1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 401 /// instrumentation function with the current function and the call site, if 402 /// function instrumentation is enabled. 403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 404 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 405 llvm::PointerType *PointerTy = Int8PtrTy; 406 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 407 llvm::FunctionType *FunctionTy = 408 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 409 410 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 411 llvm::CallInst *CallSite = Builder.CreateCall( 412 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 413 llvm::ConstantInt::get(Int32Ty, 0), 414 "callsite"); 415 416 llvm::Value *args[] = { 417 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 418 CallSite 419 }; 420 421 EmitNounwindRuntimeCall(F, args); 422 } 423 424 void CodeGenFunction::EmitMCountInstrumentation() { 425 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 426 427 llvm::Constant *MCountFn = 428 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 429 EmitNounwindRuntimeCall(MCountFn); 430 } 431 432 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 433 // information in the program executable. The argument information stored 434 // includes the argument name, its type, the address and access qualifiers used. 435 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 436 CodeGenModule &CGM, llvm::LLVMContext &Context, 437 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 438 CGBuilderTy &Builder, ASTContext &ASTCtx) { 439 // Create MDNodes that represent the kernel arg metadata. 440 // Each MDNode is a list in the form of "key", N number of values which is 441 // the same number of values as their are kernel arguments. 442 443 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 444 445 // MDNode for the kernel argument address space qualifiers. 446 SmallVector<llvm::Metadata *, 8> addressQuals; 447 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 448 449 // MDNode for the kernel argument access qualifiers (images only). 450 SmallVector<llvm::Metadata *, 8> accessQuals; 451 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 452 453 // MDNode for the kernel argument type names. 454 SmallVector<llvm::Metadata *, 8> argTypeNames; 455 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 456 457 // MDNode for the kernel argument base type names. 458 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 459 argBaseTypeNames.push_back( 460 llvm::MDString::get(Context, "kernel_arg_base_type")); 461 462 // MDNode for the kernel argument type qualifiers. 463 SmallVector<llvm::Metadata *, 8> argTypeQuals; 464 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 465 466 // MDNode for the kernel argument names. 467 SmallVector<llvm::Metadata *, 8> argNames; 468 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 469 470 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 471 const ParmVarDecl *parm = FD->getParamDecl(i); 472 QualType ty = parm->getType(); 473 std::string typeQuals; 474 475 if (ty->isPointerType()) { 476 QualType pointeeTy = ty->getPointeeType(); 477 478 // Get address qualifier. 479 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 480 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 481 482 // Get argument type name. 483 std::string typeName = 484 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 485 486 // Turn "unsigned type" to "utype" 487 std::string::size_type pos = typeName.find("unsigned"); 488 if (pointeeTy.isCanonical() && pos != std::string::npos) 489 typeName.erase(pos+1, 8); 490 491 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 492 493 std::string baseTypeName = 494 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 495 Policy) + 496 "*"; 497 498 // Turn "unsigned type" to "utype" 499 pos = baseTypeName.find("unsigned"); 500 if (pos != std::string::npos) 501 baseTypeName.erase(pos+1, 8); 502 503 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 504 505 // Get argument type qualifiers: 506 if (ty.isRestrictQualified()) 507 typeQuals = "restrict"; 508 if (pointeeTy.isConstQualified() || 509 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 510 typeQuals += typeQuals.empty() ? "const" : " const"; 511 if (pointeeTy.isVolatileQualified()) 512 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 513 } else { 514 uint32_t AddrSpc = 0; 515 bool isPipe = ty->isPipeType(); 516 if (ty->isImageType() || isPipe) 517 AddrSpc = 518 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 519 520 addressQuals.push_back( 521 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 522 523 // Get argument type name. 524 std::string typeName; 525 if (isPipe) 526 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 527 else 528 typeName = ty.getUnqualifiedType().getAsString(Policy); 529 530 // Turn "unsigned type" to "utype" 531 std::string::size_type pos = typeName.find("unsigned"); 532 if (ty.isCanonical() && pos != std::string::npos) 533 typeName.erase(pos+1, 8); 534 535 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 536 537 std::string baseTypeName; 538 if (isPipe) 539 baseTypeName = 540 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 541 else 542 baseTypeName = 543 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 544 545 // Turn "unsigned type" to "utype" 546 pos = baseTypeName.find("unsigned"); 547 if (pos != std::string::npos) 548 baseTypeName.erase(pos+1, 8); 549 550 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 551 552 // Get argument type qualifiers: 553 if (ty.isConstQualified()) 554 typeQuals = "const"; 555 if (ty.isVolatileQualified()) 556 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 557 if (isPipe) 558 typeQuals = "pipe"; 559 } 560 561 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 562 563 // Get image and pipe access qualifier: 564 if (ty->isImageType()|| ty->isPipeType()) { 565 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 566 if (A && A->isWriteOnly()) 567 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 568 else if (A && A->isReadWrite()) 569 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 570 else 571 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 572 } else 573 accessQuals.push_back(llvm::MDString::get(Context, "none")); 574 575 // Get argument name. 576 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 577 } 578 579 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 580 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 581 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 582 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 583 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 584 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 585 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 586 } 587 588 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 589 llvm::Function *Fn) 590 { 591 if (!FD->hasAttr<OpenCLKernelAttr>()) 592 return; 593 594 llvm::LLVMContext &Context = getLLVMContext(); 595 596 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 597 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 598 599 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 600 getContext()); 601 602 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 603 QualType hintQTy = A->getTypeHint(); 604 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 605 bool isSignedInteger = 606 hintQTy->isSignedIntegerType() || 607 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 608 llvm::Metadata *attrMDArgs[] = { 609 llvm::MDString::get(Context, "vec_type_hint"), 610 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 611 CGM.getTypes().ConvertType(A->getTypeHint()))), 612 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 613 llvm::IntegerType::get(Context, 32), 614 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 615 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 616 } 617 618 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 619 llvm::Metadata *attrMDArgs[] = { 620 llvm::MDString::get(Context, "work_group_size_hint"), 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 625 } 626 627 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 628 llvm::Metadata *attrMDArgs[] = { 629 llvm::MDString::get(Context, "reqd_work_group_size"), 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 633 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 634 } 635 636 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 637 llvm::NamedMDNode *OpenCLKernelMetadata = 638 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 639 OpenCLKernelMetadata->addOperand(kernelMDNode); 640 } 641 642 /// Determine whether the function F ends with a return stmt. 643 static bool endsWithReturn(const Decl* F) { 644 const Stmt *Body = nullptr; 645 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 646 Body = FD->getBody(); 647 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 648 Body = OMD->getBody(); 649 650 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 651 auto LastStmt = CS->body_rbegin(); 652 if (LastStmt != CS->body_rend()) 653 return isa<ReturnStmt>(*LastStmt); 654 } 655 return false; 656 } 657 658 void CodeGenFunction::StartFunction(GlobalDecl GD, 659 QualType RetTy, 660 llvm::Function *Fn, 661 const CGFunctionInfo &FnInfo, 662 const FunctionArgList &Args, 663 SourceLocation Loc, 664 SourceLocation StartLoc) { 665 assert(!CurFn && 666 "Do not use a CodeGenFunction object for more than one function"); 667 668 const Decl *D = GD.getDecl(); 669 670 DidCallStackSave = false; 671 CurCodeDecl = D; 672 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 673 if (FD->usesSEHTry()) 674 CurSEHParent = FD; 675 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 676 FnRetTy = RetTy; 677 CurFn = Fn; 678 CurFnInfo = &FnInfo; 679 assert(CurFn->isDeclaration() && "Function already has body?"); 680 681 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 682 SanOpts.clear(); 683 684 if (D) { 685 // Apply the no_sanitize* attributes to SanOpts. 686 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 687 SanOpts.Mask &= ~Attr->getMask(); 688 } 689 690 // Apply sanitizer attributes to the function. 691 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 692 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 693 if (SanOpts.has(SanitizerKind::Thread)) 694 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 695 if (SanOpts.has(SanitizerKind::Memory)) 696 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 697 if (SanOpts.has(SanitizerKind::SafeStack)) 698 Fn->addFnAttr(llvm::Attribute::SafeStack); 699 700 // Pass inline keyword to optimizer if it appears explicitly on any 701 // declaration. Also, in the case of -fno-inline attach NoInline 702 // attribute to all function that are not marked AlwaysInline. 703 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 704 if (!CGM.getCodeGenOpts().NoInline) { 705 for (auto RI : FD->redecls()) 706 if (RI->isInlineSpecified()) { 707 Fn->addFnAttr(llvm::Attribute::InlineHint); 708 break; 709 } 710 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 711 Fn->addFnAttr(llvm::Attribute::NoInline); 712 } 713 714 if (getLangOpts().OpenCL) { 715 // Add metadata for a kernel function. 716 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 717 EmitOpenCLKernelMetadata(FD, Fn); 718 } 719 720 // If we are checking function types, emit a function type signature as 721 // prologue data. 722 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 723 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 724 if (llvm::Constant *PrologueSig = 725 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 726 llvm::Constant *FTRTTIConst = 727 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 728 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 729 llvm::Constant *PrologueStructConst = 730 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 731 Fn->setPrologueData(PrologueStructConst); 732 } 733 } 734 } 735 736 // If we're in C++ mode and the function name is "main", it is guaranteed 737 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 738 // used within a program"). 739 if (getLangOpts().CPlusPlus) 740 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 741 if (FD->isMain()) 742 Fn->addFnAttr(llvm::Attribute::NoRecurse); 743 744 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 745 746 // Create a marker to make it easy to insert allocas into the entryblock 747 // later. Don't create this with the builder, because we don't want it 748 // folded. 749 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 750 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 751 if (Builder.isNamePreserving()) 752 AllocaInsertPt->setName("allocapt"); 753 754 ReturnBlock = getJumpDestInCurrentScope("return"); 755 756 Builder.SetInsertPoint(EntryBB); 757 758 // Emit subprogram debug descriptor. 759 if (CGDebugInfo *DI = getDebugInfo()) { 760 SmallVector<QualType, 16> ArgTypes; 761 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 762 i != e; ++i) { 763 ArgTypes.push_back((*i)->getType()); 764 } 765 766 QualType FnType = 767 getContext().getFunctionType(RetTy, ArgTypes, 768 FunctionProtoType::ExtProtoInfo()); 769 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 770 } 771 772 if (ShouldInstrumentFunction()) 773 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 774 775 if (CGM.getCodeGenOpts().InstrumentForProfiling) 776 EmitMCountInstrumentation(); 777 778 if (RetTy->isVoidType()) { 779 // Void type; nothing to return. 780 ReturnValue = Address::invalid(); 781 782 // Count the implicit return. 783 if (!endsWithReturn(D)) 784 ++NumReturnExprs; 785 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 786 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 787 // Indirect aggregate return; emit returned value directly into sret slot. 788 // This reduces code size, and affects correctness in C++. 789 auto AI = CurFn->arg_begin(); 790 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 791 ++AI; 792 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 793 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 794 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 795 // Load the sret pointer from the argument struct and return into that. 796 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 797 llvm::Function::arg_iterator EI = CurFn->arg_end(); 798 --EI; 799 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 800 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 801 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 802 } else { 803 ReturnValue = CreateIRTemp(RetTy, "retval"); 804 805 // Tell the epilog emitter to autorelease the result. We do this 806 // now so that various specialized functions can suppress it 807 // during their IR-generation. 808 if (getLangOpts().ObjCAutoRefCount && 809 !CurFnInfo->isReturnsRetained() && 810 RetTy->isObjCRetainableType()) 811 AutoreleaseResult = true; 812 } 813 814 EmitStartEHSpec(CurCodeDecl); 815 816 PrologueCleanupDepth = EHStack.stable_begin(); 817 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 818 819 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 820 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 821 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 822 if (MD->getParent()->isLambda() && 823 MD->getOverloadedOperator() == OO_Call) { 824 // We're in a lambda; figure out the captures. 825 MD->getParent()->getCaptureFields(LambdaCaptureFields, 826 LambdaThisCaptureField); 827 if (LambdaThisCaptureField) { 828 // If this lambda captures this, load it. 829 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 830 CXXThisValue = EmitLoadOfLValue(ThisLValue, 831 SourceLocation()).getScalarVal(); 832 } 833 for (auto *FD : MD->getParent()->fields()) { 834 if (FD->hasCapturedVLAType()) { 835 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 836 SourceLocation()).getScalarVal(); 837 auto VAT = FD->getCapturedVLAType(); 838 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 839 } 840 } 841 } else { 842 // Not in a lambda; just use 'this' from the method. 843 // FIXME: Should we generate a new load for each use of 'this'? The 844 // fast register allocator would be happier... 845 CXXThisValue = CXXABIThisValue; 846 } 847 } 848 849 // If any of the arguments have a variably modified type, make sure to 850 // emit the type size. 851 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 852 i != e; ++i) { 853 const VarDecl *VD = *i; 854 855 // Dig out the type as written from ParmVarDecls; it's unclear whether 856 // the standard (C99 6.9.1p10) requires this, but we're following the 857 // precedent set by gcc. 858 QualType Ty; 859 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 860 Ty = PVD->getOriginalType(); 861 else 862 Ty = VD->getType(); 863 864 if (Ty->isVariablyModifiedType()) 865 EmitVariablyModifiedType(Ty); 866 } 867 // Emit a location at the end of the prologue. 868 if (CGDebugInfo *DI = getDebugInfo()) 869 DI->EmitLocation(Builder, StartLoc); 870 } 871 872 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 873 const Stmt *Body) { 874 incrementProfileCounter(Body); 875 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 876 EmitCompoundStmtWithoutScope(*S); 877 else 878 EmitStmt(Body); 879 } 880 881 /// When instrumenting to collect profile data, the counts for some blocks 882 /// such as switch cases need to not include the fall-through counts, so 883 /// emit a branch around the instrumentation code. When not instrumenting, 884 /// this just calls EmitBlock(). 885 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 886 const Stmt *S) { 887 llvm::BasicBlock *SkipCountBB = nullptr; 888 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 889 // When instrumenting for profiling, the fallthrough to certain 890 // statements needs to skip over the instrumentation code so that we 891 // get an accurate count. 892 SkipCountBB = createBasicBlock("skipcount"); 893 EmitBranch(SkipCountBB); 894 } 895 EmitBlock(BB); 896 uint64_t CurrentCount = getCurrentProfileCount(); 897 incrementProfileCounter(S); 898 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 899 if (SkipCountBB) 900 EmitBlock(SkipCountBB); 901 } 902 903 /// Tries to mark the given function nounwind based on the 904 /// non-existence of any throwing calls within it. We believe this is 905 /// lightweight enough to do at -O0. 906 static void TryMarkNoThrow(llvm::Function *F) { 907 // LLVM treats 'nounwind' on a function as part of the type, so we 908 // can't do this on functions that can be overwritten. 909 if (F->mayBeOverridden()) return; 910 911 for (llvm::BasicBlock &BB : *F) 912 for (llvm::Instruction &I : BB) 913 if (I.mayThrow()) 914 return; 915 916 F->setDoesNotThrow(); 917 } 918 919 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 920 const CGFunctionInfo &FnInfo) { 921 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 922 923 // Check if we should generate debug info for this function. 924 if (FD->hasAttr<NoDebugAttr>()) 925 DebugInfo = nullptr; // disable debug info indefinitely for this function 926 927 FunctionArgList Args; 928 QualType ResTy = FD->getReturnType(); 929 930 CurGD = GD; 931 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 932 if (MD && MD->isInstance()) { 933 if (CGM.getCXXABI().HasThisReturn(GD)) 934 ResTy = MD->getThisType(getContext()); 935 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 936 ResTy = CGM.getContext().VoidPtrTy; 937 CGM.getCXXABI().buildThisParam(*this, Args); 938 } 939 940 for (auto *Param : FD->params()) { 941 Args.push_back(Param); 942 if (!Param->hasAttr<PassObjectSizeAttr>()) 943 continue; 944 945 IdentifierInfo *NoID = nullptr; 946 auto *Implicit = ImplicitParamDecl::Create( 947 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 948 getContext().getSizeType()); 949 SizeArguments[Param] = Implicit; 950 Args.push_back(Implicit); 951 } 952 953 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 954 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 955 956 SourceRange BodyRange; 957 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 958 CurEHLocation = BodyRange.getEnd(); 959 960 // Use the location of the start of the function to determine where 961 // the function definition is located. By default use the location 962 // of the declaration as the location for the subprogram. A function 963 // may lack a declaration in the source code if it is created by code 964 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 965 SourceLocation Loc = FD->getLocation(); 966 967 // If this is a function specialization then use the pattern body 968 // as the location for the function. 969 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 970 if (SpecDecl->hasBody(SpecDecl)) 971 Loc = SpecDecl->getLocation(); 972 973 // Emit the standard function prologue. 974 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 975 976 // Generate the body of the function. 977 PGO.assignRegionCounters(GD, CurFn); 978 if (isa<CXXDestructorDecl>(FD)) 979 EmitDestructorBody(Args); 980 else if (isa<CXXConstructorDecl>(FD)) 981 EmitConstructorBody(Args); 982 else if (getLangOpts().CUDA && 983 !getLangOpts().CUDAIsDevice && 984 FD->hasAttr<CUDAGlobalAttr>()) 985 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 986 else if (isa<CXXConversionDecl>(FD) && 987 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 988 // The lambda conversion to block pointer is special; the semantics can't be 989 // expressed in the AST, so IRGen needs to special-case it. 990 EmitLambdaToBlockPointerBody(Args); 991 } else if (isa<CXXMethodDecl>(FD) && 992 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 993 // The lambda static invoker function is special, because it forwards or 994 // clones the body of the function call operator (but is actually static). 995 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 996 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 997 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 998 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 999 // Implicit copy-assignment gets the same special treatment as implicit 1000 // copy-constructors. 1001 emitImplicitAssignmentOperatorBody(Args); 1002 } else if (Stmt *Body = FD->getBody()) { 1003 EmitFunctionBody(Args, Body); 1004 } else 1005 llvm_unreachable("no definition for emitted function"); 1006 1007 // C++11 [stmt.return]p2: 1008 // Flowing off the end of a function [...] results in undefined behavior in 1009 // a value-returning function. 1010 // C11 6.9.1p12: 1011 // If the '}' that terminates a function is reached, and the value of the 1012 // function call is used by the caller, the behavior is undefined. 1013 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1014 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1015 if (SanOpts.has(SanitizerKind::Return)) { 1016 SanitizerScope SanScope(this); 1017 llvm::Value *IsFalse = Builder.getFalse(); 1018 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1019 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1020 None); 1021 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1022 EmitTrapCall(llvm::Intrinsic::trap); 1023 } 1024 Builder.CreateUnreachable(); 1025 Builder.ClearInsertionPoint(); 1026 } 1027 1028 // Emit the standard function epilogue. 1029 FinishFunction(BodyRange.getEnd()); 1030 1031 // If we haven't marked the function nothrow through other means, do 1032 // a quick pass now to see if we can. 1033 if (!CurFn->doesNotThrow()) 1034 TryMarkNoThrow(CurFn); 1035 } 1036 1037 /// ContainsLabel - Return true if the statement contains a label in it. If 1038 /// this statement is not executed normally, it not containing a label means 1039 /// that we can just remove the code. 1040 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1041 // Null statement, not a label! 1042 if (!S) return false; 1043 1044 // If this is a label, we have to emit the code, consider something like: 1045 // if (0) { ... foo: bar(); } goto foo; 1046 // 1047 // TODO: If anyone cared, we could track __label__'s, since we know that you 1048 // can't jump to one from outside their declared region. 1049 if (isa<LabelStmt>(S)) 1050 return true; 1051 1052 // If this is a case/default statement, and we haven't seen a switch, we have 1053 // to emit the code. 1054 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1055 return true; 1056 1057 // If this is a switch statement, we want to ignore cases below it. 1058 if (isa<SwitchStmt>(S)) 1059 IgnoreCaseStmts = true; 1060 1061 // Scan subexpressions for verboten labels. 1062 for (const Stmt *SubStmt : S->children()) 1063 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1064 return true; 1065 1066 return false; 1067 } 1068 1069 /// containsBreak - Return true if the statement contains a break out of it. 1070 /// If the statement (recursively) contains a switch or loop with a break 1071 /// inside of it, this is fine. 1072 bool CodeGenFunction::containsBreak(const Stmt *S) { 1073 // Null statement, not a label! 1074 if (!S) return false; 1075 1076 // If this is a switch or loop that defines its own break scope, then we can 1077 // include it and anything inside of it. 1078 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1079 isa<ForStmt>(S)) 1080 return false; 1081 1082 if (isa<BreakStmt>(S)) 1083 return true; 1084 1085 // Scan subexpressions for verboten breaks. 1086 for (const Stmt *SubStmt : S->children()) 1087 if (containsBreak(SubStmt)) 1088 return true; 1089 1090 return false; 1091 } 1092 1093 1094 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1095 /// to a constant, or if it does but contains a label, return false. If it 1096 /// constant folds return true and set the boolean result in Result. 1097 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1098 bool &ResultBool) { 1099 llvm::APSInt ResultInt; 1100 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1101 return false; 1102 1103 ResultBool = ResultInt.getBoolValue(); 1104 return true; 1105 } 1106 1107 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1108 /// to a constant, or if it does but contains a label, return false. If it 1109 /// constant folds return true and set the folded value. 1110 bool CodeGenFunction:: 1111 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1112 // FIXME: Rename and handle conversion of other evaluatable things 1113 // to bool. 1114 llvm::APSInt Int; 1115 if (!Cond->EvaluateAsInt(Int, getContext())) 1116 return false; // Not foldable, not integer or not fully evaluatable. 1117 1118 if (CodeGenFunction::ContainsLabel(Cond)) 1119 return false; // Contains a label. 1120 1121 ResultInt = Int; 1122 return true; 1123 } 1124 1125 1126 1127 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1128 /// statement) to the specified blocks. Based on the condition, this might try 1129 /// to simplify the codegen of the conditional based on the branch. 1130 /// 1131 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1132 llvm::BasicBlock *TrueBlock, 1133 llvm::BasicBlock *FalseBlock, 1134 uint64_t TrueCount) { 1135 Cond = Cond->IgnoreParens(); 1136 1137 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1138 1139 // Handle X && Y in a condition. 1140 if (CondBOp->getOpcode() == BO_LAnd) { 1141 // If we have "1 && X", simplify the code. "0 && X" would have constant 1142 // folded if the case was simple enough. 1143 bool ConstantBool = false; 1144 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1145 ConstantBool) { 1146 // br(1 && X) -> br(X). 1147 incrementProfileCounter(CondBOp); 1148 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1149 TrueCount); 1150 } 1151 1152 // If we have "X && 1", simplify the code to use an uncond branch. 1153 // "X && 0" would have been constant folded to 0. 1154 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1155 ConstantBool) { 1156 // br(X && 1) -> br(X). 1157 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1158 TrueCount); 1159 } 1160 1161 // Emit the LHS as a conditional. If the LHS conditional is false, we 1162 // want to jump to the FalseBlock. 1163 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1164 // The counter tells us how often we evaluate RHS, and all of TrueCount 1165 // can be propagated to that branch. 1166 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1167 1168 ConditionalEvaluation eval(*this); 1169 { 1170 ApplyDebugLocation DL(*this, Cond); 1171 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1172 EmitBlock(LHSTrue); 1173 } 1174 1175 incrementProfileCounter(CondBOp); 1176 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1177 1178 // Any temporaries created here are conditional. 1179 eval.begin(*this); 1180 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1181 eval.end(*this); 1182 1183 return; 1184 } 1185 1186 if (CondBOp->getOpcode() == BO_LOr) { 1187 // If we have "0 || X", simplify the code. "1 || X" would have constant 1188 // folded if the case was simple enough. 1189 bool ConstantBool = false; 1190 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1191 !ConstantBool) { 1192 // br(0 || X) -> br(X). 1193 incrementProfileCounter(CondBOp); 1194 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1195 TrueCount); 1196 } 1197 1198 // If we have "X || 0", simplify the code to use an uncond branch. 1199 // "X || 1" would have been constant folded to 1. 1200 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1201 !ConstantBool) { 1202 // br(X || 0) -> br(X). 1203 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1204 TrueCount); 1205 } 1206 1207 // Emit the LHS as a conditional. If the LHS conditional is true, we 1208 // want to jump to the TrueBlock. 1209 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1210 // We have the count for entry to the RHS and for the whole expression 1211 // being true, so we can divy up True count between the short circuit and 1212 // the RHS. 1213 uint64_t LHSCount = 1214 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1215 uint64_t RHSCount = TrueCount - LHSCount; 1216 1217 ConditionalEvaluation eval(*this); 1218 { 1219 ApplyDebugLocation DL(*this, Cond); 1220 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1221 EmitBlock(LHSFalse); 1222 } 1223 1224 incrementProfileCounter(CondBOp); 1225 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1226 1227 // Any temporaries created here are conditional. 1228 eval.begin(*this); 1229 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1230 1231 eval.end(*this); 1232 1233 return; 1234 } 1235 } 1236 1237 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1238 // br(!x, t, f) -> br(x, f, t) 1239 if (CondUOp->getOpcode() == UO_LNot) { 1240 // Negate the count. 1241 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1242 // Negate the condition and swap the destination blocks. 1243 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1244 FalseCount); 1245 } 1246 } 1247 1248 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1249 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1250 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1251 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1252 1253 ConditionalEvaluation cond(*this); 1254 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1255 getProfileCount(CondOp)); 1256 1257 // When computing PGO branch weights, we only know the overall count for 1258 // the true block. This code is essentially doing tail duplication of the 1259 // naive code-gen, introducing new edges for which counts are not 1260 // available. Divide the counts proportionally between the LHS and RHS of 1261 // the conditional operator. 1262 uint64_t LHSScaledTrueCount = 0; 1263 if (TrueCount) { 1264 double LHSRatio = 1265 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1266 LHSScaledTrueCount = TrueCount * LHSRatio; 1267 } 1268 1269 cond.begin(*this); 1270 EmitBlock(LHSBlock); 1271 incrementProfileCounter(CondOp); 1272 { 1273 ApplyDebugLocation DL(*this, Cond); 1274 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1275 LHSScaledTrueCount); 1276 } 1277 cond.end(*this); 1278 1279 cond.begin(*this); 1280 EmitBlock(RHSBlock); 1281 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1282 TrueCount - LHSScaledTrueCount); 1283 cond.end(*this); 1284 1285 return; 1286 } 1287 1288 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1289 // Conditional operator handling can give us a throw expression as a 1290 // condition for a case like: 1291 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1292 // Fold this to: 1293 // br(c, throw x, br(y, t, f)) 1294 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1295 return; 1296 } 1297 1298 // If the branch has a condition wrapped by __builtin_unpredictable, 1299 // create metadata that specifies that the branch is unpredictable. 1300 // Don't bother if not optimizing because that metadata would not be used. 1301 llvm::MDNode *Unpredictable = nullptr; 1302 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1303 if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) { 1304 const Decl *TargetDecl = Call->getCalleeDecl(); 1305 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1306 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1307 llvm::MDBuilder MDHelper(getLLVMContext()); 1308 Unpredictable = MDHelper.createUnpredictable(); 1309 } 1310 } 1311 } 1312 } 1313 1314 // Create branch weights based on the number of times we get here and the 1315 // number of times the condition should be true. 1316 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1317 llvm::MDNode *Weights = 1318 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1319 1320 // Emit the code with the fully general case. 1321 llvm::Value *CondV; 1322 { 1323 ApplyDebugLocation DL(*this, Cond); 1324 CondV = EvaluateExprAsBool(Cond); 1325 } 1326 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1327 } 1328 1329 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1330 /// specified stmt yet. 1331 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1332 CGM.ErrorUnsupported(S, Type); 1333 } 1334 1335 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1336 /// variable-length array whose elements have a non-zero bit-pattern. 1337 /// 1338 /// \param baseType the inner-most element type of the array 1339 /// \param src - a char* pointing to the bit-pattern for a single 1340 /// base element of the array 1341 /// \param sizeInChars - the total size of the VLA, in chars 1342 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1343 Address dest, Address src, 1344 llvm::Value *sizeInChars) { 1345 CGBuilderTy &Builder = CGF.Builder; 1346 1347 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1348 llvm::Value *baseSizeInChars 1349 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1350 1351 Address begin = 1352 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1353 llvm::Value *end = 1354 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1355 1356 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1357 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1358 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1359 1360 // Make a loop over the VLA. C99 guarantees that the VLA element 1361 // count must be nonzero. 1362 CGF.EmitBlock(loopBB); 1363 1364 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1365 cur->addIncoming(begin.getPointer(), originBB); 1366 1367 CharUnits curAlign = 1368 dest.getAlignment().alignmentOfArrayElement(baseSize); 1369 1370 // memcpy the individual element bit-pattern. 1371 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1372 /*volatile*/ false); 1373 1374 // Go to the next element. 1375 llvm::Value *next = 1376 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1377 1378 // Leave if that's the end of the VLA. 1379 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1380 Builder.CreateCondBr(done, contBB, loopBB); 1381 cur->addIncoming(next, loopBB); 1382 1383 CGF.EmitBlock(contBB); 1384 } 1385 1386 void 1387 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1388 // Ignore empty classes in C++. 1389 if (getLangOpts().CPlusPlus) { 1390 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1391 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1392 return; 1393 } 1394 } 1395 1396 // Cast the dest ptr to the appropriate i8 pointer type. 1397 if (DestPtr.getElementType() != Int8Ty) 1398 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1399 1400 // Get size and alignment info for this aggregate. 1401 CharUnits size = getContext().getTypeSizeInChars(Ty); 1402 1403 llvm::Value *SizeVal; 1404 const VariableArrayType *vla; 1405 1406 // Don't bother emitting a zero-byte memset. 1407 if (size.isZero()) { 1408 // But note that getTypeInfo returns 0 for a VLA. 1409 if (const VariableArrayType *vlaType = 1410 dyn_cast_or_null<VariableArrayType>( 1411 getContext().getAsArrayType(Ty))) { 1412 QualType eltType; 1413 llvm::Value *numElts; 1414 std::tie(numElts, eltType) = getVLASize(vlaType); 1415 1416 SizeVal = numElts; 1417 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1418 if (!eltSize.isOne()) 1419 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1420 vla = vlaType; 1421 } else { 1422 return; 1423 } 1424 } else { 1425 SizeVal = CGM.getSize(size); 1426 vla = nullptr; 1427 } 1428 1429 // If the type contains a pointer to data member we can't memset it to zero. 1430 // Instead, create a null constant and copy it to the destination. 1431 // TODO: there are other patterns besides zero that we can usefully memset, 1432 // like -1, which happens to be the pattern used by member-pointers. 1433 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1434 // For a VLA, emit a single element, then splat that over the VLA. 1435 if (vla) Ty = getContext().getBaseElementType(vla); 1436 1437 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1438 1439 llvm::GlobalVariable *NullVariable = 1440 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1441 /*isConstant=*/true, 1442 llvm::GlobalVariable::PrivateLinkage, 1443 NullConstant, Twine()); 1444 CharUnits NullAlign = DestPtr.getAlignment(); 1445 NullVariable->setAlignment(NullAlign.getQuantity()); 1446 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1447 NullAlign); 1448 1449 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1450 1451 // Get and call the appropriate llvm.memcpy overload. 1452 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1453 return; 1454 } 1455 1456 // Otherwise, just memset the whole thing to zero. This is legal 1457 // because in LLVM, all default initializers (other than the ones we just 1458 // handled above) are guaranteed to have a bit pattern of all zeros. 1459 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1460 } 1461 1462 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1463 // Make sure that there is a block for the indirect goto. 1464 if (!IndirectBranch) 1465 GetIndirectGotoBlock(); 1466 1467 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1468 1469 // Make sure the indirect branch includes all of the address-taken blocks. 1470 IndirectBranch->addDestination(BB); 1471 return llvm::BlockAddress::get(CurFn, BB); 1472 } 1473 1474 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1475 // If we already made the indirect branch for indirect goto, return its block. 1476 if (IndirectBranch) return IndirectBranch->getParent(); 1477 1478 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1479 1480 // Create the PHI node that indirect gotos will add entries to. 1481 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1482 "indirect.goto.dest"); 1483 1484 // Create the indirect branch instruction. 1485 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1486 return IndirectBranch->getParent(); 1487 } 1488 1489 /// Computes the length of an array in elements, as well as the base 1490 /// element type and a properly-typed first element pointer. 1491 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1492 QualType &baseType, 1493 Address &addr) { 1494 const ArrayType *arrayType = origArrayType; 1495 1496 // If it's a VLA, we have to load the stored size. Note that 1497 // this is the size of the VLA in bytes, not its size in elements. 1498 llvm::Value *numVLAElements = nullptr; 1499 if (isa<VariableArrayType>(arrayType)) { 1500 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1501 1502 // Walk into all VLAs. This doesn't require changes to addr, 1503 // which has type T* where T is the first non-VLA element type. 1504 do { 1505 QualType elementType = arrayType->getElementType(); 1506 arrayType = getContext().getAsArrayType(elementType); 1507 1508 // If we only have VLA components, 'addr' requires no adjustment. 1509 if (!arrayType) { 1510 baseType = elementType; 1511 return numVLAElements; 1512 } 1513 } while (isa<VariableArrayType>(arrayType)); 1514 1515 // We get out here only if we find a constant array type 1516 // inside the VLA. 1517 } 1518 1519 // We have some number of constant-length arrays, so addr should 1520 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1521 // down to the first element of addr. 1522 SmallVector<llvm::Value*, 8> gepIndices; 1523 1524 // GEP down to the array type. 1525 llvm::ConstantInt *zero = Builder.getInt32(0); 1526 gepIndices.push_back(zero); 1527 1528 uint64_t countFromCLAs = 1; 1529 QualType eltType; 1530 1531 llvm::ArrayType *llvmArrayType = 1532 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1533 while (llvmArrayType) { 1534 assert(isa<ConstantArrayType>(arrayType)); 1535 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1536 == llvmArrayType->getNumElements()); 1537 1538 gepIndices.push_back(zero); 1539 countFromCLAs *= llvmArrayType->getNumElements(); 1540 eltType = arrayType->getElementType(); 1541 1542 llvmArrayType = 1543 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1544 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1545 assert((!llvmArrayType || arrayType) && 1546 "LLVM and Clang types are out-of-synch"); 1547 } 1548 1549 if (arrayType) { 1550 // From this point onwards, the Clang array type has been emitted 1551 // as some other type (probably a packed struct). Compute the array 1552 // size, and just emit the 'begin' expression as a bitcast. 1553 while (arrayType) { 1554 countFromCLAs *= 1555 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1556 eltType = arrayType->getElementType(); 1557 arrayType = getContext().getAsArrayType(eltType); 1558 } 1559 1560 llvm::Type *baseType = ConvertType(eltType); 1561 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1562 } else { 1563 // Create the actual GEP. 1564 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1565 gepIndices, "array.begin"), 1566 addr.getAlignment()); 1567 } 1568 1569 baseType = eltType; 1570 1571 llvm::Value *numElements 1572 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1573 1574 // If we had any VLA dimensions, factor them in. 1575 if (numVLAElements) 1576 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1577 1578 return numElements; 1579 } 1580 1581 std::pair<llvm::Value*, QualType> 1582 CodeGenFunction::getVLASize(QualType type) { 1583 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1584 assert(vla && "type was not a variable array type!"); 1585 return getVLASize(vla); 1586 } 1587 1588 std::pair<llvm::Value*, QualType> 1589 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1590 // The number of elements so far; always size_t. 1591 llvm::Value *numElements = nullptr; 1592 1593 QualType elementType; 1594 do { 1595 elementType = type->getElementType(); 1596 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1597 assert(vlaSize && "no size for VLA!"); 1598 assert(vlaSize->getType() == SizeTy); 1599 1600 if (!numElements) { 1601 numElements = vlaSize; 1602 } else { 1603 // It's undefined behavior if this wraps around, so mark it that way. 1604 // FIXME: Teach -fsanitize=undefined to trap this. 1605 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1606 } 1607 } while ((type = getContext().getAsVariableArrayType(elementType))); 1608 1609 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1610 } 1611 1612 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1613 assert(type->isVariablyModifiedType() && 1614 "Must pass variably modified type to EmitVLASizes!"); 1615 1616 EnsureInsertPoint(); 1617 1618 // We're going to walk down into the type and look for VLA 1619 // expressions. 1620 do { 1621 assert(type->isVariablyModifiedType()); 1622 1623 const Type *ty = type.getTypePtr(); 1624 switch (ty->getTypeClass()) { 1625 1626 #define TYPE(Class, Base) 1627 #define ABSTRACT_TYPE(Class, Base) 1628 #define NON_CANONICAL_TYPE(Class, Base) 1629 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1630 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1631 #include "clang/AST/TypeNodes.def" 1632 llvm_unreachable("unexpected dependent type!"); 1633 1634 // These types are never variably-modified. 1635 case Type::Builtin: 1636 case Type::Complex: 1637 case Type::Vector: 1638 case Type::ExtVector: 1639 case Type::Record: 1640 case Type::Enum: 1641 case Type::Elaborated: 1642 case Type::TemplateSpecialization: 1643 case Type::ObjCObject: 1644 case Type::ObjCInterface: 1645 case Type::ObjCObjectPointer: 1646 llvm_unreachable("type class is never variably-modified!"); 1647 1648 case Type::Adjusted: 1649 type = cast<AdjustedType>(ty)->getAdjustedType(); 1650 break; 1651 1652 case Type::Decayed: 1653 type = cast<DecayedType>(ty)->getPointeeType(); 1654 break; 1655 1656 case Type::Pointer: 1657 type = cast<PointerType>(ty)->getPointeeType(); 1658 break; 1659 1660 case Type::BlockPointer: 1661 type = cast<BlockPointerType>(ty)->getPointeeType(); 1662 break; 1663 1664 case Type::LValueReference: 1665 case Type::RValueReference: 1666 type = cast<ReferenceType>(ty)->getPointeeType(); 1667 break; 1668 1669 case Type::MemberPointer: 1670 type = cast<MemberPointerType>(ty)->getPointeeType(); 1671 break; 1672 1673 case Type::ConstantArray: 1674 case Type::IncompleteArray: 1675 // Losing element qualification here is fine. 1676 type = cast<ArrayType>(ty)->getElementType(); 1677 break; 1678 1679 case Type::VariableArray: { 1680 // Losing element qualification here is fine. 1681 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1682 1683 // Unknown size indication requires no size computation. 1684 // Otherwise, evaluate and record it. 1685 if (const Expr *size = vat->getSizeExpr()) { 1686 // It's possible that we might have emitted this already, 1687 // e.g. with a typedef and a pointer to it. 1688 llvm::Value *&entry = VLASizeMap[size]; 1689 if (!entry) { 1690 llvm::Value *Size = EmitScalarExpr(size); 1691 1692 // C11 6.7.6.2p5: 1693 // If the size is an expression that is not an integer constant 1694 // expression [...] each time it is evaluated it shall have a value 1695 // greater than zero. 1696 if (SanOpts.has(SanitizerKind::VLABound) && 1697 size->getType()->isSignedIntegerType()) { 1698 SanitizerScope SanScope(this); 1699 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1700 llvm::Constant *StaticArgs[] = { 1701 EmitCheckSourceLocation(size->getLocStart()), 1702 EmitCheckTypeDescriptor(size->getType()) 1703 }; 1704 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1705 SanitizerKind::VLABound), 1706 "vla_bound_not_positive", StaticArgs, Size); 1707 } 1708 1709 // Always zexting here would be wrong if it weren't 1710 // undefined behavior to have a negative bound. 1711 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1712 } 1713 } 1714 type = vat->getElementType(); 1715 break; 1716 } 1717 1718 case Type::FunctionProto: 1719 case Type::FunctionNoProto: 1720 type = cast<FunctionType>(ty)->getReturnType(); 1721 break; 1722 1723 case Type::Paren: 1724 case Type::TypeOf: 1725 case Type::UnaryTransform: 1726 case Type::Attributed: 1727 case Type::SubstTemplateTypeParm: 1728 case Type::PackExpansion: 1729 // Keep walking after single level desugaring. 1730 type = type.getSingleStepDesugaredType(getContext()); 1731 break; 1732 1733 case Type::Typedef: 1734 case Type::Decltype: 1735 case Type::Auto: 1736 // Stop walking: nothing to do. 1737 return; 1738 1739 case Type::TypeOfExpr: 1740 // Stop walking: emit typeof expression. 1741 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1742 return; 1743 1744 case Type::Atomic: 1745 type = cast<AtomicType>(ty)->getValueType(); 1746 break; 1747 1748 case Type::Pipe: 1749 type = cast<PipeType>(ty)->getElementType(); 1750 break; 1751 } 1752 } while (type->isVariablyModifiedType()); 1753 } 1754 1755 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1756 if (getContext().getBuiltinVaListType()->isArrayType()) 1757 return EmitPointerWithAlignment(E); 1758 return EmitLValue(E).getAddress(); 1759 } 1760 1761 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1762 return EmitLValue(E).getAddress(); 1763 } 1764 1765 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1766 llvm::Constant *Init) { 1767 assert (Init && "Invalid DeclRefExpr initializer!"); 1768 if (CGDebugInfo *Dbg = getDebugInfo()) 1769 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1770 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1771 } 1772 1773 CodeGenFunction::PeepholeProtection 1774 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1775 // At the moment, the only aggressive peephole we do in IR gen 1776 // is trunc(zext) folding, but if we add more, we can easily 1777 // extend this protection. 1778 1779 if (!rvalue.isScalar()) return PeepholeProtection(); 1780 llvm::Value *value = rvalue.getScalarVal(); 1781 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1782 1783 // Just make an extra bitcast. 1784 assert(HaveInsertPoint()); 1785 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1786 Builder.GetInsertBlock()); 1787 1788 PeepholeProtection protection; 1789 protection.Inst = inst; 1790 return protection; 1791 } 1792 1793 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1794 if (!protection.Inst) return; 1795 1796 // In theory, we could try to duplicate the peepholes now, but whatever. 1797 protection.Inst->eraseFromParent(); 1798 } 1799 1800 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1801 llvm::Value *AnnotatedVal, 1802 StringRef AnnotationStr, 1803 SourceLocation Location) { 1804 llvm::Value *Args[4] = { 1805 AnnotatedVal, 1806 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1807 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1808 CGM.EmitAnnotationLineNo(Location) 1809 }; 1810 return Builder.CreateCall(AnnotationFn, Args); 1811 } 1812 1813 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1814 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1815 // FIXME We create a new bitcast for every annotation because that's what 1816 // llvm-gcc was doing. 1817 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1818 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1819 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1820 I->getAnnotation(), D->getLocation()); 1821 } 1822 1823 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1824 Address Addr) { 1825 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1826 llvm::Value *V = Addr.getPointer(); 1827 llvm::Type *VTy = V->getType(); 1828 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1829 CGM.Int8PtrTy); 1830 1831 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1832 // FIXME Always emit the cast inst so we can differentiate between 1833 // annotation on the first field of a struct and annotation on the struct 1834 // itself. 1835 if (VTy != CGM.Int8PtrTy) 1836 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1837 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1838 V = Builder.CreateBitCast(V, VTy); 1839 } 1840 1841 return Address(V, Addr.getAlignment()); 1842 } 1843 1844 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1845 1846 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1847 : CGF(CGF) { 1848 assert(!CGF->IsSanitizerScope); 1849 CGF->IsSanitizerScope = true; 1850 } 1851 1852 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1853 CGF->IsSanitizerScope = false; 1854 } 1855 1856 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1857 const llvm::Twine &Name, 1858 llvm::BasicBlock *BB, 1859 llvm::BasicBlock::iterator InsertPt) const { 1860 LoopStack.InsertHelper(I); 1861 if (IsSanitizerScope) 1862 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1863 } 1864 1865 template <bool PreserveNames> 1866 void CGBuilderInserter<PreserveNames>::InsertHelper( 1867 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1868 llvm::BasicBlock::iterator InsertPt) const { 1869 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1870 InsertPt); 1871 if (CGF) 1872 CGF->InsertHelper(I, Name, BB, InsertPt); 1873 } 1874 1875 #ifdef NDEBUG 1876 #define PreserveNames false 1877 #else 1878 #define PreserveNames true 1879 #endif 1880 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1881 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1882 llvm::BasicBlock::iterator InsertPt) const; 1883 #undef PreserveNames 1884 1885 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1886 CodeGenModule &CGM, const FunctionDecl *FD, 1887 std::string &FirstMissing) { 1888 // If there aren't any required features listed then go ahead and return. 1889 if (ReqFeatures.empty()) 1890 return false; 1891 1892 // Now build up the set of caller features and verify that all the required 1893 // features are there. 1894 llvm::StringMap<bool> CallerFeatureMap; 1895 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1896 1897 // If we have at least one of the features in the feature list return 1898 // true, otherwise return false. 1899 return std::all_of( 1900 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1901 SmallVector<StringRef, 1> OrFeatures; 1902 Feature.split(OrFeatures, "|"); 1903 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1904 [&](StringRef Feature) { 1905 if (!CallerFeatureMap.lookup(Feature)) { 1906 FirstMissing = Feature.str(); 1907 return false; 1908 } 1909 return true; 1910 }); 1911 }); 1912 } 1913 1914 // Emits an error if we don't have a valid set of target features for the 1915 // called function. 1916 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1917 const FunctionDecl *TargetDecl) { 1918 // Early exit if this is an indirect call. 1919 if (!TargetDecl) 1920 return; 1921 1922 // Get the current enclosing function if it exists. If it doesn't 1923 // we can't check the target features anyhow. 1924 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1925 if (!FD) 1926 return; 1927 1928 // Grab the required features for the call. For a builtin this is listed in 1929 // the td file with the default cpu, for an always_inline function this is any 1930 // listed cpu and any listed features. 1931 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1932 std::string MissingFeature; 1933 if (BuiltinID) { 1934 SmallVector<StringRef, 1> ReqFeatures; 1935 const char *FeatureList = 1936 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1937 // Return if the builtin doesn't have any required features. 1938 if (!FeatureList || StringRef(FeatureList) == "") 1939 return; 1940 StringRef(FeatureList).split(ReqFeatures, ","); 1941 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1942 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1943 << TargetDecl->getDeclName() 1944 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1945 1946 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1947 // Get the required features for the callee. 1948 SmallVector<StringRef, 1> ReqFeatures; 1949 llvm::StringMap<bool> CalleeFeatureMap; 1950 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1951 for (const auto &F : CalleeFeatureMap) { 1952 // Only positive features are "required". 1953 if (F.getValue()) 1954 ReqFeatures.push_back(F.getKey()); 1955 } 1956 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1957 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1958 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1959 } 1960 } 1961 1962 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1963 if (!CGM.getCodeGenOpts().SanitizeStats) 1964 return; 1965 1966 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1967 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1968 CGM.getSanStats().create(IRB, SSK); 1969 } 1970