1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Operator.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 38 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 39 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 40 CGBuilderInserterTy(this)), 41 CurFn(nullptr), CapturedStmtInfo(nullptr), 42 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 43 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 44 IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr), 45 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 46 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 47 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 48 DebugInfo(CGM.getModuleDebugInfo()), 49 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 50 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 51 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 52 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 53 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 54 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 55 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 56 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 57 TerminateHandler(nullptr), TrapBB(nullptr) { 58 if (!suppressNewContext) 59 CGM.getCXXABI().getMangleContext().startNewFunction(); 60 61 llvm::FastMathFlags FMF; 62 if (CGM.getLangOpts().FastMath) 63 FMF.setUnsafeAlgebra(); 64 if (CGM.getLangOpts().FiniteMathOnly) { 65 FMF.setNoNaNs(); 66 FMF.setNoInfs(); 67 } 68 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 69 FMF.setNoNaNs(); 70 } 71 if (CGM.getCodeGenOpts().NoSignedZeros) { 72 FMF.setNoSignedZeros(); 73 } 74 if (CGM.getCodeGenOpts().ReciprocalMath) { 75 FMF.setAllowReciprocal(); 76 } 77 Builder.SetFastMathFlags(FMF); 78 } 79 80 CodeGenFunction::~CodeGenFunction() { 81 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 82 83 // If there are any unclaimed block infos, go ahead and destroy them 84 // now. This can happen if IR-gen gets clever and skips evaluating 85 // something. 86 if (FirstBlockInfo) 87 destroyBlockInfos(FirstBlockInfo); 88 89 if (getLangOpts().OpenMP) { 90 CGM.getOpenMPRuntime().functionFinished(*this); 91 } 92 } 93 94 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 95 CharUnits Alignment; 96 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 97 Alignment = getContext().getTypeAlignInChars(T); 98 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 99 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 100 !getContext().isAlignmentRequired(T)) 101 Alignment = CharUnits::fromQuantity(MaxAlign); 102 } 103 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 104 } 105 106 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 107 return CGM.getTypes().ConvertTypeForMem(T); 108 } 109 110 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 111 return CGM.getTypes().ConvertType(T); 112 } 113 114 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 115 type = type.getCanonicalType(); 116 while (true) { 117 switch (type->getTypeClass()) { 118 #define TYPE(name, parent) 119 #define ABSTRACT_TYPE(name, parent) 120 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 121 #define DEPENDENT_TYPE(name, parent) case Type::name: 122 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 123 #include "clang/AST/TypeNodes.def" 124 llvm_unreachable("non-canonical or dependent type in IR-generation"); 125 126 case Type::Auto: 127 llvm_unreachable("undeduced auto type in IR-generation"); 128 129 // Various scalar types. 130 case Type::Builtin: 131 case Type::Pointer: 132 case Type::BlockPointer: 133 case Type::LValueReference: 134 case Type::RValueReference: 135 case Type::MemberPointer: 136 case Type::Vector: 137 case Type::ExtVector: 138 case Type::FunctionProto: 139 case Type::FunctionNoProto: 140 case Type::Enum: 141 case Type::ObjCObjectPointer: 142 return TEK_Scalar; 143 144 // Complexes. 145 case Type::Complex: 146 return TEK_Complex; 147 148 // Arrays, records, and Objective-C objects. 149 case Type::ConstantArray: 150 case Type::IncompleteArray: 151 case Type::VariableArray: 152 case Type::Record: 153 case Type::ObjCObject: 154 case Type::ObjCInterface: 155 return TEK_Aggregate; 156 157 // We operate on atomic values according to their underlying type. 158 case Type::Atomic: 159 type = cast<AtomicType>(type)->getValueType(); 160 continue; 161 } 162 llvm_unreachable("unknown type kind!"); 163 } 164 } 165 166 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 167 // For cleanliness, we try to avoid emitting the return block for 168 // simple cases. 169 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 170 171 if (CurBB) { 172 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 173 174 // We have a valid insert point, reuse it if it is empty or there are no 175 // explicit jumps to the return block. 176 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 177 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 178 delete ReturnBlock.getBlock(); 179 } else 180 EmitBlock(ReturnBlock.getBlock()); 181 return llvm::DebugLoc(); 182 } 183 184 // Otherwise, if the return block is the target of a single direct 185 // branch then we can just put the code in that block instead. This 186 // cleans up functions which started with a unified return block. 187 if (ReturnBlock.getBlock()->hasOneUse()) { 188 llvm::BranchInst *BI = 189 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 190 if (BI && BI->isUnconditional() && 191 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 192 // Record/return the DebugLoc of the simple 'return' expression to be used 193 // later by the actual 'ret' instruction. 194 llvm::DebugLoc Loc = BI->getDebugLoc(); 195 Builder.SetInsertPoint(BI->getParent()); 196 BI->eraseFromParent(); 197 delete ReturnBlock.getBlock(); 198 return Loc; 199 } 200 } 201 202 // FIXME: We are at an unreachable point, there is no reason to emit the block 203 // unless it has uses. However, we still need a place to put the debug 204 // region.end for now. 205 206 EmitBlock(ReturnBlock.getBlock()); 207 return llvm::DebugLoc(); 208 } 209 210 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 211 if (!BB) return; 212 if (!BB->use_empty()) 213 return CGF.CurFn->getBasicBlockList().push_back(BB); 214 delete BB; 215 } 216 217 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 218 assert(BreakContinueStack.empty() && 219 "mismatched push/pop in break/continue stack!"); 220 221 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 222 && NumSimpleReturnExprs == NumReturnExprs 223 && ReturnBlock.getBlock()->use_empty(); 224 // Usually the return expression is evaluated before the cleanup 225 // code. If the function contains only a simple return statement, 226 // such as a constant, the location before the cleanup code becomes 227 // the last useful breakpoint in the function, because the simple 228 // return expression will be evaluated after the cleanup code. To be 229 // safe, set the debug location for cleanup code to the location of 230 // the return statement. Otherwise the cleanup code should be at the 231 // end of the function's lexical scope. 232 // 233 // If there are multiple branches to the return block, the branch 234 // instructions will get the location of the return statements and 235 // all will be fine. 236 if (CGDebugInfo *DI = getDebugInfo()) { 237 if (OnlySimpleReturnStmts) 238 DI->EmitLocation(Builder, LastStopPoint); 239 else 240 DI->EmitLocation(Builder, EndLoc); 241 } 242 243 // Pop any cleanups that might have been associated with the 244 // parameters. Do this in whatever block we're currently in; it's 245 // important to do this before we enter the return block or return 246 // edges will be *really* confused. 247 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 248 bool HasOnlyLifetimeMarkers = 249 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 250 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 251 if (HasCleanups) { 252 // Make sure the line table doesn't jump back into the body for 253 // the ret after it's been at EndLoc. 254 if (CGDebugInfo *DI = getDebugInfo()) 255 if (OnlySimpleReturnStmts) 256 DI->EmitLocation(Builder, EndLoc); 257 258 PopCleanupBlocks(PrologueCleanupDepth); 259 } 260 261 // Emit function epilog (to return). 262 llvm::DebugLoc Loc = EmitReturnBlock(); 263 264 if (ShouldInstrumentFunction()) 265 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 266 267 // Emit debug descriptor for function end. 268 if (CGDebugInfo *DI = getDebugInfo()) 269 DI->EmitFunctionEnd(Builder); 270 271 // Reset the debug location to that of the simple 'return' expression, if any 272 // rather than that of the end of the function's scope '}'. 273 ApplyDebugLocation AL(*this, Loc); 274 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 275 EmitEndEHSpec(CurCodeDecl); 276 277 assert(EHStack.empty() && 278 "did not remove all scopes from cleanup stack!"); 279 280 // If someone did an indirect goto, emit the indirect goto block at the end of 281 // the function. 282 if (IndirectBranch) { 283 EmitBlock(IndirectBranch->getParent()); 284 Builder.ClearInsertionPoint(); 285 } 286 287 // If some of our locals escaped, insert a call to llvm.localescape in the 288 // entry block. 289 if (!EscapedLocals.empty()) { 290 // Invert the map from local to index into a simple vector. There should be 291 // no holes. 292 SmallVector<llvm::Value *, 4> EscapeArgs; 293 EscapeArgs.resize(EscapedLocals.size()); 294 for (auto &Pair : EscapedLocals) 295 EscapeArgs[Pair.second] = Pair.first; 296 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 297 &CGM.getModule(), llvm::Intrinsic::localescape); 298 CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 299 } 300 301 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 302 llvm::Instruction *Ptr = AllocaInsertPt; 303 AllocaInsertPt = nullptr; 304 Ptr->eraseFromParent(); 305 306 // If someone took the address of a label but never did an indirect goto, we 307 // made a zero entry PHI node, which is illegal, zap it now. 308 if (IndirectBranch) { 309 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 310 if (PN->getNumIncomingValues() == 0) { 311 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 312 PN->eraseFromParent(); 313 } 314 } 315 316 EmitIfUsed(*this, EHResumeBlock); 317 EmitIfUsed(*this, TerminateLandingPad); 318 EmitIfUsed(*this, TerminateHandler); 319 EmitIfUsed(*this, UnreachableBlock); 320 321 if (CGM.getCodeGenOpts().EmitDeclMetadata) 322 EmitDeclMetadata(); 323 324 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 325 I = DeferredReplacements.begin(), 326 E = DeferredReplacements.end(); 327 I != E; ++I) { 328 I->first->replaceAllUsesWith(I->second); 329 I->first->eraseFromParent(); 330 } 331 } 332 333 /// ShouldInstrumentFunction - Return true if the current function should be 334 /// instrumented with __cyg_profile_func_* calls 335 bool CodeGenFunction::ShouldInstrumentFunction() { 336 if (!CGM.getCodeGenOpts().InstrumentFunctions) 337 return false; 338 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 339 return false; 340 return true; 341 } 342 343 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 344 /// instrumentation function with the current function and the call site, if 345 /// function instrumentation is enabled. 346 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 347 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 348 llvm::PointerType *PointerTy = Int8PtrTy; 349 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 350 llvm::FunctionType *FunctionTy = 351 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 352 353 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 354 llvm::CallInst *CallSite = Builder.CreateCall( 355 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 356 llvm::ConstantInt::get(Int32Ty, 0), 357 "callsite"); 358 359 llvm::Value *args[] = { 360 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 361 CallSite 362 }; 363 364 EmitNounwindRuntimeCall(F, args); 365 } 366 367 void CodeGenFunction::EmitMCountInstrumentation() { 368 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 369 370 llvm::Constant *MCountFn = 371 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 372 EmitNounwindRuntimeCall(MCountFn); 373 } 374 375 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 376 // information in the program executable. The argument information stored 377 // includes the argument name, its type, the address and access qualifiers used. 378 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 379 CodeGenModule &CGM, llvm::LLVMContext &Context, 380 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 381 CGBuilderTy &Builder, ASTContext &ASTCtx) { 382 // Create MDNodes that represent the kernel arg metadata. 383 // Each MDNode is a list in the form of "key", N number of values which is 384 // the same number of values as their are kernel arguments. 385 386 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 387 388 // MDNode for the kernel argument address space qualifiers. 389 SmallVector<llvm::Metadata *, 8> addressQuals; 390 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 391 392 // MDNode for the kernel argument access qualifiers (images only). 393 SmallVector<llvm::Metadata *, 8> accessQuals; 394 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 395 396 // MDNode for the kernel argument type names. 397 SmallVector<llvm::Metadata *, 8> argTypeNames; 398 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 399 400 // MDNode for the kernel argument base type names. 401 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 402 argBaseTypeNames.push_back( 403 llvm::MDString::get(Context, "kernel_arg_base_type")); 404 405 // MDNode for the kernel argument type qualifiers. 406 SmallVector<llvm::Metadata *, 8> argTypeQuals; 407 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 408 409 // MDNode for the kernel argument names. 410 SmallVector<llvm::Metadata *, 8> argNames; 411 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 412 413 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 414 const ParmVarDecl *parm = FD->getParamDecl(i); 415 QualType ty = parm->getType(); 416 std::string typeQuals; 417 418 if (ty->isPointerType()) { 419 QualType pointeeTy = ty->getPointeeType(); 420 421 // Get address qualifier. 422 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 423 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 424 425 // Get argument type name. 426 std::string typeName = 427 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 428 429 // Turn "unsigned type" to "utype" 430 std::string::size_type pos = typeName.find("unsigned"); 431 if (pointeeTy.isCanonical() && pos != std::string::npos) 432 typeName.erase(pos+1, 8); 433 434 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 435 436 std::string baseTypeName = 437 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 438 Policy) + 439 "*"; 440 441 // Turn "unsigned type" to "utype" 442 pos = baseTypeName.find("unsigned"); 443 if (pos != std::string::npos) 444 baseTypeName.erase(pos+1, 8); 445 446 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 447 448 // Get argument type qualifiers: 449 if (ty.isRestrictQualified()) 450 typeQuals = "restrict"; 451 if (pointeeTy.isConstQualified() || 452 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 453 typeQuals += typeQuals.empty() ? "const" : " const"; 454 if (pointeeTy.isVolatileQualified()) 455 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 456 } else { 457 uint32_t AddrSpc = 0; 458 if (ty->isImageType()) 459 AddrSpc = 460 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 461 462 addressQuals.push_back( 463 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 464 465 // Get argument type name. 466 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 467 468 // Turn "unsigned type" to "utype" 469 std::string::size_type pos = typeName.find("unsigned"); 470 if (ty.isCanonical() && pos != std::string::npos) 471 typeName.erase(pos+1, 8); 472 473 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 474 475 std::string baseTypeName = 476 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 477 478 // Turn "unsigned type" to "utype" 479 pos = baseTypeName.find("unsigned"); 480 if (pos != std::string::npos) 481 baseTypeName.erase(pos+1, 8); 482 483 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 484 485 // Get argument type qualifiers: 486 if (ty.isConstQualified()) 487 typeQuals = "const"; 488 if (ty.isVolatileQualified()) 489 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 490 } 491 492 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 493 494 // Get image access qualifier: 495 if (ty->isImageType()) { 496 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 497 if (A && A->isWriteOnly()) 498 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 499 else 500 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 501 // FIXME: what about read_write? 502 } else 503 accessQuals.push_back(llvm::MDString::get(Context, "none")); 504 505 // Get argument name. 506 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 507 } 508 509 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 510 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 511 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 512 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 513 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 514 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 515 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 516 } 517 518 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 519 llvm::Function *Fn) 520 { 521 if (!FD->hasAttr<OpenCLKernelAttr>()) 522 return; 523 524 llvm::LLVMContext &Context = getLLVMContext(); 525 526 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 527 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 528 529 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 530 getContext()); 531 532 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 533 QualType hintQTy = A->getTypeHint(); 534 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 535 bool isSignedInteger = 536 hintQTy->isSignedIntegerType() || 537 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 538 llvm::Metadata *attrMDArgs[] = { 539 llvm::MDString::get(Context, "vec_type_hint"), 540 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 541 CGM.getTypes().ConvertType(A->getTypeHint()))), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 llvm::IntegerType::get(Context, 32), 544 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 545 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 546 } 547 548 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 549 llvm::Metadata *attrMDArgs[] = { 550 llvm::MDString::get(Context, "work_group_size_hint"), 551 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 552 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 553 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 554 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 555 } 556 557 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 558 llvm::Metadata *attrMDArgs[] = { 559 llvm::MDString::get(Context, "reqd_work_group_size"), 560 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 561 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 562 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 563 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 564 } 565 566 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 567 llvm::NamedMDNode *OpenCLKernelMetadata = 568 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 569 OpenCLKernelMetadata->addOperand(kernelMDNode); 570 } 571 572 /// Determine whether the function F ends with a return stmt. 573 static bool endsWithReturn(const Decl* F) { 574 const Stmt *Body = nullptr; 575 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 576 Body = FD->getBody(); 577 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 578 Body = OMD->getBody(); 579 580 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 581 auto LastStmt = CS->body_rbegin(); 582 if (LastStmt != CS->body_rend()) 583 return isa<ReturnStmt>(*LastStmt); 584 } 585 return false; 586 } 587 588 void CodeGenFunction::StartFunction(GlobalDecl GD, 589 QualType RetTy, 590 llvm::Function *Fn, 591 const CGFunctionInfo &FnInfo, 592 const FunctionArgList &Args, 593 SourceLocation Loc, 594 SourceLocation StartLoc) { 595 assert(!CurFn && 596 "Do not use a CodeGenFunction object for more than one function"); 597 598 const Decl *D = GD.getDecl(); 599 600 DidCallStackSave = false; 601 CurCodeDecl = D; 602 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 603 FnRetTy = RetTy; 604 CurFn = Fn; 605 CurFnInfo = &FnInfo; 606 assert(CurFn->isDeclaration() && "Function already has body?"); 607 608 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 609 SanOpts.clear(); 610 611 if (D) { 612 // Apply the no_sanitize* attributes to SanOpts. 613 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 614 SanOpts.Mask &= ~Attr->getMask(); 615 } 616 617 // Apply sanitizer attributes to the function. 618 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 619 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 620 if (SanOpts.has(SanitizerKind::Thread)) 621 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 622 if (SanOpts.has(SanitizerKind::Memory)) 623 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 624 if (SanOpts.has(SanitizerKind::SafeStack)) 625 Fn->addFnAttr(llvm::Attribute::SafeStack); 626 627 // Pass inline keyword to optimizer if it appears explicitly on any 628 // declaration. Also, in the case of -fno-inline attach NoInline 629 // attribute to all function that are not marked AlwaysInline. 630 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 631 if (!CGM.getCodeGenOpts().NoInline) { 632 for (auto RI : FD->redecls()) 633 if (RI->isInlineSpecified()) { 634 Fn->addFnAttr(llvm::Attribute::InlineHint); 635 break; 636 } 637 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 638 Fn->addFnAttr(llvm::Attribute::NoInline); 639 } 640 641 if (getLangOpts().OpenCL) { 642 // Add metadata for a kernel function. 643 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 644 EmitOpenCLKernelMetadata(FD, Fn); 645 } 646 647 // If we are checking function types, emit a function type signature as 648 // prologue data. 649 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 650 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 651 if (llvm::Constant *PrologueSig = 652 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 653 llvm::Constant *FTRTTIConst = 654 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 655 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 656 llvm::Constant *PrologueStructConst = 657 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 658 Fn->setPrologueData(PrologueStructConst); 659 } 660 } 661 } 662 663 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 664 665 // Create a marker to make it easy to insert allocas into the entryblock 666 // later. Don't create this with the builder, because we don't want it 667 // folded. 668 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 669 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 670 if (Builder.isNamePreserving()) 671 AllocaInsertPt->setName("allocapt"); 672 673 ReturnBlock = getJumpDestInCurrentScope("return"); 674 675 Builder.SetInsertPoint(EntryBB); 676 677 // Emit subprogram debug descriptor. 678 if (CGDebugInfo *DI = getDebugInfo()) { 679 SmallVector<QualType, 16> ArgTypes; 680 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 681 i != e; ++i) { 682 ArgTypes.push_back((*i)->getType()); 683 } 684 685 QualType FnType = 686 getContext().getFunctionType(RetTy, ArgTypes, 687 FunctionProtoType::ExtProtoInfo()); 688 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 689 } 690 691 if (ShouldInstrumentFunction()) 692 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 693 694 if (CGM.getCodeGenOpts().InstrumentForProfiling) 695 EmitMCountInstrumentation(); 696 697 if (RetTy->isVoidType()) { 698 // Void type; nothing to return. 699 ReturnValue = nullptr; 700 701 // Count the implicit return. 702 if (!endsWithReturn(D)) 703 ++NumReturnExprs; 704 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 705 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 706 // Indirect aggregate return; emit returned value directly into sret slot. 707 // This reduces code size, and affects correctness in C++. 708 auto AI = CurFn->arg_begin(); 709 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 710 ++AI; 711 ReturnValue = AI; 712 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 713 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 714 // Load the sret pointer from the argument struct and return into that. 715 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 716 llvm::Function::arg_iterator EI = CurFn->arg_end(); 717 --EI; 718 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx); 719 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 720 } else { 721 ReturnValue = CreateIRTemp(RetTy, "retval"); 722 723 // Tell the epilog emitter to autorelease the result. We do this 724 // now so that various specialized functions can suppress it 725 // during their IR-generation. 726 if (getLangOpts().ObjCAutoRefCount && 727 !CurFnInfo->isReturnsRetained() && 728 RetTy->isObjCRetainableType()) 729 AutoreleaseResult = true; 730 } 731 732 EmitStartEHSpec(CurCodeDecl); 733 734 PrologueCleanupDepth = EHStack.stable_begin(); 735 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 736 737 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 738 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 739 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 740 if (MD->getParent()->isLambda() && 741 MD->getOverloadedOperator() == OO_Call) { 742 // We're in a lambda; figure out the captures. 743 MD->getParent()->getCaptureFields(LambdaCaptureFields, 744 LambdaThisCaptureField); 745 if (LambdaThisCaptureField) { 746 // If this lambda captures this, load it. 747 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 748 CXXThisValue = EmitLoadOfLValue(ThisLValue, 749 SourceLocation()).getScalarVal(); 750 } 751 for (auto *FD : MD->getParent()->fields()) { 752 if (FD->hasCapturedVLAType()) { 753 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 754 SourceLocation()).getScalarVal(); 755 auto VAT = FD->getCapturedVLAType(); 756 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 757 } 758 } 759 } else { 760 // Not in a lambda; just use 'this' from the method. 761 // FIXME: Should we generate a new load for each use of 'this'? The 762 // fast register allocator would be happier... 763 CXXThisValue = CXXABIThisValue; 764 } 765 } 766 767 // If any of the arguments have a variably modified type, make sure to 768 // emit the type size. 769 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 770 i != e; ++i) { 771 const VarDecl *VD = *i; 772 773 // Dig out the type as written from ParmVarDecls; it's unclear whether 774 // the standard (C99 6.9.1p10) requires this, but we're following the 775 // precedent set by gcc. 776 QualType Ty; 777 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 778 Ty = PVD->getOriginalType(); 779 else 780 Ty = VD->getType(); 781 782 if (Ty->isVariablyModifiedType()) 783 EmitVariablyModifiedType(Ty); 784 } 785 // Emit a location at the end of the prologue. 786 if (CGDebugInfo *DI = getDebugInfo()) 787 DI->EmitLocation(Builder, StartLoc); 788 } 789 790 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 791 const Stmt *Body) { 792 incrementProfileCounter(Body); 793 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 794 EmitCompoundStmtWithoutScope(*S); 795 else 796 EmitStmt(Body); 797 } 798 799 /// When instrumenting to collect profile data, the counts for some blocks 800 /// such as switch cases need to not include the fall-through counts, so 801 /// emit a branch around the instrumentation code. When not instrumenting, 802 /// this just calls EmitBlock(). 803 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 804 const Stmt *S) { 805 llvm::BasicBlock *SkipCountBB = nullptr; 806 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 807 // When instrumenting for profiling, the fallthrough to certain 808 // statements needs to skip over the instrumentation code so that we 809 // get an accurate count. 810 SkipCountBB = createBasicBlock("skipcount"); 811 EmitBranch(SkipCountBB); 812 } 813 EmitBlock(BB); 814 uint64_t CurrentCount = getCurrentProfileCount(); 815 incrementProfileCounter(S); 816 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 817 if (SkipCountBB) 818 EmitBlock(SkipCountBB); 819 } 820 821 /// Tries to mark the given function nounwind based on the 822 /// non-existence of any throwing calls within it. We believe this is 823 /// lightweight enough to do at -O0. 824 static void TryMarkNoThrow(llvm::Function *F) { 825 // LLVM treats 'nounwind' on a function as part of the type, so we 826 // can't do this on functions that can be overwritten. 827 if (F->mayBeOverridden()) return; 828 829 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 830 for (llvm::BasicBlock::iterator 831 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 832 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 833 if (!Call->doesNotThrow()) 834 return; 835 } else if (isa<llvm::ResumeInst>(&*BI)) { 836 return; 837 } 838 F->setDoesNotThrow(); 839 } 840 841 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 842 const CGFunctionInfo &FnInfo) { 843 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 844 845 // Check if we should generate debug info for this function. 846 if (FD->hasAttr<NoDebugAttr>()) 847 DebugInfo = nullptr; // disable debug info indefinitely for this function 848 849 FunctionArgList Args; 850 QualType ResTy = FD->getReturnType(); 851 852 CurGD = GD; 853 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 854 if (MD && MD->isInstance()) { 855 if (CGM.getCXXABI().HasThisReturn(GD)) 856 ResTy = MD->getThisType(getContext()); 857 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 858 ResTy = CGM.getContext().VoidPtrTy; 859 CGM.getCXXABI().buildThisParam(*this, Args); 860 } 861 862 Args.append(FD->param_begin(), FD->param_end()); 863 864 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 865 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 866 867 SourceRange BodyRange; 868 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 869 CurEHLocation = BodyRange.getEnd(); 870 871 // Use the location of the start of the function to determine where 872 // the function definition is located. By default use the location 873 // of the declaration as the location for the subprogram. A function 874 // may lack a declaration in the source code if it is created by code 875 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 876 SourceLocation Loc = FD->getLocation(); 877 878 // If this is a function specialization then use the pattern body 879 // as the location for the function. 880 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 881 if (SpecDecl->hasBody(SpecDecl)) 882 Loc = SpecDecl->getLocation(); 883 884 // Emit the standard function prologue. 885 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 886 887 // Generate the body of the function. 888 PGO.checkGlobalDecl(GD); 889 PGO.assignRegionCounters(GD.getDecl(), CurFn); 890 if (isa<CXXDestructorDecl>(FD)) 891 EmitDestructorBody(Args); 892 else if (isa<CXXConstructorDecl>(FD)) 893 EmitConstructorBody(Args); 894 else if (getLangOpts().CUDA && 895 !getLangOpts().CUDAIsDevice && 896 FD->hasAttr<CUDAGlobalAttr>()) 897 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 898 else if (isa<CXXConversionDecl>(FD) && 899 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 900 // The lambda conversion to block pointer is special; the semantics can't be 901 // expressed in the AST, so IRGen needs to special-case it. 902 EmitLambdaToBlockPointerBody(Args); 903 } else if (isa<CXXMethodDecl>(FD) && 904 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 905 // The lambda static invoker function is special, because it forwards or 906 // clones the body of the function call operator (but is actually static). 907 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 908 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 909 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 910 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 911 // Implicit copy-assignment gets the same special treatment as implicit 912 // copy-constructors. 913 emitImplicitAssignmentOperatorBody(Args); 914 } else if (Stmt *Body = FD->getBody()) { 915 EmitFunctionBody(Args, Body); 916 } else 917 llvm_unreachable("no definition for emitted function"); 918 919 // C++11 [stmt.return]p2: 920 // Flowing off the end of a function [...] results in undefined behavior in 921 // a value-returning function. 922 // C11 6.9.1p12: 923 // If the '}' that terminates a function is reached, and the value of the 924 // function call is used by the caller, the behavior is undefined. 925 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 926 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 927 if (SanOpts.has(SanitizerKind::Return)) { 928 SanitizerScope SanScope(this); 929 llvm::Value *IsFalse = Builder.getFalse(); 930 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 931 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 932 None); 933 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 934 EmitTrapCall(llvm::Intrinsic::trap); 935 } 936 Builder.CreateUnreachable(); 937 Builder.ClearInsertionPoint(); 938 } 939 940 // Emit the standard function epilogue. 941 FinishFunction(BodyRange.getEnd()); 942 943 // If we haven't marked the function nothrow through other means, do 944 // a quick pass now to see if we can. 945 if (!CurFn->doesNotThrow()) 946 TryMarkNoThrow(CurFn); 947 } 948 949 /// ContainsLabel - Return true if the statement contains a label in it. If 950 /// this statement is not executed normally, it not containing a label means 951 /// that we can just remove the code. 952 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 953 // Null statement, not a label! 954 if (!S) return false; 955 956 // If this is a label, we have to emit the code, consider something like: 957 // if (0) { ... foo: bar(); } goto foo; 958 // 959 // TODO: If anyone cared, we could track __label__'s, since we know that you 960 // can't jump to one from outside their declared region. 961 if (isa<LabelStmt>(S)) 962 return true; 963 964 // If this is a case/default statement, and we haven't seen a switch, we have 965 // to emit the code. 966 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 967 return true; 968 969 // If this is a switch statement, we want to ignore cases below it. 970 if (isa<SwitchStmt>(S)) 971 IgnoreCaseStmts = true; 972 973 // Scan subexpressions for verboten labels. 974 for (const Stmt *SubStmt : S->children()) 975 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 976 return true; 977 978 return false; 979 } 980 981 /// containsBreak - Return true if the statement contains a break out of it. 982 /// If the statement (recursively) contains a switch or loop with a break 983 /// inside of it, this is fine. 984 bool CodeGenFunction::containsBreak(const Stmt *S) { 985 // Null statement, not a label! 986 if (!S) return false; 987 988 // If this is a switch or loop that defines its own break scope, then we can 989 // include it and anything inside of it. 990 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 991 isa<ForStmt>(S)) 992 return false; 993 994 if (isa<BreakStmt>(S)) 995 return true; 996 997 // Scan subexpressions for verboten breaks. 998 for (const Stmt *SubStmt : S->children()) 999 if (containsBreak(SubStmt)) 1000 return true; 1001 1002 return false; 1003 } 1004 1005 1006 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1007 /// to a constant, or if it does but contains a label, return false. If it 1008 /// constant folds return true and set the boolean result in Result. 1009 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1010 bool &ResultBool) { 1011 llvm::APSInt ResultInt; 1012 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1013 return false; 1014 1015 ResultBool = ResultInt.getBoolValue(); 1016 return true; 1017 } 1018 1019 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1020 /// to a constant, or if it does but contains a label, return false. If it 1021 /// constant folds return true and set the folded value. 1022 bool CodeGenFunction:: 1023 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1024 // FIXME: Rename and handle conversion of other evaluatable things 1025 // to bool. 1026 llvm::APSInt Int; 1027 if (!Cond->EvaluateAsInt(Int, getContext())) 1028 return false; // Not foldable, not integer or not fully evaluatable. 1029 1030 if (CodeGenFunction::ContainsLabel(Cond)) 1031 return false; // Contains a label. 1032 1033 ResultInt = Int; 1034 return true; 1035 } 1036 1037 1038 1039 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1040 /// statement) to the specified blocks. Based on the condition, this might try 1041 /// to simplify the codegen of the conditional based on the branch. 1042 /// 1043 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1044 llvm::BasicBlock *TrueBlock, 1045 llvm::BasicBlock *FalseBlock, 1046 uint64_t TrueCount) { 1047 Cond = Cond->IgnoreParens(); 1048 1049 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1050 1051 // Handle X && Y in a condition. 1052 if (CondBOp->getOpcode() == BO_LAnd) { 1053 // If we have "1 && X", simplify the code. "0 && X" would have constant 1054 // folded if the case was simple enough. 1055 bool ConstantBool = false; 1056 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1057 ConstantBool) { 1058 // br(1 && X) -> br(X). 1059 incrementProfileCounter(CondBOp); 1060 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1061 TrueCount); 1062 } 1063 1064 // If we have "X && 1", simplify the code to use an uncond branch. 1065 // "X && 0" would have been constant folded to 0. 1066 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1067 ConstantBool) { 1068 // br(X && 1) -> br(X). 1069 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1070 TrueCount); 1071 } 1072 1073 // Emit the LHS as a conditional. If the LHS conditional is false, we 1074 // want to jump to the FalseBlock. 1075 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1076 // The counter tells us how often we evaluate RHS, and all of TrueCount 1077 // can be propagated to that branch. 1078 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1079 1080 ConditionalEvaluation eval(*this); 1081 { 1082 ApplyDebugLocation DL(*this, Cond); 1083 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1084 EmitBlock(LHSTrue); 1085 } 1086 1087 incrementProfileCounter(CondBOp); 1088 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1089 1090 // Any temporaries created here are conditional. 1091 eval.begin(*this); 1092 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1093 eval.end(*this); 1094 1095 return; 1096 } 1097 1098 if (CondBOp->getOpcode() == BO_LOr) { 1099 // If we have "0 || X", simplify the code. "1 || X" would have constant 1100 // folded if the case was simple enough. 1101 bool ConstantBool = false; 1102 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1103 !ConstantBool) { 1104 // br(0 || X) -> br(X). 1105 incrementProfileCounter(CondBOp); 1106 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1107 TrueCount); 1108 } 1109 1110 // If we have "X || 0", simplify the code to use an uncond branch. 1111 // "X || 1" would have been constant folded to 1. 1112 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1113 !ConstantBool) { 1114 // br(X || 0) -> br(X). 1115 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1116 TrueCount); 1117 } 1118 1119 // Emit the LHS as a conditional. If the LHS conditional is true, we 1120 // want to jump to the TrueBlock. 1121 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1122 // We have the count for entry to the RHS and for the whole expression 1123 // being true, so we can divy up True count between the short circuit and 1124 // the RHS. 1125 uint64_t LHSCount = 1126 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1127 uint64_t RHSCount = TrueCount - LHSCount; 1128 1129 ConditionalEvaluation eval(*this); 1130 { 1131 ApplyDebugLocation DL(*this, Cond); 1132 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1133 EmitBlock(LHSFalse); 1134 } 1135 1136 incrementProfileCounter(CondBOp); 1137 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1138 1139 // Any temporaries created here are conditional. 1140 eval.begin(*this); 1141 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1142 1143 eval.end(*this); 1144 1145 return; 1146 } 1147 } 1148 1149 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1150 // br(!x, t, f) -> br(x, f, t) 1151 if (CondUOp->getOpcode() == UO_LNot) { 1152 // Negate the count. 1153 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1154 // Negate the condition and swap the destination blocks. 1155 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1156 FalseCount); 1157 } 1158 } 1159 1160 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1161 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1162 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1163 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1164 1165 ConditionalEvaluation cond(*this); 1166 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1167 getProfileCount(CondOp)); 1168 1169 // When computing PGO branch weights, we only know the overall count for 1170 // the true block. This code is essentially doing tail duplication of the 1171 // naive code-gen, introducing new edges for which counts are not 1172 // available. Divide the counts proportionally between the LHS and RHS of 1173 // the conditional operator. 1174 uint64_t LHSScaledTrueCount = 0; 1175 if (TrueCount) { 1176 double LHSRatio = 1177 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1178 LHSScaledTrueCount = TrueCount * LHSRatio; 1179 } 1180 1181 cond.begin(*this); 1182 EmitBlock(LHSBlock); 1183 incrementProfileCounter(CondOp); 1184 { 1185 ApplyDebugLocation DL(*this, Cond); 1186 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1187 LHSScaledTrueCount); 1188 } 1189 cond.end(*this); 1190 1191 cond.begin(*this); 1192 EmitBlock(RHSBlock); 1193 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1194 TrueCount - LHSScaledTrueCount); 1195 cond.end(*this); 1196 1197 return; 1198 } 1199 1200 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1201 // Conditional operator handling can give us a throw expression as a 1202 // condition for a case like: 1203 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1204 // Fold this to: 1205 // br(c, throw x, br(y, t, f)) 1206 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1207 return; 1208 } 1209 1210 // Create branch weights based on the number of times we get here and the 1211 // number of times the condition should be true. 1212 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1213 llvm::MDNode *Weights = 1214 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1215 1216 // Emit the code with the fully general case. 1217 llvm::Value *CondV; 1218 { 1219 ApplyDebugLocation DL(*this, Cond); 1220 CondV = EvaluateExprAsBool(Cond); 1221 } 1222 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1223 } 1224 1225 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1226 /// specified stmt yet. 1227 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1228 CGM.ErrorUnsupported(S, Type); 1229 } 1230 1231 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1232 /// variable-length array whose elements have a non-zero bit-pattern. 1233 /// 1234 /// \param baseType the inner-most element type of the array 1235 /// \param src - a char* pointing to the bit-pattern for a single 1236 /// base element of the array 1237 /// \param sizeInChars - the total size of the VLA, in chars 1238 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1239 llvm::Value *dest, llvm::Value *src, 1240 llvm::Value *sizeInChars) { 1241 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1242 = CGF.getContext().getTypeInfoInChars(baseType); 1243 1244 CGBuilderTy &Builder = CGF.Builder; 1245 1246 llvm::Value *baseSizeInChars 1247 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1248 1249 llvm::Type *i8p = Builder.getInt8PtrTy(); 1250 1251 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1252 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1253 1254 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1255 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1256 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1257 1258 // Make a loop over the VLA. C99 guarantees that the VLA element 1259 // count must be nonzero. 1260 CGF.EmitBlock(loopBB); 1261 1262 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1263 cur->addIncoming(begin, originBB); 1264 1265 // memcpy the individual element bit-pattern. 1266 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1267 baseSizeAndAlign.second.getQuantity(), 1268 /*volatile*/ false); 1269 1270 // Go to the next element. 1271 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), 1272 cur, 1, "vla.next"); 1273 1274 // Leave if that's the end of the VLA. 1275 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1276 Builder.CreateCondBr(done, contBB, loopBB); 1277 cur->addIncoming(next, loopBB); 1278 1279 CGF.EmitBlock(contBB); 1280 } 1281 1282 void 1283 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1284 // Ignore empty classes in C++. 1285 if (getLangOpts().CPlusPlus) { 1286 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1287 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1288 return; 1289 } 1290 } 1291 1292 // Cast the dest ptr to the appropriate i8 pointer type. 1293 unsigned DestAS = 1294 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1295 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1296 if (DestPtr->getType() != BP) 1297 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1298 1299 // Get size and alignment info for this aggregate. 1300 std::pair<CharUnits, CharUnits> TypeInfo = 1301 getContext().getTypeInfoInChars(Ty); 1302 CharUnits Size = TypeInfo.first; 1303 CharUnits Align = TypeInfo.second; 1304 1305 llvm::Value *SizeVal; 1306 const VariableArrayType *vla; 1307 1308 // Don't bother emitting a zero-byte memset. 1309 if (Size.isZero()) { 1310 // But note that getTypeInfo returns 0 for a VLA. 1311 if (const VariableArrayType *vlaType = 1312 dyn_cast_or_null<VariableArrayType>( 1313 getContext().getAsArrayType(Ty))) { 1314 QualType eltType; 1315 llvm::Value *numElts; 1316 std::tie(numElts, eltType) = getVLASize(vlaType); 1317 1318 SizeVal = numElts; 1319 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1320 if (!eltSize.isOne()) 1321 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1322 vla = vlaType; 1323 } else { 1324 return; 1325 } 1326 } else { 1327 SizeVal = CGM.getSize(Size); 1328 vla = nullptr; 1329 } 1330 1331 // If the type contains a pointer to data member we can't memset it to zero. 1332 // Instead, create a null constant and copy it to the destination. 1333 // TODO: there are other patterns besides zero that we can usefully memset, 1334 // like -1, which happens to be the pattern used by member-pointers. 1335 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1336 // For a VLA, emit a single element, then splat that over the VLA. 1337 if (vla) Ty = getContext().getBaseElementType(vla); 1338 1339 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1340 1341 llvm::GlobalVariable *NullVariable = 1342 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1343 /*isConstant=*/true, 1344 llvm::GlobalVariable::PrivateLinkage, 1345 NullConstant, Twine()); 1346 llvm::Value *SrcPtr = 1347 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1348 1349 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1350 1351 // Get and call the appropriate llvm.memcpy overload. 1352 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1353 return; 1354 } 1355 1356 // Otherwise, just memset the whole thing to zero. This is legal 1357 // because in LLVM, all default initializers (other than the ones we just 1358 // handled above) are guaranteed to have a bit pattern of all zeros. 1359 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1360 Align.getQuantity(), false); 1361 } 1362 1363 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1364 // Make sure that there is a block for the indirect goto. 1365 if (!IndirectBranch) 1366 GetIndirectGotoBlock(); 1367 1368 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1369 1370 // Make sure the indirect branch includes all of the address-taken blocks. 1371 IndirectBranch->addDestination(BB); 1372 return llvm::BlockAddress::get(CurFn, BB); 1373 } 1374 1375 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1376 // If we already made the indirect branch for indirect goto, return its block. 1377 if (IndirectBranch) return IndirectBranch->getParent(); 1378 1379 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1380 1381 // Create the PHI node that indirect gotos will add entries to. 1382 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1383 "indirect.goto.dest"); 1384 1385 // Create the indirect branch instruction. 1386 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1387 return IndirectBranch->getParent(); 1388 } 1389 1390 /// Computes the length of an array in elements, as well as the base 1391 /// element type and a properly-typed first element pointer. 1392 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1393 QualType &baseType, 1394 llvm::Value *&addr) { 1395 const ArrayType *arrayType = origArrayType; 1396 1397 // If it's a VLA, we have to load the stored size. Note that 1398 // this is the size of the VLA in bytes, not its size in elements. 1399 llvm::Value *numVLAElements = nullptr; 1400 if (isa<VariableArrayType>(arrayType)) { 1401 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1402 1403 // Walk into all VLAs. This doesn't require changes to addr, 1404 // which has type T* where T is the first non-VLA element type. 1405 do { 1406 QualType elementType = arrayType->getElementType(); 1407 arrayType = getContext().getAsArrayType(elementType); 1408 1409 // If we only have VLA components, 'addr' requires no adjustment. 1410 if (!arrayType) { 1411 baseType = elementType; 1412 return numVLAElements; 1413 } 1414 } while (isa<VariableArrayType>(arrayType)); 1415 1416 // We get out here only if we find a constant array type 1417 // inside the VLA. 1418 } 1419 1420 // We have some number of constant-length arrays, so addr should 1421 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1422 // down to the first element of addr. 1423 SmallVector<llvm::Value*, 8> gepIndices; 1424 1425 // GEP down to the array type. 1426 llvm::ConstantInt *zero = Builder.getInt32(0); 1427 gepIndices.push_back(zero); 1428 1429 uint64_t countFromCLAs = 1; 1430 QualType eltType; 1431 1432 llvm::ArrayType *llvmArrayType = 1433 dyn_cast<llvm::ArrayType>( 1434 cast<llvm::PointerType>(addr->getType())->getElementType()); 1435 while (llvmArrayType) { 1436 assert(isa<ConstantArrayType>(arrayType)); 1437 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1438 == llvmArrayType->getNumElements()); 1439 1440 gepIndices.push_back(zero); 1441 countFromCLAs *= llvmArrayType->getNumElements(); 1442 eltType = arrayType->getElementType(); 1443 1444 llvmArrayType = 1445 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1446 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1447 assert((!llvmArrayType || arrayType) && 1448 "LLVM and Clang types are out-of-synch"); 1449 } 1450 1451 if (arrayType) { 1452 // From this point onwards, the Clang array type has been emitted 1453 // as some other type (probably a packed struct). Compute the array 1454 // size, and just emit the 'begin' expression as a bitcast. 1455 while (arrayType) { 1456 countFromCLAs *= 1457 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1458 eltType = arrayType->getElementType(); 1459 arrayType = getContext().getAsArrayType(eltType); 1460 } 1461 1462 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1463 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1464 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1465 } else { 1466 // Create the actual GEP. 1467 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1468 } 1469 1470 baseType = eltType; 1471 1472 llvm::Value *numElements 1473 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1474 1475 // If we had any VLA dimensions, factor them in. 1476 if (numVLAElements) 1477 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1478 1479 return numElements; 1480 } 1481 1482 std::pair<llvm::Value*, QualType> 1483 CodeGenFunction::getVLASize(QualType type) { 1484 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1485 assert(vla && "type was not a variable array type!"); 1486 return getVLASize(vla); 1487 } 1488 1489 std::pair<llvm::Value*, QualType> 1490 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1491 // The number of elements so far; always size_t. 1492 llvm::Value *numElements = nullptr; 1493 1494 QualType elementType; 1495 do { 1496 elementType = type->getElementType(); 1497 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1498 assert(vlaSize && "no size for VLA!"); 1499 assert(vlaSize->getType() == SizeTy); 1500 1501 if (!numElements) { 1502 numElements = vlaSize; 1503 } else { 1504 // It's undefined behavior if this wraps around, so mark it that way. 1505 // FIXME: Teach -fsanitize=undefined to trap this. 1506 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1507 } 1508 } while ((type = getContext().getAsVariableArrayType(elementType))); 1509 1510 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1511 } 1512 1513 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1514 assert(type->isVariablyModifiedType() && 1515 "Must pass variably modified type to EmitVLASizes!"); 1516 1517 EnsureInsertPoint(); 1518 1519 // We're going to walk down into the type and look for VLA 1520 // expressions. 1521 do { 1522 assert(type->isVariablyModifiedType()); 1523 1524 const Type *ty = type.getTypePtr(); 1525 switch (ty->getTypeClass()) { 1526 1527 #define TYPE(Class, Base) 1528 #define ABSTRACT_TYPE(Class, Base) 1529 #define NON_CANONICAL_TYPE(Class, Base) 1530 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1531 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1532 #include "clang/AST/TypeNodes.def" 1533 llvm_unreachable("unexpected dependent type!"); 1534 1535 // These types are never variably-modified. 1536 case Type::Builtin: 1537 case Type::Complex: 1538 case Type::Vector: 1539 case Type::ExtVector: 1540 case Type::Record: 1541 case Type::Enum: 1542 case Type::Elaborated: 1543 case Type::TemplateSpecialization: 1544 case Type::ObjCObject: 1545 case Type::ObjCInterface: 1546 case Type::ObjCObjectPointer: 1547 llvm_unreachable("type class is never variably-modified!"); 1548 1549 case Type::Adjusted: 1550 type = cast<AdjustedType>(ty)->getAdjustedType(); 1551 break; 1552 1553 case Type::Decayed: 1554 type = cast<DecayedType>(ty)->getPointeeType(); 1555 break; 1556 1557 case Type::Pointer: 1558 type = cast<PointerType>(ty)->getPointeeType(); 1559 break; 1560 1561 case Type::BlockPointer: 1562 type = cast<BlockPointerType>(ty)->getPointeeType(); 1563 break; 1564 1565 case Type::LValueReference: 1566 case Type::RValueReference: 1567 type = cast<ReferenceType>(ty)->getPointeeType(); 1568 break; 1569 1570 case Type::MemberPointer: 1571 type = cast<MemberPointerType>(ty)->getPointeeType(); 1572 break; 1573 1574 case Type::ConstantArray: 1575 case Type::IncompleteArray: 1576 // Losing element qualification here is fine. 1577 type = cast<ArrayType>(ty)->getElementType(); 1578 break; 1579 1580 case Type::VariableArray: { 1581 // Losing element qualification here is fine. 1582 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1583 1584 // Unknown size indication requires no size computation. 1585 // Otherwise, evaluate and record it. 1586 if (const Expr *size = vat->getSizeExpr()) { 1587 // It's possible that we might have emitted this already, 1588 // e.g. with a typedef and a pointer to it. 1589 llvm::Value *&entry = VLASizeMap[size]; 1590 if (!entry) { 1591 llvm::Value *Size = EmitScalarExpr(size); 1592 1593 // C11 6.7.6.2p5: 1594 // If the size is an expression that is not an integer constant 1595 // expression [...] each time it is evaluated it shall have a value 1596 // greater than zero. 1597 if (SanOpts.has(SanitizerKind::VLABound) && 1598 size->getType()->isSignedIntegerType()) { 1599 SanitizerScope SanScope(this); 1600 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1601 llvm::Constant *StaticArgs[] = { 1602 EmitCheckSourceLocation(size->getLocStart()), 1603 EmitCheckTypeDescriptor(size->getType()) 1604 }; 1605 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1606 SanitizerKind::VLABound), 1607 "vla_bound_not_positive", StaticArgs, Size); 1608 } 1609 1610 // Always zexting here would be wrong if it weren't 1611 // undefined behavior to have a negative bound. 1612 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1613 } 1614 } 1615 type = vat->getElementType(); 1616 break; 1617 } 1618 1619 case Type::FunctionProto: 1620 case Type::FunctionNoProto: 1621 type = cast<FunctionType>(ty)->getReturnType(); 1622 break; 1623 1624 case Type::Paren: 1625 case Type::TypeOf: 1626 case Type::UnaryTransform: 1627 case Type::Attributed: 1628 case Type::SubstTemplateTypeParm: 1629 case Type::PackExpansion: 1630 // Keep walking after single level desugaring. 1631 type = type.getSingleStepDesugaredType(getContext()); 1632 break; 1633 1634 case Type::Typedef: 1635 case Type::Decltype: 1636 case Type::Auto: 1637 // Stop walking: nothing to do. 1638 return; 1639 1640 case Type::TypeOfExpr: 1641 // Stop walking: emit typeof expression. 1642 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1643 return; 1644 1645 case Type::Atomic: 1646 type = cast<AtomicType>(ty)->getValueType(); 1647 break; 1648 } 1649 } while (type->isVariablyModifiedType()); 1650 } 1651 1652 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1653 if (getContext().getBuiltinVaListType()->isArrayType()) 1654 return EmitScalarExpr(E); 1655 return EmitLValue(E).getAddress(); 1656 } 1657 1658 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1659 llvm::Constant *Init) { 1660 assert (Init && "Invalid DeclRefExpr initializer!"); 1661 if (CGDebugInfo *Dbg = getDebugInfo()) 1662 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1663 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1664 } 1665 1666 CodeGenFunction::PeepholeProtection 1667 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1668 // At the moment, the only aggressive peephole we do in IR gen 1669 // is trunc(zext) folding, but if we add more, we can easily 1670 // extend this protection. 1671 1672 if (!rvalue.isScalar()) return PeepholeProtection(); 1673 llvm::Value *value = rvalue.getScalarVal(); 1674 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1675 1676 // Just make an extra bitcast. 1677 assert(HaveInsertPoint()); 1678 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1679 Builder.GetInsertBlock()); 1680 1681 PeepholeProtection protection; 1682 protection.Inst = inst; 1683 return protection; 1684 } 1685 1686 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1687 if (!protection.Inst) return; 1688 1689 // In theory, we could try to duplicate the peepholes now, but whatever. 1690 protection.Inst->eraseFromParent(); 1691 } 1692 1693 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1694 llvm::Value *AnnotatedVal, 1695 StringRef AnnotationStr, 1696 SourceLocation Location) { 1697 llvm::Value *Args[4] = { 1698 AnnotatedVal, 1699 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1700 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1701 CGM.EmitAnnotationLineNo(Location) 1702 }; 1703 return Builder.CreateCall(AnnotationFn, Args); 1704 } 1705 1706 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1707 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1708 // FIXME We create a new bitcast for every annotation because that's what 1709 // llvm-gcc was doing. 1710 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1711 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1712 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1713 I->getAnnotation(), D->getLocation()); 1714 } 1715 1716 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1717 llvm::Value *V) { 1718 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1719 llvm::Type *VTy = V->getType(); 1720 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1721 CGM.Int8PtrTy); 1722 1723 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1724 // FIXME Always emit the cast inst so we can differentiate between 1725 // annotation on the first field of a struct and annotation on the struct 1726 // itself. 1727 if (VTy != CGM.Int8PtrTy) 1728 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1729 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1730 V = Builder.CreateBitCast(V, VTy); 1731 } 1732 1733 return V; 1734 } 1735 1736 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1737 1738 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1739 : CGF(CGF) { 1740 assert(!CGF->IsSanitizerScope); 1741 CGF->IsSanitizerScope = true; 1742 } 1743 1744 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1745 CGF->IsSanitizerScope = false; 1746 } 1747 1748 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1749 const llvm::Twine &Name, 1750 llvm::BasicBlock *BB, 1751 llvm::BasicBlock::iterator InsertPt) const { 1752 LoopStack.InsertHelper(I); 1753 if (IsSanitizerScope) 1754 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1755 } 1756 1757 template <bool PreserveNames> 1758 void CGBuilderInserter<PreserveNames>::InsertHelper( 1759 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1760 llvm::BasicBlock::iterator InsertPt) const { 1761 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1762 InsertPt); 1763 if (CGF) 1764 CGF->InsertHelper(I, Name, BB, InsertPt); 1765 } 1766 1767 #ifdef NDEBUG 1768 #define PreserveNames false 1769 #else 1770 #define PreserveNames true 1771 #endif 1772 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1773 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1774 llvm::BasicBlock::iterator InsertPt) const; 1775 #undef PreserveNames 1776