1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGException.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36     NormalCleanupDest(0), NextCleanupDestIndex(1),
37     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
41     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
42     TrapBB(0) {
43 
44   CatchUndefined = getContext().getLangOptions().CatchUndefined;
45   CGM.getCXXABI().getMangleContext().startNewFunction();
46 }
47 
48 
49 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
50   return CGM.getTypes().ConvertTypeForMem(T);
51 }
52 
53 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
54   return CGM.getTypes().ConvertType(T);
55 }
56 
57 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
58   switch (type.getCanonicalType()->getTypeClass()) {
59 #define TYPE(name, parent)
60 #define ABSTRACT_TYPE(name, parent)
61 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
62 #define DEPENDENT_TYPE(name, parent) case Type::name:
63 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
64 #include "clang/AST/TypeNodes.def"
65     llvm_unreachable("non-canonical or dependent type in IR-generation");
66 
67   case Type::Builtin:
68   case Type::Pointer:
69   case Type::BlockPointer:
70   case Type::LValueReference:
71   case Type::RValueReference:
72   case Type::MemberPointer:
73   case Type::Vector:
74   case Type::ExtVector:
75   case Type::FunctionProto:
76   case Type::FunctionNoProto:
77   case Type::Enum:
78   case Type::ObjCObjectPointer:
79     return false;
80 
81   // Complexes, arrays, records, and Objective-C objects.
82   case Type::Complex:
83   case Type::ConstantArray:
84   case Type::IncompleteArray:
85   case Type::VariableArray:
86   case Type::Record:
87   case Type::ObjCObject:
88   case Type::ObjCInterface:
89     return true;
90 
91   // In IRGen, atomic types are just the underlying type
92   case Type::Atomic:
93     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
94   }
95   llvm_unreachable("unknown type kind!");
96 }
97 
98 void CodeGenFunction::EmitReturnBlock() {
99   // For cleanliness, we try to avoid emitting the return block for
100   // simple cases.
101   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
102 
103   if (CurBB) {
104     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
105 
106     // We have a valid insert point, reuse it if it is empty or there are no
107     // explicit jumps to the return block.
108     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
109       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
110       delete ReturnBlock.getBlock();
111     } else
112       EmitBlock(ReturnBlock.getBlock());
113     return;
114   }
115 
116   // Otherwise, if the return block is the target of a single direct
117   // branch then we can just put the code in that block instead. This
118   // cleans up functions which started with a unified return block.
119   if (ReturnBlock.getBlock()->hasOneUse()) {
120     llvm::BranchInst *BI =
121       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
122     if (BI && BI->isUnconditional() &&
123         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
124       // Reset insertion point, including debug location, and delete the branch.
125       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
126       Builder.SetInsertPoint(BI->getParent());
127       BI->eraseFromParent();
128       delete ReturnBlock.getBlock();
129       return;
130     }
131   }
132 
133   // FIXME: We are at an unreachable point, there is no reason to emit the block
134   // unless it has uses. However, we still need a place to put the debug
135   // region.end for now.
136 
137   EmitBlock(ReturnBlock.getBlock());
138 }
139 
140 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
141   if (!BB) return;
142   if (!BB->use_empty())
143     return CGF.CurFn->getBasicBlockList().push_back(BB);
144   delete BB;
145 }
146 
147 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
148   assert(BreakContinueStack.empty() &&
149          "mismatched push/pop in break/continue stack!");
150 
151   // Pop any cleanups that might have been associated with the
152   // parameters.  Do this in whatever block we're currently in; it's
153   // important to do this before we enter the return block or return
154   // edges will be *really* confused.
155   if (EHStack.stable_begin() != PrologueCleanupDepth)
156     PopCleanupBlocks(PrologueCleanupDepth);
157 
158   // Emit function epilog (to return).
159   EmitReturnBlock();
160 
161   if (ShouldInstrumentFunction())
162     EmitFunctionInstrumentation("__cyg_profile_func_exit");
163 
164   // Emit debug descriptor for function end.
165   if (CGDebugInfo *DI = getDebugInfo()) {
166     DI->setLocation(EndLoc);
167     DI->EmitFunctionEnd(Builder);
168   }
169 
170   EmitFunctionEpilog(*CurFnInfo);
171   EmitEndEHSpec(CurCodeDecl);
172 
173   assert(EHStack.empty() &&
174          "did not remove all scopes from cleanup stack!");
175 
176   // If someone did an indirect goto, emit the indirect goto block at the end of
177   // the function.
178   if (IndirectBranch) {
179     EmitBlock(IndirectBranch->getParent());
180     Builder.ClearInsertionPoint();
181   }
182 
183   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
184   llvm::Instruction *Ptr = AllocaInsertPt;
185   AllocaInsertPt = 0;
186   Ptr->eraseFromParent();
187 
188   // If someone took the address of a label but never did an indirect goto, we
189   // made a zero entry PHI node, which is illegal, zap it now.
190   if (IndirectBranch) {
191     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
192     if (PN->getNumIncomingValues() == 0) {
193       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
194       PN->eraseFromParent();
195     }
196   }
197 
198   EmitIfUsed(*this, EHResumeBlock);
199   EmitIfUsed(*this, TerminateLandingPad);
200   EmitIfUsed(*this, TerminateHandler);
201   EmitIfUsed(*this, UnreachableBlock);
202 
203   if (CGM.getCodeGenOpts().EmitDeclMetadata)
204     EmitDeclMetadata();
205 }
206 
207 /// ShouldInstrumentFunction - Return true if the current function should be
208 /// instrumented with __cyg_profile_func_* calls
209 bool CodeGenFunction::ShouldInstrumentFunction() {
210   if (!CGM.getCodeGenOpts().InstrumentFunctions)
211     return false;
212   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
213     return false;
214   return true;
215 }
216 
217 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
218 /// instrumentation function with the current function and the call site, if
219 /// function instrumentation is enabled.
220 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
221   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
222   llvm::PointerType *PointerTy = Int8PtrTy;
223   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
224   llvm::FunctionType *FunctionTy =
225     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
226                             ProfileFuncArgs, false);
227 
228   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
229   llvm::CallInst *CallSite = Builder.CreateCall(
230     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
231     llvm::ConstantInt::get(Int32Ty, 0),
232     "callsite");
233 
234   Builder.CreateCall2(F,
235                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
236                       CallSite);
237 }
238 
239 void CodeGenFunction::EmitMCountInstrumentation() {
240   llvm::FunctionType *FTy =
241     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
242 
243   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
244                                                        Target.getMCountName());
245   Builder.CreateCall(MCountFn);
246 }
247 
248 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
249                                     llvm::Function *Fn,
250                                     const CGFunctionInfo &FnInfo,
251                                     const FunctionArgList &Args,
252                                     SourceLocation StartLoc) {
253   const Decl *D = GD.getDecl();
254 
255   DidCallStackSave = false;
256   CurCodeDecl = CurFuncDecl = D;
257   FnRetTy = RetTy;
258   CurFn = Fn;
259   CurFnInfo = &FnInfo;
260   assert(CurFn->isDeclaration() && "Function already has body?");
261 
262   // Pass inline keyword to optimizer if it appears explicitly on any
263   // declaration.
264   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
265     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
266            RE = FD->redecls_end(); RI != RE; ++RI)
267       if (RI->isInlineSpecified()) {
268         Fn->addFnAttr(llvm::Attribute::InlineHint);
269         break;
270       }
271 
272   if (getContext().getLangOptions().OpenCL) {
273     // Add metadata for a kernel function.
274     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
275       if (FD->hasAttr<OpenCLKernelAttr>()) {
276         llvm::LLVMContext &Context = getLLVMContext();
277         llvm::NamedMDNode *OpenCLMetadata =
278           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
279 
280         llvm::Value *Op = Fn;
281         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
282       }
283   }
284 
285   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
286 
287   // Create a marker to make it easy to insert allocas into the entryblock
288   // later.  Don't create this with the builder, because we don't want it
289   // folded.
290   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
291   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
292   if (Builder.isNamePreserving())
293     AllocaInsertPt->setName("allocapt");
294 
295   ReturnBlock = getJumpDestInCurrentScope("return");
296 
297   Builder.SetInsertPoint(EntryBB);
298 
299   // Emit subprogram debug descriptor.
300   if (CGDebugInfo *DI = getDebugInfo()) {
301     unsigned NumArgs = 0;
302     QualType *ArgsArray = new QualType[Args.size()];
303     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
304 	 i != e; ++i) {
305       ArgsArray[NumArgs++] = (*i)->getType();
306     }
307 
308     QualType FnType =
309       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
310                                    FunctionProtoType::ExtProtoInfo());
311 
312     delete[] ArgsArray;
313 
314     DI->setLocation(StartLoc);
315     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
316   }
317 
318   if (ShouldInstrumentFunction())
319     EmitFunctionInstrumentation("__cyg_profile_func_enter");
320 
321   if (CGM.getCodeGenOpts().InstrumentForProfiling)
322     EmitMCountInstrumentation();
323 
324   if (RetTy->isVoidType()) {
325     // Void type; nothing to return.
326     ReturnValue = 0;
327   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
328              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
329     // Indirect aggregate return; emit returned value directly into sret slot.
330     // This reduces code size, and affects correctness in C++.
331     ReturnValue = CurFn->arg_begin();
332   } else {
333     ReturnValue = CreateIRTemp(RetTy, "retval");
334 
335     // Tell the epilog emitter to autorelease the result.  We do this
336     // now so that various specialized functions can suppress it
337     // during their IR-generation.
338     if (getLangOptions().ObjCAutoRefCount &&
339         !CurFnInfo->isReturnsRetained() &&
340         RetTy->isObjCRetainableType())
341       AutoreleaseResult = true;
342   }
343 
344   EmitStartEHSpec(CurCodeDecl);
345 
346   PrologueCleanupDepth = EHStack.stable_begin();
347   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
348 
349   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
350     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
351 
352   // If any of the arguments have a variably modified type, make sure to
353   // emit the type size.
354   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
355        i != e; ++i) {
356     QualType Ty = (*i)->getType();
357 
358     if (Ty->isVariablyModifiedType())
359       EmitVariablyModifiedType(Ty);
360   }
361   // Emit a location at the end of the prologue.
362   if (CGDebugInfo *DI = getDebugInfo())
363     DI->EmitLocation(Builder, StartLoc);
364 }
365 
366 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
367   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
368   assert(FD->getBody());
369   EmitStmt(FD->getBody());
370 }
371 
372 /// Tries to mark the given function nounwind based on the
373 /// non-existence of any throwing calls within it.  We believe this is
374 /// lightweight enough to do at -O0.
375 static void TryMarkNoThrow(llvm::Function *F) {
376   // LLVM treats 'nounwind' on a function as part of the type, so we
377   // can't do this on functions that can be overwritten.
378   if (F->mayBeOverridden()) return;
379 
380   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
381     for (llvm::BasicBlock::iterator
382            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
383       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
384         if (!Call->doesNotThrow())
385           return;
386       } else if (isa<llvm::ResumeInst>(&*BI)) {
387         return;
388       }
389   F->setDoesNotThrow(true);
390 }
391 
392 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
393                                    const CGFunctionInfo &FnInfo) {
394   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
395 
396   // Check if we should generate debug info for this function.
397   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
398     DebugInfo = CGM.getModuleDebugInfo();
399 
400   FunctionArgList Args;
401   QualType ResTy = FD->getResultType();
402 
403   CurGD = GD;
404   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
405     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
406 
407   if (FD->getNumParams())
408     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
409       Args.push_back(FD->getParamDecl(i));
410 
411   SourceRange BodyRange;
412   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
413 
414   // Emit the standard function prologue.
415   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
416 
417   // Generate the body of the function.
418   if (isa<CXXDestructorDecl>(FD))
419     EmitDestructorBody(Args);
420   else if (isa<CXXConstructorDecl>(FD))
421     EmitConstructorBody(Args);
422   else if (getContext().getLangOptions().CUDA &&
423            !CGM.getCodeGenOpts().CUDAIsDevice &&
424            FD->hasAttr<CUDAGlobalAttr>())
425     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
426   else
427     EmitFunctionBody(Args);
428 
429   // Emit the standard function epilogue.
430   FinishFunction(BodyRange.getEnd());
431 
432   // If we haven't marked the function nothrow through other means, do
433   // a quick pass now to see if we can.
434   if (!CurFn->doesNotThrow())
435     TryMarkNoThrow(CurFn);
436 }
437 
438 /// ContainsLabel - Return true if the statement contains a label in it.  If
439 /// this statement is not executed normally, it not containing a label means
440 /// that we can just remove the code.
441 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
442   // Null statement, not a label!
443   if (S == 0) return false;
444 
445   // If this is a label, we have to emit the code, consider something like:
446   // if (0) {  ...  foo:  bar(); }  goto foo;
447   //
448   // TODO: If anyone cared, we could track __label__'s, since we know that you
449   // can't jump to one from outside their declared region.
450   if (isa<LabelStmt>(S))
451     return true;
452 
453   // If this is a case/default statement, and we haven't seen a switch, we have
454   // to emit the code.
455   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
456     return true;
457 
458   // If this is a switch statement, we want to ignore cases below it.
459   if (isa<SwitchStmt>(S))
460     IgnoreCaseStmts = true;
461 
462   // Scan subexpressions for verboten labels.
463   for (Stmt::const_child_range I = S->children(); I; ++I)
464     if (ContainsLabel(*I, IgnoreCaseStmts))
465       return true;
466 
467   return false;
468 }
469 
470 /// containsBreak - Return true if the statement contains a break out of it.
471 /// If the statement (recursively) contains a switch or loop with a break
472 /// inside of it, this is fine.
473 bool CodeGenFunction::containsBreak(const Stmt *S) {
474   // Null statement, not a label!
475   if (S == 0) return false;
476 
477   // If this is a switch or loop that defines its own break scope, then we can
478   // include it and anything inside of it.
479   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
480       isa<ForStmt>(S))
481     return false;
482 
483   if (isa<BreakStmt>(S))
484     return true;
485 
486   // Scan subexpressions for verboten breaks.
487   for (Stmt::const_child_range I = S->children(); I; ++I)
488     if (containsBreak(*I))
489       return true;
490 
491   return false;
492 }
493 
494 
495 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
496 /// to a constant, or if it does but contains a label, return false.  If it
497 /// constant folds return true and set the boolean result in Result.
498 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
499                                                    bool &ResultBool) {
500   llvm::APInt ResultInt;
501   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
502     return false;
503 
504   ResultBool = ResultInt.getBoolValue();
505   return true;
506 }
507 
508 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
509 /// to a constant, or if it does but contains a label, return false.  If it
510 /// constant folds return true and set the folded value.
511 bool CodeGenFunction::
512 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
513   // FIXME: Rename and handle conversion of other evaluatable things
514   // to bool.
515   Expr::EvalResult Result;
516   if (!Cond->EvaluateAsRValue(Result, getContext()) || !Result.Val.isInt() ||
517       Result.HasSideEffects)
518     return false;  // Not foldable, not integer or not fully evaluatable.
519 
520   if (CodeGenFunction::ContainsLabel(Cond))
521     return false;  // Contains a label.
522 
523   ResultInt = Result.Val.getInt();
524   return true;
525 }
526 
527 
528 
529 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
530 /// statement) to the specified blocks.  Based on the condition, this might try
531 /// to simplify the codegen of the conditional based on the branch.
532 ///
533 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
534                                            llvm::BasicBlock *TrueBlock,
535                                            llvm::BasicBlock *FalseBlock) {
536   Cond = Cond->IgnoreParens();
537 
538   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
539     // Handle X && Y in a condition.
540     if (CondBOp->getOpcode() == BO_LAnd) {
541       // If we have "1 && X", simplify the code.  "0 && X" would have constant
542       // folded if the case was simple enough.
543       bool ConstantBool = false;
544       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
545           ConstantBool) {
546         // br(1 && X) -> br(X).
547         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
548       }
549 
550       // If we have "X && 1", simplify the code to use an uncond branch.
551       // "X && 0" would have been constant folded to 0.
552       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
553           ConstantBool) {
554         // br(X && 1) -> br(X).
555         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
556       }
557 
558       // Emit the LHS as a conditional.  If the LHS conditional is false, we
559       // want to jump to the FalseBlock.
560       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
561 
562       ConditionalEvaluation eval(*this);
563       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
564       EmitBlock(LHSTrue);
565 
566       // Any temporaries created here are conditional.
567       eval.begin(*this);
568       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
569       eval.end(*this);
570 
571       return;
572     }
573 
574     if (CondBOp->getOpcode() == BO_LOr) {
575       // If we have "0 || X", simplify the code.  "1 || X" would have constant
576       // folded if the case was simple enough.
577       bool ConstantBool = false;
578       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
579           !ConstantBool) {
580         // br(0 || X) -> br(X).
581         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
582       }
583 
584       // If we have "X || 0", simplify the code to use an uncond branch.
585       // "X || 1" would have been constant folded to 1.
586       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
587           !ConstantBool) {
588         // br(X || 0) -> br(X).
589         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
590       }
591 
592       // Emit the LHS as a conditional.  If the LHS conditional is true, we
593       // want to jump to the TrueBlock.
594       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
595 
596       ConditionalEvaluation eval(*this);
597       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
598       EmitBlock(LHSFalse);
599 
600       // Any temporaries created here are conditional.
601       eval.begin(*this);
602       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
603       eval.end(*this);
604 
605       return;
606     }
607   }
608 
609   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
610     // br(!x, t, f) -> br(x, f, t)
611     if (CondUOp->getOpcode() == UO_LNot)
612       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
613   }
614 
615   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
616     // Handle ?: operator.
617 
618     // Just ignore GNU ?: extension.
619     if (CondOp->getLHS()) {
620       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
621       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
622       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
623 
624       ConditionalEvaluation cond(*this);
625       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
626 
627       cond.begin(*this);
628       EmitBlock(LHSBlock);
629       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
630       cond.end(*this);
631 
632       cond.begin(*this);
633       EmitBlock(RHSBlock);
634       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
635       cond.end(*this);
636 
637       return;
638     }
639   }
640 
641   // Emit the code with the fully general case.
642   llvm::Value *CondV = EvaluateExprAsBool(Cond);
643   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
644 }
645 
646 /// ErrorUnsupported - Print out an error that codegen doesn't support the
647 /// specified stmt yet.
648 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
649                                        bool OmitOnError) {
650   CGM.ErrorUnsupported(S, Type, OmitOnError);
651 }
652 
653 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
654 /// variable-length array whose elements have a non-zero bit-pattern.
655 ///
656 /// \param src - a char* pointing to the bit-pattern for a single
657 /// base element of the array
658 /// \param sizeInChars - the total size of the VLA, in chars
659 /// \param align - the total alignment of the VLA
660 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
661                                llvm::Value *dest, llvm::Value *src,
662                                llvm::Value *sizeInChars) {
663   std::pair<CharUnits,CharUnits> baseSizeAndAlign
664     = CGF.getContext().getTypeInfoInChars(baseType);
665 
666   CGBuilderTy &Builder = CGF.Builder;
667 
668   llvm::Value *baseSizeInChars
669     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
670 
671   llvm::Type *i8p = Builder.getInt8PtrTy();
672 
673   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
674   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
675 
676   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
677   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
678   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
679 
680   // Make a loop over the VLA.  C99 guarantees that the VLA element
681   // count must be nonzero.
682   CGF.EmitBlock(loopBB);
683 
684   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
685   cur->addIncoming(begin, originBB);
686 
687   // memcpy the individual element bit-pattern.
688   Builder.CreateMemCpy(cur, src, baseSizeInChars,
689                        baseSizeAndAlign.second.getQuantity(),
690                        /*volatile*/ false);
691 
692   // Go to the next element.
693   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
694 
695   // Leave if that's the end of the VLA.
696   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
697   Builder.CreateCondBr(done, contBB, loopBB);
698   cur->addIncoming(next, loopBB);
699 
700   CGF.EmitBlock(contBB);
701 }
702 
703 void
704 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
705   // Ignore empty classes in C++.
706   if (getContext().getLangOptions().CPlusPlus) {
707     if (const RecordType *RT = Ty->getAs<RecordType>()) {
708       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
709         return;
710     }
711   }
712 
713   // Cast the dest ptr to the appropriate i8 pointer type.
714   unsigned DestAS =
715     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
716   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
717   if (DestPtr->getType() != BP)
718     DestPtr = Builder.CreateBitCast(DestPtr, BP);
719 
720   // Get size and alignment info for this aggregate.
721   std::pair<CharUnits, CharUnits> TypeInfo =
722     getContext().getTypeInfoInChars(Ty);
723   CharUnits Size = TypeInfo.first;
724   CharUnits Align = TypeInfo.second;
725 
726   llvm::Value *SizeVal;
727   const VariableArrayType *vla;
728 
729   // Don't bother emitting a zero-byte memset.
730   if (Size.isZero()) {
731     // But note that getTypeInfo returns 0 for a VLA.
732     if (const VariableArrayType *vlaType =
733           dyn_cast_or_null<VariableArrayType>(
734                                           getContext().getAsArrayType(Ty))) {
735       QualType eltType;
736       llvm::Value *numElts;
737       llvm::tie(numElts, eltType) = getVLASize(vlaType);
738 
739       SizeVal = numElts;
740       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
741       if (!eltSize.isOne())
742         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
743       vla = vlaType;
744     } else {
745       return;
746     }
747   } else {
748     SizeVal = CGM.getSize(Size);
749     vla = 0;
750   }
751 
752   // If the type contains a pointer to data member we can't memset it to zero.
753   // Instead, create a null constant and copy it to the destination.
754   // TODO: there are other patterns besides zero that we can usefully memset,
755   // like -1, which happens to be the pattern used by member-pointers.
756   if (!CGM.getTypes().isZeroInitializable(Ty)) {
757     // For a VLA, emit a single element, then splat that over the VLA.
758     if (vla) Ty = getContext().getBaseElementType(vla);
759 
760     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
761 
762     llvm::GlobalVariable *NullVariable =
763       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
764                                /*isConstant=*/true,
765                                llvm::GlobalVariable::PrivateLinkage,
766                                NullConstant, Twine());
767     llvm::Value *SrcPtr =
768       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
769 
770     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
771 
772     // Get and call the appropriate llvm.memcpy overload.
773     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
774     return;
775   }
776 
777   // Otherwise, just memset the whole thing to zero.  This is legal
778   // because in LLVM, all default initializers (other than the ones we just
779   // handled above) are guaranteed to have a bit pattern of all zeros.
780   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
781                        Align.getQuantity(), false);
782 }
783 
784 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
785   // Make sure that there is a block for the indirect goto.
786   if (IndirectBranch == 0)
787     GetIndirectGotoBlock();
788 
789   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
790 
791   // Make sure the indirect branch includes all of the address-taken blocks.
792   IndirectBranch->addDestination(BB);
793   return llvm::BlockAddress::get(CurFn, BB);
794 }
795 
796 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
797   // If we already made the indirect branch for indirect goto, return its block.
798   if (IndirectBranch) return IndirectBranch->getParent();
799 
800   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
801 
802   // Create the PHI node that indirect gotos will add entries to.
803   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
804                                               "indirect.goto.dest");
805 
806   // Create the indirect branch instruction.
807   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
808   return IndirectBranch->getParent();
809 }
810 
811 /// Computes the length of an array in elements, as well as the base
812 /// element type and a properly-typed first element pointer.
813 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
814                                               QualType &baseType,
815                                               llvm::Value *&addr) {
816   const ArrayType *arrayType = origArrayType;
817 
818   // If it's a VLA, we have to load the stored size.  Note that
819   // this is the size of the VLA in bytes, not its size in elements.
820   llvm::Value *numVLAElements = 0;
821   if (isa<VariableArrayType>(arrayType)) {
822     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
823 
824     // Walk into all VLAs.  This doesn't require changes to addr,
825     // which has type T* where T is the first non-VLA element type.
826     do {
827       QualType elementType = arrayType->getElementType();
828       arrayType = getContext().getAsArrayType(elementType);
829 
830       // If we only have VLA components, 'addr' requires no adjustment.
831       if (!arrayType) {
832         baseType = elementType;
833         return numVLAElements;
834       }
835     } while (isa<VariableArrayType>(arrayType));
836 
837     // We get out here only if we find a constant array type
838     // inside the VLA.
839   }
840 
841   // We have some number of constant-length arrays, so addr should
842   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
843   // down to the first element of addr.
844   SmallVector<llvm::Value*, 8> gepIndices;
845 
846   // GEP down to the array type.
847   llvm::ConstantInt *zero = Builder.getInt32(0);
848   gepIndices.push_back(zero);
849 
850   // It's more efficient to calculate the count from the LLVM
851   // constant-length arrays than to re-evaluate the array bounds.
852   uint64_t countFromCLAs = 1;
853 
854   llvm::ArrayType *llvmArrayType =
855     cast<llvm::ArrayType>(
856       cast<llvm::PointerType>(addr->getType())->getElementType());
857   while (true) {
858     assert(isa<ConstantArrayType>(arrayType));
859     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
860              == llvmArrayType->getNumElements());
861 
862     gepIndices.push_back(zero);
863     countFromCLAs *= llvmArrayType->getNumElements();
864 
865     llvmArrayType =
866       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
867     if (!llvmArrayType) break;
868 
869     arrayType = getContext().getAsArrayType(arrayType->getElementType());
870     assert(arrayType && "LLVM and Clang types are out-of-synch");
871   }
872 
873   baseType = arrayType->getElementType();
874 
875   // Create the actual GEP.
876   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
877 
878   llvm::Value *numElements
879     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
880 
881   // If we had any VLA dimensions, factor them in.
882   if (numVLAElements)
883     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
884 
885   return numElements;
886 }
887 
888 std::pair<llvm::Value*, QualType>
889 CodeGenFunction::getVLASize(QualType type) {
890   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
891   assert(vla && "type was not a variable array type!");
892   return getVLASize(vla);
893 }
894 
895 std::pair<llvm::Value*, QualType>
896 CodeGenFunction::getVLASize(const VariableArrayType *type) {
897   // The number of elements so far; always size_t.
898   llvm::Value *numElements = 0;
899 
900   QualType elementType;
901   do {
902     elementType = type->getElementType();
903     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
904     assert(vlaSize && "no size for VLA!");
905     assert(vlaSize->getType() == SizeTy);
906 
907     if (!numElements) {
908       numElements = vlaSize;
909     } else {
910       // It's undefined behavior if this wraps around, so mark it that way.
911       numElements = Builder.CreateNUWMul(numElements, vlaSize);
912     }
913   } while ((type = getContext().getAsVariableArrayType(elementType)));
914 
915   return std::pair<llvm::Value*,QualType>(numElements, elementType);
916 }
917 
918 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
919   assert(type->isVariablyModifiedType() &&
920          "Must pass variably modified type to EmitVLASizes!");
921 
922   EnsureInsertPoint();
923 
924   // We're going to walk down into the type and look for VLA
925   // expressions.
926   type = type.getCanonicalType();
927   do {
928     assert(type->isVariablyModifiedType());
929 
930     const Type *ty = type.getTypePtr();
931     switch (ty->getTypeClass()) {
932 #define TYPE(Class, Base)
933 #define ABSTRACT_TYPE(Class, Base)
934 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
935 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
937 #include "clang/AST/TypeNodes.def"
938       llvm_unreachable("unexpected dependent or non-canonical type!");
939 
940     // These types are never variably-modified.
941     case Type::Builtin:
942     case Type::Complex:
943     case Type::Vector:
944     case Type::ExtVector:
945     case Type::Record:
946     case Type::Enum:
947     case Type::ObjCObject:
948     case Type::ObjCInterface:
949     case Type::ObjCObjectPointer:
950       llvm_unreachable("type class is never variably-modified!");
951 
952     case Type::Pointer:
953       type = cast<PointerType>(ty)->getPointeeType();
954       break;
955 
956     case Type::BlockPointer:
957       type = cast<BlockPointerType>(ty)->getPointeeType();
958       break;
959 
960     case Type::LValueReference:
961     case Type::RValueReference:
962       type = cast<ReferenceType>(ty)->getPointeeType();
963       break;
964 
965     case Type::MemberPointer:
966       type = cast<MemberPointerType>(ty)->getPointeeType();
967       break;
968 
969     case Type::ConstantArray:
970     case Type::IncompleteArray:
971       // Losing element qualification here is fine.
972       type = cast<ArrayType>(ty)->getElementType();
973       break;
974 
975     case Type::VariableArray: {
976       // Losing element qualification here is fine.
977       const VariableArrayType *vat = cast<VariableArrayType>(ty);
978 
979       // Unknown size indication requires no size computation.
980       // Otherwise, evaluate and record it.
981       if (const Expr *size = vat->getSizeExpr()) {
982         // It's possible that we might have emitted this already,
983         // e.g. with a typedef and a pointer to it.
984         llvm::Value *&entry = VLASizeMap[size];
985         if (!entry) {
986           // Always zexting here would be wrong if it weren't
987           // undefined behavior to have a negative bound.
988           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
989                                         /*signed*/ false);
990         }
991       }
992       type = vat->getElementType();
993       break;
994     }
995 
996     case Type::FunctionProto:
997     case Type::FunctionNoProto:
998       type = cast<FunctionType>(ty)->getResultType();
999       break;
1000 
1001     case Type::Atomic:
1002       type = cast<AtomicType>(ty)->getValueType();
1003       break;
1004     }
1005   } while (type->isVariablyModifiedType());
1006 }
1007 
1008 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1009   if (getContext().getBuiltinVaListType()->isArrayType())
1010     return EmitScalarExpr(E);
1011   return EmitLValue(E).getAddress();
1012 }
1013 
1014 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1015                                               llvm::Constant *Init) {
1016   assert (Init && "Invalid DeclRefExpr initializer!");
1017   if (CGDebugInfo *Dbg = getDebugInfo())
1018     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1019 }
1020 
1021 CodeGenFunction::PeepholeProtection
1022 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1023   // At the moment, the only aggressive peephole we do in IR gen
1024   // is trunc(zext) folding, but if we add more, we can easily
1025   // extend this protection.
1026 
1027   if (!rvalue.isScalar()) return PeepholeProtection();
1028   llvm::Value *value = rvalue.getScalarVal();
1029   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1030 
1031   // Just make an extra bitcast.
1032   assert(HaveInsertPoint());
1033   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1034                                                   Builder.GetInsertBlock());
1035 
1036   PeepholeProtection protection;
1037   protection.Inst = inst;
1038   return protection;
1039 }
1040 
1041 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1042   if (!protection.Inst) return;
1043 
1044   // In theory, we could try to duplicate the peepholes now, but whatever.
1045   protection.Inst->eraseFromParent();
1046 }
1047 
1048 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1049                                                  llvm::Value *AnnotatedVal,
1050                                                  llvm::StringRef AnnotationStr,
1051                                                  SourceLocation Location) {
1052   llvm::Value *Args[4] = {
1053     AnnotatedVal,
1054     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1055     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1056     CGM.EmitAnnotationLineNo(Location)
1057   };
1058   return Builder.CreateCall(AnnotationFn, Args);
1059 }
1060 
1061 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1062   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1063   // FIXME We create a new bitcast for every annotation because that's what
1064   // llvm-gcc was doing.
1065   for (specific_attr_iterator<AnnotateAttr>
1066        ai = D->specific_attr_begin<AnnotateAttr>(),
1067        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1068     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1069                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1070                        (*ai)->getAnnotation(), D->getLocation());
1071 }
1072 
1073 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1074                                                    llvm::Value *V) {
1075   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1076   llvm::Type *VTy = V->getType();
1077   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1078                                     CGM.Int8PtrTy);
1079 
1080   for (specific_attr_iterator<AnnotateAttr>
1081        ai = D->specific_attr_begin<AnnotateAttr>(),
1082        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1083     // FIXME Always emit the cast inst so we can differentiate between
1084     // annotation on the first field of a struct and annotation on the struct
1085     // itself.
1086     if (VTy != CGM.Int8PtrTy)
1087       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1088     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1089     V = Builder.CreateBitCast(V, VTy);
1090   }
1091 
1092   return V;
1093 }
1094