1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.setFastMathFlags(FMF);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198     case Type::Pipe:
199       return TEK_Scalar;
200 
201     // Complexes.
202     case Type::Complex:
203       return TEK_Complex;
204 
205     // Arrays, records, and Objective-C objects.
206     case Type::ConstantArray:
207     case Type::IncompleteArray:
208     case Type::VariableArray:
209     case Type::Record:
210     case Type::ObjCObject:
211     case Type::ObjCInterface:
212       return TEK_Aggregate;
213 
214     // We operate on atomic values according to their underlying type.
215     case Type::Atomic:
216       type = cast<AtomicType>(type)->getValueType();
217       continue;
218     }
219     llvm_unreachable("unknown type kind!");
220   }
221 }
222 
223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224   // For cleanliness, we try to avoid emitting the return block for
225   // simple cases.
226   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227 
228   if (CurBB) {
229     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230 
231     // We have a valid insert point, reuse it if it is empty or there are no
232     // explicit jumps to the return block.
233     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235       delete ReturnBlock.getBlock();
236     } else
237       EmitBlock(ReturnBlock.getBlock());
238     return llvm::DebugLoc();
239   }
240 
241   // Otherwise, if the return block is the target of a single direct
242   // branch then we can just put the code in that block instead. This
243   // cleans up functions which started with a unified return block.
244   if (ReturnBlock.getBlock()->hasOneUse()) {
245     llvm::BranchInst *BI =
246       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247     if (BI && BI->isUnconditional() &&
248         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249       // Record/return the DebugLoc of the simple 'return' expression to be used
250       // later by the actual 'ret' instruction.
251       llvm::DebugLoc Loc = BI->getDebugLoc();
252       Builder.SetInsertPoint(BI->getParent());
253       BI->eraseFromParent();
254       delete ReturnBlock.getBlock();
255       return Loc;
256     }
257   }
258 
259   // FIXME: We are at an unreachable point, there is no reason to emit the block
260   // unless it has uses. However, we still need a place to put the debug
261   // region.end for now.
262 
263   EmitBlock(ReturnBlock.getBlock());
264   return llvm::DebugLoc();
265 }
266 
267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268   if (!BB) return;
269   if (!BB->use_empty())
270     return CGF.CurFn->getBasicBlockList().push_back(BB);
271   delete BB;
272 }
273 
274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275   assert(BreakContinueStack.empty() &&
276          "mismatched push/pop in break/continue stack!");
277 
278   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279     && NumSimpleReturnExprs == NumReturnExprs
280     && ReturnBlock.getBlock()->use_empty();
281   // Usually the return expression is evaluated before the cleanup
282   // code.  If the function contains only a simple return statement,
283   // such as a constant, the location before the cleanup code becomes
284   // the last useful breakpoint in the function, because the simple
285   // return expression will be evaluated after the cleanup code. To be
286   // safe, set the debug location for cleanup code to the location of
287   // the return statement.  Otherwise the cleanup code should be at the
288   // end of the function's lexical scope.
289   //
290   // If there are multiple branches to the return block, the branch
291   // instructions will get the location of the return statements and
292   // all will be fine.
293   if (CGDebugInfo *DI = getDebugInfo()) {
294     if (OnlySimpleReturnStmts)
295       DI->EmitLocation(Builder, LastStopPoint);
296     else
297       DI->EmitLocation(Builder, EndLoc);
298   }
299 
300   // Pop any cleanups that might have been associated with the
301   // parameters.  Do this in whatever block we're currently in; it's
302   // important to do this before we enter the return block or return
303   // edges will be *really* confused.
304   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305   bool HasOnlyLifetimeMarkers =
306       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308   if (HasCleanups) {
309     // Make sure the line table doesn't jump back into the body for
310     // the ret after it's been at EndLoc.
311     if (CGDebugInfo *DI = getDebugInfo())
312       if (OnlySimpleReturnStmts)
313         DI->EmitLocation(Builder, EndLoc);
314 
315     PopCleanupBlocks(PrologueCleanupDepth);
316   }
317 
318   // Emit function epilog (to return).
319   llvm::DebugLoc Loc = EmitReturnBlock();
320 
321   if (ShouldInstrumentFunction())
322     EmitFunctionInstrumentation("__cyg_profile_func_exit");
323 
324   // Emit debug descriptor for function end.
325   if (CGDebugInfo *DI = getDebugInfo())
326     DI->EmitFunctionEnd(Builder);
327 
328   // Reset the debug location to that of the simple 'return' expression, if any
329   // rather than that of the end of the function's scope '}'.
330   ApplyDebugLocation AL(*this, Loc);
331   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332   EmitEndEHSpec(CurCodeDecl);
333 
334   assert(EHStack.empty() &&
335          "did not remove all scopes from cleanup stack!");
336 
337   // If someone did an indirect goto, emit the indirect goto block at the end of
338   // the function.
339   if (IndirectBranch) {
340     EmitBlock(IndirectBranch->getParent());
341     Builder.ClearInsertionPoint();
342   }
343 
344   // If some of our locals escaped, insert a call to llvm.localescape in the
345   // entry block.
346   if (!EscapedLocals.empty()) {
347     // Invert the map from local to index into a simple vector. There should be
348     // no holes.
349     SmallVector<llvm::Value *, 4> EscapeArgs;
350     EscapeArgs.resize(EscapedLocals.size());
351     for (auto &Pair : EscapedLocals)
352       EscapeArgs[Pair.second] = Pair.first;
353     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354         &CGM.getModule(), llvm::Intrinsic::localescape);
355     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356   }
357 
358   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359   llvm::Instruction *Ptr = AllocaInsertPt;
360   AllocaInsertPt = nullptr;
361   Ptr->eraseFromParent();
362 
363   // If someone took the address of a label but never did an indirect goto, we
364   // made a zero entry PHI node, which is illegal, zap it now.
365   if (IndirectBranch) {
366     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367     if (PN->getNumIncomingValues() == 0) {
368       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369       PN->eraseFromParent();
370     }
371   }
372 
373   EmitIfUsed(*this, EHResumeBlock);
374   EmitIfUsed(*this, TerminateLandingPad);
375   EmitIfUsed(*this, TerminateHandler);
376   EmitIfUsed(*this, UnreachableBlock);
377 
378   if (CGM.getCodeGenOpts().EmitDeclMetadata)
379     EmitDeclMetadata();
380 
381   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382            I = DeferredReplacements.begin(),
383            E = DeferredReplacements.end();
384        I != E; ++I) {
385     I->first->replaceAllUsesWith(I->second);
386     I->first->eraseFromParent();
387   }
388 }
389 
390 /// ShouldInstrumentFunction - Return true if the current function should be
391 /// instrumented with __cyg_profile_func_* calls
392 bool CodeGenFunction::ShouldInstrumentFunction() {
393   if (!CGM.getCodeGenOpts().InstrumentFunctions)
394     return false;
395   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396     return false;
397   return true;
398 }
399 
400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
401 /// instrumentation function with the current function and the call site, if
402 /// function instrumentation is enabled.
403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
404   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
405   llvm::PointerType *PointerTy = Int8PtrTy;
406   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
407   llvm::FunctionType *FunctionTy =
408     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
409 
410   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
411   llvm::CallInst *CallSite = Builder.CreateCall(
412     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
413     llvm::ConstantInt::get(Int32Ty, 0),
414     "callsite");
415 
416   llvm::Value *args[] = {
417     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
418     CallSite
419   };
420 
421   EmitNounwindRuntimeCall(F, args);
422 }
423 
424 void CodeGenFunction::EmitMCountInstrumentation() {
425   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
426 
427   llvm::Constant *MCountFn =
428     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
429   EmitNounwindRuntimeCall(MCountFn);
430 }
431 
432 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
433 // information in the program executable. The argument information stored
434 // includes the argument name, its type, the address and access qualifiers used.
435 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
436                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
437                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
438                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
439   // Create MDNodes that represent the kernel arg metadata.
440   // Each MDNode is a list in the form of "key", N number of values which is
441   // the same number of values as their are kernel arguments.
442 
443   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
444 
445   // MDNode for the kernel argument address space qualifiers.
446   SmallVector<llvm::Metadata *, 8> addressQuals;
447   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
448 
449   // MDNode for the kernel argument access qualifiers (images only).
450   SmallVector<llvm::Metadata *, 8> accessQuals;
451   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
452 
453   // MDNode for the kernel argument type names.
454   SmallVector<llvm::Metadata *, 8> argTypeNames;
455   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
456 
457   // MDNode for the kernel argument base type names.
458   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
459   argBaseTypeNames.push_back(
460       llvm::MDString::get(Context, "kernel_arg_base_type"));
461 
462   // MDNode for the kernel argument type qualifiers.
463   SmallVector<llvm::Metadata *, 8> argTypeQuals;
464   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
465 
466   // MDNode for the kernel argument names.
467   SmallVector<llvm::Metadata *, 8> argNames;
468   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
469 
470   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
471     const ParmVarDecl *parm = FD->getParamDecl(i);
472     QualType ty = parm->getType();
473     std::string typeQuals;
474 
475     if (ty->isPointerType()) {
476       QualType pointeeTy = ty->getPointeeType();
477 
478       // Get address qualifier.
479       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
480           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
481 
482       // Get argument type name.
483       std::string typeName =
484           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
485 
486       // Turn "unsigned type" to "utype"
487       std::string::size_type pos = typeName.find("unsigned");
488       if (pointeeTy.isCanonical() && pos != std::string::npos)
489         typeName.erase(pos+1, 8);
490 
491       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
492 
493       std::string baseTypeName =
494           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
495               Policy) +
496           "*";
497 
498       // Turn "unsigned type" to "utype"
499       pos = baseTypeName.find("unsigned");
500       if (pos != std::string::npos)
501         baseTypeName.erase(pos+1, 8);
502 
503       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
504 
505       // Get argument type qualifiers:
506       if (ty.isRestrictQualified())
507         typeQuals = "restrict";
508       if (pointeeTy.isConstQualified() ||
509           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
510         typeQuals += typeQuals.empty() ? "const" : " const";
511       if (pointeeTy.isVolatileQualified())
512         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
513     } else {
514       uint32_t AddrSpc = 0;
515       bool isPipe = ty->isPipeType();
516       if (ty->isImageType() || isPipe)
517         AddrSpc =
518           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
519 
520       addressQuals.push_back(
521           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
522 
523       // Get argument type name.
524       std::string typeName;
525       if (isPipe)
526         typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy);
527       else
528         typeName = ty.getUnqualifiedType().getAsString(Policy);
529 
530       // Turn "unsigned type" to "utype"
531       std::string::size_type pos = typeName.find("unsigned");
532       if (ty.isCanonical() && pos != std::string::npos)
533         typeName.erase(pos+1, 8);
534 
535       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
536 
537       std::string baseTypeName;
538       if (isPipe)
539         baseTypeName =
540           cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy);
541       else
542         baseTypeName =
543           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
544 
545       // Turn "unsigned type" to "utype"
546       pos = baseTypeName.find("unsigned");
547       if (pos != std::string::npos)
548         baseTypeName.erase(pos+1, 8);
549 
550       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
551 
552       // Get argument type qualifiers:
553       if (ty.isConstQualified())
554         typeQuals = "const";
555       if (ty.isVolatileQualified())
556         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
557       if (isPipe)
558         typeQuals = "pipe";
559     }
560 
561     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
562 
563     // Get image and pipe access qualifier:
564     if (ty->isImageType()|| ty->isPipeType()) {
565       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
566       if (A && A->isWriteOnly())
567         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
568       else if (A && A->isReadWrite())
569         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
570       else
571         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
572     } else
573       accessQuals.push_back(llvm::MDString::get(Context, "none"));
574 
575     // Get argument name.
576     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
577   }
578 
579   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
580   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
581   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
582   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
583   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
584   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
585     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
586 }
587 
588 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
589                                                llvm::Function *Fn)
590 {
591   if (!FD->hasAttr<OpenCLKernelAttr>())
592     return;
593 
594   llvm::LLVMContext &Context = getLLVMContext();
595 
596   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
597   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
598 
599   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
600                        getContext());
601 
602   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
603     QualType hintQTy = A->getTypeHint();
604     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
605     bool isSignedInteger =
606         hintQTy->isSignedIntegerType() ||
607         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
608     llvm::Metadata *attrMDArgs[] = {
609         llvm::MDString::get(Context, "vec_type_hint"),
610         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
611             CGM.getTypes().ConvertType(A->getTypeHint()))),
612         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613             llvm::IntegerType::get(Context, 32),
614             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
615     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
616   }
617 
618   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
619     llvm::Metadata *attrMDArgs[] = {
620         llvm::MDString::get(Context, "work_group_size_hint"),
621         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
625   }
626 
627   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
628     llvm::Metadata *attrMDArgs[] = {
629         llvm::MDString::get(Context, "reqd_work_group_size"),
630         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
633     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
634   }
635 
636   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
637   llvm::NamedMDNode *OpenCLKernelMetadata =
638     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
639   OpenCLKernelMetadata->addOperand(kernelMDNode);
640 }
641 
642 /// Determine whether the function F ends with a return stmt.
643 static bool endsWithReturn(const Decl* F) {
644   const Stmt *Body = nullptr;
645   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
646     Body = FD->getBody();
647   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
648     Body = OMD->getBody();
649 
650   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
651     auto LastStmt = CS->body_rbegin();
652     if (LastStmt != CS->body_rend())
653       return isa<ReturnStmt>(*LastStmt);
654   }
655   return false;
656 }
657 
658 void CodeGenFunction::StartFunction(GlobalDecl GD,
659                                     QualType RetTy,
660                                     llvm::Function *Fn,
661                                     const CGFunctionInfo &FnInfo,
662                                     const FunctionArgList &Args,
663                                     SourceLocation Loc,
664                                     SourceLocation StartLoc) {
665   assert(!CurFn &&
666          "Do not use a CodeGenFunction object for more than one function");
667 
668   const Decl *D = GD.getDecl();
669 
670   DidCallStackSave = false;
671   CurCodeDecl = D;
672   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
673     if (FD->usesSEHTry())
674       CurSEHParent = FD;
675   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
676   FnRetTy = RetTy;
677   CurFn = Fn;
678   CurFnInfo = &FnInfo;
679   assert(CurFn->isDeclaration() && "Function already has body?");
680 
681   if (CGM.isInSanitizerBlacklist(Fn, Loc))
682     SanOpts.clear();
683 
684   if (D) {
685     // Apply the no_sanitize* attributes to SanOpts.
686     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
687       SanOpts.Mask &= ~Attr->getMask();
688   }
689 
690   // Apply sanitizer attributes to the function.
691   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
692     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
693   if (SanOpts.has(SanitizerKind::Thread))
694     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
695   if (SanOpts.has(SanitizerKind::Memory))
696     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
697   if (SanOpts.has(SanitizerKind::SafeStack))
698     Fn->addFnAttr(llvm::Attribute::SafeStack);
699 
700   // Pass inline keyword to optimizer if it appears explicitly on any
701   // declaration. Also, in the case of -fno-inline attach NoInline
702   // attribute to all function that are not marked AlwaysInline.
703   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
704     if (!CGM.getCodeGenOpts().NoInline) {
705       for (auto RI : FD->redecls())
706         if (RI->isInlineSpecified()) {
707           Fn->addFnAttr(llvm::Attribute::InlineHint);
708           break;
709         }
710     } else if (!FD->hasAttr<AlwaysInlineAttr>())
711       Fn->addFnAttr(llvm::Attribute::NoInline);
712   }
713 
714   if (getLangOpts().OpenCL) {
715     // Add metadata for a kernel function.
716     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
717       EmitOpenCLKernelMetadata(FD, Fn);
718   }
719 
720   // If we are checking function types, emit a function type signature as
721   // prologue data.
722   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
723     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
724       if (llvm::Constant *PrologueSig =
725               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
726         llvm::Constant *FTRTTIConst =
727             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
728         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
729         llvm::Constant *PrologueStructConst =
730             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
731         Fn->setPrologueData(PrologueStructConst);
732       }
733     }
734   }
735 
736   // If we're in C++ mode and the function name is "main", it is guaranteed
737   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
738   // used within a program").
739   if (getLangOpts().CPlusPlus)
740     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
741       if (FD->isMain())
742         Fn->addFnAttr(llvm::Attribute::NoRecurse);
743 
744   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
745 
746   // Create a marker to make it easy to insert allocas into the entryblock
747   // later.  Don't create this with the builder, because we don't want it
748   // folded.
749   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
750   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
751 
752   ReturnBlock = getJumpDestInCurrentScope("return");
753 
754   Builder.SetInsertPoint(EntryBB);
755 
756   // Emit subprogram debug descriptor.
757   if (CGDebugInfo *DI = getDebugInfo()) {
758     SmallVector<QualType, 16> ArgTypes;
759     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
760 	 i != e; ++i) {
761       ArgTypes.push_back((*i)->getType());
762     }
763 
764     QualType FnType =
765       getContext().getFunctionType(RetTy, ArgTypes,
766                                    FunctionProtoType::ExtProtoInfo());
767     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
768   }
769 
770   if (ShouldInstrumentFunction())
771     EmitFunctionInstrumentation("__cyg_profile_func_enter");
772 
773   if (CGM.getCodeGenOpts().InstrumentForProfiling)
774     EmitMCountInstrumentation();
775 
776   if (RetTy->isVoidType()) {
777     // Void type; nothing to return.
778     ReturnValue = Address::invalid();
779 
780     // Count the implicit return.
781     if (!endsWithReturn(D))
782       ++NumReturnExprs;
783   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
784              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
785     // Indirect aggregate return; emit returned value directly into sret slot.
786     // This reduces code size, and affects correctness in C++.
787     auto AI = CurFn->arg_begin();
788     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
789       ++AI;
790     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
791   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
792              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
793     // Load the sret pointer from the argument struct and return into that.
794     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
795     llvm::Function::arg_iterator EI = CurFn->arg_end();
796     --EI;
797     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
798     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
799     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
800   } else {
801     ReturnValue = CreateIRTemp(RetTy, "retval");
802 
803     // Tell the epilog emitter to autorelease the result.  We do this
804     // now so that various specialized functions can suppress it
805     // during their IR-generation.
806     if (getLangOpts().ObjCAutoRefCount &&
807         !CurFnInfo->isReturnsRetained() &&
808         RetTy->isObjCRetainableType())
809       AutoreleaseResult = true;
810   }
811 
812   EmitStartEHSpec(CurCodeDecl);
813 
814   PrologueCleanupDepth = EHStack.stable_begin();
815   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
816 
817   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
818     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
819     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
820     if (MD->getParent()->isLambda() &&
821         MD->getOverloadedOperator() == OO_Call) {
822       // We're in a lambda; figure out the captures.
823       MD->getParent()->getCaptureFields(LambdaCaptureFields,
824                                         LambdaThisCaptureField);
825       if (LambdaThisCaptureField) {
826         // If the lambda captures the object referred to by '*this' - either by
827         // value or by reference, make sure CXXThisValue points to the correct
828         // object.
829 
830         // Get the lvalue for the field (which is a copy of the enclosing object
831         // or contains the address of the enclosing object).
832         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
833         if (!LambdaThisCaptureField->getType()->isPointerType()) {
834           // If the enclosing object was captured by value, just use its address.
835           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
836         } else {
837           // Load the lvalue pointed to by the field, since '*this' was captured
838           // by reference.
839           CXXThisValue =
840               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
841         }
842       }
843       for (auto *FD : MD->getParent()->fields()) {
844         if (FD->hasCapturedVLAType()) {
845           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
846                                            SourceLocation()).getScalarVal();
847           auto VAT = FD->getCapturedVLAType();
848           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
849         }
850       }
851     } else {
852       // Not in a lambda; just use 'this' from the method.
853       // FIXME: Should we generate a new load for each use of 'this'?  The
854       // fast register allocator would be happier...
855       CXXThisValue = CXXABIThisValue;
856     }
857   }
858 
859   // If any of the arguments have a variably modified type, make sure to
860   // emit the type size.
861   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
862        i != e; ++i) {
863     const VarDecl *VD = *i;
864 
865     // Dig out the type as written from ParmVarDecls; it's unclear whether
866     // the standard (C99 6.9.1p10) requires this, but we're following the
867     // precedent set by gcc.
868     QualType Ty;
869     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
870       Ty = PVD->getOriginalType();
871     else
872       Ty = VD->getType();
873 
874     if (Ty->isVariablyModifiedType())
875       EmitVariablyModifiedType(Ty);
876   }
877   // Emit a location at the end of the prologue.
878   if (CGDebugInfo *DI = getDebugInfo())
879     DI->EmitLocation(Builder, StartLoc);
880 }
881 
882 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
883                                        const Stmt *Body) {
884   incrementProfileCounter(Body);
885   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
886     EmitCompoundStmtWithoutScope(*S);
887   else
888     EmitStmt(Body);
889 }
890 
891 /// When instrumenting to collect profile data, the counts for some blocks
892 /// such as switch cases need to not include the fall-through counts, so
893 /// emit a branch around the instrumentation code. When not instrumenting,
894 /// this just calls EmitBlock().
895 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
896                                                const Stmt *S) {
897   llvm::BasicBlock *SkipCountBB = nullptr;
898   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
899     // When instrumenting for profiling, the fallthrough to certain
900     // statements needs to skip over the instrumentation code so that we
901     // get an accurate count.
902     SkipCountBB = createBasicBlock("skipcount");
903     EmitBranch(SkipCountBB);
904   }
905   EmitBlock(BB);
906   uint64_t CurrentCount = getCurrentProfileCount();
907   incrementProfileCounter(S);
908   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
909   if (SkipCountBB)
910     EmitBlock(SkipCountBB);
911 }
912 
913 /// Tries to mark the given function nounwind based on the
914 /// non-existence of any throwing calls within it.  We believe this is
915 /// lightweight enough to do at -O0.
916 static void TryMarkNoThrow(llvm::Function *F) {
917   // LLVM treats 'nounwind' on a function as part of the type, so we
918   // can't do this on functions that can be overwritten.
919   if (F->mayBeOverridden()) return;
920 
921   for (llvm::BasicBlock &BB : *F)
922     for (llvm::Instruction &I : BB)
923       if (I.mayThrow())
924         return;
925 
926   F->setDoesNotThrow();
927 }
928 
929 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
930                                    const CGFunctionInfo &FnInfo) {
931   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
932 
933   // Check if we should generate debug info for this function.
934   if (FD->hasAttr<NoDebugAttr>())
935     DebugInfo = nullptr; // disable debug info indefinitely for this function
936 
937   FunctionArgList Args;
938   QualType ResTy = FD->getReturnType();
939 
940   CurGD = GD;
941   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
942   if (MD && MD->isInstance()) {
943     if (CGM.getCXXABI().HasThisReturn(GD))
944       ResTy = MD->getThisType(getContext());
945     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
946       ResTy = CGM.getContext().VoidPtrTy;
947     CGM.getCXXABI().buildThisParam(*this, Args);
948   }
949 
950   for (auto *Param : FD->params()) {
951     Args.push_back(Param);
952     if (!Param->hasAttr<PassObjectSizeAttr>())
953       continue;
954 
955     IdentifierInfo *NoID = nullptr;
956     auto *Implicit = ImplicitParamDecl::Create(
957         getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
958         getContext().getSizeType());
959     SizeArguments[Param] = Implicit;
960     Args.push_back(Implicit);
961   }
962 
963   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
964     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
965 
966   SourceRange BodyRange;
967   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
968   CurEHLocation = BodyRange.getEnd();
969 
970   // Use the location of the start of the function to determine where
971   // the function definition is located. By default use the location
972   // of the declaration as the location for the subprogram. A function
973   // may lack a declaration in the source code if it is created by code
974   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
975   SourceLocation Loc = FD->getLocation();
976 
977   // If this is a function specialization then use the pattern body
978   // as the location for the function.
979   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
980     if (SpecDecl->hasBody(SpecDecl))
981       Loc = SpecDecl->getLocation();
982 
983   // Emit the standard function prologue.
984   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
985 
986   // Generate the body of the function.
987   PGO.assignRegionCounters(GD, CurFn);
988   if (isa<CXXDestructorDecl>(FD))
989     EmitDestructorBody(Args);
990   else if (isa<CXXConstructorDecl>(FD))
991     EmitConstructorBody(Args);
992   else if (getLangOpts().CUDA &&
993            !getLangOpts().CUDAIsDevice &&
994            FD->hasAttr<CUDAGlobalAttr>())
995     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
996   else if (isa<CXXConversionDecl>(FD) &&
997            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
998     // The lambda conversion to block pointer is special; the semantics can't be
999     // expressed in the AST, so IRGen needs to special-case it.
1000     EmitLambdaToBlockPointerBody(Args);
1001   } else if (isa<CXXMethodDecl>(FD) &&
1002              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1003     // The lambda static invoker function is special, because it forwards or
1004     // clones the body of the function call operator (but is actually static).
1005     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1006   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1007              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1008               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1009     // Implicit copy-assignment gets the same special treatment as implicit
1010     // copy-constructors.
1011     emitImplicitAssignmentOperatorBody(Args);
1012   } else if (Stmt *Body = FD->getBody()) {
1013     EmitFunctionBody(Args, Body);
1014   } else
1015     llvm_unreachable("no definition for emitted function");
1016 
1017   // C++11 [stmt.return]p2:
1018   //   Flowing off the end of a function [...] results in undefined behavior in
1019   //   a value-returning function.
1020   // C11 6.9.1p12:
1021   //   If the '}' that terminates a function is reached, and the value of the
1022   //   function call is used by the caller, the behavior is undefined.
1023   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1024       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1025     if (SanOpts.has(SanitizerKind::Return)) {
1026       SanitizerScope SanScope(this);
1027       llvm::Value *IsFalse = Builder.getFalse();
1028       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1029                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1030                 None);
1031     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1032       EmitTrapCall(llvm::Intrinsic::trap);
1033     }
1034     Builder.CreateUnreachable();
1035     Builder.ClearInsertionPoint();
1036   }
1037 
1038   // Emit the standard function epilogue.
1039   FinishFunction(BodyRange.getEnd());
1040 
1041   // If we haven't marked the function nothrow through other means, do
1042   // a quick pass now to see if we can.
1043   if (!CurFn->doesNotThrow())
1044     TryMarkNoThrow(CurFn);
1045 }
1046 
1047 /// ContainsLabel - Return true if the statement contains a label in it.  If
1048 /// this statement is not executed normally, it not containing a label means
1049 /// that we can just remove the code.
1050 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1051   // Null statement, not a label!
1052   if (!S) return false;
1053 
1054   // If this is a label, we have to emit the code, consider something like:
1055   // if (0) {  ...  foo:  bar(); }  goto foo;
1056   //
1057   // TODO: If anyone cared, we could track __label__'s, since we know that you
1058   // can't jump to one from outside their declared region.
1059   if (isa<LabelStmt>(S))
1060     return true;
1061 
1062   // If this is a case/default statement, and we haven't seen a switch, we have
1063   // to emit the code.
1064   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1065     return true;
1066 
1067   // If this is a switch statement, we want to ignore cases below it.
1068   if (isa<SwitchStmt>(S))
1069     IgnoreCaseStmts = true;
1070 
1071   // Scan subexpressions for verboten labels.
1072   for (const Stmt *SubStmt : S->children())
1073     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1074       return true;
1075 
1076   return false;
1077 }
1078 
1079 /// containsBreak - Return true if the statement contains a break out of it.
1080 /// If the statement (recursively) contains a switch or loop with a break
1081 /// inside of it, this is fine.
1082 bool CodeGenFunction::containsBreak(const Stmt *S) {
1083   // Null statement, not a label!
1084   if (!S) return false;
1085 
1086   // If this is a switch or loop that defines its own break scope, then we can
1087   // include it and anything inside of it.
1088   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1089       isa<ForStmt>(S))
1090     return false;
1091 
1092   if (isa<BreakStmt>(S))
1093     return true;
1094 
1095   // Scan subexpressions for verboten breaks.
1096   for (const Stmt *SubStmt : S->children())
1097     if (containsBreak(SubStmt))
1098       return true;
1099 
1100   return false;
1101 }
1102 
1103 
1104 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1105 /// to a constant, or if it does but contains a label, return false.  If it
1106 /// constant folds return true and set the boolean result in Result.
1107 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1108                                                    bool &ResultBool) {
1109   llvm::APSInt ResultInt;
1110   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1111     return false;
1112 
1113   ResultBool = ResultInt.getBoolValue();
1114   return true;
1115 }
1116 
1117 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1118 /// to a constant, or if it does but contains a label, return false.  If it
1119 /// constant folds return true and set the folded value.
1120 bool CodeGenFunction::
1121 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1122   // FIXME: Rename and handle conversion of other evaluatable things
1123   // to bool.
1124   llvm::APSInt Int;
1125   if (!Cond->EvaluateAsInt(Int, getContext()))
1126     return false;  // Not foldable, not integer or not fully evaluatable.
1127 
1128   if (CodeGenFunction::ContainsLabel(Cond))
1129     return false;  // Contains a label.
1130 
1131   ResultInt = Int;
1132   return true;
1133 }
1134 
1135 
1136 
1137 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1138 /// statement) to the specified blocks.  Based on the condition, this might try
1139 /// to simplify the codegen of the conditional based on the branch.
1140 ///
1141 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1142                                            llvm::BasicBlock *TrueBlock,
1143                                            llvm::BasicBlock *FalseBlock,
1144                                            uint64_t TrueCount) {
1145   Cond = Cond->IgnoreParens();
1146 
1147   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1148 
1149     // Handle X && Y in a condition.
1150     if (CondBOp->getOpcode() == BO_LAnd) {
1151       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1152       // folded if the case was simple enough.
1153       bool ConstantBool = false;
1154       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1155           ConstantBool) {
1156         // br(1 && X) -> br(X).
1157         incrementProfileCounter(CondBOp);
1158         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1159                                     TrueCount);
1160       }
1161 
1162       // If we have "X && 1", simplify the code to use an uncond branch.
1163       // "X && 0" would have been constant folded to 0.
1164       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1165           ConstantBool) {
1166         // br(X && 1) -> br(X).
1167         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1168                                     TrueCount);
1169       }
1170 
1171       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1172       // want to jump to the FalseBlock.
1173       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1174       // The counter tells us how often we evaluate RHS, and all of TrueCount
1175       // can be propagated to that branch.
1176       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1177 
1178       ConditionalEvaluation eval(*this);
1179       {
1180         ApplyDebugLocation DL(*this, Cond);
1181         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1182         EmitBlock(LHSTrue);
1183       }
1184 
1185       incrementProfileCounter(CondBOp);
1186       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1187 
1188       // Any temporaries created here are conditional.
1189       eval.begin(*this);
1190       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1191       eval.end(*this);
1192 
1193       return;
1194     }
1195 
1196     if (CondBOp->getOpcode() == BO_LOr) {
1197       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1198       // folded if the case was simple enough.
1199       bool ConstantBool = false;
1200       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1201           !ConstantBool) {
1202         // br(0 || X) -> br(X).
1203         incrementProfileCounter(CondBOp);
1204         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1205                                     TrueCount);
1206       }
1207 
1208       // If we have "X || 0", simplify the code to use an uncond branch.
1209       // "X || 1" would have been constant folded to 1.
1210       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1211           !ConstantBool) {
1212         // br(X || 0) -> br(X).
1213         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1214                                     TrueCount);
1215       }
1216 
1217       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1218       // want to jump to the TrueBlock.
1219       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1220       // We have the count for entry to the RHS and for the whole expression
1221       // being true, so we can divy up True count between the short circuit and
1222       // the RHS.
1223       uint64_t LHSCount =
1224           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1225       uint64_t RHSCount = TrueCount - LHSCount;
1226 
1227       ConditionalEvaluation eval(*this);
1228       {
1229         ApplyDebugLocation DL(*this, Cond);
1230         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1231         EmitBlock(LHSFalse);
1232       }
1233 
1234       incrementProfileCounter(CondBOp);
1235       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1236 
1237       // Any temporaries created here are conditional.
1238       eval.begin(*this);
1239       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1240 
1241       eval.end(*this);
1242 
1243       return;
1244     }
1245   }
1246 
1247   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1248     // br(!x, t, f) -> br(x, f, t)
1249     if (CondUOp->getOpcode() == UO_LNot) {
1250       // Negate the count.
1251       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1252       // Negate the condition and swap the destination blocks.
1253       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1254                                   FalseCount);
1255     }
1256   }
1257 
1258   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1259     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1260     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1261     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1262 
1263     ConditionalEvaluation cond(*this);
1264     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1265                          getProfileCount(CondOp));
1266 
1267     // When computing PGO branch weights, we only know the overall count for
1268     // the true block. This code is essentially doing tail duplication of the
1269     // naive code-gen, introducing new edges for which counts are not
1270     // available. Divide the counts proportionally between the LHS and RHS of
1271     // the conditional operator.
1272     uint64_t LHSScaledTrueCount = 0;
1273     if (TrueCount) {
1274       double LHSRatio =
1275           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1276       LHSScaledTrueCount = TrueCount * LHSRatio;
1277     }
1278 
1279     cond.begin(*this);
1280     EmitBlock(LHSBlock);
1281     incrementProfileCounter(CondOp);
1282     {
1283       ApplyDebugLocation DL(*this, Cond);
1284       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1285                            LHSScaledTrueCount);
1286     }
1287     cond.end(*this);
1288 
1289     cond.begin(*this);
1290     EmitBlock(RHSBlock);
1291     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1292                          TrueCount - LHSScaledTrueCount);
1293     cond.end(*this);
1294 
1295     return;
1296   }
1297 
1298   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1299     // Conditional operator handling can give us a throw expression as a
1300     // condition for a case like:
1301     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1302     // Fold this to:
1303     //   br(c, throw x, br(y, t, f))
1304     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1305     return;
1306   }
1307 
1308   // If the branch has a condition wrapped by __builtin_unpredictable,
1309   // create metadata that specifies that the branch is unpredictable.
1310   // Don't bother if not optimizing because that metadata would not be used.
1311   llvm::MDNode *Unpredictable = nullptr;
1312   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1313     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1314       const Decl *TargetDecl = Call->getCalleeDecl();
1315       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1316         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1317           llvm::MDBuilder MDHelper(getLLVMContext());
1318           Unpredictable = MDHelper.createUnpredictable();
1319         }
1320       }
1321     }
1322   }
1323 
1324   // Create branch weights based on the number of times we get here and the
1325   // number of times the condition should be true.
1326   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1327   llvm::MDNode *Weights =
1328       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1329 
1330   // Emit the code with the fully general case.
1331   llvm::Value *CondV;
1332   {
1333     ApplyDebugLocation DL(*this, Cond);
1334     CondV = EvaluateExprAsBool(Cond);
1335   }
1336   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1337 }
1338 
1339 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1340 /// specified stmt yet.
1341 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1342   CGM.ErrorUnsupported(S, Type);
1343 }
1344 
1345 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1346 /// variable-length array whose elements have a non-zero bit-pattern.
1347 ///
1348 /// \param baseType the inner-most element type of the array
1349 /// \param src - a char* pointing to the bit-pattern for a single
1350 /// base element of the array
1351 /// \param sizeInChars - the total size of the VLA, in chars
1352 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1353                                Address dest, Address src,
1354                                llvm::Value *sizeInChars) {
1355   CGBuilderTy &Builder = CGF.Builder;
1356 
1357   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1358   llvm::Value *baseSizeInChars
1359     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1360 
1361   Address begin =
1362     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1363   llvm::Value *end =
1364     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1365 
1366   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1367   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1368   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1369 
1370   // Make a loop over the VLA.  C99 guarantees that the VLA element
1371   // count must be nonzero.
1372   CGF.EmitBlock(loopBB);
1373 
1374   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1375   cur->addIncoming(begin.getPointer(), originBB);
1376 
1377   CharUnits curAlign =
1378     dest.getAlignment().alignmentOfArrayElement(baseSize);
1379 
1380   // memcpy the individual element bit-pattern.
1381   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1382                        /*volatile*/ false);
1383 
1384   // Go to the next element.
1385   llvm::Value *next =
1386     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1387 
1388   // Leave if that's the end of the VLA.
1389   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1390   Builder.CreateCondBr(done, contBB, loopBB);
1391   cur->addIncoming(next, loopBB);
1392 
1393   CGF.EmitBlock(contBB);
1394 }
1395 
1396 void
1397 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1398   // Ignore empty classes in C++.
1399   if (getLangOpts().CPlusPlus) {
1400     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1401       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1402         return;
1403     }
1404   }
1405 
1406   // Cast the dest ptr to the appropriate i8 pointer type.
1407   if (DestPtr.getElementType() != Int8Ty)
1408     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1409 
1410   // Get size and alignment info for this aggregate.
1411   CharUnits size = getContext().getTypeSizeInChars(Ty);
1412 
1413   llvm::Value *SizeVal;
1414   const VariableArrayType *vla;
1415 
1416   // Don't bother emitting a zero-byte memset.
1417   if (size.isZero()) {
1418     // But note that getTypeInfo returns 0 for a VLA.
1419     if (const VariableArrayType *vlaType =
1420           dyn_cast_or_null<VariableArrayType>(
1421                                           getContext().getAsArrayType(Ty))) {
1422       QualType eltType;
1423       llvm::Value *numElts;
1424       std::tie(numElts, eltType) = getVLASize(vlaType);
1425 
1426       SizeVal = numElts;
1427       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1428       if (!eltSize.isOne())
1429         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1430       vla = vlaType;
1431     } else {
1432       return;
1433     }
1434   } else {
1435     SizeVal = CGM.getSize(size);
1436     vla = nullptr;
1437   }
1438 
1439   // If the type contains a pointer to data member we can't memset it to zero.
1440   // Instead, create a null constant and copy it to the destination.
1441   // TODO: there are other patterns besides zero that we can usefully memset,
1442   // like -1, which happens to be the pattern used by member-pointers.
1443   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1444     // For a VLA, emit a single element, then splat that over the VLA.
1445     if (vla) Ty = getContext().getBaseElementType(vla);
1446 
1447     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1448 
1449     llvm::GlobalVariable *NullVariable =
1450       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1451                                /*isConstant=*/true,
1452                                llvm::GlobalVariable::PrivateLinkage,
1453                                NullConstant, Twine());
1454     CharUnits NullAlign = DestPtr.getAlignment();
1455     NullVariable->setAlignment(NullAlign.getQuantity());
1456     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1457                    NullAlign);
1458 
1459     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1460 
1461     // Get and call the appropriate llvm.memcpy overload.
1462     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1463     return;
1464   }
1465 
1466   // Otherwise, just memset the whole thing to zero.  This is legal
1467   // because in LLVM, all default initializers (other than the ones we just
1468   // handled above) are guaranteed to have a bit pattern of all zeros.
1469   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1470 }
1471 
1472 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1473   // Make sure that there is a block for the indirect goto.
1474   if (!IndirectBranch)
1475     GetIndirectGotoBlock();
1476 
1477   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1478 
1479   // Make sure the indirect branch includes all of the address-taken blocks.
1480   IndirectBranch->addDestination(BB);
1481   return llvm::BlockAddress::get(CurFn, BB);
1482 }
1483 
1484 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1485   // If we already made the indirect branch for indirect goto, return its block.
1486   if (IndirectBranch) return IndirectBranch->getParent();
1487 
1488   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1489 
1490   // Create the PHI node that indirect gotos will add entries to.
1491   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1492                                               "indirect.goto.dest");
1493 
1494   // Create the indirect branch instruction.
1495   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1496   return IndirectBranch->getParent();
1497 }
1498 
1499 /// Computes the length of an array in elements, as well as the base
1500 /// element type and a properly-typed first element pointer.
1501 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1502                                               QualType &baseType,
1503                                               Address &addr) {
1504   const ArrayType *arrayType = origArrayType;
1505 
1506   // If it's a VLA, we have to load the stored size.  Note that
1507   // this is the size of the VLA in bytes, not its size in elements.
1508   llvm::Value *numVLAElements = nullptr;
1509   if (isa<VariableArrayType>(arrayType)) {
1510     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1511 
1512     // Walk into all VLAs.  This doesn't require changes to addr,
1513     // which has type T* where T is the first non-VLA element type.
1514     do {
1515       QualType elementType = arrayType->getElementType();
1516       arrayType = getContext().getAsArrayType(elementType);
1517 
1518       // If we only have VLA components, 'addr' requires no adjustment.
1519       if (!arrayType) {
1520         baseType = elementType;
1521         return numVLAElements;
1522       }
1523     } while (isa<VariableArrayType>(arrayType));
1524 
1525     // We get out here only if we find a constant array type
1526     // inside the VLA.
1527   }
1528 
1529   // We have some number of constant-length arrays, so addr should
1530   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1531   // down to the first element of addr.
1532   SmallVector<llvm::Value*, 8> gepIndices;
1533 
1534   // GEP down to the array type.
1535   llvm::ConstantInt *zero = Builder.getInt32(0);
1536   gepIndices.push_back(zero);
1537 
1538   uint64_t countFromCLAs = 1;
1539   QualType eltType;
1540 
1541   llvm::ArrayType *llvmArrayType =
1542     dyn_cast<llvm::ArrayType>(addr.getElementType());
1543   while (llvmArrayType) {
1544     assert(isa<ConstantArrayType>(arrayType));
1545     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1546              == llvmArrayType->getNumElements());
1547 
1548     gepIndices.push_back(zero);
1549     countFromCLAs *= llvmArrayType->getNumElements();
1550     eltType = arrayType->getElementType();
1551 
1552     llvmArrayType =
1553       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1554     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1555     assert((!llvmArrayType || arrayType) &&
1556            "LLVM and Clang types are out-of-synch");
1557   }
1558 
1559   if (arrayType) {
1560     // From this point onwards, the Clang array type has been emitted
1561     // as some other type (probably a packed struct). Compute the array
1562     // size, and just emit the 'begin' expression as a bitcast.
1563     while (arrayType) {
1564       countFromCLAs *=
1565           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1566       eltType = arrayType->getElementType();
1567       arrayType = getContext().getAsArrayType(eltType);
1568     }
1569 
1570     llvm::Type *baseType = ConvertType(eltType);
1571     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1572   } else {
1573     // Create the actual GEP.
1574     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1575                                              gepIndices, "array.begin"),
1576                    addr.getAlignment());
1577   }
1578 
1579   baseType = eltType;
1580 
1581   llvm::Value *numElements
1582     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1583 
1584   // If we had any VLA dimensions, factor them in.
1585   if (numVLAElements)
1586     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1587 
1588   return numElements;
1589 }
1590 
1591 std::pair<llvm::Value*, QualType>
1592 CodeGenFunction::getVLASize(QualType type) {
1593   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1594   assert(vla && "type was not a variable array type!");
1595   return getVLASize(vla);
1596 }
1597 
1598 std::pair<llvm::Value*, QualType>
1599 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1600   // The number of elements so far; always size_t.
1601   llvm::Value *numElements = nullptr;
1602 
1603   QualType elementType;
1604   do {
1605     elementType = type->getElementType();
1606     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1607     assert(vlaSize && "no size for VLA!");
1608     assert(vlaSize->getType() == SizeTy);
1609 
1610     if (!numElements) {
1611       numElements = vlaSize;
1612     } else {
1613       // It's undefined behavior if this wraps around, so mark it that way.
1614       // FIXME: Teach -fsanitize=undefined to trap this.
1615       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1616     }
1617   } while ((type = getContext().getAsVariableArrayType(elementType)));
1618 
1619   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1620 }
1621 
1622 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1623   assert(type->isVariablyModifiedType() &&
1624          "Must pass variably modified type to EmitVLASizes!");
1625 
1626   EnsureInsertPoint();
1627 
1628   // We're going to walk down into the type and look for VLA
1629   // expressions.
1630   do {
1631     assert(type->isVariablyModifiedType());
1632 
1633     const Type *ty = type.getTypePtr();
1634     switch (ty->getTypeClass()) {
1635 
1636 #define TYPE(Class, Base)
1637 #define ABSTRACT_TYPE(Class, Base)
1638 #define NON_CANONICAL_TYPE(Class, Base)
1639 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1640 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1641 #include "clang/AST/TypeNodes.def"
1642       llvm_unreachable("unexpected dependent type!");
1643 
1644     // These types are never variably-modified.
1645     case Type::Builtin:
1646     case Type::Complex:
1647     case Type::Vector:
1648     case Type::ExtVector:
1649     case Type::Record:
1650     case Type::Enum:
1651     case Type::Elaborated:
1652     case Type::TemplateSpecialization:
1653     case Type::ObjCObject:
1654     case Type::ObjCInterface:
1655     case Type::ObjCObjectPointer:
1656       llvm_unreachable("type class is never variably-modified!");
1657 
1658     case Type::Adjusted:
1659       type = cast<AdjustedType>(ty)->getAdjustedType();
1660       break;
1661 
1662     case Type::Decayed:
1663       type = cast<DecayedType>(ty)->getPointeeType();
1664       break;
1665 
1666     case Type::Pointer:
1667       type = cast<PointerType>(ty)->getPointeeType();
1668       break;
1669 
1670     case Type::BlockPointer:
1671       type = cast<BlockPointerType>(ty)->getPointeeType();
1672       break;
1673 
1674     case Type::LValueReference:
1675     case Type::RValueReference:
1676       type = cast<ReferenceType>(ty)->getPointeeType();
1677       break;
1678 
1679     case Type::MemberPointer:
1680       type = cast<MemberPointerType>(ty)->getPointeeType();
1681       break;
1682 
1683     case Type::ConstantArray:
1684     case Type::IncompleteArray:
1685       // Losing element qualification here is fine.
1686       type = cast<ArrayType>(ty)->getElementType();
1687       break;
1688 
1689     case Type::VariableArray: {
1690       // Losing element qualification here is fine.
1691       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1692 
1693       // Unknown size indication requires no size computation.
1694       // Otherwise, evaluate and record it.
1695       if (const Expr *size = vat->getSizeExpr()) {
1696         // It's possible that we might have emitted this already,
1697         // e.g. with a typedef and a pointer to it.
1698         llvm::Value *&entry = VLASizeMap[size];
1699         if (!entry) {
1700           llvm::Value *Size = EmitScalarExpr(size);
1701 
1702           // C11 6.7.6.2p5:
1703           //   If the size is an expression that is not an integer constant
1704           //   expression [...] each time it is evaluated it shall have a value
1705           //   greater than zero.
1706           if (SanOpts.has(SanitizerKind::VLABound) &&
1707               size->getType()->isSignedIntegerType()) {
1708             SanitizerScope SanScope(this);
1709             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1710             llvm::Constant *StaticArgs[] = {
1711               EmitCheckSourceLocation(size->getLocStart()),
1712               EmitCheckTypeDescriptor(size->getType())
1713             };
1714             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1715                                      SanitizerKind::VLABound),
1716                       "vla_bound_not_positive", StaticArgs, Size);
1717           }
1718 
1719           // Always zexting here would be wrong if it weren't
1720           // undefined behavior to have a negative bound.
1721           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1722         }
1723       }
1724       type = vat->getElementType();
1725       break;
1726     }
1727 
1728     case Type::FunctionProto:
1729     case Type::FunctionNoProto:
1730       type = cast<FunctionType>(ty)->getReturnType();
1731       break;
1732 
1733     case Type::Paren:
1734     case Type::TypeOf:
1735     case Type::UnaryTransform:
1736     case Type::Attributed:
1737     case Type::SubstTemplateTypeParm:
1738     case Type::PackExpansion:
1739       // Keep walking after single level desugaring.
1740       type = type.getSingleStepDesugaredType(getContext());
1741       break;
1742 
1743     case Type::Typedef:
1744     case Type::Decltype:
1745     case Type::Auto:
1746       // Stop walking: nothing to do.
1747       return;
1748 
1749     case Type::TypeOfExpr:
1750       // Stop walking: emit typeof expression.
1751       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1752       return;
1753 
1754     case Type::Atomic:
1755       type = cast<AtomicType>(ty)->getValueType();
1756       break;
1757 
1758     case Type::Pipe:
1759       type = cast<PipeType>(ty)->getElementType();
1760       break;
1761     }
1762   } while (type->isVariablyModifiedType());
1763 }
1764 
1765 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1766   if (getContext().getBuiltinVaListType()->isArrayType())
1767     return EmitPointerWithAlignment(E);
1768   return EmitLValue(E).getAddress();
1769 }
1770 
1771 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1772   return EmitLValue(E).getAddress();
1773 }
1774 
1775 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1776                                               llvm::Constant *Init) {
1777   assert (Init && "Invalid DeclRefExpr initializer!");
1778   if (CGDebugInfo *Dbg = getDebugInfo())
1779     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1780       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1781 }
1782 
1783 CodeGenFunction::PeepholeProtection
1784 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1785   // At the moment, the only aggressive peephole we do in IR gen
1786   // is trunc(zext) folding, but if we add more, we can easily
1787   // extend this protection.
1788 
1789   if (!rvalue.isScalar()) return PeepholeProtection();
1790   llvm::Value *value = rvalue.getScalarVal();
1791   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1792 
1793   // Just make an extra bitcast.
1794   assert(HaveInsertPoint());
1795   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1796                                                   Builder.GetInsertBlock());
1797 
1798   PeepholeProtection protection;
1799   protection.Inst = inst;
1800   return protection;
1801 }
1802 
1803 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1804   if (!protection.Inst) return;
1805 
1806   // In theory, we could try to duplicate the peepholes now, but whatever.
1807   protection.Inst->eraseFromParent();
1808 }
1809 
1810 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1811                                                  llvm::Value *AnnotatedVal,
1812                                                  StringRef AnnotationStr,
1813                                                  SourceLocation Location) {
1814   llvm::Value *Args[4] = {
1815     AnnotatedVal,
1816     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1817     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1818     CGM.EmitAnnotationLineNo(Location)
1819   };
1820   return Builder.CreateCall(AnnotationFn, Args);
1821 }
1822 
1823 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1824   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1825   // FIXME We create a new bitcast for every annotation because that's what
1826   // llvm-gcc was doing.
1827   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1828     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1829                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1830                        I->getAnnotation(), D->getLocation());
1831 }
1832 
1833 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1834                                               Address Addr) {
1835   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1836   llvm::Value *V = Addr.getPointer();
1837   llvm::Type *VTy = V->getType();
1838   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1839                                     CGM.Int8PtrTy);
1840 
1841   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1842     // FIXME Always emit the cast inst so we can differentiate between
1843     // annotation on the first field of a struct and annotation on the struct
1844     // itself.
1845     if (VTy != CGM.Int8PtrTy)
1846       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1847     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1848     V = Builder.CreateBitCast(V, VTy);
1849   }
1850 
1851   return Address(V, Addr.getAlignment());
1852 }
1853 
1854 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1855 
1856 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1857     : CGF(CGF) {
1858   assert(!CGF->IsSanitizerScope);
1859   CGF->IsSanitizerScope = true;
1860 }
1861 
1862 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1863   CGF->IsSanitizerScope = false;
1864 }
1865 
1866 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1867                                    const llvm::Twine &Name,
1868                                    llvm::BasicBlock *BB,
1869                                    llvm::BasicBlock::iterator InsertPt) const {
1870   LoopStack.InsertHelper(I);
1871   if (IsSanitizerScope)
1872     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1873 }
1874 
1875 void CGBuilderInserter::InsertHelper(
1876     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1877     llvm::BasicBlock::iterator InsertPt) const {
1878   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1879   if (CGF)
1880     CGF->InsertHelper(I, Name, BB, InsertPt);
1881 }
1882 
1883 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1884                                 CodeGenModule &CGM, const FunctionDecl *FD,
1885                                 std::string &FirstMissing) {
1886   // If there aren't any required features listed then go ahead and return.
1887   if (ReqFeatures.empty())
1888     return false;
1889 
1890   // Now build up the set of caller features and verify that all the required
1891   // features are there.
1892   llvm::StringMap<bool> CallerFeatureMap;
1893   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1894 
1895   // If we have at least one of the features in the feature list return
1896   // true, otherwise return false.
1897   return std::all_of(
1898       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1899         SmallVector<StringRef, 1> OrFeatures;
1900         Feature.split(OrFeatures, "|");
1901         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1902                            [&](StringRef Feature) {
1903                              if (!CallerFeatureMap.lookup(Feature)) {
1904                                FirstMissing = Feature.str();
1905                                return false;
1906                              }
1907                              return true;
1908                            });
1909       });
1910 }
1911 
1912 // Emits an error if we don't have a valid set of target features for the
1913 // called function.
1914 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1915                                           const FunctionDecl *TargetDecl) {
1916   // Early exit if this is an indirect call.
1917   if (!TargetDecl)
1918     return;
1919 
1920   // Get the current enclosing function if it exists. If it doesn't
1921   // we can't check the target features anyhow.
1922   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1923   if (!FD)
1924     return;
1925 
1926   // Grab the required features for the call. For a builtin this is listed in
1927   // the td file with the default cpu, for an always_inline function this is any
1928   // listed cpu and any listed features.
1929   unsigned BuiltinID = TargetDecl->getBuiltinID();
1930   std::string MissingFeature;
1931   if (BuiltinID) {
1932     SmallVector<StringRef, 1> ReqFeatures;
1933     const char *FeatureList =
1934         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1935     // Return if the builtin doesn't have any required features.
1936     if (!FeatureList || StringRef(FeatureList) == "")
1937       return;
1938     StringRef(FeatureList).split(ReqFeatures, ",");
1939     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1940       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1941           << TargetDecl->getDeclName()
1942           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1943 
1944   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1945     // Get the required features for the callee.
1946     SmallVector<StringRef, 1> ReqFeatures;
1947     llvm::StringMap<bool> CalleeFeatureMap;
1948     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1949     for (const auto &F : CalleeFeatureMap) {
1950       // Only positive features are "required".
1951       if (F.getValue())
1952         ReqFeatures.push_back(F.getKey());
1953     }
1954     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1955       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1956           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1957   }
1958 }
1959 
1960 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
1961   if (!CGM.getCodeGenOpts().SanitizeStats)
1962     return;
1963 
1964   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
1965   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
1966   CGM.getSanStats().create(IRB, SSK);
1967 }
1968