1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 LValueBaseInfo *BaseInfo, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 136 return getContext().toCharUnitsFromBits(Align); 137 } 138 } 139 140 if (BaseInfo) 141 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 142 143 CharUnits Alignment; 144 if (T->isIncompleteType()) { 145 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 146 } else { 147 // For C++ class pointees, we don't know whether we're pointing at a 148 // base or a complete object, so we generally need to use the 149 // non-virtual alignment. 150 const CXXRecordDecl *RD; 151 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 152 Alignment = CGM.getClassPointerAlignment(RD); 153 } else { 154 Alignment = getContext().getTypeAlignInChars(T); 155 if (T.getQualifiers().hasUnaligned()) 156 Alignment = CharUnits::One(); 157 } 158 159 // Cap to the global maximum type alignment unless the alignment 160 // was somehow explicit on the type. 161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 162 if (Alignment.getQuantity() > MaxAlign && 163 !getContext().isAlignmentRequired(T)) 164 Alignment = CharUnits::fromQuantity(MaxAlign); 165 } 166 } 167 return Alignment; 168 } 169 170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 173 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 174 CGM.getTBAAInfo(T)); 175 } 176 177 /// Given a value of type T* that may not be to a complete object, 178 /// construct an l-value with the natural pointee alignment of T. 179 LValue 180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 183 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 184 } 185 186 187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 188 return CGM.getTypes().ConvertTypeForMem(T); 189 } 190 191 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 192 return CGM.getTypes().ConvertType(T); 193 } 194 195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 196 type = type.getCanonicalType(); 197 while (true) { 198 switch (type->getTypeClass()) { 199 #define TYPE(name, parent) 200 #define ABSTRACT_TYPE(name, parent) 201 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 202 #define DEPENDENT_TYPE(name, parent) case Type::name: 203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 204 #include "clang/AST/TypeNodes.def" 205 llvm_unreachable("non-canonical or dependent type in IR-generation"); 206 207 case Type::Auto: 208 case Type::DeducedTemplateSpecialization: 209 llvm_unreachable("undeduced type in IR-generation"); 210 211 // Various scalar types. 212 case Type::Builtin: 213 case Type::Pointer: 214 case Type::BlockPointer: 215 case Type::LValueReference: 216 case Type::RValueReference: 217 case Type::MemberPointer: 218 case Type::Vector: 219 case Type::ExtVector: 220 case Type::FunctionProto: 221 case Type::FunctionNoProto: 222 case Type::Enum: 223 case Type::ObjCObjectPointer: 224 case Type::Pipe: 225 return TEK_Scalar; 226 227 // Complexes. 228 case Type::Complex: 229 return TEK_Complex; 230 231 // Arrays, records, and Objective-C objects. 232 case Type::ConstantArray: 233 case Type::IncompleteArray: 234 case Type::VariableArray: 235 case Type::Record: 236 case Type::ObjCObject: 237 case Type::ObjCInterface: 238 return TEK_Aggregate; 239 240 // We operate on atomic values according to their underlying type. 241 case Type::Atomic: 242 type = cast<AtomicType>(type)->getValueType(); 243 continue; 244 } 245 llvm_unreachable("unknown type kind!"); 246 } 247 } 248 249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 250 // For cleanliness, we try to avoid emitting the return block for 251 // simple cases. 252 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 253 254 if (CurBB) { 255 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 256 257 // We have a valid insert point, reuse it if it is empty or there are no 258 // explicit jumps to the return block. 259 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 260 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 261 delete ReturnBlock.getBlock(); 262 } else 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 // Otherwise, if the return block is the target of a single direct 268 // branch then we can just put the code in that block instead. This 269 // cleans up functions which started with a unified return block. 270 if (ReturnBlock.getBlock()->hasOneUse()) { 271 llvm::BranchInst *BI = 272 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 273 if (BI && BI->isUnconditional() && 274 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 275 // Record/return the DebugLoc of the simple 'return' expression to be used 276 // later by the actual 'ret' instruction. 277 llvm::DebugLoc Loc = BI->getDebugLoc(); 278 Builder.SetInsertPoint(BI->getParent()); 279 BI->eraseFromParent(); 280 delete ReturnBlock.getBlock(); 281 return Loc; 282 } 283 } 284 285 // FIXME: We are at an unreachable point, there is no reason to emit the block 286 // unless it has uses. However, we still need a place to put the debug 287 // region.end for now. 288 289 EmitBlock(ReturnBlock.getBlock()); 290 return llvm::DebugLoc(); 291 } 292 293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 294 if (!BB) return; 295 if (!BB->use_empty()) 296 return CGF.CurFn->getBasicBlockList().push_back(BB); 297 delete BB; 298 } 299 300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 301 assert(BreakContinueStack.empty() && 302 "mismatched push/pop in break/continue stack!"); 303 304 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 305 && NumSimpleReturnExprs == NumReturnExprs 306 && ReturnBlock.getBlock()->use_empty(); 307 // Usually the return expression is evaluated before the cleanup 308 // code. If the function contains only a simple return statement, 309 // such as a constant, the location before the cleanup code becomes 310 // the last useful breakpoint in the function, because the simple 311 // return expression will be evaluated after the cleanup code. To be 312 // safe, set the debug location for cleanup code to the location of 313 // the return statement. Otherwise the cleanup code should be at the 314 // end of the function's lexical scope. 315 // 316 // If there are multiple branches to the return block, the branch 317 // instructions will get the location of the return statements and 318 // all will be fine. 319 if (CGDebugInfo *DI = getDebugInfo()) { 320 if (OnlySimpleReturnStmts) 321 DI->EmitLocation(Builder, LastStopPoint); 322 else 323 DI->EmitLocation(Builder, EndLoc); 324 } 325 326 // Pop any cleanups that might have been associated with the 327 // parameters. Do this in whatever block we're currently in; it's 328 // important to do this before we enter the return block or return 329 // edges will be *really* confused. 330 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 331 bool HasOnlyLifetimeMarkers = 332 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 333 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 334 if (HasCleanups) { 335 // Make sure the line table doesn't jump back into the body for 336 // the ret after it's been at EndLoc. 337 if (CGDebugInfo *DI = getDebugInfo()) 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, EndLoc); 340 341 PopCleanupBlocks(PrologueCleanupDepth); 342 } 343 344 // Emit function epilog (to return). 345 llvm::DebugLoc Loc = EmitReturnBlock(); 346 347 if (ShouldInstrumentFunction()) 348 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 if (CGM.getCodeGenOpts().EmitDeclMetadata) 405 EmitDeclMetadata(); 406 407 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 408 I = DeferredReplacements.begin(), 409 E = DeferredReplacements.end(); 410 I != E; ++I) { 411 I->first->replaceAllUsesWith(I->second); 412 I->first->eraseFromParent(); 413 } 414 } 415 416 /// ShouldInstrumentFunction - Return true if the current function should be 417 /// instrumented with __cyg_profile_func_* calls 418 bool CodeGenFunction::ShouldInstrumentFunction() { 419 if (!CGM.getCodeGenOpts().InstrumentFunctions) 420 return false; 421 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 422 return false; 423 return true; 424 } 425 426 /// ShouldXRayInstrument - Return true if the current function should be 427 /// instrumented with XRay nop sleds. 428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 429 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 430 } 431 432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 433 /// instrumentation function with the current function and the call site, if 434 /// function instrumentation is enabled. 435 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 436 auto NL = ApplyDebugLocation::CreateArtificial(*this); 437 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 438 llvm::PointerType *PointerTy = Int8PtrTy; 439 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 440 llvm::FunctionType *FunctionTy = 441 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 442 443 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 444 llvm::CallInst *CallSite = Builder.CreateCall( 445 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 446 llvm::ConstantInt::get(Int32Ty, 0), 447 "callsite"); 448 449 llvm::Value *args[] = { 450 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 451 CallSite 452 }; 453 454 EmitNounwindRuntimeCall(F, args); 455 } 456 457 static void removeImageAccessQualifier(std::string& TyName) { 458 std::string ReadOnlyQual("__read_only"); 459 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 460 if (ReadOnlyPos != std::string::npos) 461 // "+ 1" for the space after access qualifier. 462 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 463 else { 464 std::string WriteOnlyQual("__write_only"); 465 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 466 if (WriteOnlyPos != std::string::npos) 467 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 468 else { 469 std::string ReadWriteQual("__read_write"); 470 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 471 if (ReadWritePos != std::string::npos) 472 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 473 } 474 } 475 } 476 477 // Returns the address space id that should be produced to the 478 // kernel_arg_addr_space metadata. This is always fixed to the ids 479 // as specified in the SPIR 2.0 specification in order to differentiate 480 // for example in clGetKernelArgInfo() implementation between the address 481 // spaces with targets without unique mapping to the OpenCL address spaces 482 // (basically all single AS CPUs). 483 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 484 switch (LangAS) { 485 case LangAS::opencl_global: return 1; 486 case LangAS::opencl_constant: return 2; 487 case LangAS::opencl_local: return 3; 488 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 489 default: 490 return 0; // Assume private. 491 } 492 } 493 494 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 495 // information in the program executable. The argument information stored 496 // includes the argument name, its type, the address and access qualifiers used. 497 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 498 CodeGenModule &CGM, llvm::LLVMContext &Context, 499 CGBuilderTy &Builder, ASTContext &ASTCtx) { 500 // Create MDNodes that represent the kernel arg metadata. 501 // Each MDNode is a list in the form of "key", N number of values which is 502 // the same number of values as their are kernel arguments. 503 504 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 505 506 // MDNode for the kernel argument address space qualifiers. 507 SmallVector<llvm::Metadata *, 8> addressQuals; 508 509 // MDNode for the kernel argument access qualifiers (images only). 510 SmallVector<llvm::Metadata *, 8> accessQuals; 511 512 // MDNode for the kernel argument type names. 513 SmallVector<llvm::Metadata *, 8> argTypeNames; 514 515 // MDNode for the kernel argument base type names. 516 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 517 518 // MDNode for the kernel argument type qualifiers. 519 SmallVector<llvm::Metadata *, 8> argTypeQuals; 520 521 // MDNode for the kernel argument names. 522 SmallVector<llvm::Metadata *, 8> argNames; 523 524 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 525 const ParmVarDecl *parm = FD->getParamDecl(i); 526 QualType ty = parm->getType(); 527 std::string typeQuals; 528 529 if (ty->isPointerType()) { 530 QualType pointeeTy = ty->getPointeeType(); 531 532 // Get address qualifier. 533 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 534 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 535 536 // Get argument type name. 537 std::string typeName = 538 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 539 540 // Turn "unsigned type" to "utype" 541 std::string::size_type pos = typeName.find("unsigned"); 542 if (pointeeTy.isCanonical() && pos != std::string::npos) 543 typeName.erase(pos+1, 8); 544 545 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 546 547 std::string baseTypeName = 548 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 549 Policy) + 550 "*"; 551 552 // Turn "unsigned type" to "utype" 553 pos = baseTypeName.find("unsigned"); 554 if (pos != std::string::npos) 555 baseTypeName.erase(pos+1, 8); 556 557 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 558 559 // Get argument type qualifiers: 560 if (ty.isRestrictQualified()) 561 typeQuals = "restrict"; 562 if (pointeeTy.isConstQualified() || 563 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 564 typeQuals += typeQuals.empty() ? "const" : " const"; 565 if (pointeeTy.isVolatileQualified()) 566 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 567 } else { 568 uint32_t AddrSpc = 0; 569 bool isPipe = ty->isPipeType(); 570 if (ty->isImageType() || isPipe) 571 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 572 573 addressQuals.push_back( 574 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 575 576 // Get argument type name. 577 std::string typeName; 578 if (isPipe) 579 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 580 .getAsString(Policy); 581 else 582 typeName = ty.getUnqualifiedType().getAsString(Policy); 583 584 // Turn "unsigned type" to "utype" 585 std::string::size_type pos = typeName.find("unsigned"); 586 if (ty.isCanonical() && pos != std::string::npos) 587 typeName.erase(pos+1, 8); 588 589 std::string baseTypeName; 590 if (isPipe) 591 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 592 ->getElementType().getCanonicalType() 593 .getAsString(Policy); 594 else 595 baseTypeName = 596 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 597 598 // Remove access qualifiers on images 599 // (as they are inseparable from type in clang implementation, 600 // but OpenCL spec provides a special query to get access qualifier 601 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 602 if (ty->isImageType()) { 603 removeImageAccessQualifier(typeName); 604 removeImageAccessQualifier(baseTypeName); 605 } 606 607 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 608 609 // Turn "unsigned type" to "utype" 610 pos = baseTypeName.find("unsigned"); 611 if (pos != std::string::npos) 612 baseTypeName.erase(pos+1, 8); 613 614 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 615 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const Decl *PDecl = parm; 625 if (auto *TD = dyn_cast<TypedefType>(ty)) 626 PDecl = TD->getDecl(); 627 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 628 if (A && A->isWriteOnly()) 629 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 630 else if (A && A->isReadWrite()) 631 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 632 else 633 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 634 } else 635 accessQuals.push_back(llvm::MDString::get(Context, "none")); 636 637 // Get argument name. 638 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 639 } 640 641 Fn->setMetadata("kernel_arg_addr_space", 642 llvm::MDNode::get(Context, addressQuals)); 643 Fn->setMetadata("kernel_arg_access_qual", 644 llvm::MDNode::get(Context, accessQuals)); 645 Fn->setMetadata("kernel_arg_type", 646 llvm::MDNode::get(Context, argTypeNames)); 647 Fn->setMetadata("kernel_arg_base_type", 648 llvm::MDNode::get(Context, argBaseTypeNames)); 649 Fn->setMetadata("kernel_arg_type_qual", 650 llvm::MDNode::get(Context, argTypeQuals)); 651 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 652 Fn->setMetadata("kernel_arg_name", 653 llvm::MDNode::get(Context, argNames)); 654 } 655 656 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 657 llvm::Function *Fn) 658 { 659 if (!FD->hasAttr<OpenCLKernelAttr>()) 660 return; 661 662 llvm::LLVMContext &Context = getLLVMContext(); 663 664 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 665 666 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 667 QualType HintQTy = A->getTypeHint(); 668 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 669 bool IsSignedInteger = 670 HintQTy->isSignedIntegerType() || 671 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 672 llvm::Metadata *AttrMDArgs[] = { 673 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 674 CGM.getTypes().ConvertType(A->getTypeHint()))), 675 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 676 llvm::IntegerType::get(Context, 32), 677 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 678 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 679 } 680 681 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 682 llvm::Metadata *AttrMDArgs[] = { 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 685 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 686 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 687 } 688 689 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 690 llvm::Metadata *AttrMDArgs[] = { 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 693 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 694 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 695 } 696 697 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 698 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 699 llvm::Metadata *AttrMDArgs[] = { 700 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 701 Fn->setMetadata("intel_reqd_sub_group_size", 702 llvm::MDNode::get(Context, AttrMDArgs)); 703 } 704 } 705 706 /// Determine whether the function F ends with a return stmt. 707 static bool endsWithReturn(const Decl* F) { 708 const Stmt *Body = nullptr; 709 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 710 Body = FD->getBody(); 711 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 712 Body = OMD->getBody(); 713 714 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 715 auto LastStmt = CS->body_rbegin(); 716 if (LastStmt != CS->body_rend()) 717 return isa<ReturnStmt>(*LastStmt); 718 } 719 return false; 720 } 721 722 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 723 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 724 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 725 } 726 727 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 728 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 729 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 730 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 731 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 732 return false; 733 734 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 735 return false; 736 737 if (MD->getNumParams() == 2) { 738 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 739 if (!PT || !PT->isVoidPointerType() || 740 !PT->getPointeeType().isConstQualified()) 741 return false; 742 } 743 744 return true; 745 } 746 747 void CodeGenFunction::StartFunction(GlobalDecl GD, 748 QualType RetTy, 749 llvm::Function *Fn, 750 const CGFunctionInfo &FnInfo, 751 const FunctionArgList &Args, 752 SourceLocation Loc, 753 SourceLocation StartLoc) { 754 assert(!CurFn && 755 "Do not use a CodeGenFunction object for more than one function"); 756 757 const Decl *D = GD.getDecl(); 758 759 DidCallStackSave = false; 760 CurCodeDecl = D; 761 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 762 if (FD->usesSEHTry()) 763 CurSEHParent = FD; 764 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 765 FnRetTy = RetTy; 766 CurFn = Fn; 767 CurFnInfo = &FnInfo; 768 assert(CurFn->isDeclaration() && "Function already has body?"); 769 770 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 771 SanOpts.clear(); 772 773 if (D) { 774 // Apply the no_sanitize* attributes to SanOpts. 775 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 776 SanOpts.Mask &= ~Attr->getMask(); 777 } 778 779 // Apply sanitizer attributes to the function. 780 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 782 if (SanOpts.has(SanitizerKind::Thread)) 783 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 784 if (SanOpts.has(SanitizerKind::Memory)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 786 if (SanOpts.has(SanitizerKind::SafeStack)) 787 Fn->addFnAttr(llvm::Attribute::SafeStack); 788 789 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 790 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 791 if (SanOpts.has(SanitizerKind::Thread)) { 792 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 793 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (OMD->getMethodFamily() == OMF_dealloc || 795 OMD->getMethodFamily() == OMF_initialize || 796 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 797 markAsIgnoreThreadCheckingAtRuntime(Fn); 798 } 799 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 800 IdentifierInfo *II = FD->getIdentifier(); 801 if (II && II->isStr("__destroy_helper_block_")) 802 markAsIgnoreThreadCheckingAtRuntime(Fn); 803 } 804 } 805 806 // Ignore unrelated casts in STL allocate() since the allocator must cast 807 // from void* to T* before object initialization completes. Don't match on the 808 // namespace because not all allocators are in std:: 809 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 810 if (matchesStlAllocatorFn(D, getContext())) 811 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 812 } 813 814 // Apply xray attributes to the function (as a string, for now) 815 if (D && ShouldXRayInstrumentFunction()) { 816 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 817 if (XRayAttr->alwaysXRayInstrument()) 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 if (XRayAttr->neverXRayInstrument()) 820 Fn->addFnAttr("function-instrument", "xray-never"); 821 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 822 Fn->addFnAttr("xray-log-args", 823 llvm::utostr(LogArgs->getArgumentCount())); 824 } 825 } else { 826 if (!CGM.imbueXRayAttrs(Fn, Loc)) 827 Fn->addFnAttr( 828 "xray-instruction-threshold", 829 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 830 } 831 } 832 833 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 834 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 835 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 836 837 // Add no-jump-tables value. 838 Fn->addFnAttr("no-jump-tables", 839 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 840 841 // Add profile-sample-accurate value. 842 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 843 Fn->addFnAttr("profile-sample-accurate"); 844 845 if (getLangOpts().OpenCL) { 846 // Add metadata for a kernel function. 847 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 848 EmitOpenCLKernelMetadata(FD, Fn); 849 } 850 851 // If we are checking function types, emit a function type signature as 852 // prologue data. 853 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 854 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 855 if (llvm::Constant *PrologueSig = 856 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 857 llvm::Constant *FTRTTIConst = 858 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 859 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 860 llvm::Constant *PrologueStructConst = 861 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 862 Fn->setPrologueData(PrologueStructConst); 863 } 864 } 865 } 866 867 // If we're checking nullability, we need to know whether we can check the 868 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 869 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 870 auto Nullability = FnRetTy->getNullability(getContext()); 871 if (Nullability && *Nullability == NullabilityKind::NonNull) { 872 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 873 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 874 RetValNullabilityPrecondition = 875 llvm::ConstantInt::getTrue(getLLVMContext()); 876 } 877 } 878 879 // If we're in C++ mode and the function name is "main", it is guaranteed 880 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 881 // used within a program"). 882 if (getLangOpts().CPlusPlus) 883 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 884 if (FD->isMain()) 885 Fn->addFnAttr(llvm::Attribute::NoRecurse); 886 887 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 888 889 // Create a marker to make it easy to insert allocas into the entryblock 890 // later. Don't create this with the builder, because we don't want it 891 // folded. 892 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 893 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 894 895 ReturnBlock = getJumpDestInCurrentScope("return"); 896 897 Builder.SetInsertPoint(EntryBB); 898 899 // If we're checking the return value, allocate space for a pointer to a 900 // precise source location of the checked return statement. 901 if (requiresReturnValueCheck()) { 902 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 903 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 904 } 905 906 // Emit subprogram debug descriptor. 907 if (CGDebugInfo *DI = getDebugInfo()) { 908 // Reconstruct the type from the argument list so that implicit parameters, 909 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 910 // convention. 911 CallingConv CC = CallingConv::CC_C; 912 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 913 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 914 CC = SrcFnTy->getCallConv(); 915 SmallVector<QualType, 16> ArgTypes; 916 for (const VarDecl *VD : Args) 917 ArgTypes.push_back(VD->getType()); 918 QualType FnType = getContext().getFunctionType( 919 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 920 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 921 } 922 923 if (ShouldInstrumentFunction()) 924 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 925 926 // Since emitting the mcount call here impacts optimizations such as function 927 // inlining, we just add an attribute to insert a mcount call in backend. 928 // The attribute "counting-function" is set to mcount function name which is 929 // architecture dependent. 930 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 931 if (CGM.getCodeGenOpts().CallFEntry) 932 Fn->addFnAttr("fentry-call", "true"); 933 else { 934 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 935 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 936 } 937 } 938 939 if (RetTy->isVoidType()) { 940 // Void type; nothing to return. 941 ReturnValue = Address::invalid(); 942 943 // Count the implicit return. 944 if (!endsWithReturn(D)) 945 ++NumReturnExprs; 946 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 947 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 948 // Indirect aggregate return; emit returned value directly into sret slot. 949 // This reduces code size, and affects correctness in C++. 950 auto AI = CurFn->arg_begin(); 951 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 952 ++AI; 953 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 954 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 955 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 956 // Load the sret pointer from the argument struct and return into that. 957 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 958 llvm::Function::arg_iterator EI = CurFn->arg_end(); 959 --EI; 960 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 961 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 962 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 963 } else { 964 ReturnValue = CreateIRTemp(RetTy, "retval"); 965 966 // Tell the epilog emitter to autorelease the result. We do this 967 // now so that various specialized functions can suppress it 968 // during their IR-generation. 969 if (getLangOpts().ObjCAutoRefCount && 970 !CurFnInfo->isReturnsRetained() && 971 RetTy->isObjCRetainableType()) 972 AutoreleaseResult = true; 973 } 974 975 EmitStartEHSpec(CurCodeDecl); 976 977 PrologueCleanupDepth = EHStack.stable_begin(); 978 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 979 980 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 981 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 982 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 983 if (MD->getParent()->isLambda() && 984 MD->getOverloadedOperator() == OO_Call) { 985 // We're in a lambda; figure out the captures. 986 MD->getParent()->getCaptureFields(LambdaCaptureFields, 987 LambdaThisCaptureField); 988 if (LambdaThisCaptureField) { 989 // If the lambda captures the object referred to by '*this' - either by 990 // value or by reference, make sure CXXThisValue points to the correct 991 // object. 992 993 // Get the lvalue for the field (which is a copy of the enclosing object 994 // or contains the address of the enclosing object). 995 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 996 if (!LambdaThisCaptureField->getType()->isPointerType()) { 997 // If the enclosing object was captured by value, just use its address. 998 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 999 } else { 1000 // Load the lvalue pointed to by the field, since '*this' was captured 1001 // by reference. 1002 CXXThisValue = 1003 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1004 } 1005 } 1006 for (auto *FD : MD->getParent()->fields()) { 1007 if (FD->hasCapturedVLAType()) { 1008 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1009 SourceLocation()).getScalarVal(); 1010 auto VAT = FD->getCapturedVLAType(); 1011 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1012 } 1013 } 1014 } else { 1015 // Not in a lambda; just use 'this' from the method. 1016 // FIXME: Should we generate a new load for each use of 'this'? The 1017 // fast register allocator would be happier... 1018 CXXThisValue = CXXABIThisValue; 1019 } 1020 1021 // Check the 'this' pointer once per function, if it's available. 1022 if (CXXABIThisValue) { 1023 SanitizerSet SkippedChecks; 1024 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1025 QualType ThisTy = MD->getThisType(getContext()); 1026 1027 // If this is the call operator of a lambda with no capture-default, it 1028 // may have a static invoker function, which may call this operator with 1029 // a null 'this' pointer. 1030 if (isLambdaCallOperator(MD) && 1031 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1032 LCD_None) 1033 SkippedChecks.set(SanitizerKind::Null, true); 1034 1035 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1036 : TCK_MemberCall, 1037 Loc, CXXABIThisValue, ThisTy, 1038 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1039 SkippedChecks); 1040 } 1041 } 1042 1043 // If any of the arguments have a variably modified type, make sure to 1044 // emit the type size. 1045 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1046 i != e; ++i) { 1047 const VarDecl *VD = *i; 1048 1049 // Dig out the type as written from ParmVarDecls; it's unclear whether 1050 // the standard (C99 6.9.1p10) requires this, but we're following the 1051 // precedent set by gcc. 1052 QualType Ty; 1053 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1054 Ty = PVD->getOriginalType(); 1055 else 1056 Ty = VD->getType(); 1057 1058 if (Ty->isVariablyModifiedType()) 1059 EmitVariablyModifiedType(Ty); 1060 } 1061 // Emit a location at the end of the prologue. 1062 if (CGDebugInfo *DI = getDebugInfo()) 1063 DI->EmitLocation(Builder, StartLoc); 1064 } 1065 1066 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1067 const Stmt *Body) { 1068 incrementProfileCounter(Body); 1069 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1070 EmitCompoundStmtWithoutScope(*S); 1071 else 1072 EmitStmt(Body); 1073 } 1074 1075 /// When instrumenting to collect profile data, the counts for some blocks 1076 /// such as switch cases need to not include the fall-through counts, so 1077 /// emit a branch around the instrumentation code. When not instrumenting, 1078 /// this just calls EmitBlock(). 1079 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1080 const Stmt *S) { 1081 llvm::BasicBlock *SkipCountBB = nullptr; 1082 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1083 // When instrumenting for profiling, the fallthrough to certain 1084 // statements needs to skip over the instrumentation code so that we 1085 // get an accurate count. 1086 SkipCountBB = createBasicBlock("skipcount"); 1087 EmitBranch(SkipCountBB); 1088 } 1089 EmitBlock(BB); 1090 uint64_t CurrentCount = getCurrentProfileCount(); 1091 incrementProfileCounter(S); 1092 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1093 if (SkipCountBB) 1094 EmitBlock(SkipCountBB); 1095 } 1096 1097 /// Tries to mark the given function nounwind based on the 1098 /// non-existence of any throwing calls within it. We believe this is 1099 /// lightweight enough to do at -O0. 1100 static void TryMarkNoThrow(llvm::Function *F) { 1101 // LLVM treats 'nounwind' on a function as part of the type, so we 1102 // can't do this on functions that can be overwritten. 1103 if (F->isInterposable()) return; 1104 1105 for (llvm::BasicBlock &BB : *F) 1106 for (llvm::Instruction &I : BB) 1107 if (I.mayThrow()) 1108 return; 1109 1110 F->setDoesNotThrow(); 1111 } 1112 1113 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1114 FunctionArgList &Args) { 1115 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1116 QualType ResTy = FD->getReturnType(); 1117 1118 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1119 if (MD && MD->isInstance()) { 1120 if (CGM.getCXXABI().HasThisReturn(GD)) 1121 ResTy = MD->getThisType(getContext()); 1122 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1123 ResTy = CGM.getContext().VoidPtrTy; 1124 CGM.getCXXABI().buildThisParam(*this, Args); 1125 } 1126 1127 // The base version of an inheriting constructor whose constructed base is a 1128 // virtual base is not passed any arguments (because it doesn't actually call 1129 // the inherited constructor). 1130 bool PassedParams = true; 1131 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1132 if (auto Inherited = CD->getInheritedConstructor()) 1133 PassedParams = 1134 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1135 1136 if (PassedParams) { 1137 for (auto *Param : FD->parameters()) { 1138 Args.push_back(Param); 1139 if (!Param->hasAttr<PassObjectSizeAttr>()) 1140 continue; 1141 1142 auto *Implicit = ImplicitParamDecl::Create( 1143 getContext(), Param->getDeclContext(), Param->getLocation(), 1144 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1145 SizeArguments[Param] = Implicit; 1146 Args.push_back(Implicit); 1147 } 1148 } 1149 1150 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1151 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1152 1153 return ResTy; 1154 } 1155 1156 static bool 1157 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1158 const ASTContext &Context) { 1159 QualType T = FD->getReturnType(); 1160 // Avoid the optimization for functions that return a record type with a 1161 // trivial destructor or another trivially copyable type. 1162 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1163 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1164 return !ClassDecl->hasTrivialDestructor(); 1165 } 1166 return !T.isTriviallyCopyableType(Context); 1167 } 1168 1169 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1170 const CGFunctionInfo &FnInfo) { 1171 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1172 CurGD = GD; 1173 1174 FunctionArgList Args; 1175 QualType ResTy = BuildFunctionArgList(GD, Args); 1176 1177 // Check if we should generate debug info for this function. 1178 if (FD->hasAttr<NoDebugAttr>()) 1179 DebugInfo = nullptr; // disable debug info indefinitely for this function 1180 1181 // The function might not have a body if we're generating thunks for a 1182 // function declaration. 1183 SourceRange BodyRange; 1184 if (Stmt *Body = FD->getBody()) 1185 BodyRange = Body->getSourceRange(); 1186 else 1187 BodyRange = FD->getLocation(); 1188 CurEHLocation = BodyRange.getEnd(); 1189 1190 // Use the location of the start of the function to determine where 1191 // the function definition is located. By default use the location 1192 // of the declaration as the location for the subprogram. A function 1193 // may lack a declaration in the source code if it is created by code 1194 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1195 SourceLocation Loc = FD->getLocation(); 1196 1197 // If this is a function specialization then use the pattern body 1198 // as the location for the function. 1199 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1200 if (SpecDecl->hasBody(SpecDecl)) 1201 Loc = SpecDecl->getLocation(); 1202 1203 Stmt *Body = FD->getBody(); 1204 1205 // Initialize helper which will detect jumps which can cause invalid lifetime 1206 // markers. 1207 if (Body && ShouldEmitLifetimeMarkers) 1208 Bypasses.Init(Body); 1209 1210 // Emit the standard function prologue. 1211 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1212 1213 // Generate the body of the function. 1214 PGO.assignRegionCounters(GD, CurFn); 1215 if (isa<CXXDestructorDecl>(FD)) 1216 EmitDestructorBody(Args); 1217 else if (isa<CXXConstructorDecl>(FD)) 1218 EmitConstructorBody(Args); 1219 else if (getLangOpts().CUDA && 1220 !getLangOpts().CUDAIsDevice && 1221 FD->hasAttr<CUDAGlobalAttr>()) 1222 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1223 else if (isa<CXXMethodDecl>(FD) && 1224 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1225 // The lambda static invoker function is special, because it forwards or 1226 // clones the body of the function call operator (but is actually static). 1227 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1228 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1229 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1230 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1231 // Implicit copy-assignment gets the same special treatment as implicit 1232 // copy-constructors. 1233 emitImplicitAssignmentOperatorBody(Args); 1234 } else if (Body) { 1235 EmitFunctionBody(Args, Body); 1236 } else 1237 llvm_unreachable("no definition for emitted function"); 1238 1239 // C++11 [stmt.return]p2: 1240 // Flowing off the end of a function [...] results in undefined behavior in 1241 // a value-returning function. 1242 // C11 6.9.1p12: 1243 // If the '}' that terminates a function is reached, and the value of the 1244 // function call is used by the caller, the behavior is undefined. 1245 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1246 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1247 bool ShouldEmitUnreachable = 1248 CGM.getCodeGenOpts().StrictReturn || 1249 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1250 if (SanOpts.has(SanitizerKind::Return)) { 1251 SanitizerScope SanScope(this); 1252 llvm::Value *IsFalse = Builder.getFalse(); 1253 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1254 SanitizerHandler::MissingReturn, 1255 EmitCheckSourceLocation(FD->getLocation()), None); 1256 } else if (ShouldEmitUnreachable) { 1257 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1258 EmitTrapCall(llvm::Intrinsic::trap); 1259 } 1260 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1261 Builder.CreateUnreachable(); 1262 Builder.ClearInsertionPoint(); 1263 } 1264 } 1265 1266 // Emit the standard function epilogue. 1267 FinishFunction(BodyRange.getEnd()); 1268 1269 // If we haven't marked the function nothrow through other means, do 1270 // a quick pass now to see if we can. 1271 if (!CurFn->doesNotThrow()) 1272 TryMarkNoThrow(CurFn); 1273 } 1274 1275 /// ContainsLabel - Return true if the statement contains a label in it. If 1276 /// this statement is not executed normally, it not containing a label means 1277 /// that we can just remove the code. 1278 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1279 // Null statement, not a label! 1280 if (!S) return false; 1281 1282 // If this is a label, we have to emit the code, consider something like: 1283 // if (0) { ... foo: bar(); } goto foo; 1284 // 1285 // TODO: If anyone cared, we could track __label__'s, since we know that you 1286 // can't jump to one from outside their declared region. 1287 if (isa<LabelStmt>(S)) 1288 return true; 1289 1290 // If this is a case/default statement, and we haven't seen a switch, we have 1291 // to emit the code. 1292 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1293 return true; 1294 1295 // If this is a switch statement, we want to ignore cases below it. 1296 if (isa<SwitchStmt>(S)) 1297 IgnoreCaseStmts = true; 1298 1299 // Scan subexpressions for verboten labels. 1300 for (const Stmt *SubStmt : S->children()) 1301 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 /// containsBreak - Return true if the statement contains a break out of it. 1308 /// If the statement (recursively) contains a switch or loop with a break 1309 /// inside of it, this is fine. 1310 bool CodeGenFunction::containsBreak(const Stmt *S) { 1311 // Null statement, not a label! 1312 if (!S) return false; 1313 1314 // If this is a switch or loop that defines its own break scope, then we can 1315 // include it and anything inside of it. 1316 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1317 isa<ForStmt>(S)) 1318 return false; 1319 1320 if (isa<BreakStmt>(S)) 1321 return true; 1322 1323 // Scan subexpressions for verboten breaks. 1324 for (const Stmt *SubStmt : S->children()) 1325 if (containsBreak(SubStmt)) 1326 return true; 1327 1328 return false; 1329 } 1330 1331 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1332 if (!S) return false; 1333 1334 // Some statement kinds add a scope and thus never add a decl to the current 1335 // scope. Note, this list is longer than the list of statements that might 1336 // have an unscoped decl nested within them, but this way is conservatively 1337 // correct even if more statement kinds are added. 1338 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1339 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1340 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1341 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1342 return false; 1343 1344 if (isa<DeclStmt>(S)) 1345 return true; 1346 1347 for (const Stmt *SubStmt : S->children()) 1348 if (mightAddDeclToScope(SubStmt)) 1349 return true; 1350 1351 return false; 1352 } 1353 1354 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1355 /// to a constant, or if it does but contains a label, return false. If it 1356 /// constant folds return true and set the boolean result in Result. 1357 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1358 bool &ResultBool, 1359 bool AllowLabels) { 1360 llvm::APSInt ResultInt; 1361 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1362 return false; 1363 1364 ResultBool = ResultInt.getBoolValue(); 1365 return true; 1366 } 1367 1368 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1369 /// to a constant, or if it does but contains a label, return false. If it 1370 /// constant folds return true and set the folded value. 1371 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1372 llvm::APSInt &ResultInt, 1373 bool AllowLabels) { 1374 // FIXME: Rename and handle conversion of other evaluatable things 1375 // to bool. 1376 llvm::APSInt Int; 1377 if (!Cond->EvaluateAsInt(Int, getContext())) 1378 return false; // Not foldable, not integer or not fully evaluatable. 1379 1380 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1381 return false; // Contains a label. 1382 1383 ResultInt = Int; 1384 return true; 1385 } 1386 1387 1388 1389 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1390 /// statement) to the specified blocks. Based on the condition, this might try 1391 /// to simplify the codegen of the conditional based on the branch. 1392 /// 1393 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1394 llvm::BasicBlock *TrueBlock, 1395 llvm::BasicBlock *FalseBlock, 1396 uint64_t TrueCount) { 1397 Cond = Cond->IgnoreParens(); 1398 1399 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1400 1401 // Handle X && Y in a condition. 1402 if (CondBOp->getOpcode() == BO_LAnd) { 1403 // If we have "1 && X", simplify the code. "0 && X" would have constant 1404 // folded if the case was simple enough. 1405 bool ConstantBool = false; 1406 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1407 ConstantBool) { 1408 // br(1 && X) -> br(X). 1409 incrementProfileCounter(CondBOp); 1410 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1411 TrueCount); 1412 } 1413 1414 // If we have "X && 1", simplify the code to use an uncond branch. 1415 // "X && 0" would have been constant folded to 0. 1416 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1417 ConstantBool) { 1418 // br(X && 1) -> br(X). 1419 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1420 TrueCount); 1421 } 1422 1423 // Emit the LHS as a conditional. If the LHS conditional is false, we 1424 // want to jump to the FalseBlock. 1425 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1426 // The counter tells us how often we evaluate RHS, and all of TrueCount 1427 // can be propagated to that branch. 1428 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1429 1430 ConditionalEvaluation eval(*this); 1431 { 1432 ApplyDebugLocation DL(*this, Cond); 1433 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1434 EmitBlock(LHSTrue); 1435 } 1436 1437 incrementProfileCounter(CondBOp); 1438 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1439 1440 // Any temporaries created here are conditional. 1441 eval.begin(*this); 1442 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1443 eval.end(*this); 1444 1445 return; 1446 } 1447 1448 if (CondBOp->getOpcode() == BO_LOr) { 1449 // If we have "0 || X", simplify the code. "1 || X" would have constant 1450 // folded if the case was simple enough. 1451 bool ConstantBool = false; 1452 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1453 !ConstantBool) { 1454 // br(0 || X) -> br(X). 1455 incrementProfileCounter(CondBOp); 1456 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1457 TrueCount); 1458 } 1459 1460 // If we have "X || 0", simplify the code to use an uncond branch. 1461 // "X || 1" would have been constant folded to 1. 1462 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1463 !ConstantBool) { 1464 // br(X || 0) -> br(X). 1465 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1466 TrueCount); 1467 } 1468 1469 // Emit the LHS as a conditional. If the LHS conditional is true, we 1470 // want to jump to the TrueBlock. 1471 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1472 // We have the count for entry to the RHS and for the whole expression 1473 // being true, so we can divy up True count between the short circuit and 1474 // the RHS. 1475 uint64_t LHSCount = 1476 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1477 uint64_t RHSCount = TrueCount - LHSCount; 1478 1479 ConditionalEvaluation eval(*this); 1480 { 1481 ApplyDebugLocation DL(*this, Cond); 1482 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1483 EmitBlock(LHSFalse); 1484 } 1485 1486 incrementProfileCounter(CondBOp); 1487 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1488 1489 // Any temporaries created here are conditional. 1490 eval.begin(*this); 1491 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1492 1493 eval.end(*this); 1494 1495 return; 1496 } 1497 } 1498 1499 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1500 // br(!x, t, f) -> br(x, f, t) 1501 if (CondUOp->getOpcode() == UO_LNot) { 1502 // Negate the count. 1503 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1504 // Negate the condition and swap the destination blocks. 1505 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1506 FalseCount); 1507 } 1508 } 1509 1510 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1511 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1512 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1513 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1514 1515 ConditionalEvaluation cond(*this); 1516 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1517 getProfileCount(CondOp)); 1518 1519 // When computing PGO branch weights, we only know the overall count for 1520 // the true block. This code is essentially doing tail duplication of the 1521 // naive code-gen, introducing new edges for which counts are not 1522 // available. Divide the counts proportionally between the LHS and RHS of 1523 // the conditional operator. 1524 uint64_t LHSScaledTrueCount = 0; 1525 if (TrueCount) { 1526 double LHSRatio = 1527 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1528 LHSScaledTrueCount = TrueCount * LHSRatio; 1529 } 1530 1531 cond.begin(*this); 1532 EmitBlock(LHSBlock); 1533 incrementProfileCounter(CondOp); 1534 { 1535 ApplyDebugLocation DL(*this, Cond); 1536 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1537 LHSScaledTrueCount); 1538 } 1539 cond.end(*this); 1540 1541 cond.begin(*this); 1542 EmitBlock(RHSBlock); 1543 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1544 TrueCount - LHSScaledTrueCount); 1545 cond.end(*this); 1546 1547 return; 1548 } 1549 1550 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1551 // Conditional operator handling can give us a throw expression as a 1552 // condition for a case like: 1553 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1554 // Fold this to: 1555 // br(c, throw x, br(y, t, f)) 1556 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1557 return; 1558 } 1559 1560 // If the branch has a condition wrapped by __builtin_unpredictable, 1561 // create metadata that specifies that the branch is unpredictable. 1562 // Don't bother if not optimizing because that metadata would not be used. 1563 llvm::MDNode *Unpredictable = nullptr; 1564 auto *Call = dyn_cast<CallExpr>(Cond); 1565 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1566 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1567 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1568 llvm::MDBuilder MDHelper(getLLVMContext()); 1569 Unpredictable = MDHelper.createUnpredictable(); 1570 } 1571 } 1572 1573 // Create branch weights based on the number of times we get here and the 1574 // number of times the condition should be true. 1575 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1576 llvm::MDNode *Weights = 1577 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1578 1579 // Emit the code with the fully general case. 1580 llvm::Value *CondV; 1581 { 1582 ApplyDebugLocation DL(*this, Cond); 1583 CondV = EvaluateExprAsBool(Cond); 1584 } 1585 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1586 } 1587 1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1589 /// specified stmt yet. 1590 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1591 CGM.ErrorUnsupported(S, Type); 1592 } 1593 1594 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1595 /// variable-length array whose elements have a non-zero bit-pattern. 1596 /// 1597 /// \param baseType the inner-most element type of the array 1598 /// \param src - a char* pointing to the bit-pattern for a single 1599 /// base element of the array 1600 /// \param sizeInChars - the total size of the VLA, in chars 1601 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1602 Address dest, Address src, 1603 llvm::Value *sizeInChars) { 1604 CGBuilderTy &Builder = CGF.Builder; 1605 1606 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1607 llvm::Value *baseSizeInChars 1608 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1609 1610 Address begin = 1611 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1612 llvm::Value *end = 1613 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1614 1615 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1616 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1617 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1618 1619 // Make a loop over the VLA. C99 guarantees that the VLA element 1620 // count must be nonzero. 1621 CGF.EmitBlock(loopBB); 1622 1623 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1624 cur->addIncoming(begin.getPointer(), originBB); 1625 1626 CharUnits curAlign = 1627 dest.getAlignment().alignmentOfArrayElement(baseSize); 1628 1629 // memcpy the individual element bit-pattern. 1630 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1631 /*volatile*/ false); 1632 1633 // Go to the next element. 1634 llvm::Value *next = 1635 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1636 1637 // Leave if that's the end of the VLA. 1638 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1639 Builder.CreateCondBr(done, contBB, loopBB); 1640 cur->addIncoming(next, loopBB); 1641 1642 CGF.EmitBlock(contBB); 1643 } 1644 1645 void 1646 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1647 // Ignore empty classes in C++. 1648 if (getLangOpts().CPlusPlus) { 1649 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1650 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1651 return; 1652 } 1653 } 1654 1655 // Cast the dest ptr to the appropriate i8 pointer type. 1656 if (DestPtr.getElementType() != Int8Ty) 1657 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1658 1659 // Get size and alignment info for this aggregate. 1660 CharUnits size = getContext().getTypeSizeInChars(Ty); 1661 1662 llvm::Value *SizeVal; 1663 const VariableArrayType *vla; 1664 1665 // Don't bother emitting a zero-byte memset. 1666 if (size.isZero()) { 1667 // But note that getTypeInfo returns 0 for a VLA. 1668 if (const VariableArrayType *vlaType = 1669 dyn_cast_or_null<VariableArrayType>( 1670 getContext().getAsArrayType(Ty))) { 1671 QualType eltType; 1672 llvm::Value *numElts; 1673 std::tie(numElts, eltType) = getVLASize(vlaType); 1674 1675 SizeVal = numElts; 1676 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1677 if (!eltSize.isOne()) 1678 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1679 vla = vlaType; 1680 } else { 1681 return; 1682 } 1683 } else { 1684 SizeVal = CGM.getSize(size); 1685 vla = nullptr; 1686 } 1687 1688 // If the type contains a pointer to data member we can't memset it to zero. 1689 // Instead, create a null constant and copy it to the destination. 1690 // TODO: there are other patterns besides zero that we can usefully memset, 1691 // like -1, which happens to be the pattern used by member-pointers. 1692 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1693 // For a VLA, emit a single element, then splat that over the VLA. 1694 if (vla) Ty = getContext().getBaseElementType(vla); 1695 1696 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1697 1698 llvm::GlobalVariable *NullVariable = 1699 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1700 /*isConstant=*/true, 1701 llvm::GlobalVariable::PrivateLinkage, 1702 NullConstant, Twine()); 1703 CharUnits NullAlign = DestPtr.getAlignment(); 1704 NullVariable->setAlignment(NullAlign.getQuantity()); 1705 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1706 NullAlign); 1707 1708 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1709 1710 // Get and call the appropriate llvm.memcpy overload. 1711 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1712 return; 1713 } 1714 1715 // Otherwise, just memset the whole thing to zero. This is legal 1716 // because in LLVM, all default initializers (other than the ones we just 1717 // handled above) are guaranteed to have a bit pattern of all zeros. 1718 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1719 } 1720 1721 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1722 // Make sure that there is a block for the indirect goto. 1723 if (!IndirectBranch) 1724 GetIndirectGotoBlock(); 1725 1726 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1727 1728 // Make sure the indirect branch includes all of the address-taken blocks. 1729 IndirectBranch->addDestination(BB); 1730 return llvm::BlockAddress::get(CurFn, BB); 1731 } 1732 1733 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1734 // If we already made the indirect branch for indirect goto, return its block. 1735 if (IndirectBranch) return IndirectBranch->getParent(); 1736 1737 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1738 1739 // Create the PHI node that indirect gotos will add entries to. 1740 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1741 "indirect.goto.dest"); 1742 1743 // Create the indirect branch instruction. 1744 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1745 return IndirectBranch->getParent(); 1746 } 1747 1748 /// Computes the length of an array in elements, as well as the base 1749 /// element type and a properly-typed first element pointer. 1750 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1751 QualType &baseType, 1752 Address &addr) { 1753 const ArrayType *arrayType = origArrayType; 1754 1755 // If it's a VLA, we have to load the stored size. Note that 1756 // this is the size of the VLA in bytes, not its size in elements. 1757 llvm::Value *numVLAElements = nullptr; 1758 if (isa<VariableArrayType>(arrayType)) { 1759 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1760 1761 // Walk into all VLAs. This doesn't require changes to addr, 1762 // which has type T* where T is the first non-VLA element type. 1763 do { 1764 QualType elementType = arrayType->getElementType(); 1765 arrayType = getContext().getAsArrayType(elementType); 1766 1767 // If we only have VLA components, 'addr' requires no adjustment. 1768 if (!arrayType) { 1769 baseType = elementType; 1770 return numVLAElements; 1771 } 1772 } while (isa<VariableArrayType>(arrayType)); 1773 1774 // We get out here only if we find a constant array type 1775 // inside the VLA. 1776 } 1777 1778 // We have some number of constant-length arrays, so addr should 1779 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1780 // down to the first element of addr. 1781 SmallVector<llvm::Value*, 8> gepIndices; 1782 1783 // GEP down to the array type. 1784 llvm::ConstantInt *zero = Builder.getInt32(0); 1785 gepIndices.push_back(zero); 1786 1787 uint64_t countFromCLAs = 1; 1788 QualType eltType; 1789 1790 llvm::ArrayType *llvmArrayType = 1791 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1792 while (llvmArrayType) { 1793 assert(isa<ConstantArrayType>(arrayType)); 1794 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1795 == llvmArrayType->getNumElements()); 1796 1797 gepIndices.push_back(zero); 1798 countFromCLAs *= llvmArrayType->getNumElements(); 1799 eltType = arrayType->getElementType(); 1800 1801 llvmArrayType = 1802 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1803 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1804 assert((!llvmArrayType || arrayType) && 1805 "LLVM and Clang types are out-of-synch"); 1806 } 1807 1808 if (arrayType) { 1809 // From this point onwards, the Clang array type has been emitted 1810 // as some other type (probably a packed struct). Compute the array 1811 // size, and just emit the 'begin' expression as a bitcast. 1812 while (arrayType) { 1813 countFromCLAs *= 1814 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1815 eltType = arrayType->getElementType(); 1816 arrayType = getContext().getAsArrayType(eltType); 1817 } 1818 1819 llvm::Type *baseType = ConvertType(eltType); 1820 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1821 } else { 1822 // Create the actual GEP. 1823 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1824 gepIndices, "array.begin"), 1825 addr.getAlignment()); 1826 } 1827 1828 baseType = eltType; 1829 1830 llvm::Value *numElements 1831 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1832 1833 // If we had any VLA dimensions, factor them in. 1834 if (numVLAElements) 1835 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1836 1837 return numElements; 1838 } 1839 1840 std::pair<llvm::Value*, QualType> 1841 CodeGenFunction::getVLASize(QualType type) { 1842 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1843 assert(vla && "type was not a variable array type!"); 1844 return getVLASize(vla); 1845 } 1846 1847 std::pair<llvm::Value*, QualType> 1848 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1849 // The number of elements so far; always size_t. 1850 llvm::Value *numElements = nullptr; 1851 1852 QualType elementType; 1853 do { 1854 elementType = type->getElementType(); 1855 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1856 assert(vlaSize && "no size for VLA!"); 1857 assert(vlaSize->getType() == SizeTy); 1858 1859 if (!numElements) { 1860 numElements = vlaSize; 1861 } else { 1862 // It's undefined behavior if this wraps around, so mark it that way. 1863 // FIXME: Teach -fsanitize=undefined to trap this. 1864 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1865 } 1866 } while ((type = getContext().getAsVariableArrayType(elementType))); 1867 1868 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1869 } 1870 1871 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1872 assert(type->isVariablyModifiedType() && 1873 "Must pass variably modified type to EmitVLASizes!"); 1874 1875 EnsureInsertPoint(); 1876 1877 // We're going to walk down into the type and look for VLA 1878 // expressions. 1879 do { 1880 assert(type->isVariablyModifiedType()); 1881 1882 const Type *ty = type.getTypePtr(); 1883 switch (ty->getTypeClass()) { 1884 1885 #define TYPE(Class, Base) 1886 #define ABSTRACT_TYPE(Class, Base) 1887 #define NON_CANONICAL_TYPE(Class, Base) 1888 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1889 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1890 #include "clang/AST/TypeNodes.def" 1891 llvm_unreachable("unexpected dependent type!"); 1892 1893 // These types are never variably-modified. 1894 case Type::Builtin: 1895 case Type::Complex: 1896 case Type::Vector: 1897 case Type::ExtVector: 1898 case Type::Record: 1899 case Type::Enum: 1900 case Type::Elaborated: 1901 case Type::TemplateSpecialization: 1902 case Type::ObjCTypeParam: 1903 case Type::ObjCObject: 1904 case Type::ObjCInterface: 1905 case Type::ObjCObjectPointer: 1906 llvm_unreachable("type class is never variably-modified!"); 1907 1908 case Type::Adjusted: 1909 type = cast<AdjustedType>(ty)->getAdjustedType(); 1910 break; 1911 1912 case Type::Decayed: 1913 type = cast<DecayedType>(ty)->getPointeeType(); 1914 break; 1915 1916 case Type::Pointer: 1917 type = cast<PointerType>(ty)->getPointeeType(); 1918 break; 1919 1920 case Type::BlockPointer: 1921 type = cast<BlockPointerType>(ty)->getPointeeType(); 1922 break; 1923 1924 case Type::LValueReference: 1925 case Type::RValueReference: 1926 type = cast<ReferenceType>(ty)->getPointeeType(); 1927 break; 1928 1929 case Type::MemberPointer: 1930 type = cast<MemberPointerType>(ty)->getPointeeType(); 1931 break; 1932 1933 case Type::ConstantArray: 1934 case Type::IncompleteArray: 1935 // Losing element qualification here is fine. 1936 type = cast<ArrayType>(ty)->getElementType(); 1937 break; 1938 1939 case Type::VariableArray: { 1940 // Losing element qualification here is fine. 1941 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1942 1943 // Unknown size indication requires no size computation. 1944 // Otherwise, evaluate and record it. 1945 if (const Expr *size = vat->getSizeExpr()) { 1946 // It's possible that we might have emitted this already, 1947 // e.g. with a typedef and a pointer to it. 1948 llvm::Value *&entry = VLASizeMap[size]; 1949 if (!entry) { 1950 llvm::Value *Size = EmitScalarExpr(size); 1951 1952 // C11 6.7.6.2p5: 1953 // If the size is an expression that is not an integer constant 1954 // expression [...] each time it is evaluated it shall have a value 1955 // greater than zero. 1956 if (SanOpts.has(SanitizerKind::VLABound) && 1957 size->getType()->isSignedIntegerType()) { 1958 SanitizerScope SanScope(this); 1959 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1960 llvm::Constant *StaticArgs[] = { 1961 EmitCheckSourceLocation(size->getLocStart()), 1962 EmitCheckTypeDescriptor(size->getType()) 1963 }; 1964 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1965 SanitizerKind::VLABound), 1966 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1967 } 1968 1969 // Always zexting here would be wrong if it weren't 1970 // undefined behavior to have a negative bound. 1971 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1972 } 1973 } 1974 type = vat->getElementType(); 1975 break; 1976 } 1977 1978 case Type::FunctionProto: 1979 case Type::FunctionNoProto: 1980 type = cast<FunctionType>(ty)->getReturnType(); 1981 break; 1982 1983 case Type::Paren: 1984 case Type::TypeOf: 1985 case Type::UnaryTransform: 1986 case Type::Attributed: 1987 case Type::SubstTemplateTypeParm: 1988 case Type::PackExpansion: 1989 // Keep walking after single level desugaring. 1990 type = type.getSingleStepDesugaredType(getContext()); 1991 break; 1992 1993 case Type::Typedef: 1994 case Type::Decltype: 1995 case Type::Auto: 1996 case Type::DeducedTemplateSpecialization: 1997 // Stop walking: nothing to do. 1998 return; 1999 2000 case Type::TypeOfExpr: 2001 // Stop walking: emit typeof expression. 2002 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2003 return; 2004 2005 case Type::Atomic: 2006 type = cast<AtomicType>(ty)->getValueType(); 2007 break; 2008 2009 case Type::Pipe: 2010 type = cast<PipeType>(ty)->getElementType(); 2011 break; 2012 } 2013 } while (type->isVariablyModifiedType()); 2014 } 2015 2016 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2017 if (getContext().getBuiltinVaListType()->isArrayType()) 2018 return EmitPointerWithAlignment(E); 2019 return EmitLValue(E).getAddress(); 2020 } 2021 2022 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2023 return EmitLValue(E).getAddress(); 2024 } 2025 2026 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2027 const APValue &Init) { 2028 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2029 if (CGDebugInfo *Dbg = getDebugInfo()) 2030 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2031 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2032 } 2033 2034 CodeGenFunction::PeepholeProtection 2035 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2036 // At the moment, the only aggressive peephole we do in IR gen 2037 // is trunc(zext) folding, but if we add more, we can easily 2038 // extend this protection. 2039 2040 if (!rvalue.isScalar()) return PeepholeProtection(); 2041 llvm::Value *value = rvalue.getScalarVal(); 2042 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2043 2044 // Just make an extra bitcast. 2045 assert(HaveInsertPoint()); 2046 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2047 Builder.GetInsertBlock()); 2048 2049 PeepholeProtection protection; 2050 protection.Inst = inst; 2051 return protection; 2052 } 2053 2054 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2055 if (!protection.Inst) return; 2056 2057 // In theory, we could try to duplicate the peepholes now, but whatever. 2058 protection.Inst->eraseFromParent(); 2059 } 2060 2061 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2062 llvm::Value *AnnotatedVal, 2063 StringRef AnnotationStr, 2064 SourceLocation Location) { 2065 llvm::Value *Args[4] = { 2066 AnnotatedVal, 2067 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2068 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2069 CGM.EmitAnnotationLineNo(Location) 2070 }; 2071 return Builder.CreateCall(AnnotationFn, Args); 2072 } 2073 2074 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2075 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2076 // FIXME We create a new bitcast for every annotation because that's what 2077 // llvm-gcc was doing. 2078 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2079 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2080 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2081 I->getAnnotation(), D->getLocation()); 2082 } 2083 2084 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2085 Address Addr) { 2086 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2087 llvm::Value *V = Addr.getPointer(); 2088 llvm::Type *VTy = V->getType(); 2089 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2090 CGM.Int8PtrTy); 2091 2092 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2093 // FIXME Always emit the cast inst so we can differentiate between 2094 // annotation on the first field of a struct and annotation on the struct 2095 // itself. 2096 if (VTy != CGM.Int8PtrTy) 2097 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2098 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2099 V = Builder.CreateBitCast(V, VTy); 2100 } 2101 2102 return Address(V, Addr.getAlignment()); 2103 } 2104 2105 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2106 2107 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2108 : CGF(CGF) { 2109 assert(!CGF->IsSanitizerScope); 2110 CGF->IsSanitizerScope = true; 2111 } 2112 2113 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2114 CGF->IsSanitizerScope = false; 2115 } 2116 2117 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2118 const llvm::Twine &Name, 2119 llvm::BasicBlock *BB, 2120 llvm::BasicBlock::iterator InsertPt) const { 2121 LoopStack.InsertHelper(I); 2122 if (IsSanitizerScope) 2123 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2124 } 2125 2126 void CGBuilderInserter::InsertHelper( 2127 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2128 llvm::BasicBlock::iterator InsertPt) const { 2129 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2130 if (CGF) 2131 CGF->InsertHelper(I, Name, BB, InsertPt); 2132 } 2133 2134 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2135 CodeGenModule &CGM, const FunctionDecl *FD, 2136 std::string &FirstMissing) { 2137 // If there aren't any required features listed then go ahead and return. 2138 if (ReqFeatures.empty()) 2139 return false; 2140 2141 // Now build up the set of caller features and verify that all the required 2142 // features are there. 2143 llvm::StringMap<bool> CallerFeatureMap; 2144 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2145 2146 // If we have at least one of the features in the feature list return 2147 // true, otherwise return false. 2148 return std::all_of( 2149 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2150 SmallVector<StringRef, 1> OrFeatures; 2151 Feature.split(OrFeatures, "|"); 2152 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2153 [&](StringRef Feature) { 2154 if (!CallerFeatureMap.lookup(Feature)) { 2155 FirstMissing = Feature.str(); 2156 return false; 2157 } 2158 return true; 2159 }); 2160 }); 2161 } 2162 2163 // Emits an error if we don't have a valid set of target features for the 2164 // called function. 2165 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2166 const FunctionDecl *TargetDecl) { 2167 // Early exit if this is an indirect call. 2168 if (!TargetDecl) 2169 return; 2170 2171 // Get the current enclosing function if it exists. If it doesn't 2172 // we can't check the target features anyhow. 2173 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2174 if (!FD) 2175 return; 2176 2177 // Grab the required features for the call. For a builtin this is listed in 2178 // the td file with the default cpu, for an always_inline function this is any 2179 // listed cpu and any listed features. 2180 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2181 std::string MissingFeature; 2182 if (BuiltinID) { 2183 SmallVector<StringRef, 1> ReqFeatures; 2184 const char *FeatureList = 2185 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2186 // Return if the builtin doesn't have any required features. 2187 if (!FeatureList || StringRef(FeatureList) == "") 2188 return; 2189 StringRef(FeatureList).split(ReqFeatures, ","); 2190 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2191 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2192 << TargetDecl->getDeclName() 2193 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2194 2195 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2196 // Get the required features for the callee. 2197 SmallVector<StringRef, 1> ReqFeatures; 2198 llvm::StringMap<bool> CalleeFeatureMap; 2199 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2200 for (const auto &F : CalleeFeatureMap) { 2201 // Only positive features are "required". 2202 if (F.getValue()) 2203 ReqFeatures.push_back(F.getKey()); 2204 } 2205 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2206 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2207 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2208 } 2209 } 2210 2211 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2212 if (!CGM.getCodeGenOpts().SanitizeStats) 2213 return; 2214 2215 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2216 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2217 CGM.getSanStats().create(IRB, SSK); 2218 } 2219 2220 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2221 if (CGDebugInfo *DI = getDebugInfo()) 2222 return DI->SourceLocToDebugLoc(Location); 2223 2224 return llvm::DebugLoc(); 2225 } 2226