1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGException.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 36 NormalCleanupDest(0), NextCleanupDestIndex(1), 37 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 40 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 41 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 42 TrapBB(0) { 43 44 CatchUndefined = getContext().getLangOptions().CatchUndefined; 45 CGM.getCXXABI().getMangleContext().startNewFunction(); 46 } 47 48 49 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 50 return CGM.getTypes().ConvertTypeForMem(T); 51 } 52 53 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 54 return CGM.getTypes().ConvertType(T); 55 } 56 57 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 58 switch (type.getCanonicalType()->getTypeClass()) { 59 #define TYPE(name, parent) 60 #define ABSTRACT_TYPE(name, parent) 61 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 62 #define DEPENDENT_TYPE(name, parent) case Type::name: 63 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 64 #include "clang/AST/TypeNodes.def" 65 llvm_unreachable("non-canonical or dependent type in IR-generation"); 66 67 case Type::Builtin: 68 case Type::Pointer: 69 case Type::BlockPointer: 70 case Type::LValueReference: 71 case Type::RValueReference: 72 case Type::MemberPointer: 73 case Type::Vector: 74 case Type::ExtVector: 75 case Type::FunctionProto: 76 case Type::FunctionNoProto: 77 case Type::Enum: 78 case Type::ObjCObjectPointer: 79 return false; 80 81 // Complexes, arrays, records, and Objective-C objects. 82 case Type::Complex: 83 case Type::ConstantArray: 84 case Type::IncompleteArray: 85 case Type::VariableArray: 86 case Type::Record: 87 case Type::ObjCObject: 88 case Type::ObjCInterface: 89 return true; 90 91 // In IRGen, atomic types are just the underlying type 92 case Type::Atomic: 93 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 94 } 95 llvm_unreachable("unknown type kind!"); 96 } 97 98 void CodeGenFunction::EmitReturnBlock() { 99 // For cleanliness, we try to avoid emitting the return block for 100 // simple cases. 101 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 102 103 if (CurBB) { 104 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 105 106 // We have a valid insert point, reuse it if it is empty or there are no 107 // explicit jumps to the return block. 108 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 109 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 110 delete ReturnBlock.getBlock(); 111 } else 112 EmitBlock(ReturnBlock.getBlock()); 113 return; 114 } 115 116 // Otherwise, if the return block is the target of a single direct 117 // branch then we can just put the code in that block instead. This 118 // cleans up functions which started with a unified return block. 119 if (ReturnBlock.getBlock()->hasOneUse()) { 120 llvm::BranchInst *BI = 121 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 122 if (BI && BI->isUnconditional() && 123 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 124 // Reset insertion point, including debug location, and delete the branch. 125 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 126 Builder.SetInsertPoint(BI->getParent()); 127 BI->eraseFromParent(); 128 delete ReturnBlock.getBlock(); 129 return; 130 } 131 } 132 133 // FIXME: We are at an unreachable point, there is no reason to emit the block 134 // unless it has uses. However, we still need a place to put the debug 135 // region.end for now. 136 137 EmitBlock(ReturnBlock.getBlock()); 138 } 139 140 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 141 if (!BB) return; 142 if (!BB->use_empty()) 143 return CGF.CurFn->getBasicBlockList().push_back(BB); 144 delete BB; 145 } 146 147 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 148 assert(BreakContinueStack.empty() && 149 "mismatched push/pop in break/continue stack!"); 150 151 // Pop any cleanups that might have been associated with the 152 // parameters. Do this in whatever block we're currently in; it's 153 // important to do this before we enter the return block or return 154 // edges will be *really* confused. 155 if (EHStack.stable_begin() != PrologueCleanupDepth) 156 PopCleanupBlocks(PrologueCleanupDepth); 157 158 // Emit function epilog (to return). 159 EmitReturnBlock(); 160 161 if (ShouldInstrumentFunction()) 162 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 163 164 // Emit debug descriptor for function end. 165 if (CGDebugInfo *DI = getDebugInfo()) { 166 DI->setLocation(EndLoc); 167 DI->EmitFunctionEnd(Builder); 168 } 169 170 EmitFunctionEpilog(*CurFnInfo); 171 EmitEndEHSpec(CurCodeDecl); 172 173 assert(EHStack.empty() && 174 "did not remove all scopes from cleanup stack!"); 175 176 // If someone did an indirect goto, emit the indirect goto block at the end of 177 // the function. 178 if (IndirectBranch) { 179 EmitBlock(IndirectBranch->getParent()); 180 Builder.ClearInsertionPoint(); 181 } 182 183 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 184 llvm::Instruction *Ptr = AllocaInsertPt; 185 AllocaInsertPt = 0; 186 Ptr->eraseFromParent(); 187 188 // If someone took the address of a label but never did an indirect goto, we 189 // made a zero entry PHI node, which is illegal, zap it now. 190 if (IndirectBranch) { 191 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 192 if (PN->getNumIncomingValues() == 0) { 193 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 194 PN->eraseFromParent(); 195 } 196 } 197 198 EmitIfUsed(*this, EHResumeBlock); 199 EmitIfUsed(*this, TerminateLandingPad); 200 EmitIfUsed(*this, TerminateHandler); 201 EmitIfUsed(*this, UnreachableBlock); 202 203 if (CGM.getCodeGenOpts().EmitDeclMetadata) 204 EmitDeclMetadata(); 205 } 206 207 /// ShouldInstrumentFunction - Return true if the current function should be 208 /// instrumented with __cyg_profile_func_* calls 209 bool CodeGenFunction::ShouldInstrumentFunction() { 210 if (!CGM.getCodeGenOpts().InstrumentFunctions) 211 return false; 212 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 213 return false; 214 return true; 215 } 216 217 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 218 /// instrumentation function with the current function and the call site, if 219 /// function instrumentation is enabled. 220 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 221 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 222 llvm::PointerType *PointerTy = Int8PtrTy; 223 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 224 llvm::FunctionType *FunctionTy = 225 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 226 ProfileFuncArgs, false); 227 228 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 229 llvm::CallInst *CallSite = Builder.CreateCall( 230 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 231 llvm::ConstantInt::get(Int32Ty, 0), 232 "callsite"); 233 234 Builder.CreateCall2(F, 235 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 236 CallSite); 237 } 238 239 void CodeGenFunction::EmitMCountInstrumentation() { 240 llvm::FunctionType *FTy = 241 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 242 243 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 244 Target.getMCountName()); 245 Builder.CreateCall(MCountFn); 246 } 247 248 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 249 llvm::Function *Fn, 250 const CGFunctionInfo &FnInfo, 251 const FunctionArgList &Args, 252 SourceLocation StartLoc) { 253 const Decl *D = GD.getDecl(); 254 255 DidCallStackSave = false; 256 CurCodeDecl = CurFuncDecl = D; 257 FnRetTy = RetTy; 258 CurFn = Fn; 259 CurFnInfo = &FnInfo; 260 assert(CurFn->isDeclaration() && "Function already has body?"); 261 262 // Pass inline keyword to optimizer if it appears explicitly on any 263 // declaration. 264 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 265 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 266 RE = FD->redecls_end(); RI != RE; ++RI) 267 if (RI->isInlineSpecified()) { 268 Fn->addFnAttr(llvm::Attribute::InlineHint); 269 break; 270 } 271 272 if (getContext().getLangOptions().OpenCL) { 273 // Add metadata for a kernel function. 274 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 275 if (FD->hasAttr<OpenCLKernelAttr>()) { 276 llvm::LLVMContext &Context = getLLVMContext(); 277 llvm::NamedMDNode *OpenCLMetadata = 278 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 279 280 llvm::Value *Op = Fn; 281 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 282 } 283 } 284 285 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 286 287 // Create a marker to make it easy to insert allocas into the entryblock 288 // later. Don't create this with the builder, because we don't want it 289 // folded. 290 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 291 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 292 if (Builder.isNamePreserving()) 293 AllocaInsertPt->setName("allocapt"); 294 295 ReturnBlock = getJumpDestInCurrentScope("return"); 296 297 Builder.SetInsertPoint(EntryBB); 298 299 // Emit subprogram debug descriptor. 300 if (CGDebugInfo *DI = getDebugInfo()) { 301 unsigned NumArgs = 0; 302 QualType *ArgsArray = new QualType[Args.size()]; 303 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 304 i != e; ++i) { 305 ArgsArray[NumArgs++] = (*i)->getType(); 306 } 307 308 QualType FnType = 309 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 310 FunctionProtoType::ExtProtoInfo()); 311 312 delete[] ArgsArray; 313 314 DI->setLocation(StartLoc); 315 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 316 } 317 318 if (ShouldInstrumentFunction()) 319 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 320 321 if (CGM.getCodeGenOpts().InstrumentForProfiling) 322 EmitMCountInstrumentation(); 323 324 if (RetTy->isVoidType()) { 325 // Void type; nothing to return. 326 ReturnValue = 0; 327 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 328 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 329 // Indirect aggregate return; emit returned value directly into sret slot. 330 // This reduces code size, and affects correctness in C++. 331 ReturnValue = CurFn->arg_begin(); 332 } else { 333 ReturnValue = CreateIRTemp(RetTy, "retval"); 334 335 // Tell the epilog emitter to autorelease the result. We do this 336 // now so that various specialized functions can suppress it 337 // during their IR-generation. 338 if (getLangOptions().ObjCAutoRefCount && 339 !CurFnInfo->isReturnsRetained() && 340 RetTy->isObjCRetainableType()) 341 AutoreleaseResult = true; 342 } 343 344 EmitStartEHSpec(CurCodeDecl); 345 346 PrologueCleanupDepth = EHStack.stable_begin(); 347 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 348 349 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 350 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 351 352 // If any of the arguments have a variably modified type, make sure to 353 // emit the type size. 354 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 355 i != e; ++i) { 356 QualType Ty = (*i)->getType(); 357 358 if (Ty->isVariablyModifiedType()) 359 EmitVariablyModifiedType(Ty); 360 } 361 // Emit a location at the end of the prologue. 362 if (CGDebugInfo *DI = getDebugInfo()) 363 DI->EmitLocation(Builder, StartLoc); 364 } 365 366 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 367 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 368 assert(FD->getBody()); 369 EmitStmt(FD->getBody()); 370 } 371 372 /// Tries to mark the given function nounwind based on the 373 /// non-existence of any throwing calls within it. We believe this is 374 /// lightweight enough to do at -O0. 375 static void TryMarkNoThrow(llvm::Function *F) { 376 // LLVM treats 'nounwind' on a function as part of the type, so we 377 // can't do this on functions that can be overwritten. 378 if (F->mayBeOverridden()) return; 379 380 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 381 for (llvm::BasicBlock::iterator 382 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 383 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 384 if (!Call->doesNotThrow()) 385 return; 386 } else if (isa<llvm::ResumeInst>(&*BI)) { 387 return; 388 } 389 F->setDoesNotThrow(true); 390 } 391 392 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 393 const CGFunctionInfo &FnInfo) { 394 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 395 396 // Check if we should generate debug info for this function. 397 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 398 DebugInfo = CGM.getModuleDebugInfo(); 399 400 FunctionArgList Args; 401 QualType ResTy = FD->getResultType(); 402 403 CurGD = GD; 404 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 405 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 406 407 if (FD->getNumParams()) 408 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 409 Args.push_back(FD->getParamDecl(i)); 410 411 SourceRange BodyRange; 412 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 413 414 // Emit the standard function prologue. 415 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 416 417 // Generate the body of the function. 418 if (isa<CXXDestructorDecl>(FD)) 419 EmitDestructorBody(Args); 420 else if (isa<CXXConstructorDecl>(FD)) 421 EmitConstructorBody(Args); 422 else if (getContext().getLangOptions().CUDA && 423 !CGM.getCodeGenOpts().CUDAIsDevice && 424 FD->hasAttr<CUDAGlobalAttr>()) 425 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 426 else 427 EmitFunctionBody(Args); 428 429 // Emit the standard function epilogue. 430 FinishFunction(BodyRange.getEnd()); 431 432 // If we haven't marked the function nothrow through other means, do 433 // a quick pass now to see if we can. 434 if (!CurFn->doesNotThrow()) 435 TryMarkNoThrow(CurFn); 436 } 437 438 /// ContainsLabel - Return true if the statement contains a label in it. If 439 /// this statement is not executed normally, it not containing a label means 440 /// that we can just remove the code. 441 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 442 // Null statement, not a label! 443 if (S == 0) return false; 444 445 // If this is a label, we have to emit the code, consider something like: 446 // if (0) { ... foo: bar(); } goto foo; 447 // 448 // TODO: If anyone cared, we could track __label__'s, since we know that you 449 // can't jump to one from outside their declared region. 450 if (isa<LabelStmt>(S)) 451 return true; 452 453 // If this is a case/default statement, and we haven't seen a switch, we have 454 // to emit the code. 455 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 456 return true; 457 458 // If this is a switch statement, we want to ignore cases below it. 459 if (isa<SwitchStmt>(S)) 460 IgnoreCaseStmts = true; 461 462 // Scan subexpressions for verboten labels. 463 for (Stmt::const_child_range I = S->children(); I; ++I) 464 if (ContainsLabel(*I, IgnoreCaseStmts)) 465 return true; 466 467 return false; 468 } 469 470 /// containsBreak - Return true if the statement contains a break out of it. 471 /// If the statement (recursively) contains a switch or loop with a break 472 /// inside of it, this is fine. 473 bool CodeGenFunction::containsBreak(const Stmt *S) { 474 // Null statement, not a label! 475 if (S == 0) return false; 476 477 // If this is a switch or loop that defines its own break scope, then we can 478 // include it and anything inside of it. 479 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 480 isa<ForStmt>(S)) 481 return false; 482 483 if (isa<BreakStmt>(S)) 484 return true; 485 486 // Scan subexpressions for verboten breaks. 487 for (Stmt::const_child_range I = S->children(); I; ++I) 488 if (containsBreak(*I)) 489 return true; 490 491 return false; 492 } 493 494 495 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 496 /// to a constant, or if it does but contains a label, return false. If it 497 /// constant folds return true and set the boolean result in Result. 498 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 499 bool &ResultBool) { 500 llvm::APInt ResultInt; 501 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 502 return false; 503 504 ResultBool = ResultInt.getBoolValue(); 505 return true; 506 } 507 508 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 509 /// to a constant, or if it does but contains a label, return false. If it 510 /// constant folds return true and set the folded value. 511 bool CodeGenFunction:: 512 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 513 // FIXME: Rename and handle conversion of other evaluatable things 514 // to bool. 515 Expr::EvalResult Result; 516 if (!Cond->EvaluateAsRValue(Result, getContext()) || !Result.Val.isInt() || 517 Result.HasSideEffects) 518 return false; // Not foldable, not integer or not fully evaluatable. 519 520 if (CodeGenFunction::ContainsLabel(Cond)) 521 return false; // Contains a label. 522 523 ResultInt = Result.Val.getInt(); 524 return true; 525 } 526 527 528 529 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 530 /// statement) to the specified blocks. Based on the condition, this might try 531 /// to simplify the codegen of the conditional based on the branch. 532 /// 533 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 534 llvm::BasicBlock *TrueBlock, 535 llvm::BasicBlock *FalseBlock) { 536 Cond = Cond->IgnoreParens(); 537 538 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 539 // Handle X && Y in a condition. 540 if (CondBOp->getOpcode() == BO_LAnd) { 541 // If we have "1 && X", simplify the code. "0 && X" would have constant 542 // folded if the case was simple enough. 543 bool ConstantBool = false; 544 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 545 ConstantBool) { 546 // br(1 && X) -> br(X). 547 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 548 } 549 550 // If we have "X && 1", simplify the code to use an uncond branch. 551 // "X && 0" would have been constant folded to 0. 552 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 553 ConstantBool) { 554 // br(X && 1) -> br(X). 555 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 556 } 557 558 // Emit the LHS as a conditional. If the LHS conditional is false, we 559 // want to jump to the FalseBlock. 560 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 561 562 ConditionalEvaluation eval(*this); 563 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 564 EmitBlock(LHSTrue); 565 566 // Any temporaries created here are conditional. 567 eval.begin(*this); 568 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 569 eval.end(*this); 570 571 return; 572 } 573 574 if (CondBOp->getOpcode() == BO_LOr) { 575 // If we have "0 || X", simplify the code. "1 || X" would have constant 576 // folded if the case was simple enough. 577 bool ConstantBool = false; 578 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 579 !ConstantBool) { 580 // br(0 || X) -> br(X). 581 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 582 } 583 584 // If we have "X || 0", simplify the code to use an uncond branch. 585 // "X || 1" would have been constant folded to 1. 586 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 587 !ConstantBool) { 588 // br(X || 0) -> br(X). 589 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 590 } 591 592 // Emit the LHS as a conditional. If the LHS conditional is true, we 593 // want to jump to the TrueBlock. 594 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 595 596 ConditionalEvaluation eval(*this); 597 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 598 EmitBlock(LHSFalse); 599 600 // Any temporaries created here are conditional. 601 eval.begin(*this); 602 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 603 eval.end(*this); 604 605 return; 606 } 607 } 608 609 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 610 // br(!x, t, f) -> br(x, f, t) 611 if (CondUOp->getOpcode() == UO_LNot) 612 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 613 } 614 615 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 616 // Handle ?: operator. 617 618 // Just ignore GNU ?: extension. 619 if (CondOp->getLHS()) { 620 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 621 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 622 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 623 624 ConditionalEvaluation cond(*this); 625 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 626 627 cond.begin(*this); 628 EmitBlock(LHSBlock); 629 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 630 cond.end(*this); 631 632 cond.begin(*this); 633 EmitBlock(RHSBlock); 634 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 635 cond.end(*this); 636 637 return; 638 } 639 } 640 641 // Emit the code with the fully general case. 642 llvm::Value *CondV = EvaluateExprAsBool(Cond); 643 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 644 } 645 646 /// ErrorUnsupported - Print out an error that codegen doesn't support the 647 /// specified stmt yet. 648 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 649 bool OmitOnError) { 650 CGM.ErrorUnsupported(S, Type, OmitOnError); 651 } 652 653 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 654 /// variable-length array whose elements have a non-zero bit-pattern. 655 /// 656 /// \param src - a char* pointing to the bit-pattern for a single 657 /// base element of the array 658 /// \param sizeInChars - the total size of the VLA, in chars 659 /// \param align - the total alignment of the VLA 660 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 661 llvm::Value *dest, llvm::Value *src, 662 llvm::Value *sizeInChars) { 663 std::pair<CharUnits,CharUnits> baseSizeAndAlign 664 = CGF.getContext().getTypeInfoInChars(baseType); 665 666 CGBuilderTy &Builder = CGF.Builder; 667 668 llvm::Value *baseSizeInChars 669 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 670 671 llvm::Type *i8p = Builder.getInt8PtrTy(); 672 673 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 674 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 675 676 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 677 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 678 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 679 680 // Make a loop over the VLA. C99 guarantees that the VLA element 681 // count must be nonzero. 682 CGF.EmitBlock(loopBB); 683 684 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 685 cur->addIncoming(begin, originBB); 686 687 // memcpy the individual element bit-pattern. 688 Builder.CreateMemCpy(cur, src, baseSizeInChars, 689 baseSizeAndAlign.second.getQuantity(), 690 /*volatile*/ false); 691 692 // Go to the next element. 693 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 694 695 // Leave if that's the end of the VLA. 696 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 697 Builder.CreateCondBr(done, contBB, loopBB); 698 cur->addIncoming(next, loopBB); 699 700 CGF.EmitBlock(contBB); 701 } 702 703 void 704 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 705 // Ignore empty classes in C++. 706 if (getContext().getLangOptions().CPlusPlus) { 707 if (const RecordType *RT = Ty->getAs<RecordType>()) { 708 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 709 return; 710 } 711 } 712 713 // Cast the dest ptr to the appropriate i8 pointer type. 714 unsigned DestAS = 715 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 716 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 717 if (DestPtr->getType() != BP) 718 DestPtr = Builder.CreateBitCast(DestPtr, BP); 719 720 // Get size and alignment info for this aggregate. 721 std::pair<CharUnits, CharUnits> TypeInfo = 722 getContext().getTypeInfoInChars(Ty); 723 CharUnits Size = TypeInfo.first; 724 CharUnits Align = TypeInfo.second; 725 726 llvm::Value *SizeVal; 727 const VariableArrayType *vla; 728 729 // Don't bother emitting a zero-byte memset. 730 if (Size.isZero()) { 731 // But note that getTypeInfo returns 0 for a VLA. 732 if (const VariableArrayType *vlaType = 733 dyn_cast_or_null<VariableArrayType>( 734 getContext().getAsArrayType(Ty))) { 735 QualType eltType; 736 llvm::Value *numElts; 737 llvm::tie(numElts, eltType) = getVLASize(vlaType); 738 739 SizeVal = numElts; 740 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 741 if (!eltSize.isOne()) 742 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 743 vla = vlaType; 744 } else { 745 return; 746 } 747 } else { 748 SizeVal = CGM.getSize(Size); 749 vla = 0; 750 } 751 752 // If the type contains a pointer to data member we can't memset it to zero. 753 // Instead, create a null constant and copy it to the destination. 754 // TODO: there are other patterns besides zero that we can usefully memset, 755 // like -1, which happens to be the pattern used by member-pointers. 756 if (!CGM.getTypes().isZeroInitializable(Ty)) { 757 // For a VLA, emit a single element, then splat that over the VLA. 758 if (vla) Ty = getContext().getBaseElementType(vla); 759 760 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 761 762 llvm::GlobalVariable *NullVariable = 763 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 764 /*isConstant=*/true, 765 llvm::GlobalVariable::PrivateLinkage, 766 NullConstant, Twine()); 767 llvm::Value *SrcPtr = 768 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 769 770 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 771 772 // Get and call the appropriate llvm.memcpy overload. 773 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 774 return; 775 } 776 777 // Otherwise, just memset the whole thing to zero. This is legal 778 // because in LLVM, all default initializers (other than the ones we just 779 // handled above) are guaranteed to have a bit pattern of all zeros. 780 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 781 Align.getQuantity(), false); 782 } 783 784 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 785 // Make sure that there is a block for the indirect goto. 786 if (IndirectBranch == 0) 787 GetIndirectGotoBlock(); 788 789 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 790 791 // Make sure the indirect branch includes all of the address-taken blocks. 792 IndirectBranch->addDestination(BB); 793 return llvm::BlockAddress::get(CurFn, BB); 794 } 795 796 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 797 // If we already made the indirect branch for indirect goto, return its block. 798 if (IndirectBranch) return IndirectBranch->getParent(); 799 800 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 801 802 // Create the PHI node that indirect gotos will add entries to. 803 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 804 "indirect.goto.dest"); 805 806 // Create the indirect branch instruction. 807 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 808 return IndirectBranch->getParent(); 809 } 810 811 /// Computes the length of an array in elements, as well as the base 812 /// element type and a properly-typed first element pointer. 813 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 814 QualType &baseType, 815 llvm::Value *&addr) { 816 const ArrayType *arrayType = origArrayType; 817 818 // If it's a VLA, we have to load the stored size. Note that 819 // this is the size of the VLA in bytes, not its size in elements. 820 llvm::Value *numVLAElements = 0; 821 if (isa<VariableArrayType>(arrayType)) { 822 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 823 824 // Walk into all VLAs. This doesn't require changes to addr, 825 // which has type T* where T is the first non-VLA element type. 826 do { 827 QualType elementType = arrayType->getElementType(); 828 arrayType = getContext().getAsArrayType(elementType); 829 830 // If we only have VLA components, 'addr' requires no adjustment. 831 if (!arrayType) { 832 baseType = elementType; 833 return numVLAElements; 834 } 835 } while (isa<VariableArrayType>(arrayType)); 836 837 // We get out here only if we find a constant array type 838 // inside the VLA. 839 } 840 841 // We have some number of constant-length arrays, so addr should 842 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 843 // down to the first element of addr. 844 SmallVector<llvm::Value*, 8> gepIndices; 845 846 // GEP down to the array type. 847 llvm::ConstantInt *zero = Builder.getInt32(0); 848 gepIndices.push_back(zero); 849 850 // It's more efficient to calculate the count from the LLVM 851 // constant-length arrays than to re-evaluate the array bounds. 852 uint64_t countFromCLAs = 1; 853 854 llvm::ArrayType *llvmArrayType = 855 cast<llvm::ArrayType>( 856 cast<llvm::PointerType>(addr->getType())->getElementType()); 857 while (true) { 858 assert(isa<ConstantArrayType>(arrayType)); 859 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 860 == llvmArrayType->getNumElements()); 861 862 gepIndices.push_back(zero); 863 countFromCLAs *= llvmArrayType->getNumElements(); 864 865 llvmArrayType = 866 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 867 if (!llvmArrayType) break; 868 869 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 870 assert(arrayType && "LLVM and Clang types are out-of-synch"); 871 } 872 873 baseType = arrayType->getElementType(); 874 875 // Create the actual GEP. 876 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 877 878 llvm::Value *numElements 879 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 880 881 // If we had any VLA dimensions, factor them in. 882 if (numVLAElements) 883 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 884 885 return numElements; 886 } 887 888 std::pair<llvm::Value*, QualType> 889 CodeGenFunction::getVLASize(QualType type) { 890 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 891 assert(vla && "type was not a variable array type!"); 892 return getVLASize(vla); 893 } 894 895 std::pair<llvm::Value*, QualType> 896 CodeGenFunction::getVLASize(const VariableArrayType *type) { 897 // The number of elements so far; always size_t. 898 llvm::Value *numElements = 0; 899 900 QualType elementType; 901 do { 902 elementType = type->getElementType(); 903 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 904 assert(vlaSize && "no size for VLA!"); 905 assert(vlaSize->getType() == SizeTy); 906 907 if (!numElements) { 908 numElements = vlaSize; 909 } else { 910 // It's undefined behavior if this wraps around, so mark it that way. 911 numElements = Builder.CreateNUWMul(numElements, vlaSize); 912 } 913 } while ((type = getContext().getAsVariableArrayType(elementType))); 914 915 return std::pair<llvm::Value*,QualType>(numElements, elementType); 916 } 917 918 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 919 assert(type->isVariablyModifiedType() && 920 "Must pass variably modified type to EmitVLASizes!"); 921 922 EnsureInsertPoint(); 923 924 // We're going to walk down into the type and look for VLA 925 // expressions. 926 type = type.getCanonicalType(); 927 do { 928 assert(type->isVariablyModifiedType()); 929 930 const Type *ty = type.getTypePtr(); 931 switch (ty->getTypeClass()) { 932 #define TYPE(Class, Base) 933 #define ABSTRACT_TYPE(Class, Base) 934 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 935 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 937 #include "clang/AST/TypeNodes.def" 938 llvm_unreachable("unexpected dependent or non-canonical type!"); 939 940 // These types are never variably-modified. 941 case Type::Builtin: 942 case Type::Complex: 943 case Type::Vector: 944 case Type::ExtVector: 945 case Type::Record: 946 case Type::Enum: 947 case Type::ObjCObject: 948 case Type::ObjCInterface: 949 case Type::ObjCObjectPointer: 950 llvm_unreachable("type class is never variably-modified!"); 951 952 case Type::Pointer: 953 type = cast<PointerType>(ty)->getPointeeType(); 954 break; 955 956 case Type::BlockPointer: 957 type = cast<BlockPointerType>(ty)->getPointeeType(); 958 break; 959 960 case Type::LValueReference: 961 case Type::RValueReference: 962 type = cast<ReferenceType>(ty)->getPointeeType(); 963 break; 964 965 case Type::MemberPointer: 966 type = cast<MemberPointerType>(ty)->getPointeeType(); 967 break; 968 969 case Type::ConstantArray: 970 case Type::IncompleteArray: 971 // Losing element qualification here is fine. 972 type = cast<ArrayType>(ty)->getElementType(); 973 break; 974 975 case Type::VariableArray: { 976 // Losing element qualification here is fine. 977 const VariableArrayType *vat = cast<VariableArrayType>(ty); 978 979 // Unknown size indication requires no size computation. 980 // Otherwise, evaluate and record it. 981 if (const Expr *size = vat->getSizeExpr()) { 982 // It's possible that we might have emitted this already, 983 // e.g. with a typedef and a pointer to it. 984 llvm::Value *&entry = VLASizeMap[size]; 985 if (!entry) { 986 // Always zexting here would be wrong if it weren't 987 // undefined behavior to have a negative bound. 988 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 989 /*signed*/ false); 990 } 991 } 992 type = vat->getElementType(); 993 break; 994 } 995 996 case Type::FunctionProto: 997 case Type::FunctionNoProto: 998 type = cast<FunctionType>(ty)->getResultType(); 999 break; 1000 1001 case Type::Atomic: 1002 type = cast<AtomicType>(ty)->getValueType(); 1003 break; 1004 } 1005 } while (type->isVariablyModifiedType()); 1006 } 1007 1008 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1009 if (getContext().getBuiltinVaListType()->isArrayType()) 1010 return EmitScalarExpr(E); 1011 return EmitLValue(E).getAddress(); 1012 } 1013 1014 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1015 llvm::Constant *Init) { 1016 assert (Init && "Invalid DeclRefExpr initializer!"); 1017 if (CGDebugInfo *Dbg = getDebugInfo()) 1018 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1019 } 1020 1021 CodeGenFunction::PeepholeProtection 1022 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1023 // At the moment, the only aggressive peephole we do in IR gen 1024 // is trunc(zext) folding, but if we add more, we can easily 1025 // extend this protection. 1026 1027 if (!rvalue.isScalar()) return PeepholeProtection(); 1028 llvm::Value *value = rvalue.getScalarVal(); 1029 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1030 1031 // Just make an extra bitcast. 1032 assert(HaveInsertPoint()); 1033 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1034 Builder.GetInsertBlock()); 1035 1036 PeepholeProtection protection; 1037 protection.Inst = inst; 1038 return protection; 1039 } 1040 1041 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1042 if (!protection.Inst) return; 1043 1044 // In theory, we could try to duplicate the peepholes now, but whatever. 1045 protection.Inst->eraseFromParent(); 1046 } 1047 1048 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1049 llvm::Value *AnnotatedVal, 1050 llvm::StringRef AnnotationStr, 1051 SourceLocation Location) { 1052 llvm::Value *Args[4] = { 1053 AnnotatedVal, 1054 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1055 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1056 CGM.EmitAnnotationLineNo(Location) 1057 }; 1058 return Builder.CreateCall(AnnotationFn, Args); 1059 } 1060 1061 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1062 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1063 // FIXME We create a new bitcast for every annotation because that's what 1064 // llvm-gcc was doing. 1065 for (specific_attr_iterator<AnnotateAttr> 1066 ai = D->specific_attr_begin<AnnotateAttr>(), 1067 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1068 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1069 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1070 (*ai)->getAnnotation(), D->getLocation()); 1071 } 1072 1073 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1074 llvm::Value *V) { 1075 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1076 llvm::Type *VTy = V->getType(); 1077 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1078 CGM.Int8PtrTy); 1079 1080 for (specific_attr_iterator<AnnotateAttr> 1081 ai = D->specific_attr_begin<AnnotateAttr>(), 1082 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1083 // FIXME Always emit the cast inst so we can differentiate between 1084 // annotation on the first field of a struct and annotation on the struct 1085 // itself. 1086 if (VTy != CGM.Int8PtrTy) 1087 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1088 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1089 V = Builder.CreateBitCast(V, VTy); 1090 } 1091 1092 return V; 1093 } 1094