1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "llvm/Support/CFG.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 26 : CGM(cgm), Target(CGM.getContext().Target), SwitchInsn(NULL), 27 CaseRangeBlock(NULL) { 28 LLVMIntTy = ConvertType(getContext().IntTy); 29 LLVMPointerWidth = Target.getPointerWidth(0); 30 } 31 32 ASTContext &CodeGenFunction::getContext() const { 33 return CGM.getContext(); 34 } 35 36 37 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 38 llvm::BasicBlock *&BB = LabelMap[S]; 39 if (BB) return BB; 40 41 // Create, but don't insert, the new block. 42 return BB = createBasicBlock(S->getName()); 43 } 44 45 llvm::Constant * 46 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 47 return cast<llvm::Constant>(LocalDeclMap[BVD]); 48 } 49 50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) 51 { 52 return LocalDeclMap[VD]; 53 } 54 55 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 56 return CGM.getTypes().ConvertType(T); 57 } 58 59 bool CodeGenFunction::isObjCPointerType(QualType T) { 60 // All Objective-C types are pointers. 61 return T->isObjCInterfaceType() || 62 T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType(); 63 } 64 65 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 66 // FIXME: Use positive checks instead of negative ones to be more 67 // robust in the face of extension. 68 return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerLikeType() && 69 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() && 70 !T->isBlockPointerType(); 71 } 72 73 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 74 // Finish emission of indirect switches. 75 EmitIndirectSwitches(); 76 77 assert(BreakContinueStack.empty() && 78 "mismatched push/pop in break/continue stack!"); 79 80 // Emit function epilog (to return). This has the nice side effect 81 // of also automatically handling code that falls off the end. 82 EmitBlock(ReturnBlock); 83 84 // Emit debug descriptor for function end. 85 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 86 DI->setLocation(EndLoc); 87 DI->EmitRegionEnd(CurFn, Builder); 88 } 89 90 EmitFunctionEpilog(FnRetTy, ReturnValue); 91 92 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 93 AllocaInsertPt->eraseFromParent(); 94 AllocaInsertPt = 0; 95 } 96 97 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 98 llvm::Function *Fn, 99 const FunctionArgList &Args, 100 SourceLocation StartLoc) { 101 CurFuncDecl = D; 102 FnRetTy = RetTy; 103 CurFn = Fn; 104 assert(CurFn->isDeclaration() && "Function already has body?"); 105 106 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 107 108 // Create a marker to make it easy to insert allocas into the entryblock 109 // later. Don't create this with the builder, because we don't want it 110 // folded. 111 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); 112 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "allocapt", 113 EntryBB); 114 115 ReturnBlock = createBasicBlock("return"); 116 ReturnValue = 0; 117 if (!RetTy->isVoidType()) 118 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 119 120 Builder.SetInsertPoint(EntryBB); 121 122 // Emit subprogram debug descriptor. 123 // FIXME: The cast here is a huge hack. 124 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 125 DI->setLocation(StartLoc); 126 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 127 DI->EmitFunctionStart(FD->getIdentifier()->getName(), 128 RetTy, CurFn, Builder); 129 } else { 130 // Just use LLVM function name. 131 DI->EmitFunctionStart(Fn->getName().c_str(), 132 RetTy, CurFn, Builder); 133 } 134 } 135 136 EmitFunctionProlog(CurFn, FnRetTy, Args); 137 138 // If any of the arguments have a variably modified type, make sure to 139 // emit the type size. 140 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 141 i != e; ++i) { 142 QualType Ty = i->second; 143 144 if (Ty->isVariablyModifiedType()) 145 EmitVLASize(Ty); 146 } 147 } 148 149 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 150 llvm::Function *Fn) { 151 FunctionArgList Args; 152 if (FD->getNumParams()) { 153 const FunctionTypeProto* FProto = FD->getType()->getAsFunctionTypeProto(); 154 assert(FProto && "Function def must have prototype!"); 155 156 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 157 Args.push_back(std::make_pair(FD->getParamDecl(i), 158 FProto->getArgType(i))); 159 } 160 161 StartFunction(FD, FD->getResultType(), Fn, Args, 162 cast<CompoundStmt>(FD->getBody())->getLBracLoc()); 163 164 EmitStmt(FD->getBody()); 165 166 const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()); 167 if (S) { 168 FinishFunction(S->getRBracLoc()); 169 } else { 170 FinishFunction(); 171 } 172 } 173 174 /// ContainsLabel - Return true if the statement contains a label in it. If 175 /// this statement is not executed normally, it not containing a label means 176 /// that we can just remove the code. 177 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 178 // Null statement, not a label! 179 if (S == 0) return false; 180 181 // If this is a label, we have to emit the code, consider something like: 182 // if (0) { ... foo: bar(); } goto foo; 183 if (isa<LabelStmt>(S)) 184 return true; 185 186 // If this is a case/default statement, and we haven't seen a switch, we have 187 // to emit the code. 188 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 189 return true; 190 191 // If this is a switch statement, we want to ignore cases below it. 192 if (isa<SwitchStmt>(S)) 193 IgnoreCaseStmts = true; 194 195 // Scan subexpressions for verboten labels. 196 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 197 I != E; ++I) 198 if (ContainsLabel(*I, IgnoreCaseStmts)) 199 return true; 200 201 return false; 202 } 203 204 205 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 206 /// a constant, or if it does but contains a label, return 0. If it constant 207 /// folds to 'true' and does not contain a label, return 1, if it constant folds 208 /// to 'false' and does not contain a label, return -1. 209 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 210 // FIXME: Rename and handle conversion of other evaluatable things 211 // to bool. 212 Expr::EvalResult Result; 213 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 214 Result.HasSideEffects) 215 return 0; // Not foldable, not integer or not fully evaluatable. 216 217 if (CodeGenFunction::ContainsLabel(Cond)) 218 return 0; // Contains a label. 219 220 return Result.Val.getInt().getBoolValue() ? 1 : -1; 221 } 222 223 224 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 225 /// statement) to the specified blocks. Based on the condition, this might try 226 /// to simplify the codegen of the conditional based on the branch. 227 /// 228 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 229 llvm::BasicBlock *TrueBlock, 230 llvm::BasicBlock *FalseBlock) { 231 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 232 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 233 234 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 235 // Handle X && Y in a condition. 236 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 237 // If we have "1 && X", simplify the code. "0 && X" would have constant 238 // folded if the case was simple enough. 239 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 240 // br(1 && X) -> br(X). 241 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 242 } 243 244 // If we have "X && 1", simplify the code to use an uncond branch. 245 // "X && 0" would have been constant folded to 0. 246 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 247 // br(X && 1) -> br(X). 248 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 249 } 250 251 // Emit the LHS as a conditional. If the LHS conditional is false, we 252 // want to jump to the FalseBlock. 253 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 254 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 255 EmitBlock(LHSTrue); 256 257 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 258 return; 259 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 260 // If we have "0 || X", simplify the code. "1 || X" would have constant 261 // folded if the case was simple enough. 262 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 263 // br(0 || X) -> br(X). 264 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 265 } 266 267 // If we have "X || 0", simplify the code to use an uncond branch. 268 // "X || 1" would have been constant folded to 1. 269 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 270 // br(X || 0) -> br(X). 271 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 272 } 273 274 // Emit the LHS as a conditional. If the LHS conditional is true, we 275 // want to jump to the TrueBlock. 276 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 277 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 278 EmitBlock(LHSFalse); 279 280 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 281 return; 282 } 283 } 284 285 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 286 // br(!x, t, f) -> br(x, f, t) 287 if (CondUOp->getOpcode() == UnaryOperator::LNot) 288 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 289 } 290 291 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 292 // Handle ?: operator. 293 294 // Just ignore GNU ?: extension. 295 if (CondOp->getLHS()) { 296 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 297 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 298 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 299 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 300 EmitBlock(LHSBlock); 301 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 302 EmitBlock(RHSBlock); 303 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 304 return; 305 } 306 } 307 308 // Emit the code with the fully general case. 309 llvm::Value *CondV = EvaluateExprAsBool(Cond); 310 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 311 } 312 313 /// getCGRecordLayout - Return record layout info. 314 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 315 QualType Ty) { 316 const RecordType *RTy = Ty->getAsRecordType(); 317 assert (RTy && "Unexpected type. RecordType expected here."); 318 319 return CGT.getCGRecordLayout(RTy->getDecl()); 320 } 321 322 /// ErrorUnsupported - Print out an error that codegen doesn't support the 323 /// specified stmt yet. 324 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 325 bool OmitOnError) { 326 CGM.ErrorUnsupported(S, Type, OmitOnError); 327 } 328 329 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 330 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 331 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 332 } 333 334 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) 335 { 336 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 337 if (DestPtr->getType() != BP) 338 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 339 340 // Get size and alignment info for this aggregate. 341 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 342 343 // FIXME: Handle variable sized types. 344 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 345 346 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 347 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 348 // TypeInfo.first describes size in bits. 349 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 350 llvm::ConstantInt::get(llvm::Type::Int32Ty, 351 TypeInfo.second/8)); 352 } 353 354 void CodeGenFunction::EmitIndirectSwitches() { 355 llvm::BasicBlock *Default; 356 357 if (IndirectSwitches.empty()) 358 return; 359 360 if (!LabelIDs.empty()) { 361 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 362 } else { 363 // No possible targets for indirect goto, just emit an infinite 364 // loop. 365 Default = createBasicBlock("indirectgoto.loop", CurFn); 366 llvm::BranchInst::Create(Default, Default); 367 } 368 369 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 370 e = IndirectSwitches.end(); i != e; ++i) { 371 llvm::SwitchInst *I = *i; 372 373 I->setSuccessor(0, Default); 374 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 375 LE = LabelIDs.end(); LI != LE; ++LI) { 376 I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, 377 LI->second), 378 getBasicBlockForLabel(LI->first)); 379 } 380 } 381 } 382 383 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) 384 { 385 // FIXME: This entire method is hardcoded for 32-bit X86. 386 387 const char *TargetPrefix = getContext().Target.getTargetPrefix(); 388 389 if (strcmp(TargetPrefix, "x86") != 0 || 390 getContext().Target.getPointerWidth(0) != 32) 391 return 0; 392 393 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 394 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 395 396 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 397 "ap"); 398 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 399 llvm::Value *AddrTyped = 400 Builder.CreateBitCast(Addr, 401 llvm::PointerType::getUnqual(ConvertType(Ty))); 402 403 uint64_t SizeInBytes = getContext().getTypeSize(Ty) / 8; 404 const unsigned ArgumentSizeInBytes = 4; 405 if (SizeInBytes < ArgumentSizeInBytes) 406 SizeInBytes = ArgumentSizeInBytes; 407 408 llvm::Value *NextAddr = 409 Builder.CreateGEP(Addr, 410 llvm::ConstantInt::get(llvm::Type::Int32Ty, SizeInBytes), 411 "ap.next"); 412 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 413 414 return AddrTyped; 415 } 416 417 418 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) 419 { 420 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 421 422 assert(SizeEntry && "Did not emit size for type"); 423 return SizeEntry; 424 } 425 426 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) 427 { 428 assert(Ty->isVariablyModifiedType() && 429 "Must pass variably modified type to EmitVLASizes!"); 430 431 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 432 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 433 434 if (!SizeEntry) { 435 // Get the element size; 436 llvm::Value *ElemSize; 437 438 QualType ElemTy = VAT->getElementType(); 439 440 if (ElemTy->isVariableArrayType()) 441 ElemSize = EmitVLASize(ElemTy); 442 else { 443 // FIXME: We use Int32Ty here because the alloca instruction takes a 444 // 32-bit integer. What should we do about overflow? 445 ElemSize = llvm::ConstantInt::get(llvm::Type::Int32Ty, 446 getContext().getTypeSize(ElemTy) / 8); 447 } 448 449 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 450 451 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 452 } 453 454 return SizeEntry; 455 } else if (const PointerType *PT = Ty->getAsPointerType()) 456 EmitVLASize(PT->getPointeeType()); 457 else { 458 assert(0 && "unknown VM type!"); 459 } 460 461 return 0; 462 } 463 464 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 465 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 466 return EmitScalarExpr(E); 467 } 468 return EmitLValue(E).getAddress(); 469 } 470