1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/FPEnv.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 48 /// markers. 49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 50 const LangOptions &LangOpts) { 51 if (CGOpts.DisableLifetimeMarkers) 52 return false; 53 54 // Sanitizers may use markers. 55 if (CGOpts.SanitizeAddressUseAfterScope || 56 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 57 LangOpts.Sanitize.has(SanitizerKind::Memory)) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 69 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 70 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 71 if (!suppressNewContext) 72 CGM.getCXXABI().getMangleContext().startNewFunction(); 73 74 llvm::FastMathFlags FMF; 75 if (CGM.getLangOpts().FastMath) 76 FMF.setFast(); 77 if (CGM.getLangOpts().FiniteMathOnly) { 78 FMF.setNoNaNs(); 79 FMF.setNoInfs(); 80 } 81 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 82 FMF.setNoNaNs(); 83 } 84 if (CGM.getCodeGenOpts().NoSignedZeros) { 85 FMF.setNoSignedZeros(); 86 } 87 if (CGM.getCodeGenOpts().ReciprocalMath) { 88 FMF.setAllowReciprocal(); 89 } 90 if (CGM.getCodeGenOpts().Reassociate) { 91 FMF.setAllowReassoc(); 92 } 93 Builder.setFastMathFlags(FMF); 94 SetFPModel(); 95 } 96 97 CodeGenFunction::~CodeGenFunction() { 98 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 99 100 // If there are any unclaimed block infos, go ahead and destroy them 101 // now. This can happen if IR-gen gets clever and skips evaluating 102 // something. 103 if (FirstBlockInfo) 104 destroyBlockInfos(FirstBlockInfo); 105 106 if (getLangOpts().OpenMP && CurFn) 107 CGM.getOpenMPRuntime().functionFinished(*this); 108 109 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 110 // outlining etc) at some point. Doing it once the function codegen is done 111 // seems to be a reasonable spot. We do it here, as opposed to the deletion 112 // time of the CodeGenModule, because we have to ensure the IR has not yet 113 // been "emitted" to the outside, thus, modifications are still sensible. 114 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) 115 OMPBuilder->finalize(); 116 } 117 118 // Map the LangOption for exception behavior into 119 // the corresponding enum in the IR. 120 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 121 LangOptions::FPExceptionModeKind Kind) { 122 123 switch (Kind) { 124 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 125 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 126 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 127 } 128 llvm_unreachable("Unsupported FP Exception Behavior"); 129 } 130 131 void CodeGenFunction::SetFPModel() { 132 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 133 auto fpExceptionBehavior = ToConstrainedExceptMD( 134 getLangOpts().getFPExceptionMode()); 135 136 if (fpExceptionBehavior == llvm::fp::ebIgnore && 137 RM == llvm::RoundingMode::NearestTiesToEven) 138 // Constrained intrinsics are not used. 139 ; 140 else { 141 Builder.setIsFPConstrained(true); 142 Builder.setDefaultConstrainedRounding(RM); 143 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 144 } 145 } 146 147 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 148 LValueBaseInfo *BaseInfo, 149 TBAAAccessInfo *TBAAInfo) { 150 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 151 /* forPointeeType= */ true); 152 } 153 154 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo, 157 bool forPointeeType) { 158 if (TBAAInfo) 159 *TBAAInfo = CGM.getTBAAAccessInfo(T); 160 161 // Honor alignment typedef attributes even on incomplete types. 162 // We also honor them straight for C++ class types, even as pointees; 163 // there's an expressivity gap here. 164 if (auto TT = T->getAs<TypedefType>()) { 165 if (auto Align = TT->getDecl()->getMaxAlignment()) { 166 if (BaseInfo) 167 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 168 return getContext().toCharUnitsFromBits(Align); 169 } 170 } 171 172 if (BaseInfo) 173 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 174 175 CharUnits Alignment; 176 if (T->isIncompleteType()) { 177 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 178 } else { 179 // For C++ class pointees, we don't know whether we're pointing at a 180 // base or a complete object, so we generally need to use the 181 // non-virtual alignment. 182 const CXXRecordDecl *RD; 183 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 184 Alignment = CGM.getClassPointerAlignment(RD); 185 } else { 186 Alignment = getContext().getTypeAlignInChars(T); 187 if (T.getQualifiers().hasUnaligned()) 188 Alignment = CharUnits::One(); 189 } 190 191 // Cap to the global maximum type alignment unless the alignment 192 // was somehow explicit on the type. 193 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 194 if (Alignment.getQuantity() > MaxAlign && 195 !getContext().isAlignmentRequired(T)) 196 Alignment = CharUnits::fromQuantity(MaxAlign); 197 } 198 } 199 return Alignment; 200 } 201 202 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 203 LValueBaseInfo BaseInfo; 204 TBAAAccessInfo TBAAInfo; 205 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 206 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 207 TBAAInfo); 208 } 209 210 /// Given a value of type T* that may not be to a complete object, 211 /// construct an l-value with the natural pointee alignment of T. 212 LValue 213 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 214 LValueBaseInfo BaseInfo; 215 TBAAAccessInfo TBAAInfo; 216 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 217 /* forPointeeType= */ true); 218 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 219 } 220 221 222 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 223 return CGM.getTypes().ConvertTypeForMem(T); 224 } 225 226 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 227 return CGM.getTypes().ConvertType(T); 228 } 229 230 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 231 type = type.getCanonicalType(); 232 while (true) { 233 switch (type->getTypeClass()) { 234 #define TYPE(name, parent) 235 #define ABSTRACT_TYPE(name, parent) 236 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 237 #define DEPENDENT_TYPE(name, parent) case Type::name: 238 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 239 #include "clang/AST/TypeNodes.inc" 240 llvm_unreachable("non-canonical or dependent type in IR-generation"); 241 242 case Type::Auto: 243 case Type::DeducedTemplateSpecialization: 244 llvm_unreachable("undeduced type in IR-generation"); 245 246 // Various scalar types. 247 case Type::Builtin: 248 case Type::Pointer: 249 case Type::BlockPointer: 250 case Type::LValueReference: 251 case Type::RValueReference: 252 case Type::MemberPointer: 253 case Type::Vector: 254 case Type::ExtVector: 255 case Type::FunctionProto: 256 case Type::FunctionNoProto: 257 case Type::Enum: 258 case Type::ObjCObjectPointer: 259 case Type::Pipe: 260 return TEK_Scalar; 261 262 // Complexes. 263 case Type::Complex: 264 return TEK_Complex; 265 266 // Arrays, records, and Objective-C objects. 267 case Type::ConstantArray: 268 case Type::IncompleteArray: 269 case Type::VariableArray: 270 case Type::Record: 271 case Type::ObjCObject: 272 case Type::ObjCInterface: 273 return TEK_Aggregate; 274 275 // We operate on atomic values according to their underlying type. 276 case Type::Atomic: 277 type = cast<AtomicType>(type)->getValueType(); 278 continue; 279 } 280 llvm_unreachable("unknown type kind!"); 281 } 282 } 283 284 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 285 // For cleanliness, we try to avoid emitting the return block for 286 // simple cases. 287 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 288 289 if (CurBB) { 290 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 291 292 // We have a valid insert point, reuse it if it is empty or there are no 293 // explicit jumps to the return block. 294 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 295 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 296 delete ReturnBlock.getBlock(); 297 ReturnBlock = JumpDest(); 298 } else 299 EmitBlock(ReturnBlock.getBlock()); 300 return llvm::DebugLoc(); 301 } 302 303 // Otherwise, if the return block is the target of a single direct 304 // branch then we can just put the code in that block instead. This 305 // cleans up functions which started with a unified return block. 306 if (ReturnBlock.getBlock()->hasOneUse()) { 307 llvm::BranchInst *BI = 308 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 309 if (BI && BI->isUnconditional() && 310 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 311 // Record/return the DebugLoc of the simple 'return' expression to be used 312 // later by the actual 'ret' instruction. 313 llvm::DebugLoc Loc = BI->getDebugLoc(); 314 Builder.SetInsertPoint(BI->getParent()); 315 BI->eraseFromParent(); 316 delete ReturnBlock.getBlock(); 317 ReturnBlock = JumpDest(); 318 return Loc; 319 } 320 } 321 322 // FIXME: We are at an unreachable point, there is no reason to emit the block 323 // unless it has uses. However, we still need a place to put the debug 324 // region.end for now. 325 326 EmitBlock(ReturnBlock.getBlock()); 327 return llvm::DebugLoc(); 328 } 329 330 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 331 if (!BB) return; 332 if (!BB->use_empty()) 333 return CGF.CurFn->getBasicBlockList().push_back(BB); 334 delete BB; 335 } 336 337 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 338 assert(BreakContinueStack.empty() && 339 "mismatched push/pop in break/continue stack!"); 340 341 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 342 && NumSimpleReturnExprs == NumReturnExprs 343 && ReturnBlock.getBlock()->use_empty(); 344 // Usually the return expression is evaluated before the cleanup 345 // code. If the function contains only a simple return statement, 346 // such as a constant, the location before the cleanup code becomes 347 // the last useful breakpoint in the function, because the simple 348 // return expression will be evaluated after the cleanup code. To be 349 // safe, set the debug location for cleanup code to the location of 350 // the return statement. Otherwise the cleanup code should be at the 351 // end of the function's lexical scope. 352 // 353 // If there are multiple branches to the return block, the branch 354 // instructions will get the location of the return statements and 355 // all will be fine. 356 if (CGDebugInfo *DI = getDebugInfo()) { 357 if (OnlySimpleReturnStmts) 358 DI->EmitLocation(Builder, LastStopPoint); 359 else 360 DI->EmitLocation(Builder, EndLoc); 361 } 362 363 // Pop any cleanups that might have been associated with the 364 // parameters. Do this in whatever block we're currently in; it's 365 // important to do this before we enter the return block or return 366 // edges will be *really* confused. 367 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 368 bool HasOnlyLifetimeMarkers = 369 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 370 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 371 if (HasCleanups) { 372 // Make sure the line table doesn't jump back into the body for 373 // the ret after it's been at EndLoc. 374 Optional<ApplyDebugLocation> AL; 375 if (CGDebugInfo *DI = getDebugInfo()) { 376 if (OnlySimpleReturnStmts) 377 DI->EmitLocation(Builder, EndLoc); 378 else 379 // We may not have a valid end location. Try to apply it anyway, and 380 // fall back to an artificial location if needed. 381 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 382 } 383 384 PopCleanupBlocks(PrologueCleanupDepth); 385 } 386 387 // Emit function epilog (to return). 388 llvm::DebugLoc Loc = EmitReturnBlock(); 389 390 if (ShouldInstrumentFunction()) { 391 if (CGM.getCodeGenOpts().InstrumentFunctions) 392 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 393 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 394 CurFn->addFnAttr("instrument-function-exit-inlined", 395 "__cyg_profile_func_exit"); 396 } 397 398 // Emit debug descriptor for function end. 399 if (CGDebugInfo *DI = getDebugInfo()) 400 DI->EmitFunctionEnd(Builder, CurFn); 401 402 // Reset the debug location to that of the simple 'return' expression, if any 403 // rather than that of the end of the function's scope '}'. 404 ApplyDebugLocation AL(*this, Loc); 405 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 406 EmitEndEHSpec(CurCodeDecl); 407 408 assert(EHStack.empty() && 409 "did not remove all scopes from cleanup stack!"); 410 411 // If someone did an indirect goto, emit the indirect goto block at the end of 412 // the function. 413 if (IndirectBranch) { 414 EmitBlock(IndirectBranch->getParent()); 415 Builder.ClearInsertionPoint(); 416 } 417 418 // If some of our locals escaped, insert a call to llvm.localescape in the 419 // entry block. 420 if (!EscapedLocals.empty()) { 421 // Invert the map from local to index into a simple vector. There should be 422 // no holes. 423 SmallVector<llvm::Value *, 4> EscapeArgs; 424 EscapeArgs.resize(EscapedLocals.size()); 425 for (auto &Pair : EscapedLocals) 426 EscapeArgs[Pair.second] = Pair.first; 427 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 428 &CGM.getModule(), llvm::Intrinsic::localescape); 429 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 430 } 431 432 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 433 llvm::Instruction *Ptr = AllocaInsertPt; 434 AllocaInsertPt = nullptr; 435 Ptr->eraseFromParent(); 436 437 // If someone took the address of a label but never did an indirect goto, we 438 // made a zero entry PHI node, which is illegal, zap it now. 439 if (IndirectBranch) { 440 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 441 if (PN->getNumIncomingValues() == 0) { 442 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 443 PN->eraseFromParent(); 444 } 445 } 446 447 EmitIfUsed(*this, EHResumeBlock); 448 EmitIfUsed(*this, TerminateLandingPad); 449 EmitIfUsed(*this, TerminateHandler); 450 EmitIfUsed(*this, UnreachableBlock); 451 452 for (const auto &FuncletAndParent : TerminateFunclets) 453 EmitIfUsed(*this, FuncletAndParent.second); 454 455 if (CGM.getCodeGenOpts().EmitDeclMetadata) 456 EmitDeclMetadata(); 457 458 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 459 I = DeferredReplacements.begin(), 460 E = DeferredReplacements.end(); 461 I != E; ++I) { 462 I->first->replaceAllUsesWith(I->second); 463 I->first->eraseFromParent(); 464 } 465 466 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 467 // PHIs if the current function is a coroutine. We don't do it for all 468 // functions as it may result in slight increase in numbers of instructions 469 // if compiled with no optimizations. We do it for coroutine as the lifetime 470 // of CleanupDestSlot alloca make correct coroutine frame building very 471 // difficult. 472 if (NormalCleanupDest.isValid() && isCoroutine()) { 473 llvm::DominatorTree DT(*CurFn); 474 llvm::PromoteMemToReg( 475 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 476 NormalCleanupDest = Address::invalid(); 477 } 478 479 // Scan function arguments for vector width. 480 for (llvm::Argument &A : CurFn->args()) 481 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 482 LargestVectorWidth = 483 std::max((uint64_t)LargestVectorWidth, 484 VT->getPrimitiveSizeInBits().getKnownMinSize()); 485 486 // Update vector width based on return type. 487 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 488 LargestVectorWidth = 489 std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getKnownMinSize()); 491 492 // Add the required-vector-width attribute. This contains the max width from: 493 // 1. min-vector-width attribute used in the source program. 494 // 2. Any builtins used that have a vector width specified. 495 // 3. Values passed in and out of inline assembly. 496 // 4. Width of vector arguments and return types for this function. 497 // 5. Width of vector aguments and return types for functions called by this 498 // function. 499 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 500 501 // If we generated an unreachable return block, delete it now. 502 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 503 Builder.ClearInsertionPoint(); 504 ReturnBlock.getBlock()->eraseFromParent(); 505 } 506 if (ReturnValue.isValid()) { 507 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 508 if (RetAlloca && RetAlloca->use_empty()) { 509 RetAlloca->eraseFromParent(); 510 ReturnValue = Address::invalid(); 511 } 512 } 513 } 514 515 /// ShouldInstrumentFunction - Return true if the current function should be 516 /// instrumented with __cyg_profile_func_* calls 517 bool CodeGenFunction::ShouldInstrumentFunction() { 518 if (!CGM.getCodeGenOpts().InstrumentFunctions && 519 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 520 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 521 return false; 522 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 523 return false; 524 return true; 525 } 526 527 /// ShouldXRayInstrument - Return true if the current function should be 528 /// instrumented with XRay nop sleds. 529 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 530 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 531 } 532 533 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 534 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 535 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 536 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 537 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 538 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 539 XRayInstrKind::Custom); 540 } 541 542 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 543 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 544 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 545 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 546 XRayInstrKind::Typed); 547 } 548 549 llvm::Constant * 550 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 551 llvm::Constant *Addr) { 552 // Addresses stored in prologue data can't require run-time fixups and must 553 // be PC-relative. Run-time fixups are undesirable because they necessitate 554 // writable text segments, which are unsafe. And absolute addresses are 555 // undesirable because they break PIE mode. 556 557 // Add a layer of indirection through a private global. Taking its address 558 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 559 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 560 /*isConstant=*/true, 561 llvm::GlobalValue::PrivateLinkage, Addr); 562 563 // Create a PC-relative address. 564 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 565 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 566 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 567 return (IntPtrTy == Int32Ty) 568 ? PCRelAsInt 569 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 570 } 571 572 llvm::Value * 573 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 574 llvm::Value *EncodedAddr) { 575 // Reconstruct the address of the global. 576 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 577 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 578 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 579 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 580 581 // Load the original pointer through the global. 582 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 583 "decoded_addr"); 584 } 585 586 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 587 llvm::Function *Fn) 588 { 589 if (!FD->hasAttr<OpenCLKernelAttr>()) 590 return; 591 592 llvm::LLVMContext &Context = getLLVMContext(); 593 594 CGM.GenOpenCLArgMetadata(Fn, FD, this); 595 596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 597 QualType HintQTy = A->getTypeHint(); 598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 599 bool IsSignedInteger = 600 HintQTy->isSignedIntegerType() || 601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 602 llvm::Metadata *AttrMDArgs[] = { 603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 604 CGM.getTypes().ConvertType(A->getTypeHint()))), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 llvm::IntegerType::get(Context, 32), 607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 609 } 610 611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 617 } 618 619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 620 llvm::Metadata *AttrMDArgs[] = { 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 625 } 626 627 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 629 llvm::Metadata *AttrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 631 Fn->setMetadata("intel_reqd_sub_group_size", 632 llvm::MDNode::get(Context, AttrMDArgs)); 633 } 634 } 635 636 /// Determine whether the function F ends with a return stmt. 637 static bool endsWithReturn(const Decl* F) { 638 const Stmt *Body = nullptr; 639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 640 Body = FD->getBody(); 641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 642 Body = OMD->getBody(); 643 644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 645 auto LastStmt = CS->body_rbegin(); 646 if (LastStmt != CS->body_rend()) 647 return isa<ReturnStmt>(*LastStmt); 648 } 649 return false; 650 } 651 652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 653 if (SanOpts.has(SanitizerKind::Thread)) { 654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 656 } 657 } 658 659 /// Check if the return value of this function requires sanitization. 660 bool CodeGenFunction::requiresReturnValueCheck() const { 661 return requiresReturnValueNullabilityCheck() || 662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 663 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 664 } 665 666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 670 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 671 return false; 672 673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 674 return false; 675 676 if (MD->getNumParams() == 2) { 677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 678 if (!PT || !PT->isVoidPointerType() || 679 !PT->getPointeeType().isConstQualified()) 680 return false; 681 } 682 683 return true; 684 } 685 686 /// Return the UBSan prologue signature for \p FD if one is available. 687 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 688 const FunctionDecl *FD) { 689 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 690 if (!MD->isStatic()) 691 return nullptr; 692 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 693 } 694 695 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 696 llvm::Function *Fn, 697 const CGFunctionInfo &FnInfo, 698 const FunctionArgList &Args, 699 SourceLocation Loc, 700 SourceLocation StartLoc) { 701 assert(!CurFn && 702 "Do not use a CodeGenFunction object for more than one function"); 703 704 const Decl *D = GD.getDecl(); 705 706 DidCallStackSave = false; 707 CurCodeDecl = D; 708 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 709 if (FD->usesSEHTry()) 710 CurSEHParent = FD; 711 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 712 FnRetTy = RetTy; 713 CurFn = Fn; 714 CurFnInfo = &FnInfo; 715 assert(CurFn->isDeclaration() && "Function already has body?"); 716 717 // If this function has been blacklisted for any of the enabled sanitizers, 718 // disable the sanitizer for the function. 719 do { 720 #define SANITIZER(NAME, ID) \ 721 if (SanOpts.empty()) \ 722 break; \ 723 if (SanOpts.has(SanitizerKind::ID)) \ 724 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 725 SanOpts.set(SanitizerKind::ID, false); 726 727 #include "clang/Basic/Sanitizers.def" 728 #undef SANITIZER 729 } while (0); 730 731 if (D) { 732 // Apply the no_sanitize* attributes to SanOpts. 733 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 734 SanitizerMask mask = Attr->getMask(); 735 SanOpts.Mask &= ~mask; 736 if (mask & SanitizerKind::Address) 737 SanOpts.set(SanitizerKind::KernelAddress, false); 738 if (mask & SanitizerKind::KernelAddress) 739 SanOpts.set(SanitizerKind::Address, false); 740 if (mask & SanitizerKind::HWAddress) 741 SanOpts.set(SanitizerKind::KernelHWAddress, false); 742 if (mask & SanitizerKind::KernelHWAddress) 743 SanOpts.set(SanitizerKind::HWAddress, false); 744 } 745 } 746 747 // Apply sanitizer attributes to the function. 748 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 749 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 750 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 751 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 752 if (SanOpts.has(SanitizerKind::MemTag)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 754 if (SanOpts.has(SanitizerKind::Thread)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 756 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 757 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 758 if (SanOpts.has(SanitizerKind::SafeStack)) 759 Fn->addFnAttr(llvm::Attribute::SafeStack); 760 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 761 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 762 763 // Apply fuzzing attribute to the function. 764 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 765 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 766 767 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 768 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 769 if (SanOpts.has(SanitizerKind::Thread)) { 770 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 771 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 772 if (OMD->getMethodFamily() == OMF_dealloc || 773 OMD->getMethodFamily() == OMF_initialize || 774 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 775 markAsIgnoreThreadCheckingAtRuntime(Fn); 776 } 777 } 778 } 779 780 // Ignore unrelated casts in STL allocate() since the allocator must cast 781 // from void* to T* before object initialization completes. Don't match on the 782 // namespace because not all allocators are in std:: 783 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 784 if (matchesStlAllocatorFn(D, getContext())) 785 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 786 } 787 788 // Ignore null checks in coroutine functions since the coroutines passes 789 // are not aware of how to move the extra UBSan instructions across the split 790 // coroutine boundaries. 791 if (D && SanOpts.has(SanitizerKind::Null)) 792 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 793 if (FD->getBody() && 794 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 795 SanOpts.Mask &= ~SanitizerKind::Null; 796 797 // Apply xray attributes to the function (as a string, for now) 798 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 799 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 800 XRayInstrKind::FunctionEntry) || 801 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 802 XRayInstrKind::FunctionExit)) { 803 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 804 Fn->addFnAttr("function-instrument", "xray-always"); 805 if (XRayAttr->neverXRayInstrument()) 806 Fn->addFnAttr("function-instrument", "xray-never"); 807 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 808 if (ShouldXRayInstrumentFunction()) 809 Fn->addFnAttr("xray-log-args", 810 llvm::utostr(LogArgs->getArgumentCount())); 811 } 812 } else { 813 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 814 Fn->addFnAttr( 815 "xray-instruction-threshold", 816 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 817 } 818 819 if (ShouldXRayInstrumentFunction()) { 820 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 821 Fn->addFnAttr("xray-ignore-loops"); 822 823 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionExit)) 825 Fn->addFnAttr("xray-skip-exit"); 826 827 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 828 XRayInstrKind::FunctionEntry)) 829 Fn->addFnAttr("xray-skip-entry"); 830 } 831 832 unsigned Count, Offset; 833 if (const auto *Attr = 834 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 835 Count = Attr->getCount(); 836 Offset = Attr->getOffset(); 837 } else { 838 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 839 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 840 } 841 if (Count && Offset <= Count) { 842 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 843 if (Offset) 844 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 845 } 846 847 // Add no-jump-tables value. 848 Fn->addFnAttr("no-jump-tables", 849 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 850 851 // Add no-inline-line-tables value. 852 if (CGM.getCodeGenOpts().NoInlineLineTables) 853 Fn->addFnAttr("no-inline-line-tables"); 854 855 // Add profile-sample-accurate value. 856 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 857 Fn->addFnAttr("profile-sample-accurate"); 858 859 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 860 Fn->addFnAttr("cfi-canonical-jump-table"); 861 862 if (getLangOpts().OpenCL) { 863 // Add metadata for a kernel function. 864 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 865 EmitOpenCLKernelMetadata(FD, Fn); 866 } 867 868 // If we are checking function types, emit a function type signature as 869 // prologue data. 870 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 871 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 872 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 873 // Remove any (C++17) exception specifications, to allow calling e.g. a 874 // noexcept function through a non-noexcept pointer. 875 auto ProtoTy = 876 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 877 EST_None); 878 llvm::Constant *FTRTTIConst = 879 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 880 llvm::Constant *FTRTTIConstEncoded = 881 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 882 llvm::Constant *PrologueStructElems[] = {PrologueSig, 883 FTRTTIConstEncoded}; 884 llvm::Constant *PrologueStructConst = 885 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 886 Fn->setPrologueData(PrologueStructConst); 887 } 888 } 889 } 890 891 // If we're checking nullability, we need to know whether we can check the 892 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 893 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 894 auto Nullability = FnRetTy->getNullability(getContext()); 895 if (Nullability && *Nullability == NullabilityKind::NonNull) { 896 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 897 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 898 RetValNullabilityPrecondition = 899 llvm::ConstantInt::getTrue(getLLVMContext()); 900 } 901 } 902 903 // If we're in C++ mode and the function name is "main", it is guaranteed 904 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 905 // used within a program"). 906 // 907 // OpenCL C 2.0 v2.2-11 s6.9.i: 908 // Recursion is not supported. 909 // 910 // SYCL v1.2.1 s3.10: 911 // kernels cannot include RTTI information, exception classes, 912 // recursive code, virtual functions or make use of C++ libraries that 913 // are not compiled for the device. 914 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 915 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 916 getLangOpts().SYCLIsDevice || 917 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 918 Fn->addFnAttr(llvm::Attribute::NoRecurse); 919 } 920 921 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 922 if (FD->usesFPIntrin()) 923 Fn->addFnAttr(llvm::Attribute::StrictFP); 924 925 // If a custom alignment is used, force realigning to this alignment on 926 // any main function which certainly will need it. 927 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 928 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 929 CGM.getCodeGenOpts().StackAlignment) 930 Fn->addFnAttr("stackrealign"); 931 932 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 933 934 // Create a marker to make it easy to insert allocas into the entryblock 935 // later. Don't create this with the builder, because we don't want it 936 // folded. 937 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 938 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 939 940 ReturnBlock = getJumpDestInCurrentScope("return"); 941 942 Builder.SetInsertPoint(EntryBB); 943 944 // If we're checking the return value, allocate space for a pointer to a 945 // precise source location of the checked return statement. 946 if (requiresReturnValueCheck()) { 947 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 948 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 949 } 950 951 // Emit subprogram debug descriptor. 952 if (CGDebugInfo *DI = getDebugInfo()) { 953 // Reconstruct the type from the argument list so that implicit parameters, 954 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 955 // convention. 956 CallingConv CC = CallingConv::CC_C; 957 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 958 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 959 CC = SrcFnTy->getCallConv(); 960 SmallVector<QualType, 16> ArgTypes; 961 for (const VarDecl *VD : Args) 962 ArgTypes.push_back(VD->getType()); 963 QualType FnType = getContext().getFunctionType( 964 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 965 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 966 Builder); 967 } 968 969 if (ShouldInstrumentFunction()) { 970 if (CGM.getCodeGenOpts().InstrumentFunctions) 971 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 972 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 973 CurFn->addFnAttr("instrument-function-entry-inlined", 974 "__cyg_profile_func_enter"); 975 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 976 CurFn->addFnAttr("instrument-function-entry-inlined", 977 "__cyg_profile_func_enter_bare"); 978 } 979 980 // Since emitting the mcount call here impacts optimizations such as function 981 // inlining, we just add an attribute to insert a mcount call in backend. 982 // The attribute "counting-function" is set to mcount function name which is 983 // architecture dependent. 984 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 985 // Calls to fentry/mcount should not be generated if function has 986 // the no_instrument_function attribute. 987 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 988 if (CGM.getCodeGenOpts().CallFEntry) 989 Fn->addFnAttr("fentry-call", "true"); 990 else { 991 Fn->addFnAttr("instrument-function-entry-inlined", 992 getTarget().getMCountName()); 993 } 994 if (CGM.getCodeGenOpts().MNopMCount) { 995 if (!CGM.getCodeGenOpts().CallFEntry) 996 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 997 << "-mnop-mcount" << "-mfentry"; 998 Fn->addFnAttr("mnop-mcount"); 999 } 1000 1001 if (CGM.getCodeGenOpts().RecordMCount) { 1002 if (!CGM.getCodeGenOpts().CallFEntry) 1003 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1004 << "-mrecord-mcount" << "-mfentry"; 1005 Fn->addFnAttr("mrecord-mcount"); 1006 } 1007 } 1008 } 1009 1010 if (CGM.getCodeGenOpts().PackedStack) { 1011 if (getContext().getTargetInfo().getTriple().getArch() != 1012 llvm::Triple::systemz) 1013 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1014 << "-mpacked-stack"; 1015 Fn->addFnAttr("packed-stack"); 1016 } 1017 1018 if (RetTy->isVoidType()) { 1019 // Void type; nothing to return. 1020 ReturnValue = Address::invalid(); 1021 1022 // Count the implicit return. 1023 if (!endsWithReturn(D)) 1024 ++NumReturnExprs; 1025 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1026 // Indirect return; emit returned value directly into sret slot. 1027 // This reduces code size, and affects correctness in C++. 1028 auto AI = CurFn->arg_begin(); 1029 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1030 ++AI; 1031 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1032 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1033 ReturnValuePointer = 1034 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1035 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1036 ReturnValue.getPointer(), Int8PtrTy), 1037 ReturnValuePointer); 1038 } 1039 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1040 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1041 // Load the sret pointer from the argument struct and return into that. 1042 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1043 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1044 --EI; 1045 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1046 ReturnValuePointer = Address(Addr, getPointerAlign()); 1047 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1048 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1049 } else { 1050 ReturnValue = CreateIRTemp(RetTy, "retval"); 1051 1052 // Tell the epilog emitter to autorelease the result. We do this 1053 // now so that various specialized functions can suppress it 1054 // during their IR-generation. 1055 if (getLangOpts().ObjCAutoRefCount && 1056 !CurFnInfo->isReturnsRetained() && 1057 RetTy->isObjCRetainableType()) 1058 AutoreleaseResult = true; 1059 } 1060 1061 EmitStartEHSpec(CurCodeDecl); 1062 1063 PrologueCleanupDepth = EHStack.stable_begin(); 1064 1065 // Emit OpenMP specific initialization of the device functions. 1066 if (getLangOpts().OpenMP && CurCodeDecl) 1067 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1068 1069 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1070 1071 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1072 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1073 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1074 if (MD->getParent()->isLambda() && 1075 MD->getOverloadedOperator() == OO_Call) { 1076 // We're in a lambda; figure out the captures. 1077 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1078 LambdaThisCaptureField); 1079 if (LambdaThisCaptureField) { 1080 // If the lambda captures the object referred to by '*this' - either by 1081 // value or by reference, make sure CXXThisValue points to the correct 1082 // object. 1083 1084 // Get the lvalue for the field (which is a copy of the enclosing object 1085 // or contains the address of the enclosing object). 1086 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1087 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1088 // If the enclosing object was captured by value, just use its address. 1089 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1090 } else { 1091 // Load the lvalue pointed to by the field, since '*this' was captured 1092 // by reference. 1093 CXXThisValue = 1094 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1095 } 1096 } 1097 for (auto *FD : MD->getParent()->fields()) { 1098 if (FD->hasCapturedVLAType()) { 1099 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1100 SourceLocation()).getScalarVal(); 1101 auto VAT = FD->getCapturedVLAType(); 1102 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1103 } 1104 } 1105 } else { 1106 // Not in a lambda; just use 'this' from the method. 1107 // FIXME: Should we generate a new load for each use of 'this'? The 1108 // fast register allocator would be happier... 1109 CXXThisValue = CXXABIThisValue; 1110 } 1111 1112 // Check the 'this' pointer once per function, if it's available. 1113 if (CXXABIThisValue) { 1114 SanitizerSet SkippedChecks; 1115 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1116 QualType ThisTy = MD->getThisType(); 1117 1118 // If this is the call operator of a lambda with no capture-default, it 1119 // may have a static invoker function, which may call this operator with 1120 // a null 'this' pointer. 1121 if (isLambdaCallOperator(MD) && 1122 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1123 SkippedChecks.set(SanitizerKind::Null, true); 1124 1125 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1126 : TCK_MemberCall, 1127 Loc, CXXABIThisValue, ThisTy, 1128 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1129 SkippedChecks); 1130 } 1131 } 1132 1133 // If any of the arguments have a variably modified type, make sure to 1134 // emit the type size. 1135 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1136 i != e; ++i) { 1137 const VarDecl *VD = *i; 1138 1139 // Dig out the type as written from ParmVarDecls; it's unclear whether 1140 // the standard (C99 6.9.1p10) requires this, but we're following the 1141 // precedent set by gcc. 1142 QualType Ty; 1143 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1144 Ty = PVD->getOriginalType(); 1145 else 1146 Ty = VD->getType(); 1147 1148 if (Ty->isVariablyModifiedType()) 1149 EmitVariablyModifiedType(Ty); 1150 } 1151 // Emit a location at the end of the prologue. 1152 if (CGDebugInfo *DI = getDebugInfo()) 1153 DI->EmitLocation(Builder, StartLoc); 1154 1155 // TODO: Do we need to handle this in two places like we do with 1156 // target-features/target-cpu? 1157 if (CurFuncDecl) 1158 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1159 LargestVectorWidth = VecWidth->getVectorWidth(); 1160 } 1161 1162 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1163 incrementProfileCounter(Body); 1164 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1165 EmitCompoundStmtWithoutScope(*S); 1166 else 1167 EmitStmt(Body); 1168 } 1169 1170 /// When instrumenting to collect profile data, the counts for some blocks 1171 /// such as switch cases need to not include the fall-through counts, so 1172 /// emit a branch around the instrumentation code. When not instrumenting, 1173 /// this just calls EmitBlock(). 1174 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1175 const Stmt *S) { 1176 llvm::BasicBlock *SkipCountBB = nullptr; 1177 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1178 // When instrumenting for profiling, the fallthrough to certain 1179 // statements needs to skip over the instrumentation code so that we 1180 // get an accurate count. 1181 SkipCountBB = createBasicBlock("skipcount"); 1182 EmitBranch(SkipCountBB); 1183 } 1184 EmitBlock(BB); 1185 uint64_t CurrentCount = getCurrentProfileCount(); 1186 incrementProfileCounter(S); 1187 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1188 if (SkipCountBB) 1189 EmitBlock(SkipCountBB); 1190 } 1191 1192 /// Tries to mark the given function nounwind based on the 1193 /// non-existence of any throwing calls within it. We believe this is 1194 /// lightweight enough to do at -O0. 1195 static void TryMarkNoThrow(llvm::Function *F) { 1196 // LLVM treats 'nounwind' on a function as part of the type, so we 1197 // can't do this on functions that can be overwritten. 1198 if (F->isInterposable()) return; 1199 1200 for (llvm::BasicBlock &BB : *F) 1201 for (llvm::Instruction &I : BB) 1202 if (I.mayThrow()) 1203 return; 1204 1205 F->setDoesNotThrow(); 1206 } 1207 1208 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1209 FunctionArgList &Args) { 1210 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1211 QualType ResTy = FD->getReturnType(); 1212 1213 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1214 if (MD && MD->isInstance()) { 1215 if (CGM.getCXXABI().HasThisReturn(GD)) 1216 ResTy = MD->getThisType(); 1217 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1218 ResTy = CGM.getContext().VoidPtrTy; 1219 CGM.getCXXABI().buildThisParam(*this, Args); 1220 } 1221 1222 // The base version of an inheriting constructor whose constructed base is a 1223 // virtual base is not passed any arguments (because it doesn't actually call 1224 // the inherited constructor). 1225 bool PassedParams = true; 1226 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1227 if (auto Inherited = CD->getInheritedConstructor()) 1228 PassedParams = 1229 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1230 1231 if (PassedParams) { 1232 for (auto *Param : FD->parameters()) { 1233 Args.push_back(Param); 1234 if (!Param->hasAttr<PassObjectSizeAttr>()) 1235 continue; 1236 1237 auto *Implicit = ImplicitParamDecl::Create( 1238 getContext(), Param->getDeclContext(), Param->getLocation(), 1239 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1240 SizeArguments[Param] = Implicit; 1241 Args.push_back(Implicit); 1242 } 1243 } 1244 1245 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1246 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1247 1248 return ResTy; 1249 } 1250 1251 static bool 1252 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1253 const ASTContext &Context) { 1254 QualType T = FD->getReturnType(); 1255 // Avoid the optimization for functions that return a record type with a 1256 // trivial destructor or another trivially copyable type. 1257 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1258 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1259 return !ClassDecl->hasTrivialDestructor(); 1260 } 1261 return !T.isTriviallyCopyableType(Context); 1262 } 1263 1264 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1265 const CGFunctionInfo &FnInfo) { 1266 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1267 CurGD = GD; 1268 1269 FunctionArgList Args; 1270 QualType ResTy = BuildFunctionArgList(GD, Args); 1271 1272 // Check if we should generate debug info for this function. 1273 if (FD->hasAttr<NoDebugAttr>()) 1274 DebugInfo = nullptr; // disable debug info indefinitely for this function 1275 1276 // The function might not have a body if we're generating thunks for a 1277 // function declaration. 1278 SourceRange BodyRange; 1279 if (Stmt *Body = FD->getBody()) 1280 BodyRange = Body->getSourceRange(); 1281 else 1282 BodyRange = FD->getLocation(); 1283 CurEHLocation = BodyRange.getEnd(); 1284 1285 // Use the location of the start of the function to determine where 1286 // the function definition is located. By default use the location 1287 // of the declaration as the location for the subprogram. A function 1288 // may lack a declaration in the source code if it is created by code 1289 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1290 SourceLocation Loc = FD->getLocation(); 1291 1292 // If this is a function specialization then use the pattern body 1293 // as the location for the function. 1294 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1295 if (SpecDecl->hasBody(SpecDecl)) 1296 Loc = SpecDecl->getLocation(); 1297 1298 Stmt *Body = FD->getBody(); 1299 1300 // Initialize helper which will detect jumps which can cause invalid lifetime 1301 // markers. 1302 if (Body && ShouldEmitLifetimeMarkers) 1303 Bypasses.Init(Body); 1304 1305 // Emit the standard function prologue. 1306 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1307 1308 // Generate the body of the function. 1309 PGO.assignRegionCounters(GD, CurFn); 1310 if (isa<CXXDestructorDecl>(FD)) 1311 EmitDestructorBody(Args); 1312 else if (isa<CXXConstructorDecl>(FD)) 1313 EmitConstructorBody(Args); 1314 else if (getLangOpts().CUDA && 1315 !getLangOpts().CUDAIsDevice && 1316 FD->hasAttr<CUDAGlobalAttr>()) 1317 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1318 else if (isa<CXXMethodDecl>(FD) && 1319 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1320 // The lambda static invoker function is special, because it forwards or 1321 // clones the body of the function call operator (but is actually static). 1322 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1323 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1324 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1325 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1326 // Implicit copy-assignment gets the same special treatment as implicit 1327 // copy-constructors. 1328 emitImplicitAssignmentOperatorBody(Args); 1329 } else if (Body) { 1330 EmitFunctionBody(Body); 1331 } else 1332 llvm_unreachable("no definition for emitted function"); 1333 1334 // C++11 [stmt.return]p2: 1335 // Flowing off the end of a function [...] results in undefined behavior in 1336 // a value-returning function. 1337 // C11 6.9.1p12: 1338 // If the '}' that terminates a function is reached, and the value of the 1339 // function call is used by the caller, the behavior is undefined. 1340 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1341 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1342 bool ShouldEmitUnreachable = 1343 CGM.getCodeGenOpts().StrictReturn || 1344 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1345 if (SanOpts.has(SanitizerKind::Return)) { 1346 SanitizerScope SanScope(this); 1347 llvm::Value *IsFalse = Builder.getFalse(); 1348 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1349 SanitizerHandler::MissingReturn, 1350 EmitCheckSourceLocation(FD->getLocation()), None); 1351 } else if (ShouldEmitUnreachable) { 1352 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1353 EmitTrapCall(llvm::Intrinsic::trap); 1354 } 1355 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1356 Builder.CreateUnreachable(); 1357 Builder.ClearInsertionPoint(); 1358 } 1359 } 1360 1361 // Emit the standard function epilogue. 1362 FinishFunction(BodyRange.getEnd()); 1363 1364 // If we haven't marked the function nothrow through other means, do 1365 // a quick pass now to see if we can. 1366 if (!CurFn->doesNotThrow()) 1367 TryMarkNoThrow(CurFn); 1368 } 1369 1370 /// ContainsLabel - Return true if the statement contains a label in it. If 1371 /// this statement is not executed normally, it not containing a label means 1372 /// that we can just remove the code. 1373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1374 // Null statement, not a label! 1375 if (!S) return false; 1376 1377 // If this is a label, we have to emit the code, consider something like: 1378 // if (0) { ... foo: bar(); } goto foo; 1379 // 1380 // TODO: If anyone cared, we could track __label__'s, since we know that you 1381 // can't jump to one from outside their declared region. 1382 if (isa<LabelStmt>(S)) 1383 return true; 1384 1385 // If this is a case/default statement, and we haven't seen a switch, we have 1386 // to emit the code. 1387 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1388 return true; 1389 1390 // If this is a switch statement, we want to ignore cases below it. 1391 if (isa<SwitchStmt>(S)) 1392 IgnoreCaseStmts = true; 1393 1394 // Scan subexpressions for verboten labels. 1395 for (const Stmt *SubStmt : S->children()) 1396 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 /// containsBreak - Return true if the statement contains a break out of it. 1403 /// If the statement (recursively) contains a switch or loop with a break 1404 /// inside of it, this is fine. 1405 bool CodeGenFunction::containsBreak(const Stmt *S) { 1406 // Null statement, not a label! 1407 if (!S) return false; 1408 1409 // If this is a switch or loop that defines its own break scope, then we can 1410 // include it and anything inside of it. 1411 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1412 isa<ForStmt>(S)) 1413 return false; 1414 1415 if (isa<BreakStmt>(S)) 1416 return true; 1417 1418 // Scan subexpressions for verboten breaks. 1419 for (const Stmt *SubStmt : S->children()) 1420 if (containsBreak(SubStmt)) 1421 return true; 1422 1423 return false; 1424 } 1425 1426 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1427 if (!S) return false; 1428 1429 // Some statement kinds add a scope and thus never add a decl to the current 1430 // scope. Note, this list is longer than the list of statements that might 1431 // have an unscoped decl nested within them, but this way is conservatively 1432 // correct even if more statement kinds are added. 1433 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1434 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1435 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1436 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1437 return false; 1438 1439 if (isa<DeclStmt>(S)) 1440 return true; 1441 1442 for (const Stmt *SubStmt : S->children()) 1443 if (mightAddDeclToScope(SubStmt)) 1444 return true; 1445 1446 return false; 1447 } 1448 1449 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1450 /// to a constant, or if it does but contains a label, return false. If it 1451 /// constant folds return true and set the boolean result in Result. 1452 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1453 bool &ResultBool, 1454 bool AllowLabels) { 1455 llvm::APSInt ResultInt; 1456 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1457 return false; 1458 1459 ResultBool = ResultInt.getBoolValue(); 1460 return true; 1461 } 1462 1463 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1464 /// to a constant, or if it does but contains a label, return false. If it 1465 /// constant folds return true and set the folded value. 1466 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1467 llvm::APSInt &ResultInt, 1468 bool AllowLabels) { 1469 // FIXME: Rename and handle conversion of other evaluatable things 1470 // to bool. 1471 Expr::EvalResult Result; 1472 if (!Cond->EvaluateAsInt(Result, getContext())) 1473 return false; // Not foldable, not integer or not fully evaluatable. 1474 1475 llvm::APSInt Int = Result.Val.getInt(); 1476 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1477 return false; // Contains a label. 1478 1479 ResultInt = Int; 1480 return true; 1481 } 1482 1483 1484 1485 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1486 /// statement) to the specified blocks. Based on the condition, this might try 1487 /// to simplify the codegen of the conditional based on the branch. 1488 /// 1489 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1490 llvm::BasicBlock *TrueBlock, 1491 llvm::BasicBlock *FalseBlock, 1492 uint64_t TrueCount) { 1493 Cond = Cond->IgnoreParens(); 1494 1495 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1496 1497 // Handle X && Y in a condition. 1498 if (CondBOp->getOpcode() == BO_LAnd) { 1499 // If we have "1 && X", simplify the code. "0 && X" would have constant 1500 // folded if the case was simple enough. 1501 bool ConstantBool = false; 1502 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1503 ConstantBool) { 1504 // br(1 && X) -> br(X). 1505 incrementProfileCounter(CondBOp); 1506 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1507 TrueCount); 1508 } 1509 1510 // If we have "X && 1", simplify the code to use an uncond branch. 1511 // "X && 0" would have been constant folded to 0. 1512 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1513 ConstantBool) { 1514 // br(X && 1) -> br(X). 1515 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1516 TrueCount); 1517 } 1518 1519 // Emit the LHS as a conditional. If the LHS conditional is false, we 1520 // want to jump to the FalseBlock. 1521 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1522 // The counter tells us how often we evaluate RHS, and all of TrueCount 1523 // can be propagated to that branch. 1524 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1525 1526 ConditionalEvaluation eval(*this); 1527 { 1528 ApplyDebugLocation DL(*this, Cond); 1529 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1530 EmitBlock(LHSTrue); 1531 } 1532 1533 incrementProfileCounter(CondBOp); 1534 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1535 1536 // Any temporaries created here are conditional. 1537 eval.begin(*this); 1538 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1539 eval.end(*this); 1540 1541 return; 1542 } 1543 1544 if (CondBOp->getOpcode() == BO_LOr) { 1545 // If we have "0 || X", simplify the code. "1 || X" would have constant 1546 // folded if the case was simple enough. 1547 bool ConstantBool = false; 1548 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1549 !ConstantBool) { 1550 // br(0 || X) -> br(X). 1551 incrementProfileCounter(CondBOp); 1552 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1553 TrueCount); 1554 } 1555 1556 // If we have "X || 0", simplify the code to use an uncond branch. 1557 // "X || 1" would have been constant folded to 1. 1558 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1559 !ConstantBool) { 1560 // br(X || 0) -> br(X). 1561 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1562 TrueCount); 1563 } 1564 1565 // Emit the LHS as a conditional. If the LHS conditional is true, we 1566 // want to jump to the TrueBlock. 1567 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1568 // We have the count for entry to the RHS and for the whole expression 1569 // being true, so we can divy up True count between the short circuit and 1570 // the RHS. 1571 uint64_t LHSCount = 1572 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1573 uint64_t RHSCount = TrueCount - LHSCount; 1574 1575 ConditionalEvaluation eval(*this); 1576 { 1577 ApplyDebugLocation DL(*this, Cond); 1578 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1579 EmitBlock(LHSFalse); 1580 } 1581 1582 incrementProfileCounter(CondBOp); 1583 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1584 1585 // Any temporaries created here are conditional. 1586 eval.begin(*this); 1587 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1588 1589 eval.end(*this); 1590 1591 return; 1592 } 1593 } 1594 1595 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1596 // br(!x, t, f) -> br(x, f, t) 1597 if (CondUOp->getOpcode() == UO_LNot) { 1598 // Negate the count. 1599 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1600 // Negate the condition and swap the destination blocks. 1601 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1602 FalseCount); 1603 } 1604 } 1605 1606 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1607 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1608 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1609 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1610 1611 ConditionalEvaluation cond(*this); 1612 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1613 getProfileCount(CondOp)); 1614 1615 // When computing PGO branch weights, we only know the overall count for 1616 // the true block. This code is essentially doing tail duplication of the 1617 // naive code-gen, introducing new edges for which counts are not 1618 // available. Divide the counts proportionally between the LHS and RHS of 1619 // the conditional operator. 1620 uint64_t LHSScaledTrueCount = 0; 1621 if (TrueCount) { 1622 double LHSRatio = 1623 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1624 LHSScaledTrueCount = TrueCount * LHSRatio; 1625 } 1626 1627 cond.begin(*this); 1628 EmitBlock(LHSBlock); 1629 incrementProfileCounter(CondOp); 1630 { 1631 ApplyDebugLocation DL(*this, Cond); 1632 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1633 LHSScaledTrueCount); 1634 } 1635 cond.end(*this); 1636 1637 cond.begin(*this); 1638 EmitBlock(RHSBlock); 1639 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1640 TrueCount - LHSScaledTrueCount); 1641 cond.end(*this); 1642 1643 return; 1644 } 1645 1646 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1647 // Conditional operator handling can give us a throw expression as a 1648 // condition for a case like: 1649 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1650 // Fold this to: 1651 // br(c, throw x, br(y, t, f)) 1652 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1653 return; 1654 } 1655 1656 // If the branch has a condition wrapped by __builtin_unpredictable, 1657 // create metadata that specifies that the branch is unpredictable. 1658 // Don't bother if not optimizing because that metadata would not be used. 1659 llvm::MDNode *Unpredictable = nullptr; 1660 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1661 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1662 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1663 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1664 llvm::MDBuilder MDHelper(getLLVMContext()); 1665 Unpredictable = MDHelper.createUnpredictable(); 1666 } 1667 } 1668 1669 // Create branch weights based on the number of times we get here and the 1670 // number of times the condition should be true. 1671 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1672 llvm::MDNode *Weights = 1673 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1674 1675 // Emit the code with the fully general case. 1676 llvm::Value *CondV; 1677 { 1678 ApplyDebugLocation DL(*this, Cond); 1679 CondV = EvaluateExprAsBool(Cond); 1680 } 1681 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1682 } 1683 1684 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1685 /// specified stmt yet. 1686 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1687 CGM.ErrorUnsupported(S, Type); 1688 } 1689 1690 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1691 /// variable-length array whose elements have a non-zero bit-pattern. 1692 /// 1693 /// \param baseType the inner-most element type of the array 1694 /// \param src - a char* pointing to the bit-pattern for a single 1695 /// base element of the array 1696 /// \param sizeInChars - the total size of the VLA, in chars 1697 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1698 Address dest, Address src, 1699 llvm::Value *sizeInChars) { 1700 CGBuilderTy &Builder = CGF.Builder; 1701 1702 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1703 llvm::Value *baseSizeInChars 1704 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1705 1706 Address begin = 1707 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1708 llvm::Value *end = 1709 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1710 1711 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1712 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1713 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1714 1715 // Make a loop over the VLA. C99 guarantees that the VLA element 1716 // count must be nonzero. 1717 CGF.EmitBlock(loopBB); 1718 1719 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1720 cur->addIncoming(begin.getPointer(), originBB); 1721 1722 CharUnits curAlign = 1723 dest.getAlignment().alignmentOfArrayElement(baseSize); 1724 1725 // memcpy the individual element bit-pattern. 1726 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1727 /*volatile*/ false); 1728 1729 // Go to the next element. 1730 llvm::Value *next = 1731 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1732 1733 // Leave if that's the end of the VLA. 1734 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1735 Builder.CreateCondBr(done, contBB, loopBB); 1736 cur->addIncoming(next, loopBB); 1737 1738 CGF.EmitBlock(contBB); 1739 } 1740 1741 void 1742 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1743 // Ignore empty classes in C++. 1744 if (getLangOpts().CPlusPlus) { 1745 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1746 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1747 return; 1748 } 1749 } 1750 1751 // Cast the dest ptr to the appropriate i8 pointer type. 1752 if (DestPtr.getElementType() != Int8Ty) 1753 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1754 1755 // Get size and alignment info for this aggregate. 1756 CharUnits size = getContext().getTypeSizeInChars(Ty); 1757 1758 llvm::Value *SizeVal; 1759 const VariableArrayType *vla; 1760 1761 // Don't bother emitting a zero-byte memset. 1762 if (size.isZero()) { 1763 // But note that getTypeInfo returns 0 for a VLA. 1764 if (const VariableArrayType *vlaType = 1765 dyn_cast_or_null<VariableArrayType>( 1766 getContext().getAsArrayType(Ty))) { 1767 auto VlaSize = getVLASize(vlaType); 1768 SizeVal = VlaSize.NumElts; 1769 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1770 if (!eltSize.isOne()) 1771 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1772 vla = vlaType; 1773 } else { 1774 return; 1775 } 1776 } else { 1777 SizeVal = CGM.getSize(size); 1778 vla = nullptr; 1779 } 1780 1781 // If the type contains a pointer to data member we can't memset it to zero. 1782 // Instead, create a null constant and copy it to the destination. 1783 // TODO: there are other patterns besides zero that we can usefully memset, 1784 // like -1, which happens to be the pattern used by member-pointers. 1785 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1786 // For a VLA, emit a single element, then splat that over the VLA. 1787 if (vla) Ty = getContext().getBaseElementType(vla); 1788 1789 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1790 1791 llvm::GlobalVariable *NullVariable = 1792 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1793 /*isConstant=*/true, 1794 llvm::GlobalVariable::PrivateLinkage, 1795 NullConstant, Twine()); 1796 CharUnits NullAlign = DestPtr.getAlignment(); 1797 NullVariable->setAlignment(NullAlign.getAsAlign()); 1798 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1799 NullAlign); 1800 1801 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1802 1803 // Get and call the appropriate llvm.memcpy overload. 1804 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1805 return; 1806 } 1807 1808 // Otherwise, just memset the whole thing to zero. This is legal 1809 // because in LLVM, all default initializers (other than the ones we just 1810 // handled above) are guaranteed to have a bit pattern of all zeros. 1811 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1812 } 1813 1814 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1815 // Make sure that there is a block for the indirect goto. 1816 if (!IndirectBranch) 1817 GetIndirectGotoBlock(); 1818 1819 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1820 1821 // Make sure the indirect branch includes all of the address-taken blocks. 1822 IndirectBranch->addDestination(BB); 1823 return llvm::BlockAddress::get(CurFn, BB); 1824 } 1825 1826 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1827 // If we already made the indirect branch for indirect goto, return its block. 1828 if (IndirectBranch) return IndirectBranch->getParent(); 1829 1830 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1831 1832 // Create the PHI node that indirect gotos will add entries to. 1833 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1834 "indirect.goto.dest"); 1835 1836 // Create the indirect branch instruction. 1837 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1838 return IndirectBranch->getParent(); 1839 } 1840 1841 /// Computes the length of an array in elements, as well as the base 1842 /// element type and a properly-typed first element pointer. 1843 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1844 QualType &baseType, 1845 Address &addr) { 1846 const ArrayType *arrayType = origArrayType; 1847 1848 // If it's a VLA, we have to load the stored size. Note that 1849 // this is the size of the VLA in bytes, not its size in elements. 1850 llvm::Value *numVLAElements = nullptr; 1851 if (isa<VariableArrayType>(arrayType)) { 1852 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1853 1854 // Walk into all VLAs. This doesn't require changes to addr, 1855 // which has type T* where T is the first non-VLA element type. 1856 do { 1857 QualType elementType = arrayType->getElementType(); 1858 arrayType = getContext().getAsArrayType(elementType); 1859 1860 // If we only have VLA components, 'addr' requires no adjustment. 1861 if (!arrayType) { 1862 baseType = elementType; 1863 return numVLAElements; 1864 } 1865 } while (isa<VariableArrayType>(arrayType)); 1866 1867 // We get out here only if we find a constant array type 1868 // inside the VLA. 1869 } 1870 1871 // We have some number of constant-length arrays, so addr should 1872 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1873 // down to the first element of addr. 1874 SmallVector<llvm::Value*, 8> gepIndices; 1875 1876 // GEP down to the array type. 1877 llvm::ConstantInt *zero = Builder.getInt32(0); 1878 gepIndices.push_back(zero); 1879 1880 uint64_t countFromCLAs = 1; 1881 QualType eltType; 1882 1883 llvm::ArrayType *llvmArrayType = 1884 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1885 while (llvmArrayType) { 1886 assert(isa<ConstantArrayType>(arrayType)); 1887 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1888 == llvmArrayType->getNumElements()); 1889 1890 gepIndices.push_back(zero); 1891 countFromCLAs *= llvmArrayType->getNumElements(); 1892 eltType = arrayType->getElementType(); 1893 1894 llvmArrayType = 1895 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1896 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1897 assert((!llvmArrayType || arrayType) && 1898 "LLVM and Clang types are out-of-synch"); 1899 } 1900 1901 if (arrayType) { 1902 // From this point onwards, the Clang array type has been emitted 1903 // as some other type (probably a packed struct). Compute the array 1904 // size, and just emit the 'begin' expression as a bitcast. 1905 while (arrayType) { 1906 countFromCLAs *= 1907 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1908 eltType = arrayType->getElementType(); 1909 arrayType = getContext().getAsArrayType(eltType); 1910 } 1911 1912 llvm::Type *baseType = ConvertType(eltType); 1913 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1914 } else { 1915 // Create the actual GEP. 1916 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1917 gepIndices, "array.begin"), 1918 addr.getAlignment()); 1919 } 1920 1921 baseType = eltType; 1922 1923 llvm::Value *numElements 1924 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1925 1926 // If we had any VLA dimensions, factor them in. 1927 if (numVLAElements) 1928 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1929 1930 return numElements; 1931 } 1932 1933 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1934 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1935 assert(vla && "type was not a variable array type!"); 1936 return getVLASize(vla); 1937 } 1938 1939 CodeGenFunction::VlaSizePair 1940 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1941 // The number of elements so far; always size_t. 1942 llvm::Value *numElements = nullptr; 1943 1944 QualType elementType; 1945 do { 1946 elementType = type->getElementType(); 1947 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1948 assert(vlaSize && "no size for VLA!"); 1949 assert(vlaSize->getType() == SizeTy); 1950 1951 if (!numElements) { 1952 numElements = vlaSize; 1953 } else { 1954 // It's undefined behavior if this wraps around, so mark it that way. 1955 // FIXME: Teach -fsanitize=undefined to trap this. 1956 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1957 } 1958 } while ((type = getContext().getAsVariableArrayType(elementType))); 1959 1960 return { numElements, elementType }; 1961 } 1962 1963 CodeGenFunction::VlaSizePair 1964 CodeGenFunction::getVLAElements1D(QualType type) { 1965 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1966 assert(vla && "type was not a variable array type!"); 1967 return getVLAElements1D(vla); 1968 } 1969 1970 CodeGenFunction::VlaSizePair 1971 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1972 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1973 assert(VlaSize && "no size for VLA!"); 1974 assert(VlaSize->getType() == SizeTy); 1975 return { VlaSize, Vla->getElementType() }; 1976 } 1977 1978 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1979 assert(type->isVariablyModifiedType() && 1980 "Must pass variably modified type to EmitVLASizes!"); 1981 1982 EnsureInsertPoint(); 1983 1984 // We're going to walk down into the type and look for VLA 1985 // expressions. 1986 do { 1987 assert(type->isVariablyModifiedType()); 1988 1989 const Type *ty = type.getTypePtr(); 1990 switch (ty->getTypeClass()) { 1991 1992 #define TYPE(Class, Base) 1993 #define ABSTRACT_TYPE(Class, Base) 1994 #define NON_CANONICAL_TYPE(Class, Base) 1995 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1996 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1997 #include "clang/AST/TypeNodes.inc" 1998 llvm_unreachable("unexpected dependent type!"); 1999 2000 // These types are never variably-modified. 2001 case Type::Builtin: 2002 case Type::Complex: 2003 case Type::Vector: 2004 case Type::ExtVector: 2005 case Type::Record: 2006 case Type::Enum: 2007 case Type::Elaborated: 2008 case Type::TemplateSpecialization: 2009 case Type::ObjCTypeParam: 2010 case Type::ObjCObject: 2011 case Type::ObjCInterface: 2012 case Type::ObjCObjectPointer: 2013 llvm_unreachable("type class is never variably-modified!"); 2014 2015 case Type::Adjusted: 2016 type = cast<AdjustedType>(ty)->getAdjustedType(); 2017 break; 2018 2019 case Type::Decayed: 2020 type = cast<DecayedType>(ty)->getPointeeType(); 2021 break; 2022 2023 case Type::Pointer: 2024 type = cast<PointerType>(ty)->getPointeeType(); 2025 break; 2026 2027 case Type::BlockPointer: 2028 type = cast<BlockPointerType>(ty)->getPointeeType(); 2029 break; 2030 2031 case Type::LValueReference: 2032 case Type::RValueReference: 2033 type = cast<ReferenceType>(ty)->getPointeeType(); 2034 break; 2035 2036 case Type::MemberPointer: 2037 type = cast<MemberPointerType>(ty)->getPointeeType(); 2038 break; 2039 2040 case Type::ConstantArray: 2041 case Type::IncompleteArray: 2042 // Losing element qualification here is fine. 2043 type = cast<ArrayType>(ty)->getElementType(); 2044 break; 2045 2046 case Type::VariableArray: { 2047 // Losing element qualification here is fine. 2048 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2049 2050 // Unknown size indication requires no size computation. 2051 // Otherwise, evaluate and record it. 2052 if (const Expr *size = vat->getSizeExpr()) { 2053 // It's possible that we might have emitted this already, 2054 // e.g. with a typedef and a pointer to it. 2055 llvm::Value *&entry = VLASizeMap[size]; 2056 if (!entry) { 2057 llvm::Value *Size = EmitScalarExpr(size); 2058 2059 // C11 6.7.6.2p5: 2060 // If the size is an expression that is not an integer constant 2061 // expression [...] each time it is evaluated it shall have a value 2062 // greater than zero. 2063 if (SanOpts.has(SanitizerKind::VLABound) && 2064 size->getType()->isSignedIntegerType()) { 2065 SanitizerScope SanScope(this); 2066 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2067 llvm::Constant *StaticArgs[] = { 2068 EmitCheckSourceLocation(size->getBeginLoc()), 2069 EmitCheckTypeDescriptor(size->getType())}; 2070 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2071 SanitizerKind::VLABound), 2072 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2073 } 2074 2075 // Always zexting here would be wrong if it weren't 2076 // undefined behavior to have a negative bound. 2077 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2078 } 2079 } 2080 type = vat->getElementType(); 2081 break; 2082 } 2083 2084 case Type::FunctionProto: 2085 case Type::FunctionNoProto: 2086 type = cast<FunctionType>(ty)->getReturnType(); 2087 break; 2088 2089 case Type::Paren: 2090 case Type::TypeOf: 2091 case Type::UnaryTransform: 2092 case Type::Attributed: 2093 case Type::SubstTemplateTypeParm: 2094 case Type::PackExpansion: 2095 case Type::MacroQualified: 2096 // Keep walking after single level desugaring. 2097 type = type.getSingleStepDesugaredType(getContext()); 2098 break; 2099 2100 case Type::Typedef: 2101 case Type::Decltype: 2102 case Type::Auto: 2103 case Type::DeducedTemplateSpecialization: 2104 // Stop walking: nothing to do. 2105 return; 2106 2107 case Type::TypeOfExpr: 2108 // Stop walking: emit typeof expression. 2109 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2110 return; 2111 2112 case Type::Atomic: 2113 type = cast<AtomicType>(ty)->getValueType(); 2114 break; 2115 2116 case Type::Pipe: 2117 type = cast<PipeType>(ty)->getElementType(); 2118 break; 2119 } 2120 } while (type->isVariablyModifiedType()); 2121 } 2122 2123 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2124 if (getContext().getBuiltinVaListType()->isArrayType()) 2125 return EmitPointerWithAlignment(E); 2126 return EmitLValue(E).getAddress(*this); 2127 } 2128 2129 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2130 return EmitLValue(E).getAddress(*this); 2131 } 2132 2133 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2134 const APValue &Init) { 2135 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2136 if (CGDebugInfo *Dbg = getDebugInfo()) 2137 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2138 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2139 } 2140 2141 CodeGenFunction::PeepholeProtection 2142 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2143 // At the moment, the only aggressive peephole we do in IR gen 2144 // is trunc(zext) folding, but if we add more, we can easily 2145 // extend this protection. 2146 2147 if (!rvalue.isScalar()) return PeepholeProtection(); 2148 llvm::Value *value = rvalue.getScalarVal(); 2149 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2150 2151 // Just make an extra bitcast. 2152 assert(HaveInsertPoint()); 2153 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2154 Builder.GetInsertBlock()); 2155 2156 PeepholeProtection protection; 2157 protection.Inst = inst; 2158 return protection; 2159 } 2160 2161 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2162 if (!protection.Inst) return; 2163 2164 // In theory, we could try to duplicate the peepholes now, but whatever. 2165 protection.Inst->eraseFromParent(); 2166 } 2167 2168 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2169 QualType Ty, SourceLocation Loc, 2170 SourceLocation AssumptionLoc, 2171 llvm::Value *Alignment, 2172 llvm::Value *OffsetValue) { 2173 llvm::Value *TheCheck; 2174 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2175 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2176 if (SanOpts.has(SanitizerKind::Alignment)) { 2177 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2178 OffsetValue, TheCheck, Assumption); 2179 } 2180 } 2181 2182 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2183 const Expr *E, 2184 SourceLocation AssumptionLoc, 2185 llvm::Value *Alignment, 2186 llvm::Value *OffsetValue) { 2187 if (auto *CE = dyn_cast<CastExpr>(E)) 2188 E = CE->getSubExprAsWritten(); 2189 QualType Ty = E->getType(); 2190 SourceLocation Loc = E->getExprLoc(); 2191 2192 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2193 OffsetValue); 2194 } 2195 2196 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2197 llvm::Value *AnnotatedVal, 2198 StringRef AnnotationStr, 2199 SourceLocation Location) { 2200 llvm::Value *Args[4] = { 2201 AnnotatedVal, 2202 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2203 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2204 CGM.EmitAnnotationLineNo(Location) 2205 }; 2206 return Builder.CreateCall(AnnotationFn, Args); 2207 } 2208 2209 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2210 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2211 // FIXME We create a new bitcast for every annotation because that's what 2212 // llvm-gcc was doing. 2213 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2214 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2215 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2216 I->getAnnotation(), D->getLocation()); 2217 } 2218 2219 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2220 Address Addr) { 2221 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2222 llvm::Value *V = Addr.getPointer(); 2223 llvm::Type *VTy = V->getType(); 2224 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2225 CGM.Int8PtrTy); 2226 2227 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2228 // FIXME Always emit the cast inst so we can differentiate between 2229 // annotation on the first field of a struct and annotation on the struct 2230 // itself. 2231 if (VTy != CGM.Int8PtrTy) 2232 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2233 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2234 V = Builder.CreateBitCast(V, VTy); 2235 } 2236 2237 return Address(V, Addr.getAlignment()); 2238 } 2239 2240 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2241 2242 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2243 : CGF(CGF) { 2244 assert(!CGF->IsSanitizerScope); 2245 CGF->IsSanitizerScope = true; 2246 } 2247 2248 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2249 CGF->IsSanitizerScope = false; 2250 } 2251 2252 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2253 const llvm::Twine &Name, 2254 llvm::BasicBlock *BB, 2255 llvm::BasicBlock::iterator InsertPt) const { 2256 LoopStack.InsertHelper(I); 2257 if (IsSanitizerScope) 2258 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2259 } 2260 2261 void CGBuilderInserter::InsertHelper( 2262 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2263 llvm::BasicBlock::iterator InsertPt) const { 2264 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2265 if (CGF) 2266 CGF->InsertHelper(I, Name, BB, InsertPt); 2267 } 2268 2269 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2270 CodeGenModule &CGM, const FunctionDecl *FD, 2271 std::string &FirstMissing) { 2272 // If there aren't any required features listed then go ahead and return. 2273 if (ReqFeatures.empty()) 2274 return false; 2275 2276 // Now build up the set of caller features and verify that all the required 2277 // features are there. 2278 llvm::StringMap<bool> CallerFeatureMap; 2279 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2280 2281 // If we have at least one of the features in the feature list return 2282 // true, otherwise return false. 2283 return std::all_of( 2284 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2285 SmallVector<StringRef, 1> OrFeatures; 2286 Feature.split(OrFeatures, '|'); 2287 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2288 if (!CallerFeatureMap.lookup(Feature)) { 2289 FirstMissing = Feature.str(); 2290 return false; 2291 } 2292 return true; 2293 }); 2294 }); 2295 } 2296 2297 // Emits an error if we don't have a valid set of target features for the 2298 // called function. 2299 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2300 const FunctionDecl *TargetDecl) { 2301 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2302 } 2303 2304 // Emits an error if we don't have a valid set of target features for the 2305 // called function. 2306 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2307 const FunctionDecl *TargetDecl) { 2308 // Early exit if this is an indirect call. 2309 if (!TargetDecl) 2310 return; 2311 2312 // Get the current enclosing function if it exists. If it doesn't 2313 // we can't check the target features anyhow. 2314 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2315 if (!FD) 2316 return; 2317 2318 // Grab the required features for the call. For a builtin this is listed in 2319 // the td file with the default cpu, for an always_inline function this is any 2320 // listed cpu and any listed features. 2321 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2322 std::string MissingFeature; 2323 if (BuiltinID) { 2324 SmallVector<StringRef, 1> ReqFeatures; 2325 const char *FeatureList = 2326 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2327 // Return if the builtin doesn't have any required features. 2328 if (!FeatureList || StringRef(FeatureList) == "") 2329 return; 2330 StringRef(FeatureList).split(ReqFeatures, ','); 2331 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2332 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2333 << TargetDecl->getDeclName() 2334 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2335 2336 } else if (!TargetDecl->isMultiVersion() && 2337 TargetDecl->hasAttr<TargetAttr>()) { 2338 // Get the required features for the callee. 2339 2340 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2341 ParsedTargetAttr ParsedAttr = 2342 CGM.getContext().filterFunctionTargetAttrs(TD); 2343 2344 SmallVector<StringRef, 1> ReqFeatures; 2345 llvm::StringMap<bool> CalleeFeatureMap; 2346 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2347 2348 for (const auto &F : ParsedAttr.Features) { 2349 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2350 ReqFeatures.push_back(StringRef(F).substr(1)); 2351 } 2352 2353 for (const auto &F : CalleeFeatureMap) { 2354 // Only positive features are "required". 2355 if (F.getValue()) 2356 ReqFeatures.push_back(F.getKey()); 2357 } 2358 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2359 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2360 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2361 } 2362 } 2363 2364 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2365 if (!CGM.getCodeGenOpts().SanitizeStats) 2366 return; 2367 2368 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2369 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2370 CGM.getSanStats().create(IRB, SSK); 2371 } 2372 2373 llvm::Value * 2374 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2375 llvm::Value *Condition = nullptr; 2376 2377 if (!RO.Conditions.Architecture.empty()) 2378 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2379 2380 if (!RO.Conditions.Features.empty()) { 2381 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2382 Condition = 2383 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2384 } 2385 return Condition; 2386 } 2387 2388 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2389 llvm::Function *Resolver, 2390 CGBuilderTy &Builder, 2391 llvm::Function *FuncToReturn, 2392 bool SupportsIFunc) { 2393 if (SupportsIFunc) { 2394 Builder.CreateRet(FuncToReturn); 2395 return; 2396 } 2397 2398 llvm::SmallVector<llvm::Value *, 10> Args; 2399 llvm::for_each(Resolver->args(), 2400 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2401 2402 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2403 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2404 2405 if (Resolver->getReturnType()->isVoidTy()) 2406 Builder.CreateRetVoid(); 2407 else 2408 Builder.CreateRet(Result); 2409 } 2410 2411 void CodeGenFunction::EmitMultiVersionResolver( 2412 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2413 assert(getContext().getTargetInfo().getTriple().isX86() && 2414 "Only implemented for x86 targets"); 2415 2416 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2417 2418 // Main function's basic block. 2419 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2420 Builder.SetInsertPoint(CurBlock); 2421 EmitX86CpuInit(); 2422 2423 for (const MultiVersionResolverOption &RO : Options) { 2424 Builder.SetInsertPoint(CurBlock); 2425 llvm::Value *Condition = FormResolverCondition(RO); 2426 2427 // The 'default' or 'generic' case. 2428 if (!Condition) { 2429 assert(&RO == Options.end() - 1 && 2430 "Default or Generic case must be last"); 2431 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2432 SupportsIFunc); 2433 return; 2434 } 2435 2436 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2437 CGBuilderTy RetBuilder(*this, RetBlock); 2438 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2439 SupportsIFunc); 2440 CurBlock = createBasicBlock("resolver_else", Resolver); 2441 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2442 } 2443 2444 // If no generic/default, emit an unreachable. 2445 Builder.SetInsertPoint(CurBlock); 2446 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2447 TrapCall->setDoesNotReturn(); 2448 TrapCall->setDoesNotThrow(); 2449 Builder.CreateUnreachable(); 2450 Builder.ClearInsertionPoint(); 2451 } 2452 2453 // Loc - where the diagnostic will point, where in the source code this 2454 // alignment has failed. 2455 // SecondaryLoc - if present (will be present if sufficiently different from 2456 // Loc), the diagnostic will additionally point a "Note:" to this location. 2457 // It should be the location where the __attribute__((assume_aligned)) 2458 // was written e.g. 2459 void CodeGenFunction::emitAlignmentAssumptionCheck( 2460 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2461 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2462 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2463 llvm::Instruction *Assumption) { 2464 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2465 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2466 llvm::Intrinsic::getDeclaration( 2467 Builder.GetInsertBlock()->getParent()->getParent(), 2468 llvm::Intrinsic::assume) && 2469 "Assumption should be a call to llvm.assume()."); 2470 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2471 "Assumption should be the last instruction of the basic block, " 2472 "since the basic block is still being generated."); 2473 2474 if (!SanOpts.has(SanitizerKind::Alignment)) 2475 return; 2476 2477 // Don't check pointers to volatile data. The behavior here is implementation- 2478 // defined. 2479 if (Ty->getPointeeType().isVolatileQualified()) 2480 return; 2481 2482 // We need to temorairly remove the assumption so we can insert the 2483 // sanitizer check before it, else the check will be dropped by optimizations. 2484 Assumption->removeFromParent(); 2485 2486 { 2487 SanitizerScope SanScope(this); 2488 2489 if (!OffsetValue) 2490 OffsetValue = Builder.getInt1(0); // no offset. 2491 2492 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2493 EmitCheckSourceLocation(SecondaryLoc), 2494 EmitCheckTypeDescriptor(Ty)}; 2495 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2496 EmitCheckValue(Alignment), 2497 EmitCheckValue(OffsetValue)}; 2498 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2499 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2500 } 2501 2502 // We are now in the (new, empty) "cont" basic block. 2503 // Reintroduce the assumption. 2504 Builder.Insert(Assumption); 2505 // FIXME: Assumption still has it's original basic block as it's Parent. 2506 } 2507 2508 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2509 if (CGDebugInfo *DI = getDebugInfo()) 2510 return DI->SourceLocToDebugLoc(Location); 2511 2512 return llvm::DebugLoc(); 2513 } 2514