1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                    llvm::SwitchInst *Switch,
33                                    llvm::BasicBlock *CleanupEntry);
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36   : BlockFunction(cgm, *this, Builder), CGM(cgm),
37     Target(CGM.getContext().Target),
38     Builder(cgm.getModule().getContext()),
39     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41     SwitchInsn(0), CaseRangeBlock(0),
42     DidCallStackSave(false), UnreachableBlock(0),
43     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45     TrapBB(0) {
46 
47   // Get some frequently used types.
48   LLVMPointerWidth = Target.getPointerWidth(0);
49   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53 
54   Exceptions = getContext().getLangOptions().Exceptions;
55   CatchUndefined = getContext().getLangOptions().CatchUndefined;
56   CGM.getCXXABI().getMangleContext().startNewFunction();
57 }
58 
59 ASTContext &CodeGenFunction::getContext() const {
60   return CGM.getContext();
61 }
62 
63 
64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65   return CGM.getTypes().ConvertTypeForMem(T);
66 }
67 
68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69   return CGM.getTypes().ConvertType(T);
70 }
71 
72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74     T->isObjCObjectType();
75 }
76 
77 void CodeGenFunction::EmitReturnBlock() {
78   // For cleanliness, we try to avoid emitting the return block for
79   // simple cases.
80   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81 
82   if (CurBB) {
83     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84 
85     // We have a valid insert point, reuse it if it is empty or there are no
86     // explicit jumps to the return block.
87     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89       delete ReturnBlock.getBlock();
90     } else
91       EmitBlock(ReturnBlock.getBlock());
92     return;
93   }
94 
95   // Otherwise, if the return block is the target of a single direct
96   // branch then we can just put the code in that block instead. This
97   // cleans up functions which started with a unified return block.
98   if (ReturnBlock.getBlock()->hasOneUse()) {
99     llvm::BranchInst *BI =
100       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101     if (BI && BI->isUnconditional() &&
102         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103       // Reset insertion point and delete the branch.
104       Builder.SetInsertPoint(BI->getParent());
105       BI->eraseFromParent();
106       delete ReturnBlock.getBlock();
107       return;
108     }
109   }
110 
111   // FIXME: We are at an unreachable point, there is no reason to emit the block
112   // unless it has uses. However, we still need a place to put the debug
113   // region.end for now.
114 
115   EmitBlock(ReturnBlock.getBlock());
116 }
117 
118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119   if (!BB) return;
120   if (!BB->use_empty())
121     return CGF.CurFn->getBasicBlockList().push_back(BB);
122   delete BB;
123 }
124 
125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126   assert(BreakContinueStack.empty() &&
127          "mismatched push/pop in break/continue stack!");
128 
129   // Emit function epilog (to return).
130   EmitReturnBlock();
131 
132   EmitFunctionInstrumentation("__cyg_profile_func_exit");
133 
134   // Emit debug descriptor for function end.
135   if (CGDebugInfo *DI = getDebugInfo()) {
136     DI->setLocation(EndLoc);
137     DI->EmitFunctionEnd(Builder);
138   }
139 
140   EmitFunctionEpilog(*CurFnInfo);
141   EmitEndEHSpec(CurCodeDecl);
142 
143   assert(EHStack.empty() &&
144          "did not remove all scopes from cleanup stack!");
145 
146   // If someone did an indirect goto, emit the indirect goto block at the end of
147   // the function.
148   if (IndirectBranch) {
149     EmitBlock(IndirectBranch->getParent());
150     Builder.ClearInsertionPoint();
151   }
152 
153   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154   llvm::Instruction *Ptr = AllocaInsertPt;
155   AllocaInsertPt = 0;
156   Ptr->eraseFromParent();
157 
158   // If someone took the address of a label but never did an indirect goto, we
159   // made a zero entry PHI node, which is illegal, zap it now.
160   if (IndirectBranch) {
161     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162     if (PN->getNumIncomingValues() == 0) {
163       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164       PN->eraseFromParent();
165     }
166   }
167 
168   EmitIfUsed(*this, RethrowBlock.getBlock());
169   EmitIfUsed(*this, TerminateLandingPad);
170   EmitIfUsed(*this, TerminateHandler);
171   EmitIfUsed(*this, UnreachableBlock);
172 
173   if (CGM.getCodeGenOpts().EmitDeclMetadata)
174     EmitDeclMetadata();
175 }
176 
177 /// ShouldInstrumentFunction - Return true if the current function should be
178 /// instrumented with __cyg_profile_func_* calls
179 bool CodeGenFunction::ShouldInstrumentFunction() {
180   if (!CGM.getCodeGenOpts().InstrumentFunctions)
181     return false;
182   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183     return false;
184   return true;
185 }
186 
187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188 /// instrumentation function with the current function and the call site, if
189 /// function instrumentation is enabled.
190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191   if (!ShouldInstrumentFunction())
192     return;
193 
194   const llvm::PointerType *PointerTy;
195   const llvm::FunctionType *FunctionTy;
196   std::vector<const llvm::Type*> ProfileFuncArgs;
197 
198   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200   ProfileFuncArgs.push_back(PointerTy);
201   ProfileFuncArgs.push_back(PointerTy);
202   FunctionTy = llvm::FunctionType::get(
203     llvm::Type::getVoidTy(VMContext),
204     ProfileFuncArgs, false);
205 
206   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207   llvm::CallInst *CallSite = Builder.CreateCall(
208     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209     llvm::ConstantInt::get(Int32Ty, 0),
210     "callsite");
211 
212   Builder.CreateCall2(F,
213                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                       CallSite);
215 }
216 
217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                     llvm::Function *Fn,
219                                     const FunctionArgList &Args,
220                                     SourceLocation StartLoc) {
221   const Decl *D = GD.getDecl();
222 
223   DidCallStackSave = false;
224   CurCodeDecl = CurFuncDecl = D;
225   FnRetTy = RetTy;
226   CurFn = Fn;
227   assert(CurFn->isDeclaration() && "Function already has body?");
228 
229   // Pass inline keyword to optimizer if it appears explicitly on any
230   // declaration.
231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233            RE = FD->redecls_end(); RI != RE; ++RI)
234       if (RI->isInlineSpecified()) {
235         Fn->addFnAttr(llvm::Attribute::InlineHint);
236         break;
237       }
238 
239   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240 
241   // Create a marker to make it easy to insert allocas into the entryblock
242   // later.  Don't create this with the builder, because we don't want it
243   // folded.
244   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246   if (Builder.isNamePreserving())
247     AllocaInsertPt->setName("allocapt");
248 
249   ReturnBlock = getJumpDestInCurrentScope("return");
250 
251   Builder.SetInsertPoint(EntryBB);
252 
253   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
254                                                  false, false, 0, 0,
255                                                  /*FIXME?*/
256                                                  FunctionType::ExtInfo());
257 
258   // Emit subprogram debug descriptor.
259   if (CGDebugInfo *DI = getDebugInfo()) {
260     DI->setLocation(StartLoc);
261     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
262   }
263 
264   EmitFunctionInstrumentation("__cyg_profile_func_enter");
265 
266   // FIXME: Leaked.
267   // CC info is ignored, hopefully?
268   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
269                                               FunctionType::ExtInfo());
270 
271   if (RetTy->isVoidType()) {
272     // Void type; nothing to return.
273     ReturnValue = 0;
274   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
275              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
276     // Indirect aggregate return; emit returned value directly into sret slot.
277     // This reduces code size, and affects correctness in C++.
278     ReturnValue = CurFn->arg_begin();
279   } else {
280     ReturnValue = CreateIRTemp(RetTy, "retval");
281   }
282 
283   EmitStartEHSpec(CurCodeDecl);
284   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
285 
286   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
287     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
288 
289   // If any of the arguments have a variably modified type, make sure to
290   // emit the type size.
291   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
292        i != e; ++i) {
293     QualType Ty = i->second;
294 
295     if (Ty->isVariablyModifiedType())
296       EmitVLASize(Ty);
297   }
298 }
299 
300 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
301   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
302   assert(FD->getBody());
303   EmitStmt(FD->getBody());
304 }
305 
306 /// Tries to mark the given function nounwind based on the
307 /// non-existence of any throwing calls within it.  We believe this is
308 /// lightweight enough to do at -O0.
309 static void TryMarkNoThrow(llvm::Function *F) {
310   // LLVM treats 'nounwind' on a function as part of the type, so we
311   // can't do this on functions that can be overwritten.
312   if (F->mayBeOverridden()) return;
313 
314   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
315     for (llvm::BasicBlock::iterator
316            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
317       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
318         if (!Call->doesNotThrow())
319           return;
320   F->setDoesNotThrow(true);
321 }
322 
323 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325 
326   // Check if we should generate debug info for this function.
327   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
328     DebugInfo = CGM.getDebugInfo();
329 
330   FunctionArgList Args;
331   QualType ResTy = FD->getResultType();
332 
333   CurGD = GD;
334   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
335     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
336 
337   if (FD->getNumParams()) {
338     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
339     assert(FProto && "Function def must have prototype!");
340 
341     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
342       Args.push_back(std::make_pair(FD->getParamDecl(i),
343                                     FProto->getArgType(i)));
344   }
345 
346   SourceRange BodyRange;
347   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
348 
349   // Emit the standard function prologue.
350   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
351 
352   // Generate the body of the function.
353   if (isa<CXXDestructorDecl>(FD))
354     EmitDestructorBody(Args);
355   else if (isa<CXXConstructorDecl>(FD))
356     EmitConstructorBody(Args);
357   else
358     EmitFunctionBody(Args);
359 
360   // Emit the standard function epilogue.
361   FinishFunction(BodyRange.getEnd());
362 
363   // If we haven't marked the function nothrow through other means, do
364   // a quick pass now to see if we can.
365   if (!CurFn->doesNotThrow())
366     TryMarkNoThrow(CurFn);
367 }
368 
369 /// ContainsLabel - Return true if the statement contains a label in it.  If
370 /// this statement is not executed normally, it not containing a label means
371 /// that we can just remove the code.
372 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
373   // Null statement, not a label!
374   if (S == 0) return false;
375 
376   // If this is a label, we have to emit the code, consider something like:
377   // if (0) {  ...  foo:  bar(); }  goto foo;
378   if (isa<LabelStmt>(S))
379     return true;
380 
381   // If this is a case/default statement, and we haven't seen a switch, we have
382   // to emit the code.
383   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
384     return true;
385 
386   // If this is a switch statement, we want to ignore cases below it.
387   if (isa<SwitchStmt>(S))
388     IgnoreCaseStmts = true;
389 
390   // Scan subexpressions for verboten labels.
391   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
392        I != E; ++I)
393     if (ContainsLabel(*I, IgnoreCaseStmts))
394       return true;
395 
396   return false;
397 }
398 
399 
400 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
401 /// a constant, or if it does but contains a label, return 0.  If it constant
402 /// folds to 'true' and does not contain a label, return 1, if it constant folds
403 /// to 'false' and does not contain a label, return -1.
404 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
405   // FIXME: Rename and handle conversion of other evaluatable things
406   // to bool.
407   Expr::EvalResult Result;
408   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
409       Result.HasSideEffects)
410     return 0;  // Not foldable, not integer or not fully evaluatable.
411 
412   if (CodeGenFunction::ContainsLabel(Cond))
413     return 0;  // Contains a label.
414 
415   return Result.Val.getInt().getBoolValue() ? 1 : -1;
416 }
417 
418 
419 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
420 /// statement) to the specified blocks.  Based on the condition, this might try
421 /// to simplify the codegen of the conditional based on the branch.
422 ///
423 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
424                                            llvm::BasicBlock *TrueBlock,
425                                            llvm::BasicBlock *FalseBlock) {
426   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
427     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
428 
429   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
430     // Handle X && Y in a condition.
431     if (CondBOp->getOpcode() == BO_LAnd) {
432       // If we have "1 && X", simplify the code.  "0 && X" would have constant
433       // folded if the case was simple enough.
434       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
435         // br(1 && X) -> br(X).
436         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
437       }
438 
439       // If we have "X && 1", simplify the code to use an uncond branch.
440       // "X && 0" would have been constant folded to 0.
441       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
442         // br(X && 1) -> br(X).
443         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
444       }
445 
446       // Emit the LHS as a conditional.  If the LHS conditional is false, we
447       // want to jump to the FalseBlock.
448       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
449       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
450       EmitBlock(LHSTrue);
451 
452       // Any temporaries created here are conditional.
453       BeginConditionalBranch();
454       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
455       EndConditionalBranch();
456 
457       return;
458     } else if (CondBOp->getOpcode() == BO_LOr) {
459       // If we have "0 || X", simplify the code.  "1 || X" would have constant
460       // folded if the case was simple enough.
461       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
462         // br(0 || X) -> br(X).
463         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
464       }
465 
466       // If we have "X || 0", simplify the code to use an uncond branch.
467       // "X || 1" would have been constant folded to 1.
468       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
469         // br(X || 0) -> br(X).
470         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
471       }
472 
473       // Emit the LHS as a conditional.  If the LHS conditional is true, we
474       // want to jump to the TrueBlock.
475       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
476       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
477       EmitBlock(LHSFalse);
478 
479       // Any temporaries created here are conditional.
480       BeginConditionalBranch();
481       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
482       EndConditionalBranch();
483 
484       return;
485     }
486   }
487 
488   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
489     // br(!x, t, f) -> br(x, f, t)
490     if (CondUOp->getOpcode() == UO_LNot)
491       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
492   }
493 
494   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
495     // Handle ?: operator.
496 
497     // Just ignore GNU ?: extension.
498     if (CondOp->getLHS()) {
499       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
500       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
501       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
502       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
503       EmitBlock(LHSBlock);
504       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
505       EmitBlock(RHSBlock);
506       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
507       return;
508     }
509   }
510 
511   // Emit the code with the fully general case.
512   llvm::Value *CondV = EvaluateExprAsBool(Cond);
513   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
514 }
515 
516 /// ErrorUnsupported - Print out an error that codegen doesn't support the
517 /// specified stmt yet.
518 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
519                                        bool OmitOnError) {
520   CGM.ErrorUnsupported(S, Type, OmitOnError);
521 }
522 
523 void
524 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
525   // Ignore empty classes in C++.
526   if (getContext().getLangOptions().CPlusPlus) {
527     if (const RecordType *RT = Ty->getAs<RecordType>()) {
528       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
529         return;
530     }
531   }
532 
533   // Cast the dest ptr to the appropriate i8 pointer type.
534   unsigned DestAS =
535     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
536   const llvm::Type *BP =
537     llvm::Type::getInt8PtrTy(VMContext, DestAS);
538   if (DestPtr->getType() != BP)
539     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
540 
541   // Get size and alignment info for this aggregate.
542   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
543   uint64_t Size = TypeInfo.first;
544   unsigned Align = TypeInfo.second;
545 
546   // Don't bother emitting a zero-byte memset.
547   if (Size == 0)
548     return;
549 
550   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
551   llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
552 
553   // If the type contains a pointer to data member we can't memset it to zero.
554   // Instead, create a null constant and copy it to the destination.
555   if (!CGM.getTypes().isZeroInitializable(Ty)) {
556     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
557 
558     llvm::GlobalVariable *NullVariable =
559       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
560                                /*isConstant=*/true,
561                                llvm::GlobalVariable::PrivateLinkage,
562                                NullConstant, llvm::Twine());
563     llvm::Value *SrcPtr =
564       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
565 
566     // FIXME: variable-size types?
567 
568     // Get and call the appropriate llvm.memcpy overload.
569     llvm::Constant *Memcpy =
570       CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
571     Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
572                         /*volatile*/ Builder.getFalse());
573     return;
574   }
575 
576   // Otherwise, just memset the whole thing to zero.  This is legal
577   // because in LLVM, all default initializers (other than the ones we just
578   // handled above) are guaranteed to have a bit pattern of all zeros.
579 
580   // FIXME: Handle variable sized types.
581   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
582                       Builder.getInt8(0),
583                       SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
584 }
585 
586 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
587   // Make sure that there is a block for the indirect goto.
588   if (IndirectBranch == 0)
589     GetIndirectGotoBlock();
590 
591   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
592 
593   // Make sure the indirect branch includes all of the address-taken blocks.
594   IndirectBranch->addDestination(BB);
595   return llvm::BlockAddress::get(CurFn, BB);
596 }
597 
598 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
599   // If we already made the indirect branch for indirect goto, return its block.
600   if (IndirectBranch) return IndirectBranch->getParent();
601 
602   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
603 
604   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
605 
606   // Create the PHI node that indirect gotos will add entries to.
607   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
608 
609   // Create the indirect branch instruction.
610   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
611   return IndirectBranch->getParent();
612 }
613 
614 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
615   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
616 
617   assert(SizeEntry && "Did not emit size for type");
618   return SizeEntry;
619 }
620 
621 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
622   assert(Ty->isVariablyModifiedType() &&
623          "Must pass variably modified type to EmitVLASizes!");
624 
625   EnsureInsertPoint();
626 
627   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
628     // unknown size indication requires no size computation.
629     if (!VAT->getSizeExpr())
630       return 0;
631     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
632 
633     if (!SizeEntry) {
634       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
635 
636       // Get the element size;
637       QualType ElemTy = VAT->getElementType();
638       llvm::Value *ElemSize;
639       if (ElemTy->isVariableArrayType())
640         ElemSize = EmitVLASize(ElemTy);
641       else
642         ElemSize = llvm::ConstantInt::get(SizeTy,
643             getContext().getTypeSizeInChars(ElemTy).getQuantity());
644 
645       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
646       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
647 
648       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
649     }
650 
651     return SizeEntry;
652   }
653 
654   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
655     EmitVLASize(AT->getElementType());
656     return 0;
657   }
658 
659   const PointerType *PT = Ty->getAs<PointerType>();
660   assert(PT && "unknown VM type!");
661   EmitVLASize(PT->getPointeeType());
662   return 0;
663 }
664 
665 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
666   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
667     return EmitScalarExpr(E);
668   return EmitLValue(E).getAddress();
669 }
670 
671 /// Pops cleanup blocks until the given savepoint is reached.
672 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
673   assert(Old.isValid());
674 
675   while (EHStack.stable_begin() != Old) {
676     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
677 
678     // As long as Old strictly encloses the scope's enclosing normal
679     // cleanup, we're going to emit another normal cleanup which
680     // fallthrough can propagate through.
681     bool FallThroughIsBranchThrough =
682       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
683 
684     PopCleanupBlock(FallThroughIsBranchThrough);
685   }
686 }
687 
688 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
689                                            EHCleanupScope &Scope) {
690   assert(Scope.isNormalCleanup());
691   llvm::BasicBlock *Entry = Scope.getNormalBlock();
692   if (!Entry) {
693     Entry = CGF.createBasicBlock("cleanup");
694     Scope.setNormalBlock(Entry);
695   }
696   return Entry;
697 }
698 
699 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
700                                        EHCleanupScope &Scope) {
701   assert(Scope.isEHCleanup());
702   llvm::BasicBlock *Entry = Scope.getEHBlock();
703   if (!Entry) {
704     Entry = CGF.createBasicBlock("eh.cleanup");
705     Scope.setEHBlock(Entry);
706   }
707   return Entry;
708 }
709 
710 /// Transitions the terminator of the given exit-block of a cleanup to
711 /// be a cleanup switch.
712 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
713                                                    llvm::BasicBlock *Block) {
714   // If it's a branch, turn it into a switch whose default
715   // destination is its original target.
716   llvm::TerminatorInst *Term = Block->getTerminator();
717   assert(Term && "can't transition block without terminator");
718 
719   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
720     assert(Br->isUnconditional());
721     llvm::LoadInst *Load =
722       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
723     llvm::SwitchInst *Switch =
724       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
725     Br->eraseFromParent();
726     return Switch;
727   } else {
728     return cast<llvm::SwitchInst>(Term);
729   }
730 }
731 
732 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
733 /// is basically llvm::MergeBlockIntoPredecessor, except
734 /// simplified/optimized for the tighter constraints on cleanup blocks.
735 ///
736 /// Returns the new block, whatever it is.
737 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
738                                               llvm::BasicBlock *Entry) {
739   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
740   if (!Pred) return Entry;
741 
742   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
743   if (!Br || Br->isConditional()) return Entry;
744   assert(Br->getSuccessor(0) == Entry);
745 
746   // If we were previously inserting at the end of the cleanup entry
747   // block, we'll need to continue inserting at the end of the
748   // predecessor.
749   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
750   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
751 
752   // Kill the branch.
753   Br->eraseFromParent();
754 
755   // Merge the blocks.
756   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
757 
758   // Kill the entry block.
759   Entry->eraseFromParent();
760 
761   if (WasInsertBlock)
762     CGF.Builder.SetInsertPoint(Pred);
763 
764   return Pred;
765 }
766 
767 static void EmitCleanup(CodeGenFunction &CGF,
768                         EHScopeStack::Cleanup *Fn,
769                         bool ForEH,
770                         llvm::Value *ActiveFlag) {
771   // EH cleanups always occur within a terminate scope.
772   if (ForEH) CGF.EHStack.pushTerminate();
773 
774   // If there's an active flag, load it and skip the cleanup if it's
775   // false.
776   llvm::BasicBlock *ContBB = 0;
777   if (ActiveFlag) {
778     ContBB = CGF.createBasicBlock("cleanup.done");
779     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
780     llvm::Value *IsActive
781       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
782     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
783     CGF.EmitBlock(CleanupBB);
784   }
785 
786   // Ask the cleanup to emit itself.
787   Fn->Emit(CGF, ForEH);
788   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
789 
790   // Emit the continuation block if there was an active flag.
791   if (ActiveFlag)
792     CGF.EmitBlock(ContBB);
793 
794   // Leave the terminate scope.
795   if (ForEH) CGF.EHStack.popTerminate();
796 }
797 
798 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
799                                           llvm::BasicBlock *From,
800                                           llvm::BasicBlock *To) {
801   // Exit is the exit block of a cleanup, so it always terminates in
802   // an unconditional branch or a switch.
803   llvm::TerminatorInst *Term = Exit->getTerminator();
804 
805   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
806     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
807     Br->setSuccessor(0, To);
808   } else {
809     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
810     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
811       if (Switch->getSuccessor(I) == From)
812         Switch->setSuccessor(I, To);
813   }
814 }
815 
816 /// Pops a cleanup block.  If the block includes a normal cleanup, the
817 /// current insertion point is threaded through the cleanup, as are
818 /// any branch fixups on the cleanup.
819 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
820   assert(!EHStack.empty() && "cleanup stack is empty!");
821   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
822   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
823   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
824 
825   // Remember activation information.
826   bool IsActive = Scope.isActive();
827   llvm::Value *NormalActiveFlag =
828     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
829   llvm::Value *EHActiveFlag =
830     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
831 
832   // Check whether we need an EH cleanup.  This is only true if we've
833   // generated a lazy EH cleanup block.
834   bool RequiresEHCleanup = Scope.hasEHBranches();
835 
836   // Check the three conditions which might require a normal cleanup:
837 
838   // - whether there are branch fix-ups through this cleanup
839   unsigned FixupDepth = Scope.getFixupDepth();
840   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
841 
842   // - whether there are branch-throughs or branch-afters
843   bool HasExistingBranches = Scope.hasBranches();
844 
845   // - whether there's a fallthrough
846   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
847   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
848 
849   // Branch-through fall-throughs leave the insertion point set to the
850   // end of the last cleanup, which points to the current scope.  The
851   // rest of IR gen doesn't need to worry about this; it only happens
852   // during the execution of PopCleanupBlocks().
853   bool HasPrebranchedFallthrough =
854     (FallthroughSource && FallthroughSource->getTerminator());
855 
856   // If this is a normal cleanup, then having a prebranched
857   // fallthrough implies that the fallthrough source unconditionally
858   // jumps here.
859   assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
860          (Scope.getNormalBlock() &&
861           FallthroughSource->getTerminator()->getSuccessor(0)
862             == Scope.getNormalBlock()));
863 
864   bool RequiresNormalCleanup = false;
865   if (Scope.isNormalCleanup() &&
866       (HasFixups || HasExistingBranches || HasFallthrough)) {
867     RequiresNormalCleanup = true;
868   }
869 
870   // Even if we don't need the normal cleanup, we might still have
871   // prebranched fallthrough to worry about.
872   if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
873       HasPrebranchedFallthrough) {
874     assert(!IsActive);
875 
876     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
877 
878     // If we're branching through this cleanup, just forward the
879     // prebranched fallthrough to the next cleanup, leaving the insert
880     // point in the old block.
881     if (FallthroughIsBranchThrough) {
882       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
883       llvm::BasicBlock *EnclosingEntry =
884         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
885 
886       ForwardPrebranchedFallthrough(FallthroughSource,
887                                     NormalEntry, EnclosingEntry);
888       assert(NormalEntry->use_empty() &&
889              "uses of entry remain after forwarding?");
890       delete NormalEntry;
891 
892     // Otherwise, we're branching out;  just emit the next block.
893     } else {
894       EmitBlock(NormalEntry);
895       SimplifyCleanupEntry(*this, NormalEntry);
896     }
897   }
898 
899   // If we don't need the cleanup at all, we're done.
900   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
901     EHStack.popCleanup(); // safe because there are no fixups
902     assert(EHStack.getNumBranchFixups() == 0 ||
903            EHStack.hasNormalCleanups());
904     return;
905   }
906 
907   // Copy the cleanup emission data out.  Note that SmallVector
908   // guarantees maximal alignment for its buffer regardless of its
909   // type parameter.
910   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
911   CleanupBuffer.reserve(Scope.getCleanupSize());
912   memcpy(CleanupBuffer.data(),
913          Scope.getCleanupBuffer(), Scope.getCleanupSize());
914   CleanupBuffer.set_size(Scope.getCleanupSize());
915   EHScopeStack::Cleanup *Fn =
916     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
917 
918   // We want to emit the EH cleanup after the normal cleanup, but go
919   // ahead and do the setup for the EH cleanup while the scope is still
920   // alive.
921   llvm::BasicBlock *EHEntry = 0;
922   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
923   if (RequiresEHCleanup) {
924     EHEntry = CreateEHEntry(*this, Scope);
925 
926     // Figure out the branch-through dest if necessary.
927     llvm::BasicBlock *EHBranchThroughDest = 0;
928     if (Scope.hasEHBranchThroughs()) {
929       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
930       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
931       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
932     }
933 
934     // If we have exactly one branch-after and no branch-throughs, we
935     // can dispatch it without a switch.
936     if (!Scope.hasEHBranchThroughs() &&
937         Scope.getNumEHBranchAfters() == 1) {
938       assert(!EHBranchThroughDest);
939 
940       // TODO: remove the spurious eh.cleanup.dest stores if this edge
941       // never went through any switches.
942       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
943       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
944 
945     // Otherwise, if we have any branch-afters, we need a switch.
946     } else if (Scope.getNumEHBranchAfters()) {
947       // The default of the switch belongs to the branch-throughs if
948       // they exist.
949       llvm::BasicBlock *Default =
950         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
951 
952       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
953 
954       llvm::LoadInst *Load =
955         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
956       llvm::SwitchInst *Switch =
957         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
958 
959       EHInstsToAppend.push_back(Load);
960       EHInstsToAppend.push_back(Switch);
961 
962       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
963         Switch->addCase(Scope.getEHBranchAfterIndex(I),
964                         Scope.getEHBranchAfterBlock(I));
965 
966     // Otherwise, we have only branch-throughs; jump to the next EH
967     // cleanup.
968     } else {
969       assert(EHBranchThroughDest);
970       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
971     }
972   }
973 
974   if (!RequiresNormalCleanup) {
975     EHStack.popCleanup();
976   } else {
977     // If we have a fallthrough and no other need for the cleanup,
978     // emit it directly.
979     if (HasFallthrough && !HasPrebranchedFallthrough &&
980         !HasFixups && !HasExistingBranches) {
981 
982       // Fixups can cause us to optimistically create a normal block,
983       // only to later have no real uses for it.  Just delete it in
984       // this case.
985       // TODO: we can potentially simplify all the uses after this.
986       if (Scope.getNormalBlock()) {
987         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
988         delete Scope.getNormalBlock();
989       }
990 
991       EHStack.popCleanup();
992 
993       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
994 
995     // Otherwise, the best approach is to thread everything through
996     // the cleanup block and then try to clean up after ourselves.
997     } else {
998       // Force the entry block to exist.
999       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1000 
1001       // I.  Set up the fallthrough edge in.
1002 
1003       // If there's a fallthrough, we need to store the cleanup
1004       // destination index.  For fall-throughs this is always zero.
1005       if (HasFallthrough) {
1006         if (!HasPrebranchedFallthrough)
1007           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1008 
1009       // Otherwise, clear the IP if we don't have fallthrough because
1010       // the cleanup is inactive.  We don't need to save it because
1011       // it's still just FallthroughSource.
1012       } else if (FallthroughSource) {
1013         assert(!IsActive && "source without fallthrough for active cleanup");
1014         Builder.ClearInsertionPoint();
1015       }
1016 
1017       // II.  Emit the entry block.  This implicitly branches to it if
1018       // we have fallthrough.  All the fixups and existing branches
1019       // should already be branched to it.
1020       EmitBlock(NormalEntry);
1021 
1022       // III.  Figure out where we're going and build the cleanup
1023       // epilogue.
1024 
1025       bool HasEnclosingCleanups =
1026         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1027 
1028       // Compute the branch-through dest if we need it:
1029       //   - if there are branch-throughs threaded through the scope
1030       //   - if fall-through is a branch-through
1031       //   - if there are fixups that will be optimistically forwarded
1032       //     to the enclosing cleanup
1033       llvm::BasicBlock *BranchThroughDest = 0;
1034       if (Scope.hasBranchThroughs() ||
1035           (FallthroughSource && FallthroughIsBranchThrough) ||
1036           (HasFixups && HasEnclosingCleanups)) {
1037         assert(HasEnclosingCleanups);
1038         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1039         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1040       }
1041 
1042       llvm::BasicBlock *FallthroughDest = 0;
1043       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1044 
1045       // If there's exactly one branch-after and no other threads,
1046       // we can route it without a switch.
1047       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1048           Scope.getNumBranchAfters() == 1) {
1049         assert(!BranchThroughDest || !IsActive);
1050 
1051         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1052         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1053         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1054 
1055       // Build a switch-out if we need it:
1056       //   - if there are branch-afters threaded through the scope
1057       //   - if fall-through is a branch-after
1058       //   - if there are fixups that have nowhere left to go and
1059       //     so must be immediately resolved
1060       } else if (Scope.getNumBranchAfters() ||
1061                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1062                  (HasFixups && !HasEnclosingCleanups)) {
1063 
1064         llvm::BasicBlock *Default =
1065           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1066 
1067         // TODO: base this on the number of branch-afters and fixups
1068         const unsigned SwitchCapacity = 10;
1069 
1070         llvm::LoadInst *Load =
1071           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1072         llvm::SwitchInst *Switch =
1073           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1074 
1075         InstsToAppend.push_back(Load);
1076         InstsToAppend.push_back(Switch);
1077 
1078         // Branch-after fallthrough.
1079         if (FallthroughSource && !FallthroughIsBranchThrough) {
1080           FallthroughDest = createBasicBlock("cleanup.cont");
1081           if (HasFallthrough)
1082             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1083         }
1084 
1085         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1086           Switch->addCase(Scope.getBranchAfterIndex(I),
1087                           Scope.getBranchAfterBlock(I));
1088         }
1089 
1090         // If there aren't any enclosing cleanups, we can resolve all
1091         // the fixups now.
1092         if (HasFixups && !HasEnclosingCleanups)
1093           ResolveAllBranchFixups(*this, Switch, NormalEntry);
1094       } else {
1095         // We should always have a branch-through destination in this case.
1096         assert(BranchThroughDest);
1097         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1098       }
1099 
1100       // IV.  Pop the cleanup and emit it.
1101       EHStack.popCleanup();
1102       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1103 
1104       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1105 
1106       // Append the prepared cleanup prologue from above.
1107       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1108       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1109         NormalExit->getInstList().push_back(InstsToAppend[I]);
1110 
1111       // Optimistically hope that any fixups will continue falling through.
1112       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1113            I < E; ++I) {
1114         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1115         if (!Fixup.Destination) continue;
1116         if (!Fixup.OptimisticBranchBlock) {
1117           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1118                               getNormalCleanupDestSlot(),
1119                               Fixup.InitialBranch);
1120           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1121         }
1122         Fixup.OptimisticBranchBlock = NormalExit;
1123       }
1124 
1125       // V.  Set up the fallthrough edge out.
1126 
1127       // Case 1: a fallthrough source exists but shouldn't branch to
1128       // the cleanup because the cleanup is inactive.
1129       if (!HasFallthrough && FallthroughSource) {
1130         assert(!IsActive);
1131 
1132         // If we have a prebranched fallthrough, that needs to be
1133         // forwarded to the right block.
1134         if (HasPrebranchedFallthrough) {
1135           llvm::BasicBlock *Next;
1136           if (FallthroughIsBranchThrough) {
1137             Next = BranchThroughDest;
1138             assert(!FallthroughDest);
1139           } else {
1140             Next = FallthroughDest;
1141           }
1142 
1143           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1144         }
1145         Builder.SetInsertPoint(FallthroughSource);
1146 
1147       // Case 2: a fallthrough source exists and should branch to the
1148       // cleanup, but we're not supposed to branch through to the next
1149       // cleanup.
1150       } else if (HasFallthrough && FallthroughDest) {
1151         assert(!FallthroughIsBranchThrough);
1152         EmitBlock(FallthroughDest);
1153 
1154       // Case 3: a fallthrough source exists and should branch to the
1155       // cleanup and then through to the next.
1156       } else if (HasFallthrough) {
1157         // Everything is already set up for this.
1158 
1159       // Case 4: no fallthrough source exists.
1160       } else {
1161         Builder.ClearInsertionPoint();
1162       }
1163 
1164       // VI.  Assorted cleaning.
1165 
1166       // Check whether we can merge NormalEntry into a single predecessor.
1167       // This might invalidate (non-IR) pointers to NormalEntry.
1168       llvm::BasicBlock *NewNormalEntry =
1169         SimplifyCleanupEntry(*this, NormalEntry);
1170 
1171       // If it did invalidate those pointers, and NormalEntry was the same
1172       // as NormalExit, go back and patch up the fixups.
1173       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1174         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1175                I < E; ++I)
1176           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1177     }
1178   }
1179 
1180   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1181 
1182   // Emit the EH cleanup if required.
1183   if (RequiresEHCleanup) {
1184     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1185 
1186     EmitBlock(EHEntry);
1187     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1188 
1189     // Append the prepared cleanup prologue from above.
1190     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1191     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1192       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1193 
1194     Builder.restoreIP(SavedIP);
1195 
1196     SimplifyCleanupEntry(*this, EHEntry);
1197   }
1198 }
1199 
1200 /// Terminate the current block by emitting a branch which might leave
1201 /// the current cleanup-protected scope.  The target scope may not yet
1202 /// be known, in which case this will require a fixup.
1203 ///
1204 /// As a side-effect, this method clears the insertion point.
1205 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1206   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1207          && "stale jump destination");
1208 
1209   if (!HaveInsertPoint())
1210     return;
1211 
1212   // Create the branch.
1213   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1214 
1215   // Calculate the innermost active normal cleanup.
1216   EHScopeStack::stable_iterator
1217     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1218 
1219   // If we're not in an active normal cleanup scope, or if the
1220   // destination scope is within the innermost active normal cleanup
1221   // scope, we don't need to worry about fixups.
1222   if (TopCleanup == EHStack.stable_end() ||
1223       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1224     Builder.ClearInsertionPoint();
1225     return;
1226   }
1227 
1228   // If we can't resolve the destination cleanup scope, just add this
1229   // to the current cleanup scope as a branch fixup.
1230   if (!Dest.getScopeDepth().isValid()) {
1231     BranchFixup &Fixup = EHStack.addBranchFixup();
1232     Fixup.Destination = Dest.getBlock();
1233     Fixup.DestinationIndex = Dest.getDestIndex();
1234     Fixup.InitialBranch = BI;
1235     Fixup.OptimisticBranchBlock = 0;
1236 
1237     Builder.ClearInsertionPoint();
1238     return;
1239   }
1240 
1241   // Otherwise, thread through all the normal cleanups in scope.
1242 
1243   // Store the index at the start.
1244   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1245   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1246 
1247   // Adjust BI to point to the first cleanup block.
1248   {
1249     EHCleanupScope &Scope =
1250       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1251     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1252   }
1253 
1254   // Add this destination to all the scopes involved.
1255   EHScopeStack::stable_iterator I = TopCleanup;
1256   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1257   if (E.strictlyEncloses(I)) {
1258     while (true) {
1259       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1260       assert(Scope.isNormalCleanup());
1261       I = Scope.getEnclosingNormalCleanup();
1262 
1263       // If this is the last cleanup we're propagating through, tell it
1264       // that there's a resolved jump moving through it.
1265       if (!E.strictlyEncloses(I)) {
1266         Scope.addBranchAfter(Index, Dest.getBlock());
1267         break;
1268       }
1269 
1270       // Otherwise, tell the scope that there's a jump propoagating
1271       // through it.  If this isn't new information, all the rest of
1272       // the work has been done before.
1273       if (!Scope.addBranchThrough(Dest.getBlock()))
1274         break;
1275     }
1276   }
1277 
1278   Builder.ClearInsertionPoint();
1279 }
1280 
1281 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1282   // We should never get invalid scope depths for an UnwindDest; that
1283   // implies that the destination wasn't set up correctly.
1284   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1285 
1286   if (!HaveInsertPoint())
1287     return;
1288 
1289   // Create the branch.
1290   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1291 
1292   // Calculate the innermost active cleanup.
1293   EHScopeStack::stable_iterator
1294     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1295 
1296   // If the destination is in the same EH cleanup scope as us, we
1297   // don't need to thread through anything.
1298   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1299     Builder.ClearInsertionPoint();
1300     return;
1301   }
1302   assert(InnermostCleanup != EHStack.stable_end());
1303 
1304   // Store the index at the start.
1305   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1306   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1307 
1308   // Adjust BI to point to the first cleanup block.
1309   {
1310     EHCleanupScope &Scope =
1311       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1312     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1313   }
1314 
1315   // Add this destination to all the scopes involved.
1316   for (EHScopeStack::stable_iterator
1317          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1318     assert(E.strictlyEncloses(I));
1319     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1320     assert(Scope.isEHCleanup());
1321     I = Scope.getEnclosingEHCleanup();
1322 
1323     // If this is the last cleanup we're propagating through, add this
1324     // as a branch-after.
1325     if (I == E) {
1326       Scope.addEHBranchAfter(Index, Dest.getBlock());
1327       break;
1328     }
1329 
1330     // Otherwise, add it as a branch-through.  If this isn't new
1331     // information, all the rest of the work has been done before.
1332     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1333       break;
1334   }
1335 
1336   Builder.ClearInsertionPoint();
1337 }
1338 
1339 /// All the branch fixups on the EH stack have propagated out past the
1340 /// outermost normal cleanup; resolve them all by adding cases to the
1341 /// given switch instruction.
1342 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1343                                    llvm::SwitchInst *Switch,
1344                                    llvm::BasicBlock *CleanupEntry) {
1345   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1346 
1347   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1348     // Skip this fixup if its destination isn't set.
1349     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1350     if (Fixup.Destination == 0) continue;
1351 
1352     // If there isn't an OptimisticBranchBlock, then InitialBranch is
1353     // still pointing directly to its destination; forward it to the
1354     // appropriate cleanup entry.  This is required in the specific
1355     // case of
1356     //   { std::string s; goto lbl; }
1357     //   lbl:
1358     // i.e. where there's an unresolved fixup inside a single cleanup
1359     // entry which we're currently popping.
1360     if (Fixup.OptimisticBranchBlock == 0) {
1361       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1362                           CGF.getNormalCleanupDestSlot(),
1363                           Fixup.InitialBranch);
1364       Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1365     }
1366 
1367     // Don't add this case to the switch statement twice.
1368     if (!CasesAdded.insert(Fixup.Destination)) continue;
1369 
1370     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1371                     Fixup.Destination);
1372   }
1373 
1374   CGF.EHStack.clearFixups();
1375 }
1376 
1377 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1378   assert(Block && "resolving a null target block");
1379   if (!EHStack.getNumBranchFixups()) return;
1380 
1381   assert(EHStack.hasNormalCleanups() &&
1382          "branch fixups exist with no normal cleanups on stack");
1383 
1384   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1385   bool ResolvedAny = false;
1386 
1387   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1388     // Skip this fixup if its destination doesn't match.
1389     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1390     if (Fixup.Destination != Block) continue;
1391 
1392     Fixup.Destination = 0;
1393     ResolvedAny = true;
1394 
1395     // If it doesn't have an optimistic branch block, LatestBranch is
1396     // already pointing to the right place.
1397     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1398     if (!BranchBB)
1399       continue;
1400 
1401     // Don't process the same optimistic branch block twice.
1402     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1403       continue;
1404 
1405     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1406 
1407     // Add a case to the switch.
1408     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1409   }
1410 
1411   if (ResolvedAny)
1412     EHStack.popNullFixups();
1413 }
1414 
1415 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1416                                   EHScopeStack::stable_iterator C) {
1417   // If we needed a normal block for any reason, that counts.
1418   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1419     return true;
1420 
1421   // Check whether any enclosed cleanups were needed.
1422   for (EHScopeStack::stable_iterator
1423          I = EHStack.getInnermostNormalCleanup();
1424          I != C; ) {
1425     assert(C.strictlyEncloses(I));
1426     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1427     if (S.getNormalBlock()) return true;
1428     I = S.getEnclosingNormalCleanup();
1429   }
1430 
1431   return false;
1432 }
1433 
1434 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1435                               EHScopeStack::stable_iterator C) {
1436   // If we needed an EH block for any reason, that counts.
1437   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1438     return true;
1439 
1440   // Check whether any enclosed cleanups were needed.
1441   for (EHScopeStack::stable_iterator
1442          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1443     assert(C.strictlyEncloses(I));
1444     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1445     if (S.getEHBlock()) return true;
1446     I = S.getEnclosingEHCleanup();
1447   }
1448 
1449   return false;
1450 }
1451 
1452 enum ForActivation_t {
1453   ForActivation,
1454   ForDeactivation
1455 };
1456 
1457 /// The given cleanup block is changing activation state.  Configure a
1458 /// cleanup variable if necessary.
1459 ///
1460 /// It would be good if we had some way of determining if there were
1461 /// extra uses *after* the change-over point.
1462 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1463                                         EHScopeStack::stable_iterator C,
1464                                         ForActivation_t Kind) {
1465   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1466 
1467   // We always need the flag if we're activating the cleanup, because
1468   // we have to assume that the current location doesn't necessarily
1469   // dominate all future uses of the cleanup.
1470   bool NeedFlag = (Kind == ForActivation);
1471 
1472   // Calculate whether the cleanup was used:
1473 
1474   //   - as a normal cleanup
1475   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1476     Scope.setTestFlagInNormalCleanup();
1477     NeedFlag = true;
1478   }
1479 
1480   //  - as an EH cleanup
1481   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1482     Scope.setTestFlagInEHCleanup();
1483     NeedFlag = true;
1484   }
1485 
1486   // If it hasn't yet been used as either, we're done.
1487   if (!NeedFlag) return;
1488 
1489   llvm::AllocaInst *Var = Scope.getActiveFlag();
1490   if (!Var) {
1491     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1492     Scope.setActiveFlag(Var);
1493 
1494     // Initialize to true or false depending on whether it was
1495     // active up to this point.
1496     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1497   }
1498 
1499   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1500 }
1501 
1502 /// Activate a cleanup that was created in an inactivated state.
1503 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1504   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1505   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1506   assert(!Scope.isActive() && "double activation");
1507 
1508   SetupCleanupBlockActivation(*this, C, ForActivation);
1509 
1510   Scope.setActive(true);
1511 }
1512 
1513 /// Deactive a cleanup that was created in an active state.
1514 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1515   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1516   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1517   assert(Scope.isActive() && "double deactivation");
1518 
1519   // If it's the top of the stack, just pop it.
1520   if (C == EHStack.stable_begin()) {
1521     // If it's a normal cleanup, we need to pretend that the
1522     // fallthrough is unreachable.
1523     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1524     PopCleanupBlock();
1525     Builder.restoreIP(SavedIP);
1526     return;
1527   }
1528 
1529   // Otherwise, follow the general case.
1530   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1531 
1532   Scope.setActive(false);
1533 }
1534 
1535 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1536   if (!NormalCleanupDest)
1537     NormalCleanupDest =
1538       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1539   return NormalCleanupDest;
1540 }
1541 
1542 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1543   if (!EHCleanupDest)
1544     EHCleanupDest =
1545       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1546   return EHCleanupDest;
1547 }
1548 
1549 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1550                                               llvm::Constant *Init) {
1551   assert (Init && "Invalid DeclRefExpr initializer!");
1552   if (CGDebugInfo *Dbg = getDebugInfo())
1553     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1554 }
1555