->args()) 481 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 482 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 483 VT->getPrimitiveSizeInBits().getFixedSize()); 484 485 // Update vector width based on return type. 486 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 487 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getFixedSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // If we generated an unreachable return block, delete it now. 500 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 501 Builder.ClearInsertionPoint(); 502 ReturnBlock.getBlock()->eraseFromParent(); 503 } 504 if (ReturnValue.isValid()) { 505 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 506 if (RetAlloca && RetAlloca->use_empty()) { 507 RetAlloca->eraseFromParent(); 508 ReturnValue = Address::invalid(); 509 } 510 } 511 } 512 513 /// ShouldInstrumentFunction - Return true if the current function should be 514 /// instrumented with __cyg_profile_func_* calls 515 bool CodeGenFunction::ShouldInstrumentFunction() { 516 if (!CGM.getCodeGenOpts().InstrumentFunctions && 517 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 518 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 519 return false; 520 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 521 return false; 522 return true; 523 } 524 525 /// ShouldXRayInstrument - Return true if the current function should be 526 /// instrumented with XRay nop sleds. 527 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 528 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 529 } 530 531 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 532 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 533 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 535 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 536 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 537 XRayInstrKind::Custom); 538 } 539 540 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Typed); 545 } 546 547 llvm::Constant * 548 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 549 llvm::Constant *Addr) { 550 // Addresses stored in prologue data can't require run-time fixups and must 551 // be PC-relative. Run-time fixups are undesirable because they necessitate 552 // writable text segments, which are unsafe. And absolute addresses are 553 // undesirable because they break PIE mode. 554 555 // Add a layer of indirection through a private global. Taking its address 556 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 557 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 558 /*isConstant=*/true, 559 llvm::GlobalValue::PrivateLinkage, Addr); 560 561 // Create a PC-relative address. 562 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 563 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 564 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 565 return (IntPtrTy == Int32Ty) 566 ? PCRelAsInt 567 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 568 } 569 570 llvm::Value * 571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 572 llvm::Value *EncodedAddr) { 573 // Reconstruct the address of the global. 574 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 575 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 576 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 577 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 578 579 // Load the original pointer through the global. 580 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 581 "decoded_addr"); 582 } 583 584 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) 586 { 587 if (!FD->hasAttr<OpenCLKernelAttr>()) 588 return; 589 590 llvm::LLVMContext &Context = getLLVMContext(); 591 592 CGM.GenOpenCLArgMetadata(Fn, FD, this); 593 594 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 595 QualType HintQTy = A->getTypeHint(); 596 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 597 bool IsSignedInteger = 598 HintQTy->isSignedIntegerType() || 599 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 600 llvm::Metadata *AttrMDArgs[] = { 601 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 602 CGM.getTypes().ConvertType(A->getTypeHint()))), 603 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 604 llvm::IntegerType::get(Context, 32), 605 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 606 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 607 } 608 609 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 610 llvm::Metadata *AttrMDArgs[] = { 611 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 612 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 614 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 615 } 616 617 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 618 llvm::Metadata *AttrMDArgs[] = { 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 622 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 626 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 627 llvm::Metadata *AttrMDArgs[] = { 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 629 Fn->setMetadata("intel_reqd_sub_group_size", 630 llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 } 633 634 /// Determine whether the function F ends with a return stmt. 635 static bool endsWithReturn(const Decl* F) { 636 const Stmt *Body = nullptr; 637 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 638 Body = FD->getBody(); 639 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 640 Body = OMD->getBody(); 641 642 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 643 auto LastStmt = CS->body_rbegin(); 644 if (LastStmt != CS->body_rend()) 645 return isa<ReturnStmt>(*LastStmt); 646 } 647 return false; 648 } 649 650 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 651 if (SanOpts.has(SanitizerKind::Thread)) { 652 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 653 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 654 } 655 } 656 657 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 658 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 659 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 660 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 661 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 662 return false; 663 664 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 665 return false; 666 667 if (MD->getNumParams() == 2) { 668 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 669 if (!PT || !PT->isVoidPointerType() || 670 !PT->getPointeeType().isConstQualified()) 671 return false; 672 } 673 674 return true; 675 } 676 677 /// Return the UBSan prologue signature for \p FD if one is available. 678 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 679 const FunctionDecl *FD) { 680 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 681 if (!MD->isStatic()) 682 return nullptr; 683 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 684 } 685 686 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 687 llvm::Function *Fn, 688 const CGFunctionInfo &FnInfo, 689 const FunctionArgList &Args, 690 SourceLocation Loc, 691 SourceLocation StartLoc) { 692 assert(!CurFn && 693 "Do not use a CodeGenFunction object for more than one function"); 694 695 const Decl *D = GD.getDecl(); 696 697 DidCallStackSave = false; 698 CurCodeDecl = D; 699 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 700 if (FD->usesSEHTry()) 701 CurSEHParent = FD; 702 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 703 FnRetTy = RetTy; 704 CurFn = Fn; 705 CurFnInfo = &FnInfo; 706 assert(CurFn->isDeclaration() && "Function already has body?"); 707 708 // If this function has been blacklisted for any of the enabled sanitizers, 709 // disable the sanitizer for the function. 710 do { 711 #define SANITIZER(NAME, ID) \ 712 if (SanOpts.empty()) \ 713 break; \ 714 if (SanOpts.has(SanitizerKind::ID)) \ 715 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 716 SanOpts.set(SanitizerKind::ID, false); 717 718 #include "clang/Basic/Sanitizers.def" 719 #undef SANITIZER 720 } while (0); 721 722 if (D) { 723 // Apply the no_sanitize* attributes to SanOpts. 724 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 725 SanitizerMask mask = Attr->getMask(); 726 SanOpts.Mask &= ~mask; 727 if (mask & SanitizerKind::Address) 728 SanOpts.set(SanitizerKind::KernelAddress, false); 729 if (mask & SanitizerKind::KernelAddress) 730 SanOpts.set(SanitizerKind::Address, false); 731 if (mask & SanitizerKind::HWAddress) 732 SanOpts.set(SanitizerKind::KernelHWAddress, false); 733 if (mask & SanitizerKind::KernelHWAddress) 734 SanOpts.set(SanitizerKind::HWAddress, false); 735 } 736 } 737 738 // Apply sanitizer attributes to the function. 739 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 740 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 741 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 742 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 743 if (SanOpts.has(SanitizerKind::MemTag)) 744 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 745 if (SanOpts.has(SanitizerKind::Thread)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 747 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 748 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 749 if (SanOpts.has(SanitizerKind::SafeStack)) 750 Fn->addFnAttr(llvm::Attribute::SafeStack); 751 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 752 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 753 754 // Apply fuzzing attribute to the function. 755 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 756 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 757 758 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 759 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 760 if (SanOpts.has(SanitizerKind::Thread)) { 761 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 762 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 763 if (OMD->getMethodFamily() == OMF_dealloc || 764 OMD->getMethodFamily() == OMF_initialize || 765 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 766 markAsIgnoreThreadCheckingAtRuntime(Fn); 767 } 768 } 769 } 770 771 // Ignore unrelated casts in STL allocate() since the allocator must cast 772 // from void* to T* before object initialization completes. Don't match on the 773 // namespace because not all allocators are in std:: 774 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 775 if (matchesStlAllocatorFn(D, getContext())) 776 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 777 } 778 779 // Ignore null checks in coroutine functions since the coroutines passes 780 // are not aware of how to move the extra UBSan instructions across the split 781 // coroutine boundaries. 782 if (D && SanOpts.has(SanitizerKind::Null)) 783 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 784 if (FD->getBody() && 785 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 786 SanOpts.Mask &= ~SanitizerKind::Null; 787 788 // Apply xray attributes to the function (as a string, for now) 789 if (D) { 790 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 791 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 792 XRayInstrKind::Function)) { 793 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 794 Fn->addFnAttr("function-instrument", "xray-always"); 795 if (XRayAttr->neverXRayInstrument()) 796 Fn->addFnAttr("function-instrument", "xray-never"); 797 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 798 if (ShouldXRayInstrumentFunction()) 799 Fn->addFnAttr("xray-log-args", 800 llvm::utostr(LogArgs->getArgumentCount())); 801 } 802 } else { 803 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 804 Fn->addFnAttr( 805 "xray-instruction-threshold", 806 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 807 } 808 } 809 810 // Add no-jump-tables value. 811 Fn->addFnAttr("no-jump-tables", 812 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 813 814 // Add no-inline-line-tables value. 815 if (CGM.getCodeGenOpts().NoInlineLineTables) 816 Fn->addFnAttr("no-inline-line-tables"); 817 818 // Add profile-sample-accurate value. 819 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 820 Fn->addFnAttr("profile-sample-accurate"); 821 822 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 823 Fn->addFnAttr("cfi-canonical-jump-table"); 824 825 if (getLangOpts().OpenCL) { 826 // Add metadata for a kernel function. 827 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 828 EmitOpenCLKernelMetadata(FD, Fn); 829 } 830 831 // If we are checking function types, emit a function type signature as 832 // prologue data. 833 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 834 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 835 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 836 // Remove any (C++17) exception specifications, to allow calling e.g. a 837 // noexcept function through a non-noexcept pointer. 838 auto ProtoTy = 839 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 840 EST_None); 841 llvm::Constant *FTRTTIConst = 842 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 843 llvm::Constant *FTRTTIConstEncoded = 844 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 845 llvm::Constant *PrologueStructElems[] = {PrologueSig, 846 FTRTTIConstEncoded}; 847 llvm::Constant *PrologueStructConst = 848 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 849 Fn->setPrologueData(PrologueStructConst); 850 } 851 } 852 } 853 854 // If we're checking nullability, we need to know whether we can check the 855 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 856 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 857 auto Nullability = FnRetTy->getNullability(getContext()); 858 if (Nullability && *Nullability == NullabilityKind::NonNull) { 859 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 860 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 861 RetValNullabilityPrecondition = 862 llvm::ConstantInt::getTrue(getLLVMContext()); 863 } 864 } 865 866 // If we're in C++ mode and the function name is "main", it is guaranteed 867 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 868 // used within a program"). 869 if (getLangOpts().CPlusPlus) 870 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 871 if (FD->isMain()) 872 Fn->addFnAttr(llvm::Attribute::NoRecurse); 873 874 // If a custom alignment is used, force realigning to this alignment on 875 // any main function which certainly will need it. 876 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 877 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 878 CGM.getCodeGenOpts().StackAlignment) 879 Fn->addFnAttr("stackrealign"); 880 881 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 882 883 // Create a marker to make it easy to insert allocas into the entryblock 884 // later. Don't create this with the builder, because we don't want it 885 // folded. 886 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 887 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 888 889 ReturnBlock = getJumpDestInCurrentScope("return"); 890 891 Builder.SetInsertPoint(EntryBB); 892 893 // If we're checking the return value, allocate space for a pointer to a 894 // precise source location of the checked return statement. 895 if (requiresReturnValueCheck()) { 896 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 897 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 898 } 899 900 // Emit subprogram debug descriptor. 901 if (CGDebugInfo *DI = getDebugInfo()) { 902 // Reconstruct the type from the argument list so that implicit parameters, 903 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 904 // convention. 905 CallingConv CC = CallingConv::CC_C; 906 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 907 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 908 CC = SrcFnTy->getCallConv(); 909 SmallVector<QualType, 16> ArgTypes; 910 for (const VarDecl *VD : Args) 911 ArgTypes.push_back(VD->getType()); 912 QualType FnType = getContext().getFunctionType( 913 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 914 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 915 Builder); 916 } 917 918 if (ShouldInstrumentFunction()) { 919 if (CGM.getCodeGenOpts().InstrumentFunctions) 920 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 921 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 922 CurFn->addFnAttr("instrument-function-entry-inlined", 923 "__cyg_profile_func_enter"); 924 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 925 CurFn->addFnAttr("instrument-function-entry-inlined", 926 "__cyg_profile_func_enter_bare"); 927 } 928 929 // Since emitting the mcount call here impacts optimizations such as function 930 // inlining, we just add an attribute to insert a mcount call in backend. 931 // The attribute "counting-function" is set to mcount function name which is 932 // architecture dependent. 933 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 934 // Calls to fentry/mcount should not be generated if function has 935 // the no_instrument_function attribute. 936 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 937 if (CGM.getCodeGenOpts().CallFEntry) 938 Fn->addFnAttr("fentry-call", "true"); 939 else { 940 Fn->addFnAttr("instrument-function-entry-inlined", 941 getTarget().getMCountName()); 942 } 943 if (CGM.getCodeGenOpts().MNopMCount) { 944 if (getContext().getTargetInfo().getTriple().getArch() != 945 llvm::Triple::systemz) 946 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 947 << "-mnop-mcount"; 948 if (!CGM.getCodeGenOpts().CallFEntry) 949 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 950 << "-mnop-mcount" << "-mfentry"; 951 Fn->addFnAttr("mnop-mcount", "true"); 952 } 953 } 954 } 955 956 if (RetTy->isVoidType()) { 957 // Void type; nothing to return. 958 ReturnValue = Address::invalid(); 959 960 // Count the implicit return. 961 if (!endsWithReturn(D)) 962 ++NumReturnExprs; 963 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 964 // Indirect return; emit returned value directly into sret slot. 965 // This reduces code size, and affects correctness in C++. 966 auto AI = CurFn->arg_begin(); 967 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 968 ++AI; 969 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 970 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 971 ReturnValuePointer = 972 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 973 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 974 ReturnValue.getPointer(), Int8PtrTy), 975 ReturnValuePointer); 976 } 977 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 978 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 979 // Load the sret pointer from the argument struct and return into that. 980 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 981 llvm::Function::arg_iterator EI = CurFn->arg_end(); 982 --EI; 983 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 984 ReturnValuePointer = Address(Addr, getPointerAlign()); 985 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 986 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 987 } else { 988 ReturnValue = CreateIRTemp(RetTy, "retval"); 989 990 // Tell the epilog emitter to autorelease the result. We do this 991 // now so that various specialized functions can suppress it 992 // during their IR-generation. 993 if (getLangOpts().ObjCAutoRefCount && 994 !CurFnInfo->isReturnsRetained() && 995 RetTy->isObjCRetainableType()) 996 AutoreleaseResult = true; 997 } 998 999 EmitStartEHSpec(CurCodeDecl); 1000 1001 PrologueCleanupDepth = EHStack.stable_begin(); 1002 1003 // Emit OpenMP specific initialization of the device functions. 1004 if (getLangOpts().OpenMP && CurCodeDecl) 1005 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1006 1007 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1008 1009 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1010 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1011 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1012 if (MD->getParent()->isLambda() && 1013 MD->getOverloadedOperator() == OO_Call) { 1014 // We're in a lambda; figure out the captures. 1015 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1016 LambdaThisCaptureField); 1017 if (LambdaThisCaptureField) { 1018 // If the lambda captures the object referred to by '*this' - either by 1019 // value or by reference, make sure CXXThisValue points to the correct 1020 // object. 1021 1022 // Get the lvalue for the field (which is a copy of the enclosing object 1023 // or contains the address of the enclosing object). 1024 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1025 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1026 // If the enclosing object was captured by value, just use its address. 1027 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1028 } else { 1029 // Load the lvalue pointed to by the field, since '*this' was captured 1030 // by reference. 1031 CXXThisValue = 1032 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1033 } 1034 } 1035 for (auto *FD : MD->getParent()->fields()) { 1036 if (FD->hasCapturedVLAType()) { 1037 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1038 SourceLocation()).getScalarVal(); 1039 auto VAT = FD->getCapturedVLAType(); 1040 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1041 } 1042 } 1043 } else { 1044 // Not in a lambda; just use 'this' from the method. 1045 // FIXME: Should we generate a new load for each use of 'this'? The 1046 // fast register allocator would be happier... 1047 CXXThisValue = CXXABIThisValue; 1048 } 1049 1050 // Check the 'this' pointer once per function, if it's available. 1051 if (CXXABIThisValue) { 1052 SanitizerSet SkippedChecks; 1053 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1054 QualType ThisTy = MD->getThisType(); 1055 1056 // If this is the call operator of a lambda with no capture-default, it 1057 // may have a static invoker function, which may call this operator with 1058 // a null 'this' pointer. 1059 if (isLambdaCallOperator(MD) && 1060 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1061 SkippedChecks.set(SanitizerKind::Null, true); 1062 1063 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1064 : TCK_MemberCall, 1065 Loc, CXXABIThisValue, ThisTy, 1066 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1067 SkippedChecks); 1068 } 1069 } 1070 1071 // If any of the arguments have a variably modified type, make sure to 1072 // emit the type size. 1073 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1074 i != e; ++i) { 1075 const VarDecl *VD = *i; 1076 1077 // Dig out the type as written from ParmVarDecls; it's unclear whether 1078 // the standard (C99 6.9.1p10) requires this, but we're following the 1079 // precedent set by gcc. 1080 QualType Ty; 1081 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1082 Ty = PVD->getOriginalType(); 1083 else 1084 Ty = VD->getType(); 1085 1086 if (Ty->isVariablyModifiedType()) 1087 EmitVariablyModifiedType(Ty); 1088 } 1089 // Emit a location at the end of the prologue. 1090 if (CGDebugInfo *DI = getDebugInfo()) 1091 DI->EmitLocation(Builder, StartLoc); 1092 1093 // TODO: Do we need to handle this in two places like we do with 1094 // target-features/target-cpu? 1095 if (CurFuncDecl) 1096 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1097 LargestVectorWidth = VecWidth->getVectorWidth(); 1098 } 1099 1100 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1101 incrementProfileCounter(Body); 1102 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1103 EmitCompoundStmtWithoutScope(*S); 1104 else 1105 EmitStmt(Body); 1106 } 1107 1108 /// When instrumenting to collect profile data, the counts for some blocks 1109 /// such as switch cases need to not include the fall-through counts, so 1110 /// emit a branch around the instrumentation code. When not instrumenting, 1111 /// this just calls EmitBlock(). 1112 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1113 const Stmt *S) { 1114 llvm::BasicBlock *SkipCountBB = nullptr; 1115 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1116 // When instrumenting for profiling, the fallthrough to certain 1117 // statements needs to skip over the instrumentation code so that we 1118 // get an accurate count. 1119 SkipCountBB = createBasicBlock("skipcount"); 1120 EmitBranch(SkipCountBB); 1121 } 1122 EmitBlock(BB); 1123 uint64_t CurrentCount = getCurrentProfileCount(); 1124 incrementProfileCounter(S); 1125 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1126 if (SkipCountBB) 1127 EmitBlock(SkipCountBB); 1128 } 1129 1130 /// Tries to mark the given function nounwind based on the 1131 /// non-existence of any throwing calls within it. We believe this is 1132 /// lightweight enough to do at -O0. 1133 static void TryMarkNoThrow(llvm::Function *F) { 1134 // LLVM treats 'nounwind' on a function as part of the type, so we 1135 // can't do this on functions that can be overwritten. 1136 if (F->isInterposable()) return; 1137 1138 for (llvm::BasicBlock &BB : *F) 1139 for (llvm::Instruction &I : BB) 1140 if (I.mayThrow()) 1141 return; 1142 1143 F->setDoesNotThrow(); 1144 } 1145 1146 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1147 FunctionArgList &Args) { 1148 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1149 QualType ResTy = FD->getReturnType(); 1150 1151 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1152 if (MD && MD->isInstance()) { 1153 if (CGM.getCXXABI().HasThisReturn(GD)) 1154 ResTy = MD->getThisType(); 1155 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1156 ResTy = CGM.getContext().VoidPtrTy; 1157 CGM.getCXXABI().buildThisParam(*this, Args); 1158 } 1159 1160 // The base version of an inheriting constructor whose constructed base is a 1161 // virtual base is not passed any arguments (because it doesn't actually call 1162 // the inherited constructor). 1163 bool PassedParams = true; 1164 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1165 if (auto Inherited = CD->getInheritedConstructor()) 1166 PassedParams = 1167 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1168 1169 if (PassedParams) { 1170 for (auto *Param : FD->parameters()) { 1171 Args.push_back(Param); 1172 if (!Param->hasAttr<PassObjectSizeAttr>()) 1173 continue; 1174 1175 auto *Implicit = ImplicitParamDecl::Create( 1176 getContext(), Param->getDeclContext(), Param->getLocation(), 1177 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1178 SizeArguments[Param] = Implicit; 1179 Args.push_back(Implicit); 1180 } 1181 } 1182 1183 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1184 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1185 1186 return ResTy; 1187 } 1188 1189 static bool 1190 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1191 const ASTContext &Context) { 1192 QualType T = FD->getReturnType(); 1193 // Avoid the optimization for functions that return a record type with a 1194 // trivial destructor or another trivially copyable type. 1195 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1196 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1197 return !ClassDecl->hasTrivialDestructor(); 1198 } 1199 return !T.isTriviallyCopyableType(Context); 1200 } 1201 1202 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1203 const CGFunctionInfo &FnInfo) { 1204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1205 CurGD = GD; 1206 1207 FunctionArgList Args; 1208 QualType ResTy = BuildFunctionArgList(GD, Args); 1209 1210 // Check if we should generate debug info for this function. 1211 if (FD->hasAttr<NoDebugAttr>()) 1212 DebugInfo = nullptr; // disable debug info indefinitely for this function 1213 1214 // The function might not have a body if we're generating thunks for a 1215 // function declaration. 1216 SourceRange BodyRange; 1217 if (Stmt *Body = FD->getBody()) 1218 BodyRange = Body->getSourceRange(); 1219 else 1220 BodyRange = FD->getLocation(); 1221 CurEHLocation = BodyRange.getEnd(); 1222 1223 // Use the location of the start of the function to determine where 1224 // the function definition is located. By default use the location 1225 // of the declaration as the location for the subprogram. A function 1226 // may lack a declaration in the source code if it is created by code 1227 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1228 SourceLocation Loc = FD->getLocation(); 1229 1230 // If this is a function specialization then use the pattern body 1231 // as the location for the function. 1232 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1233 if (SpecDecl->hasBody(SpecDecl)) 1234 Loc = SpecDecl->getLocation(); 1235 1236 Stmt *Body = FD->getBody(); 1237 1238 // Initialize helper which will detect jumps which can cause invalid lifetime 1239 // markers. 1240 if (Body && ShouldEmitLifetimeMarkers) 1241 Bypasses.Init(Body); 1242 1243 // Emit the standard function prologue. 1244 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1245 1246 // Generate the body of the function. 1247 PGO.assignRegionCounters(GD, CurFn); 1248 if (isa<CXXDestructorDecl>(FD)) 1249 EmitDestructorBody(Args); 1250 else if (isa<CXXConstructorDecl>(FD)) 1251 EmitConstructorBody(Args); 1252 else if (getLangOpts().CUDA && 1253 !getLangOpts().CUDAIsDevice && 1254 FD->hasAttr<CUDAGlobalAttr>()) 1255 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1256 else if (isa<CXXMethodDecl>(FD) && 1257 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1258 // The lambda static invoker function is special, because it forwards or 1259 // clones the body of the function call operator (but is actually static). 1260 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1261 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1262 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1263 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1264 // Implicit copy-assignment gets the same special treatment as implicit 1265 // copy-constructors. 1266 emitImplicitAssignmentOperatorBody(Args); 1267 } else if (Body) { 1268 EmitFunctionBody(Body); 1269 } else 1270 llvm_unreachable("no definition for emitted function"); 1271 1272 // C++11 [stmt.return]p2: 1273 // Flowing off the end of a function [...] results in undefined behavior in 1274 // a value-returning function. 1275 // C11 6.9.1p12: 1276 // If the '}' that terminates a function is reached, and the value of the 1277 // function call is used by the caller, the behavior is undefined. 1278 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1279 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1280 bool ShouldEmitUnreachable = 1281 CGM.getCodeGenOpts().StrictReturn || 1282 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1283 if (SanOpts.has(SanitizerKind::Return)) { 1284 SanitizerScope SanScope(this); 1285 llvm::Value *IsFalse = Builder.getFalse(); 1286 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1287 SanitizerHandler::MissingReturn, 1288 EmitCheckSourceLocation(FD->getLocation()), None); 1289 } else if (ShouldEmitUnreachable) { 1290 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1291 EmitTrapCall(llvm::Intrinsic::trap); 1292 } 1293 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1294 Builder.CreateUnreachable(); 1295 Builder.ClearInsertionPoint(); 1296 } 1297 } 1298 1299 // Emit the standard function epilogue. 1300 FinishFunction(BodyRange.getEnd()); 1301 1302 // If we haven't marked the function nothrow through other means, do 1303 // a quick pass now to see if we can. 1304 if (!CurFn->doesNotThrow()) 1305 TryMarkNoThrow(CurFn); 1306 } 1307 1308 /// ContainsLabel - Return true if the statement contains a label in it. If 1309 /// this statement is not executed normally, it not containing a label means 1310 /// that we can just remove the code. 1311 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1312 // Null statement, not a label! 1313 if (!S) return false; 1314 1315 // If this is a label, we have to emit the code, consider something like: 1316 // if (0) { ... foo: bar(); } goto foo; 1317 // 1318 // TODO: If anyone cared, we could track __label__'s, since we know that you 1319 // can't jump to one from outside their declared region. 1320 if (isa<LabelStmt>(S)) 1321 return true; 1322 1323 // If this is a case/default statement, and we haven't seen a switch, we have 1324 // to emit the code. 1325 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1326 return true; 1327 1328 // If this is a switch statement, we want to ignore cases below it. 1329 if (isa<SwitchStmt>(S)) 1330 IgnoreCaseStmts = true; 1331 1332 // Scan subexpressions for verboten labels. 1333 for (const Stmt *SubStmt : S->children()) 1334 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1335 return true; 1336 1337 return false; 1338 } 1339 1340 /// containsBreak - Return true if the statement contains a break out of it. 1341 /// If the statement (recursively) contains a switch or loop with a break 1342 /// inside of it, this is fine. 1343 bool CodeGenFunction::containsBreak(const Stmt *S) { 1344 // Null statement, not a label! 1345 if (!S) return false; 1346 1347 // If this is a switch or loop that defines its own break scope, then we can 1348 // include it and anything inside of it. 1349 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1350 isa<ForStmt>(S)) 1351 return false; 1352 1353 if (isa<BreakStmt>(S)) 1354 return true; 1355 1356 // Scan subexpressions for verboten breaks. 1357 for (const Stmt *SubStmt : S->children()) 1358 if (containsBreak(SubStmt)) 1359 return true; 1360 1361 return false; 1362 } 1363 1364 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1365 if (!S) return false; 1366 1367 // Some statement kinds add a scope and thus never add a decl to the current 1368 // scope. Note, this list is longer than the list of statements that might 1369 // have an unscoped decl nested within them, but this way is conservatively 1370 // correct even if more statement kinds are added. 1371 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1372 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1373 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1374 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1375 return false; 1376 1377 if (isa<DeclStmt>(S)) 1378 return true; 1379 1380 for (const Stmt *SubStmt : S->children()) 1381 if (mightAddDeclToScope(SubStmt)) 1382 return true; 1383 1384 return false; 1385 } 1386 1387 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1388 /// to a constant, or if it does but contains a label, return false. If it 1389 /// constant folds return true and set the boolean result in Result. 1390 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1391 bool &ResultBool, 1392 bool AllowLabels) { 1393 llvm::APSInt ResultInt; 1394 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1395 return false; 1396 1397 ResultBool = ResultInt.getBoolValue(); 1398 return true; 1399 } 1400 1401 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1402 /// to a constant, or if it does but contains a label, return false. If it 1403 /// constant folds return true and set the folded value. 1404 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1405 llvm::APSInt &ResultInt, 1406 bool AllowLabels) { 1407 // FIXME: Rename and handle conversion of other evaluatable things 1408 // to bool. 1409 Expr::EvalResult Result; 1410 if (!Cond->EvaluateAsInt(Result, getContext())) 1411 return false; // Not foldable, not integer or not fully evaluatable. 1412 1413 llvm::APSInt Int = Result.Val.getInt(); 1414 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1415 return false; // Contains a label. 1416 1417 ResultInt = Int; 1418 return true; 1419 } 1420 1421 1422 1423 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1424 /// statement) to the specified blocks. Based on the condition, this might try 1425 /// to simplify the codegen of the conditional based on the branch. 1426 /// 1427 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1428 llvm::BasicBlock *TrueBlock, 1429 llvm::BasicBlock *FalseBlock, 1430 uint64_t TrueCount) { 1431 Cond = Cond->IgnoreParens(); 1432 1433 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1434 1435 // Handle X && Y in a condition. 1436 if (CondBOp->getOpcode() == BO_LAnd) { 1437 // If we have "1 && X", simplify the code. "0 && X" would have constant 1438 // folded if the case was simple enough. 1439 bool ConstantBool = false; 1440 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1441 ConstantBool) { 1442 // br(1 && X) -> br(X). 1443 incrementProfileCounter(CondBOp); 1444 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1445 TrueCount); 1446 } 1447 1448 // If we have "X && 1", simplify the code to use an uncond branch. 1449 // "X && 0" would have been constant folded to 0. 1450 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1451 ConstantBool) { 1452 // br(X && 1) -> br(X). 1453 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1454 TrueCount); 1455 } 1456 1457 // Emit the LHS as a conditional. If the LHS conditional is false, we 1458 // want to jump to the FalseBlock. 1459 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1460 // The counter tells us how often we evaluate RHS, and all of TrueCount 1461 // can be propagated to that branch. 1462 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1463 1464 ConditionalEvaluation eval(*this); 1465 { 1466 ApplyDebugLocation DL(*this, Cond); 1467 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1468 EmitBlock(LHSTrue); 1469 } 1470 1471 incrementProfileCounter(CondBOp); 1472 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1473 1474 // Any temporaries created here are conditional. 1475 eval.begin(*this); 1476 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1477 eval.end(*this); 1478 1479 return; 1480 } 1481 1482 if (CondBOp->getOpcode() == BO_LOr) { 1483 // If we have "0 || X", simplify the code. "1 || X" would have constant 1484 // folded if the case was simple enough. 1485 bool ConstantBool = false; 1486 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1487 !ConstantBool) { 1488 // br(0 || X) -> br(X). 1489 incrementProfileCounter(CondBOp); 1490 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1491 TrueCount); 1492 } 1493 1494 // If we have "X || 0", simplify the code to use an uncond branch. 1495 // "X || 1" would have been constant folded to 1. 1496 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1497 !ConstantBool) { 1498 // br(X || 0) -> br(X). 1499 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1500 TrueCount); 1501 } 1502 1503 // Emit the LHS as a conditional. If the LHS conditional is true, we 1504 // want to jump to the TrueBlock. 1505 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1506 // We have the count for entry to the RHS and for the whole expression 1507 // being true, so we can divy up True count between the short circuit and 1508 // the RHS. 1509 uint64_t LHSCount = 1510 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1511 uint64_t RHSCount = TrueCount - LHSCount; 1512 1513 ConditionalEvaluation eval(*this); 1514 { 1515 ApplyDebugLocation DL(*this, Cond); 1516 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1517 EmitBlock(LHSFalse); 1518 } 1519 1520 incrementProfileCounter(CondBOp); 1521 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1522 1523 // Any temporaries created here are conditional. 1524 eval.begin(*this); 1525 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1526 1527 eval.end(*this); 1528 1529 return; 1530 } 1531 } 1532 1533 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1534 // br(!x, t, f) -> br(x, f, t) 1535 if (CondUOp->getOpcode() == UO_LNot) { 1536 // Negate the count. 1537 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1538 // Negate the condition and swap the destination blocks. 1539 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1540 FalseCount); 1541 } 1542 } 1543 1544 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1545 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1546 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1547 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1548 1549 ConditionalEvaluation cond(*this); 1550 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1551 getProfileCount(CondOp)); 1552 1553 // When computing PGO branch weights, we only know the overall count for 1554 // the true block. This code is essentially doing tail duplication of the 1555 // naive code-gen, introducing new edges for which counts are not 1556 // available. Divide the counts proportionally between the LHS and RHS of 1557 // the conditional operator. 1558 uint64_t LHSScaledTrueCount = 0; 1559 if (TrueCount) { 1560 double LHSRatio = 1561 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1562 LHSScaledTrueCount = TrueCount * LHSRatio; 1563 } 1564 1565 cond.begin(*this); 1566 EmitBlock(LHSBlock); 1567 incrementProfileCounter(CondOp); 1568 { 1569 ApplyDebugLocation DL(*this, Cond); 1570 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1571 LHSScaledTrueCount); 1572 } 1573 cond.end(*this); 1574 1575 cond.begin(*this); 1576 EmitBlock(RHSBlock); 1577 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1578 TrueCount - LHSScaledTrueCount); 1579 cond.end(*this); 1580 1581 return; 1582 } 1583 1584 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1585 // Conditional operator handling can give us a throw expression as a 1586 // condition for a case like: 1587 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1588 // Fold this to: 1589 // br(c, throw x, br(y, t, f)) 1590 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1591 return; 1592 } 1593 1594 // If the branch has a condition wrapped by __builtin_unpredictable, 1595 // create metadata that specifies that the branch is unpredictable. 1596 // Don't bother if not optimizing because that metadata would not be used. 1597 llvm::MDNode *Unpredictable = nullptr; 1598 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1599 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1600 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1601 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1602 llvm::MDBuilder MDHelper(getLLVMContext()); 1603 Unpredictable = MDHelper.createUnpredictable(); 1604 } 1605 } 1606 1607 // Create branch weights based on the number of times we get here and the 1608 // number of times the condition should be true. 1609 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1610 llvm::MDNode *Weights = 1611 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1612 1613 // Emit the code with the fully general case. 1614 llvm::Value *CondV; 1615 { 1616 ApplyDebugLocation DL(*this, Cond); 1617 CondV = EvaluateExprAsBool(Cond); 1618 } 1619 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1620 } 1621 1622 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1623 /// specified stmt yet. 1624 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1625 CGM.ErrorUnsupported(S, Type); 1626 } 1627 1628 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1629 /// variable-length array whose elements have a non-zero bit-pattern. 1630 /// 1631 /// \param baseType the inner-most element type of the array 1632 /// \param src - a char* pointing to the bit-pattern for a single 1633 /// base element of the array 1634 /// \param sizeInChars - the total size of the VLA, in chars 1635 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1636 Address dest, Address src, 1637 llvm::Value *sizeInChars) { 1638 CGBuilderTy &Builder = CGF.Builder; 1639 1640 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1641 llvm::Value *baseSizeInChars 1642 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1643 1644 Address begin = 1645 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1646 llvm::Value *end = 1647 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1648 1649 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1650 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1651 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1652 1653 // Make a loop over the VLA. C99 guarantees that the VLA element 1654 // count must be nonzero. 1655 CGF.EmitBlock(loopBB); 1656 1657 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1658 cur->addIncoming(begin.getPointer(), originBB); 1659 1660 CharUnits curAlign = 1661 dest.getAlignment().alignmentOfArrayElement(baseSize); 1662 1663 // memcpy the individual element bit-pattern. 1664 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1665 /*volatile*/ false); 1666 1667 // Go to the next element. 1668 llvm::Value *next = 1669 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1670 1671 // Leave if that's the end of the VLA. 1672 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1673 Builder.CreateCondBr(done, contBB, loopBB); 1674 cur->addIncoming(next, loopBB); 1675 1676 CGF.EmitBlock(contBB); 1677 } 1678 1679 void 1680 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1681 // Ignore empty classes in C++. 1682 if (getLangOpts().CPlusPlus) { 1683 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1684 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1685 return; 1686 } 1687 } 1688 1689 // Cast the dest ptr to the appropriate i8 pointer type. 1690 if (DestPtr.getElementType() != Int8Ty) 1691 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1692 1693 // Get size and alignment info for this aggregate. 1694 CharUnits size = getContext().getTypeSizeInChars(Ty); 1695 1696 llvm::Value *SizeVal; 1697 const VariableArrayType *vla; 1698 1699 // Don't bother emitting a zero-byte memset. 1700 if (size.isZero()) { 1701 // But note that getTypeInfo returns 0 for a VLA. 1702 if (const VariableArrayType *vlaType = 1703 dyn_cast_or_null<VariableArrayType>( 1704 getContext().getAsArrayType(Ty))) { 1705 auto VlaSize = getVLASize(vlaType); 1706 SizeVal = VlaSize.NumElts; 1707 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1708 if (!eltSize.isOne()) 1709 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1710 vla = vlaType; 1711 } else { 1712 return; 1713 } 1714 } else { 1715 SizeVal = CGM.getSize(size); 1716 vla = nullptr; 1717 } 1718 1719 // If the type contains a pointer to data member we can't memset it to zero. 1720 // Instead, create a null constant and copy it to the destination. 1721 // TODO: there are other patterns besides zero that we can usefully memset, 1722 // like -1, which happens to be the pattern used by member-pointers. 1723 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1724 // For a VLA, emit a single element, then splat that over the VLA. 1725 if (vla) Ty = getContext().getBaseElementType(vla); 1726 1727 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1728 1729 llvm::GlobalVariable *NullVariable = 1730 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1731 /*isConstant=*/true, 1732 llvm::GlobalVariable::PrivateLinkage, 1733 NullConstant, Twine()); 1734 CharUnits NullAlign = DestPtr.getAlignment(); 1735 NullVariable->setAlignment(NullAlign.getAsAlign()); 1736 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1737 NullAlign); 1738 1739 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1740 1741 // Get and call the appropriate llvm.memcpy overload. 1742 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1743 return; 1744 } 1745 1746 // Otherwise, just memset the whole thing to zero. This is legal 1747 // because in LLVM, all default initializers (other than the ones we just 1748 // handled above) are guaranteed to have a bit pattern of all zeros. 1749 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1750 } 1751 1752 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1753 // Make sure that there is a block for the indirect goto. 1754 if (!IndirectBranch) 1755 GetIndirectGotoBlock(); 1756 1757 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1758 1759 // Make sure the indirect branch includes all of the address-taken blocks. 1760 IndirectBranch->addDestination(BB); 1761 return llvm::BlockAddress::get(CurFn, BB); 1762 } 1763 1764 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1765 // If we already made the indirect branch for indirect goto, return its block. 1766 if (IndirectBranch) return IndirectBranch->getParent(); 1767 1768 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1769 1770 // Create the PHI node that indirect gotos will add entries to. 1771 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1772 "indirect.goto.dest"); 1773 1774 // Create the indirect branch instruction. 1775 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1776 return IndirectBranch->getParent(); 1777 } 1778 1779 /// Computes the length of an array in elements, as well as the base 1780 /// element type and a properly-typed first element pointer. 1781 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1782 QualType &baseType, 1783 Address &addr) { 1784 const ArrayType *arrayType = origArrayType; 1785 1786 // If it's a VLA, we have to load the stored size. Note that 1787 // this is the size of the VLA in bytes, not its size in elements. 1788 llvm::Value *numVLAElements = nullptr; 1789 if (isa<VariableArrayType>(arrayType)) { 1790 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1791 1792 // Walk into all VLAs. This doesn't require changes to addr, 1793 // which has type T* where T is the first non-VLA element type. 1794 do { 1795 QualType elementType = arrayType->getElementType(); 1796 arrayType = getContext().getAsArrayType(elementType); 1797 1798 // If we only have VLA components, 'addr' requires no adjustment. 1799 if (!arrayType) { 1800 baseType = elementType; 1801 return numVLAElements; 1802 } 1803 } while (isa<VariableArrayType>(arrayType)); 1804 1805 // We get out here only if we find a constant array type 1806 // inside the VLA. 1807 } 1808 1809 // We have some number of constant-length arrays, so addr should 1810 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1811 // down to the first element of addr. 1812 SmallVector<llvm::Value*, 8> gepIndices; 1813 1814 // GEP down to the array type. 1815 llvm::ConstantInt *zero = Builder.getInt32(0); 1816 gepIndices.push_back(zero); 1817 1818 uint64_t countFromCLAs = 1; 1819 QualType eltType; 1820 1821 llvm::ArrayType *llvmArrayType = 1822 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1823 while (llvmArrayType) { 1824 assert(isa<ConstantArrayType>(arrayType)); 1825 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1826 == llvmArrayType->getNumElements()); 1827 1828 gepIndices.push_back(zero); 1829 countFromCLAs *= llvmArrayType->getNumElements(); 1830 eltType = arrayType->getElementType(); 1831 1832 llvmArrayType = 1833 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1834 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1835 assert((!llvmArrayType || arrayType) && 1836 "LLVM and Clang types are out-of-synch"); 1837 } 1838 1839 if (arrayType) { 1840 // From this point onwards, the Clang array type has been emitted 1841 // as some other type (probably a packed struct). Compute the array 1842 // size, and just emit the 'begin' expression as a bitcast. 1843 while (arrayType) { 1844 countFromCLAs *= 1845 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1846 eltType = arrayType->getElementType(); 1847 arrayType = getContext().getAsArrayType(eltType); 1848 } 1849 1850 llvm::Type *baseType = ConvertType(eltType); 1851 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1852 } else { 1853 // Create the actual GEP. 1854 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1855 gepIndices, "array.begin"), 1856 addr.getAlignment()); 1857 } 1858 1859 baseType = eltType; 1860 1861 llvm::Value *numElements 1862 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1863 1864 // If we had any VLA dimensions, factor them in. 1865 if (numVLAElements) 1866 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1867 1868 return numElements; 1869 } 1870 1871 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1872 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1873 assert(vla && "type was not a variable array type!"); 1874 return getVLASize(vla); 1875 } 1876 1877 CodeGenFunction::VlaSizePair 1878 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1879 // The number of elements so far; always size_t. 1880 llvm::Value *numElements = nullptr; 1881 1882 QualType elementType; 1883 do { 1884 elementType = type->getElementType(); 1885 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1886 assert(vlaSize && "no size for VLA!"); 1887 assert(vlaSize->getType() == SizeTy); 1888 1889 if (!numElements) { 1890 numElements = vlaSize; 1891 } else { 1892 // It's undefined behavior if this wraps around, so mark it that way. 1893 // FIXME: Teach -fsanitize=undefined to trap this. 1894 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1895 } 1896 } while ((type = getContext().getAsVariableArrayType(elementType))); 1897 1898 return { numElements, elementType }; 1899 } 1900 1901 CodeGenFunction::VlaSizePair 1902 CodeGenFunction::getVLAElements1D(QualType type) { 1903 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1904 assert(vla && "type was not a variable array type!"); 1905 return getVLAElements1D(vla); 1906 } 1907 1908 CodeGenFunction::VlaSizePair 1909 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1910 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1911 assert(VlaSize && "no size for VLA!"); 1912 assert(VlaSize->getType() == SizeTy); 1913 return { VlaSize, Vla->getElementType() }; 1914 } 1915 1916 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1917 assert(type->isVariablyModifiedType() && 1918 "Must pass variably modified type to EmitVLASizes!"); 1919 1920 EnsureInsertPoint(); 1921 1922 // We're going to walk down into the type and look for VLA 1923 // expressions. 1924 do { 1925 assert(type->isVariablyModifiedType()); 1926 1927 const Type *ty = type.getTypePtr(); 1928 switch (ty->getTypeClass()) { 1929 1930 #define TYPE(Class, Base) 1931 #define ABSTRACT_TYPE(Class, Base) 1932 #define NON_CANONICAL_TYPE(Class, Base) 1933 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1934 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1935 #include "clang/AST/TypeNodes.inc" 1936 llvm_unreachable("unexpected dependent type!"); 1937 1938 // These types are never variably-modified. 1939 case Type::Builtin: 1940 case Type::Complex: 1941 case Type::Vector: 1942 case Type::ExtVector: 1943 case Type::Record: 1944 case Type::Enum: 1945 case Type::Elaborated: 1946 case Type::TemplateSpecialization: 1947 case Type::ObjCTypeParam: 1948 case Type::ObjCObject: 1949 case Type::ObjCInterface: 1950 case Type::ObjCObjectPointer: 1951 llvm_unreachable("type class is never variably-modified!"); 1952 1953 case Type::Adjusted: 1954 type = cast<AdjustedType>(ty)->getAdjustedType(); 1955 break; 1956 1957 case Type::Decayed: 1958 type = cast<DecayedType>(ty)->getPointeeType(); 1959 break; 1960 1961 case Type::Pointer: 1962 type = cast<PointerType>(ty)->getPointeeType(); 1963 break; 1964 1965 case Type::BlockPointer: 1966 type = cast<BlockPointerType>(ty)->getPointeeType(); 1967 break; 1968 1969 case Type::LValueReference: 1970 case Type::RValueReference: 1971 type = cast<ReferenceType>(ty)->getPointeeType(); 1972 break; 1973 1974 case Type::MemberPointer: 1975 type = cast<MemberPointerType>(ty)->getPointeeType(); 1976 break; 1977 1978 case Type::ConstantArray: 1979 case Type::IncompleteArray: 1980 // Losing element qualification here is fine. 1981 type = cast<ArrayType>(ty)->getElementType(); 1982 break; 1983 1984 case Type::VariableArray: { 1985 // Losing element qualification here is fine. 1986 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1987 1988 // Unknown size indication requires no size computation. 1989 // Otherwise, evaluate and record it. 1990 if (const Expr *size = vat->getSizeExpr()) { 1991 // It's possible that we might have emitted this already, 1992 // e.g. with a typedef and a pointer to it. 1993 llvm::Value *&entry = VLASizeMap[size]; 1994 if (!entry) { 1995 llvm::Value *Size = EmitScalarExpr(size); 1996 1997 // C11 6.7.6.2p5: 1998 // If the size is an expression that is not an integer constant 1999 // expression [...] each time it is evaluated it shall have a value 2000 // greater than zero. 2001 if (SanOpts.has(SanitizerKind::VLABound) && 2002 size->getType()->isSignedIntegerType()) { 2003 SanitizerScope SanScope(this); 2004 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2005 llvm::Constant *StaticArgs[] = { 2006 EmitCheckSourceLocation(size->getBeginLoc()), 2007 EmitCheckTypeDescriptor(size->getType())}; 2008 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2009 SanitizerKind::VLABound), 2010 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2011 } 2012 2013 // Always zexting here would be wrong if it weren't 2014 // undefined behavior to have a negative bound. 2015 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2016 } 2017 } 2018 type = vat->getElementType(); 2019 break; 2020 } 2021 2022 case Type::FunctionProto: 2023 case Type::FunctionNoProto: 2024 type = cast<FunctionType>(ty)->getReturnType(); 2025 break; 2026 2027 case Type::Paren: 2028 case Type::TypeOf: 2029 case Type::UnaryTransform: 2030 case Type::Attributed: 2031 case Type::SubstTemplateTypeParm: 2032 case Type::PackExpansion: 2033 case Type::MacroQualified: 2034 // Keep walking after single level desugaring. 2035 type = type.getSingleStepDesugaredType(getContext()); 2036 break; 2037 2038 case Type::Typedef: 2039 case Type::Decltype: 2040 case Type::Auto: 2041 case Type::DeducedTemplateSpecialization: 2042 // Stop walking: nothing to do. 2043 return; 2044 2045 case Type::TypeOfExpr: 2046 // Stop walking: emit typeof expression. 2047 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2048 return; 2049 2050 case Type::Atomic: 2051 type = cast<AtomicType>(ty)->getValueType(); 2052 break; 2053 2054 case Type::Pipe: 2055 type = cast<PipeType>(ty)->getElementType(); 2056 break; 2057 } 2058 } while (type->isVariablyModifiedType()); 2059 } 2060 2061 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2062 if (getContext().getBuiltinVaListType()->isArrayType()) 2063 return EmitPointerWithAlignment(E); 2064 return EmitLValue(E).getAddress(); 2065 } 2066 2067 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2068 return EmitLValue(E).getAddress(); 2069 } 2070 2071 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2072 const APValue &Init) { 2073 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2074 if (CGDebugInfo *Dbg = getDebugInfo()) 2075 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2076 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2077 } 2078 2079 CodeGenFunction::PeepholeProtection 2080 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2081 // At the moment, the only aggressive peephole we do in IR gen 2082 // is trunc(zext) folding, but if we add more, we can easily 2083 // extend this protection. 2084 2085 if (!rvalue.isScalar()) return PeepholeProtection(); 2086 llvm::Value *value = rvalue.getScalarVal(); 2087 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2088 2089 // Just make an extra bitcast. 2090 assert(HaveInsertPoint()); 2091 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2092 Builder.GetInsertBlock()); 2093 2094 PeepholeProtection protection; 2095 protection.Inst = inst; 2096 return protection; 2097 } 2098 2099 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2100 if (!protection.Inst) return; 2101 2102 // In theory, we could try to duplicate the peepholes now, but whatever. 2103 protection.Inst->eraseFromParent(); 2104 } 2105 2106 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2107 QualType Ty, SourceLocation Loc, 2108 SourceLocation AssumptionLoc, 2109 llvm::Value *Alignment, 2110 llvm::Value *OffsetValue) { 2111 llvm::Value *TheCheck; 2112 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2113 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2114 if (SanOpts.has(SanitizerKind::Alignment)) { 2115 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2116 OffsetValue, TheCheck, Assumption); 2117 } 2118 } 2119 2120 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2121 const Expr *E, 2122 SourceLocation AssumptionLoc, 2123 llvm::Value *Alignment, 2124 llvm::Value *OffsetValue) { 2125 if (auto *CE = dyn_cast<CastExpr>(E)) 2126 E = CE->getSubExprAsWritten(); 2127 QualType Ty = E->getType(); 2128 SourceLocation Loc = E->getExprLoc(); 2129 2130 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2131 OffsetValue); 2132 } 2133 2134 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2135 llvm::Value *AnnotatedVal, 2136 StringRef AnnotationStr, 2137 SourceLocation Location) { 2138 llvm::Value *Args[4] = { 2139 AnnotatedVal, 2140 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2141 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2142 CGM.EmitAnnotationLineNo(Location) 2143 }; 2144 return Builder.CreateCall(AnnotationFn, Args); 2145 } 2146 2147 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2148 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2149 // FIXME We create a new bitcast for every annotation because that's what 2150 // llvm-gcc was doing. 2151 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2152 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2153 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2154 I->getAnnotation(), D->getLocation()); 2155 } 2156 2157 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2158 Address Addr) { 2159 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2160 llvm::Value *V = Addr.getPointer(); 2161 llvm::Type *VTy = V->getType(); 2162 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2163 CGM.Int8PtrTy); 2164 2165 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2166 // FIXME Always emit the cast inst so we can differentiate between 2167 // annotation on the first field of a struct and annotation on the struct 2168 // itself. 2169 if (VTy != CGM.Int8PtrTy) 2170 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2171 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2172 V = Builder.CreateBitCast(V, VTy); 2173 } 2174 2175 return Address(V, Addr.getAlignment()); 2176 } 2177 2178 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2179 2180 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2181 : CGF(CGF) { 2182 assert(!CGF->IsSanitizerScope); 2183 CGF->IsSanitizerScope = true; 2184 } 2185 2186 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2187 CGF->IsSanitizerScope = false; 2188 } 2189 2190 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2191 const llvm::Twine &Name, 2192 llvm::BasicBlock *BB, 2193 llvm::BasicBlock::iterator InsertPt) const { 2194 LoopStack.InsertHelper(I); 2195 if (IsSanitizerScope) 2196 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2197 } 2198 2199 void CGBuilderInserter::InsertHelper( 2200 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2201 llvm::BasicBlock::iterator InsertPt) const { 2202 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2203 if (CGF) 2204 CGF->InsertHelper(I, Name, BB, InsertPt); 2205 } 2206 2207 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2208 CodeGenModule &CGM, const FunctionDecl *FD, 2209 std::string &FirstMissing) { 2210 // If there aren't any required features listed then go ahead and return. 2211 if (ReqFeatures.empty()) 2212 return false; 2213 2214 // Now build up the set of caller features and verify that all the required 2215 // features are there. 2216 llvm::StringMap<bool> CallerFeatureMap; 2217 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2218 2219 // If we have at least one of the features in the feature list return 2220 // true, otherwise return false. 2221 return std::all_of( 2222 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2223 SmallVector<StringRef, 1> OrFeatures; 2224 Feature.split(OrFeatures, '|'); 2225 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2226 if (!CallerFeatureMap.lookup(Feature)) { 2227 FirstMissing = Feature.str(); 2228 return false; 2229 } 2230 return true; 2231 }); 2232 }); 2233 } 2234 2235 // Emits an error if we don't have a valid set of target features for the 2236 // called function. 2237 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2238 const FunctionDecl *TargetDecl) { 2239 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2240 } 2241 2242 // Emits an error if we don't have a valid set of target features for the 2243 // called function. 2244 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2245 const FunctionDecl *TargetDecl) { 2246 // Early exit if this is an indirect call. 2247 if (!TargetDecl) 2248 return; 2249 2250 // Get the current enclosing function if it exists. If it doesn't 2251 // we can't check the target features anyhow. 2252 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2253 if (!FD) 2254 return; 2255 2256 // Grab the required features for the call. For a builtin this is listed in 2257 // the td file with the default cpu, for an always_inline function this is any 2258 // listed cpu and any listed features. 2259 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2260 std::string MissingFeature; 2261 if (BuiltinID) { 2262 SmallVector<StringRef, 1> ReqFeatures; 2263 const char *FeatureList = 2264 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2265 // Return if the builtin doesn't have any required features. 2266 if (!FeatureList || StringRef(FeatureList) == "") 2267 return; 2268 StringRef(FeatureList).split(ReqFeatures, ','); 2269 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2270 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2271 << TargetDecl->getDeclName() 2272 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2273 2274 } else if (TargetDecl->hasAttr<TargetAttr>() || 2275 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2276 // Get the required features for the callee. 2277 2278 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2279 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2280 2281 SmallVector<StringRef, 1> ReqFeatures; 2282 llvm::StringMap<bool> CalleeFeatureMap; 2283 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2284 2285 for (const auto &F : ParsedAttr.Features) { 2286 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2287 ReqFeatures.push_back(StringRef(F).substr(1)); 2288 } 2289 2290 for (const auto &F : CalleeFeatureMap) { 2291 // Only positive features are "required". 2292 if (F.getValue()) 2293 ReqFeatures.push_back(F.getKey()); 2294 } 2295 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2296 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2297 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2298 } 2299 } 2300 2301 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2302 if (!CGM.getCodeGenOpts().SanitizeStats) 2303 return; 2304 2305 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2306 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2307 CGM.getSanStats().create(IRB, SSK); 2308 } 2309 2310 llvm::Value * 2311 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2312 llvm::Value *Condition = nullptr; 2313 2314 if (!RO.Conditions.Architecture.empty()) 2315 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2316 2317 if (!RO.Conditions.Features.empty()) { 2318 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2319 Condition = 2320 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2321 } 2322 return Condition; 2323 } 2324 2325 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2326 llvm::Function *Resolver, 2327 CGBuilderTy &Builder, 2328 llvm::Function *FuncToReturn, 2329 bool SupportsIFunc) { 2330 if (SupportsIFunc) { 2331 Builder.CreateRet(FuncToReturn); 2332 return; 2333 } 2334 2335 llvm::SmallVector<llvm::Value *, 10> Args; 2336 llvm::for_each(Resolver->args(), 2337 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2338 2339 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2340 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2341 2342 if (Resolver->getReturnType()->isVoidTy()) 2343 Builder.CreateRetVoid(); 2344 else 2345 Builder.CreateRet(Result); 2346 } 2347 2348 void CodeGenFunction::EmitMultiVersionResolver( 2349 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2350 assert((getContext().getTargetInfo().getTriple().getArch() == 2351 llvm::Triple::x86 || 2352 getContext().getTargetInfo().getTriple().getArch() == 2353 llvm::Triple::x86_64) && 2354 "Only implemented for x86 targets"); 2355 2356 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2357 2358 // Main function's basic block. 2359 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2360 Builder.SetInsertPoint(CurBlock); 2361 EmitX86CpuInit(); 2362 2363 for (const MultiVersionResolverOption &RO : Options) { 2364 Builder.SetInsertPoint(CurBlock); 2365 llvm::Value *Condition = FormResolverCondition(RO); 2366 2367 // The 'default' or 'generic' case. 2368 if (!Condition) { 2369 assert(&RO == Options.end() - 1 && 2370 "Default or Generic case must be last"); 2371 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2372 SupportsIFunc); 2373 return; 2374 } 2375 2376 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2377 CGBuilderTy RetBuilder(*this, RetBlock); 2378 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2379 SupportsIFunc); 2380 CurBlock = createBasicBlock("resolver_else", Resolver); 2381 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2382 } 2383 2384 // If no generic/default, emit an unreachable. 2385 Builder.SetInsertPoint(CurBlock); 2386 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2387 TrapCall->setDoesNotReturn(); 2388 TrapCall->setDoesNotThrow(); 2389 Builder.CreateUnreachable(); 2390 Builder.ClearInsertionPoint(); 2391 } 2392 2393 // Loc - where the diagnostic will point, where in the source code this 2394 // alignment has failed. 2395 // SecondaryLoc - if present (will be present if sufficiently different from 2396 // Loc), the diagnostic will additionally point a "Note:" to this location. 2397 // It should be the location where the __attribute__((assume_aligned)) 2398 // was written e.g. 2399 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2400 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2401 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2402 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2403 llvm::Instruction *Assumption) { 2404 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2405 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2406 llvm::Intrinsic::getDeclaration( 2407 Builder.GetInsertBlock()->getParent()->getParent(), 2408 llvm::Intrinsic::assume) && 2409 "Assumption should be a call to llvm.assume()."); 2410 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2411 "Assumption should be the last instruction of the basic block, " 2412 "since the basic block is still being generated."); 2413 2414 if (!SanOpts.has(SanitizerKind::Alignment)) 2415 return; 2416 2417 // Don't check pointers to volatile data. The behavior here is implementation- 2418 // defined. 2419 if (Ty->getPointeeType().isVolatileQualified()) 2420 return; 2421 2422 // We need to temorairly remove the assumption so we can insert the 2423 // sanitizer check before it, else the check will be dropped by optimizations. 2424 Assumption->removeFromParent(); 2425 2426 { 2427 SanitizerScope SanScope(this); 2428 2429 if (!OffsetValue) 2430 OffsetValue = Builder.getInt1(0); // no offset. 2431 2432 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2433 EmitCheckSourceLocation(SecondaryLoc), 2434 EmitCheckTypeDescriptor(Ty)}; 2435 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2436 EmitCheckValue(Alignment), 2437 EmitCheckValue(OffsetValue)}; 2438 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2439 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2440 } 2441 2442 // We are now in the (new, empty) "cont" basic block. 2443 // Reintroduce the assumption. 2444 Builder.Insert(Assumption); 2445 // FIXME: Assumption still has it's original basic block as it's Parent. 2446 } 2447 2448 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2449 if (CGDebugInfo *DI = getDebugInfo()) 2450 return DI->SourceLocToDebugLoc(Location); 2451 2452 return llvm::DebugLoc(); 2453 } 2454