1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     CapturedStmtInfo(0),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0),
46     DidCallStackSave(false),
47     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
48     NumReturnExprs(0), NumSimpleReturnExprs(0),
49     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
50     CXXDefaultInitExprThis(0),
51     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
52     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
53     TerminateHandler(0), TrapBB(0) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   // If there are any unclaimed block infos, go ahead and destroy them
69   // now.  This can happen if IR-gen gets clever and skips evaluating
70   // something.
71   if (FirstBlockInfo)
72     destroyBlockInfos(FirstBlockInfo);
73 }
74 
75 
76 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
77   return CGM.getTypes().ConvertTypeForMem(T);
78 }
79 
80 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
81   return CGM.getTypes().ConvertType(T);
82 }
83 
84 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
85   type = type.getCanonicalType();
86   while (true) {
87     switch (type->getTypeClass()) {
88 #define TYPE(name, parent)
89 #define ABSTRACT_TYPE(name, parent)
90 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
91 #define DEPENDENT_TYPE(name, parent) case Type::name:
92 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
93 #include "clang/AST/TypeNodes.def"
94       llvm_unreachable("non-canonical or dependent type in IR-generation");
95 
96     case Type::Auto:
97       llvm_unreachable("undeduced auto type in IR-generation");
98 
99     // Various scalar types.
100     case Type::Builtin:
101     case Type::Pointer:
102     case Type::BlockPointer:
103     case Type::LValueReference:
104     case Type::RValueReference:
105     case Type::MemberPointer:
106     case Type::Vector:
107     case Type::ExtVector:
108     case Type::FunctionProto:
109     case Type::FunctionNoProto:
110     case Type::Enum:
111     case Type::ObjCObjectPointer:
112       return TEK_Scalar;
113 
114     // Complexes.
115     case Type::Complex:
116       return TEK_Complex;
117 
118     // Arrays, records, and Objective-C objects.
119     case Type::ConstantArray:
120     case Type::IncompleteArray:
121     case Type::VariableArray:
122     case Type::Record:
123     case Type::ObjCObject:
124     case Type::ObjCInterface:
125       return TEK_Aggregate;
126 
127     // We operate on atomic values according to their underlying type.
128     case Type::Atomic:
129       type = cast<AtomicType>(type)->getValueType();
130       continue;
131     }
132     llvm_unreachable("unknown type kind!");
133   }
134 }
135 
136 void CodeGenFunction::EmitReturnBlock() {
137   // For cleanliness, we try to avoid emitting the return block for
138   // simple cases.
139   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
140 
141   if (CurBB) {
142     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
143 
144     // We have a valid insert point, reuse it if it is empty or there are no
145     // explicit jumps to the return block.
146     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
147       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
148       delete ReturnBlock.getBlock();
149     } else
150       EmitBlock(ReturnBlock.getBlock());
151     return;
152   }
153 
154   // Otherwise, if the return block is the target of a single direct
155   // branch then we can just put the code in that block instead. This
156   // cleans up functions which started with a unified return block.
157   if (ReturnBlock.getBlock()->hasOneUse()) {
158     llvm::BranchInst *BI =
159       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
160     if (BI && BI->isUnconditional() &&
161         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
162       // Reset insertion point, including debug location, and delete the
163       // branch.  This is really subtle and only works because the next change
164       // in location will hit the caching in CGDebugInfo::EmitLocation and not
165       // override this.
166       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
167       Builder.SetInsertPoint(BI->getParent());
168       BI->eraseFromParent();
169       delete ReturnBlock.getBlock();
170       return;
171     }
172   }
173 
174   // FIXME: We are at an unreachable point, there is no reason to emit the block
175   // unless it has uses. However, we still need a place to put the debug
176   // region.end for now.
177 
178   EmitBlock(ReturnBlock.getBlock());
179 }
180 
181 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
182   if (!BB) return;
183   if (!BB->use_empty())
184     return CGF.CurFn->getBasicBlockList().push_back(BB);
185   delete BB;
186 }
187 
188 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
189   assert(BreakContinueStack.empty() &&
190          "mismatched push/pop in break/continue stack!");
191 
192   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
193     && NumSimpleReturnExprs == NumReturnExprs;
194   // If the function contains only a simple return statement, the
195   // cleanup code may become the first breakpoint in the function. To
196   // be safe, set the debug location for it to the location of the
197   // return statement.  Otherwise point it to end of the function's
198   // lexical scope.
199   if (CGDebugInfo *DI = getDebugInfo()) {
200     if (OnlySimpleReturnStmts)
201        DI->EmitLocation(Builder, LastStopPoint);
202     else
203       DI->EmitLocation(Builder, EndLoc);
204   }
205 
206   // Pop any cleanups that might have been associated with the
207   // parameters.  Do this in whatever block we're currently in; it's
208   // important to do this before we enter the return block or return
209   // edges will be *really* confused.
210   bool EmitRetDbgLoc = true;
211   if (EHStack.stable_begin() != PrologueCleanupDepth) {
212     PopCleanupBlocks(PrologueCleanupDepth);
213 
214     // Make sure the line table doesn't jump back into the body for
215     // the ret after it's been at EndLoc.
216     EmitRetDbgLoc = false;
217 
218     if (CGDebugInfo *DI = getDebugInfo())
219       if (OnlySimpleReturnStmts)
220         DI->EmitLocation(Builder, EndLoc);
221   }
222 
223   // Emit function epilog (to return).
224   EmitReturnBlock();
225 
226   if (ShouldInstrumentFunction())
227     EmitFunctionInstrumentation("__cyg_profile_func_exit");
228 
229   // Emit debug descriptor for function end.
230   if (CGDebugInfo *DI = getDebugInfo()) {
231     DI->EmitFunctionEnd(Builder);
232   }
233 
234   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
235   EmitEndEHSpec(CurCodeDecl);
236 
237   assert(EHStack.empty() &&
238          "did not remove all scopes from cleanup stack!");
239 
240   // If someone did an indirect goto, emit the indirect goto block at the end of
241   // the function.
242   if (IndirectBranch) {
243     EmitBlock(IndirectBranch->getParent());
244     Builder.ClearInsertionPoint();
245   }
246 
247   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
248   llvm::Instruction *Ptr = AllocaInsertPt;
249   AllocaInsertPt = 0;
250   Ptr->eraseFromParent();
251 
252   // If someone took the address of a label but never did an indirect goto, we
253   // made a zero entry PHI node, which is illegal, zap it now.
254   if (IndirectBranch) {
255     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
256     if (PN->getNumIncomingValues() == 0) {
257       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
258       PN->eraseFromParent();
259     }
260   }
261 
262   EmitIfUsed(*this, EHResumeBlock);
263   EmitIfUsed(*this, TerminateLandingPad);
264   EmitIfUsed(*this, TerminateHandler);
265   EmitIfUsed(*this, UnreachableBlock);
266 
267   if (CGM.getCodeGenOpts().EmitDeclMetadata)
268     EmitDeclMetadata();
269 }
270 
271 /// ShouldInstrumentFunction - Return true if the current function should be
272 /// instrumented with __cyg_profile_func_* calls
273 bool CodeGenFunction::ShouldInstrumentFunction() {
274   if (!CGM.getCodeGenOpts().InstrumentFunctions)
275     return false;
276   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
277     return false;
278   return true;
279 }
280 
281 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
282 /// instrumentation function with the current function and the call site, if
283 /// function instrumentation is enabled.
284 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
285   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
286   llvm::PointerType *PointerTy = Int8PtrTy;
287   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
288   llvm::FunctionType *FunctionTy =
289     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
290 
291   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
292   llvm::CallInst *CallSite = Builder.CreateCall(
293     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
294     llvm::ConstantInt::get(Int32Ty, 0),
295     "callsite");
296 
297   llvm::Value *args[] = {
298     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
299     CallSite
300   };
301 
302   EmitNounwindRuntimeCall(F, args);
303 }
304 
305 void CodeGenFunction::EmitMCountInstrumentation() {
306   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
307 
308   llvm::Constant *MCountFn =
309     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
310   EmitNounwindRuntimeCall(MCountFn);
311 }
312 
313 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
314 // information in the program executable. The argument information stored
315 // includes the argument name, its type, the address and access qualifiers used.
316 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
317                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
318                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
319                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
320   // Create MDNodes that represent the kernel arg metadata.
321   // Each MDNode is a list in the form of "key", N number of values which is
322   // the same number of values as their are kernel arguments.
323 
324   // MDNode for the kernel argument address space qualifiers.
325   SmallVector<llvm::Value*, 8> addressQuals;
326   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
327 
328   // MDNode for the kernel argument access qualifiers (images only).
329   SmallVector<llvm::Value*, 8> accessQuals;
330   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
331 
332   // MDNode for the kernel argument type names.
333   SmallVector<llvm::Value*, 8> argTypeNames;
334   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
335 
336   // MDNode for the kernel argument type qualifiers.
337   SmallVector<llvm::Value*, 8> argTypeQuals;
338   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
339 
340   // MDNode for the kernel argument names.
341   SmallVector<llvm::Value*, 8> argNames;
342   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
343 
344   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
345     const ParmVarDecl *parm = FD->getParamDecl(i);
346     QualType ty = parm->getType();
347     std::string typeQuals;
348 
349     if (ty->isPointerType()) {
350       QualType pointeeTy = ty->getPointeeType();
351 
352       // Get address qualifier.
353       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
354         pointeeTy.getAddressSpace())));
355 
356       // Get argument type name.
357       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
358 
359       // Turn "unsigned type" to "utype"
360       std::string::size_type pos = typeName.find("unsigned");
361       if (pos != std::string::npos)
362         typeName.erase(pos+1, 8);
363 
364       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
365 
366       // Get argument type qualifiers:
367       if (ty.isRestrictQualified())
368         typeQuals = "restrict";
369       if (pointeeTy.isConstQualified() ||
370           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
371         typeQuals += typeQuals.empty() ? "const" : " const";
372       if (pointeeTy.isVolatileQualified())
373         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
374     } else {
375       addressQuals.push_back(Builder.getInt32(0));
376 
377       // Get argument type name.
378       std::string typeName = ty.getUnqualifiedType().getAsString();
379 
380       // Turn "unsigned type" to "utype"
381       std::string::size_type pos = typeName.find("unsigned");
382       if (pos != std::string::npos)
383         typeName.erase(pos+1, 8);
384 
385       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
386 
387       // Get argument type qualifiers:
388       if (ty.isConstQualified())
389         typeQuals = "const";
390       if (ty.isVolatileQualified())
391         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
392     }
393 
394     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
395 
396     // Get image access qualifier:
397     if (ty->isImageType()) {
398       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
399           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
400         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
401       else
402         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
403     } else
404       accessQuals.push_back(llvm::MDString::get(Context, "none"));
405 
406     // Get argument name.
407     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
408   }
409 
410   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
411   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
412   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
413   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
414   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
415 }
416 
417 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
418                                                llvm::Function *Fn)
419 {
420   if (!FD->hasAttr<OpenCLKernelAttr>())
421     return;
422 
423   llvm::LLVMContext &Context = getLLVMContext();
424 
425   SmallVector <llvm::Value*, 5> kernelMDArgs;
426   kernelMDArgs.push_back(Fn);
427 
428   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
429     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
430                          Builder, getContext());
431 
432   if (FD->hasAttr<VecTypeHintAttr>()) {
433     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
434     QualType hintQTy = attr->getTypeHint();
435     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
436     bool isSignedInteger =
437         hintQTy->isSignedIntegerType() ||
438         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
439     llvm::Value *attrMDArgs[] = {
440       llvm::MDString::get(Context, "vec_type_hint"),
441       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
442       llvm::ConstantInt::get(
443           llvm::IntegerType::get(Context, 32),
444           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
445     };
446     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
447   }
448 
449   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
450     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
451     llvm::Value *attrMDArgs[] = {
452       llvm::MDString::get(Context, "work_group_size_hint"),
453       Builder.getInt32(attr->getXDim()),
454       Builder.getInt32(attr->getYDim()),
455       Builder.getInt32(attr->getZDim())
456     };
457     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
458   }
459 
460   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
461     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
462     llvm::Value *attrMDArgs[] = {
463       llvm::MDString::get(Context, "reqd_work_group_size"),
464       Builder.getInt32(attr->getXDim()),
465       Builder.getInt32(attr->getYDim()),
466       Builder.getInt32(attr->getZDim())
467     };
468     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
469   }
470 
471   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
472   llvm::NamedMDNode *OpenCLKernelMetadata =
473     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
474   OpenCLKernelMetadata->addOperand(kernelMDNode);
475 }
476 
477 void CodeGenFunction::StartFunction(GlobalDecl GD,
478                                     QualType RetTy,
479                                     llvm::Function *Fn,
480                                     const CGFunctionInfo &FnInfo,
481                                     const FunctionArgList &Args,
482                                     SourceLocation StartLoc) {
483   const Decl *D = GD.getDecl();
484 
485   DidCallStackSave = false;
486   CurCodeDecl = D;
487   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
488   FnRetTy = RetTy;
489   CurFn = Fn;
490   CurFnInfo = &FnInfo;
491   assert(CurFn->isDeclaration() && "Function already has body?");
492 
493   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
494     SanOpts = &SanitizerOptions::Disabled;
495     SanitizePerformTypeCheck = false;
496   }
497 
498   // Pass inline keyword to optimizer if it appears explicitly on any
499   // declaration.
500   if (!CGM.getCodeGenOpts().NoInline)
501     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
502       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
503              RE = FD->redecls_end(); RI != RE; ++RI)
504         if (RI->isInlineSpecified()) {
505           Fn->addFnAttr(llvm::Attribute::InlineHint);
506           break;
507         }
508 
509   if (getLangOpts().OpenCL) {
510     // Add metadata for a kernel function.
511     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
512       EmitOpenCLKernelMetadata(FD, Fn);
513   }
514 
515   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
516 
517   // Create a marker to make it easy to insert allocas into the entryblock
518   // later.  Don't create this with the builder, because we don't want it
519   // folded.
520   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
521   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
522   if (Builder.isNamePreserving())
523     AllocaInsertPt->setName("allocapt");
524 
525   ReturnBlock = getJumpDestInCurrentScope("return");
526 
527   Builder.SetInsertPoint(EntryBB);
528 
529   // Emit subprogram debug descriptor.
530   if (CGDebugInfo *DI = getDebugInfo()) {
531     SmallVector<QualType, 16> ArgTypes;
532     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
533 	 i != e; ++i) {
534       ArgTypes.push_back((*i)->getType());
535     }
536 
537     QualType FnType =
538       getContext().getFunctionType(RetTy, ArgTypes,
539                                    FunctionProtoType::ExtProtoInfo());
540 
541     DI->setLocation(StartLoc);
542     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
543   }
544 
545   if (ShouldInstrumentFunction())
546     EmitFunctionInstrumentation("__cyg_profile_func_enter");
547 
548   if (CGM.getCodeGenOpts().InstrumentForProfiling)
549     EmitMCountInstrumentation();
550 
551   if (RetTy->isVoidType()) {
552     // Void type; nothing to return.
553     ReturnValue = 0;
554   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
555              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
556     // Indirect aggregate return; emit returned value directly into sret slot.
557     // This reduces code size, and affects correctness in C++.
558     ReturnValue = CurFn->arg_begin();
559   } else {
560     ReturnValue = CreateIRTemp(RetTy, "retval");
561 
562     // Tell the epilog emitter to autorelease the result.  We do this
563     // now so that various specialized functions can suppress it
564     // during their IR-generation.
565     if (getLangOpts().ObjCAutoRefCount &&
566         !CurFnInfo->isReturnsRetained() &&
567         RetTy->isObjCRetainableType())
568       AutoreleaseResult = true;
569   }
570 
571   EmitStartEHSpec(CurCodeDecl);
572 
573   PrologueCleanupDepth = EHStack.stable_begin();
574   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
575 
576   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
577     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
578     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
579     if (MD->getParent()->isLambda() &&
580         MD->getOverloadedOperator() == OO_Call) {
581       // We're in a lambda; figure out the captures.
582       MD->getParent()->getCaptureFields(LambdaCaptureFields,
583                                         LambdaThisCaptureField);
584       if (LambdaThisCaptureField) {
585         // If this lambda captures this, load it.
586         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
587         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
588       }
589     } else {
590       // Not in a lambda; just use 'this' from the method.
591       // FIXME: Should we generate a new load for each use of 'this'?  The
592       // fast register allocator would be happier...
593       CXXThisValue = CXXABIThisValue;
594     }
595   }
596 
597   // If any of the arguments have a variably modified type, make sure to
598   // emit the type size.
599   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
600        i != e; ++i) {
601     const VarDecl *VD = *i;
602 
603     // Dig out the type as written from ParmVarDecls; it's unclear whether
604     // the standard (C99 6.9.1p10) requires this, but we're following the
605     // precedent set by gcc.
606     QualType Ty;
607     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
608       Ty = PVD->getOriginalType();
609     else
610       Ty = VD->getType();
611 
612     if (Ty->isVariablyModifiedType())
613       EmitVariablyModifiedType(Ty);
614   }
615   // Emit a location at the end of the prologue.
616   if (CGDebugInfo *DI = getDebugInfo())
617     DI->EmitLocation(Builder, StartLoc);
618 }
619 
620 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
621   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
622   assert(FD->getBody());
623   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
624     EmitCompoundStmtWithoutScope(*S);
625   else
626     EmitStmt(FD->getBody());
627 }
628 
629 /// Tries to mark the given function nounwind based on the
630 /// non-existence of any throwing calls within it.  We believe this is
631 /// lightweight enough to do at -O0.
632 static void TryMarkNoThrow(llvm::Function *F) {
633   // LLVM treats 'nounwind' on a function as part of the type, so we
634   // can't do this on functions that can be overwritten.
635   if (F->mayBeOverridden()) return;
636 
637   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
638     for (llvm::BasicBlock::iterator
639            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
640       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
641         if (!Call->doesNotThrow())
642           return;
643       } else if (isa<llvm::ResumeInst>(&*BI)) {
644         return;
645       }
646   F->setDoesNotThrow();
647 }
648 
649 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
650                                    const CGFunctionInfo &FnInfo) {
651   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
652 
653   // Check if we should generate debug info for this function.
654   if (!FD->hasAttr<NoDebugAttr>())
655     maybeInitializeDebugInfo();
656 
657   FunctionArgList Args;
658   QualType ResTy = FD->getResultType();
659 
660   CurGD = GD;
661   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
662     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
663 
664   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
665     Args.push_back(FD->getParamDecl(i));
666 
667   SourceRange BodyRange;
668   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
669   CurEHLocation = BodyRange.getEnd();
670 
671   // CalleeWithThisReturn keeps track of the last callee inside this function
672   // that returns 'this'. Before starting the function, we set it to null.
673   CalleeWithThisReturn = 0;
674 
675   // Emit the standard function prologue.
676   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
677 
678   // Generate the body of the function.
679   if (isa<CXXDestructorDecl>(FD))
680     EmitDestructorBody(Args);
681   else if (isa<CXXConstructorDecl>(FD))
682     EmitConstructorBody(Args);
683   else if (getLangOpts().CUDA &&
684            !CGM.getCodeGenOpts().CUDAIsDevice &&
685            FD->hasAttr<CUDAGlobalAttr>())
686     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
687   else if (isa<CXXConversionDecl>(FD) &&
688            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
689     // The lambda conversion to block pointer is special; the semantics can't be
690     // expressed in the AST, so IRGen needs to special-case it.
691     EmitLambdaToBlockPointerBody(Args);
692   } else if (isa<CXXMethodDecl>(FD) &&
693              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
694     // The lambda "__invoke" function is special, because it forwards or
695     // clones the body of the function call operator (but is actually static).
696     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
697   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
698              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
699     // Implicit copy-assignment gets the same special treatment as implicit
700     // copy-constructors.
701     emitImplicitAssignmentOperatorBody(Args);
702   }
703   else
704     EmitFunctionBody(Args);
705 
706   // C++11 [stmt.return]p2:
707   //   Flowing off the end of a function [...] results in undefined behavior in
708   //   a value-returning function.
709   // C11 6.9.1p12:
710   //   If the '}' that terminates a function is reached, and the value of the
711   //   function call is used by the caller, the behavior is undefined.
712   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
713       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
714     if (SanOpts->Return)
715       EmitCheck(Builder.getFalse(), "missing_return",
716                 EmitCheckSourceLocation(FD->getLocation()),
717                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
718     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
719       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
720     Builder.CreateUnreachable();
721     Builder.ClearInsertionPoint();
722   }
723 
724   // Emit the standard function epilogue.
725   FinishFunction(BodyRange.getEnd());
726   // CalleeWithThisReturn keeps track of the last callee inside this function
727   // that returns 'this'. After finishing the function, we set it to null.
728   CalleeWithThisReturn = 0;
729 
730   // If we haven't marked the function nothrow through other means, do
731   // a quick pass now to see if we can.
732   if (!CurFn->doesNotThrow())
733     TryMarkNoThrow(CurFn);
734 }
735 
736 /// ContainsLabel - Return true if the statement contains a label in it.  If
737 /// this statement is not executed normally, it not containing a label means
738 /// that we can just remove the code.
739 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
740   // Null statement, not a label!
741   if (S == 0) return false;
742 
743   // If this is a label, we have to emit the code, consider something like:
744   // if (0) {  ...  foo:  bar(); }  goto foo;
745   //
746   // TODO: If anyone cared, we could track __label__'s, since we know that you
747   // can't jump to one from outside their declared region.
748   if (isa<LabelStmt>(S))
749     return true;
750 
751   // If this is a case/default statement, and we haven't seen a switch, we have
752   // to emit the code.
753   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
754     return true;
755 
756   // If this is a switch statement, we want to ignore cases below it.
757   if (isa<SwitchStmt>(S))
758     IgnoreCaseStmts = true;
759 
760   // Scan subexpressions for verboten labels.
761   for (Stmt::const_child_range I = S->children(); I; ++I)
762     if (ContainsLabel(*I, IgnoreCaseStmts))
763       return true;
764 
765   return false;
766 }
767 
768 /// containsBreak - Return true if the statement contains a break out of it.
769 /// If the statement (recursively) contains a switch or loop with a break
770 /// inside of it, this is fine.
771 bool CodeGenFunction::containsBreak(const Stmt *S) {
772   // Null statement, not a label!
773   if (S == 0) return false;
774 
775   // If this is a switch or loop that defines its own break scope, then we can
776   // include it and anything inside of it.
777   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
778       isa<ForStmt>(S))
779     return false;
780 
781   if (isa<BreakStmt>(S))
782     return true;
783 
784   // Scan subexpressions for verboten breaks.
785   for (Stmt::const_child_range I = S->children(); I; ++I)
786     if (containsBreak(*I))
787       return true;
788 
789   return false;
790 }
791 
792 
793 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
794 /// to a constant, or if it does but contains a label, return false.  If it
795 /// constant folds return true and set the boolean result in Result.
796 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
797                                                    bool &ResultBool) {
798   llvm::APSInt ResultInt;
799   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
800     return false;
801 
802   ResultBool = ResultInt.getBoolValue();
803   return true;
804 }
805 
806 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
807 /// to a constant, or if it does but contains a label, return false.  If it
808 /// constant folds return true and set the folded value.
809 bool CodeGenFunction::
810 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
811   // FIXME: Rename and handle conversion of other evaluatable things
812   // to bool.
813   llvm::APSInt Int;
814   if (!Cond->EvaluateAsInt(Int, getContext()))
815     return false;  // Not foldable, not integer or not fully evaluatable.
816 
817   if (CodeGenFunction::ContainsLabel(Cond))
818     return false;  // Contains a label.
819 
820   ResultInt = Int;
821   return true;
822 }
823 
824 
825 
826 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
827 /// statement) to the specified blocks.  Based on the condition, this might try
828 /// to simplify the codegen of the conditional based on the branch.
829 ///
830 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
831                                            llvm::BasicBlock *TrueBlock,
832                                            llvm::BasicBlock *FalseBlock) {
833   Cond = Cond->IgnoreParens();
834 
835   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
836     // Handle X && Y in a condition.
837     if (CondBOp->getOpcode() == BO_LAnd) {
838       // If we have "1 && X", simplify the code.  "0 && X" would have constant
839       // folded if the case was simple enough.
840       bool ConstantBool = false;
841       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
842           ConstantBool) {
843         // br(1 && X) -> br(X).
844         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
845       }
846 
847       // If we have "X && 1", simplify the code to use an uncond branch.
848       // "X && 0" would have been constant folded to 0.
849       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
850           ConstantBool) {
851         // br(X && 1) -> br(X).
852         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
853       }
854 
855       // Emit the LHS as a conditional.  If the LHS conditional is false, we
856       // want to jump to the FalseBlock.
857       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
858 
859       ConditionalEvaluation eval(*this);
860       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
861       EmitBlock(LHSTrue);
862 
863       // Any temporaries created here are conditional.
864       eval.begin(*this);
865       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
866       eval.end(*this);
867 
868       return;
869     }
870 
871     if (CondBOp->getOpcode() == BO_LOr) {
872       // If we have "0 || X", simplify the code.  "1 || X" would have constant
873       // folded if the case was simple enough.
874       bool ConstantBool = false;
875       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
876           !ConstantBool) {
877         // br(0 || X) -> br(X).
878         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
879       }
880 
881       // If we have "X || 0", simplify the code to use an uncond branch.
882       // "X || 1" would have been constant folded to 1.
883       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
884           !ConstantBool) {
885         // br(X || 0) -> br(X).
886         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
887       }
888 
889       // Emit the LHS as a conditional.  If the LHS conditional is true, we
890       // want to jump to the TrueBlock.
891       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
892 
893       ConditionalEvaluation eval(*this);
894       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
895       EmitBlock(LHSFalse);
896 
897       // Any temporaries created here are conditional.
898       eval.begin(*this);
899       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
900       eval.end(*this);
901 
902       return;
903     }
904   }
905 
906   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
907     // br(!x, t, f) -> br(x, f, t)
908     if (CondUOp->getOpcode() == UO_LNot)
909       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
910   }
911 
912   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
913     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
914     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
915     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
916 
917     ConditionalEvaluation cond(*this);
918     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
919 
920     cond.begin(*this);
921     EmitBlock(LHSBlock);
922     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
923     cond.end(*this);
924 
925     cond.begin(*this);
926     EmitBlock(RHSBlock);
927     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
928     cond.end(*this);
929 
930     return;
931   }
932 
933   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
934     // Conditional operator handling can give us a throw expression as a
935     // condition for a case like:
936     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
937     // Fold this to:
938     //   br(c, throw x, br(y, t, f))
939     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
940     return;
941   }
942 
943   // Emit the code with the fully general case.
944   llvm::Value *CondV = EvaluateExprAsBool(Cond);
945   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
946 }
947 
948 /// ErrorUnsupported - Print out an error that codegen doesn't support the
949 /// specified stmt yet.
950 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
951                                        bool OmitOnError) {
952   CGM.ErrorUnsupported(S, Type, OmitOnError);
953 }
954 
955 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
956 /// variable-length array whose elements have a non-zero bit-pattern.
957 ///
958 /// \param baseType the inner-most element type of the array
959 /// \param src - a char* pointing to the bit-pattern for a single
960 /// base element of the array
961 /// \param sizeInChars - the total size of the VLA, in chars
962 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
963                                llvm::Value *dest, llvm::Value *src,
964                                llvm::Value *sizeInChars) {
965   std::pair<CharUnits,CharUnits> baseSizeAndAlign
966     = CGF.getContext().getTypeInfoInChars(baseType);
967 
968   CGBuilderTy &Builder = CGF.Builder;
969 
970   llvm::Value *baseSizeInChars
971     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
972 
973   llvm::Type *i8p = Builder.getInt8PtrTy();
974 
975   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
976   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
977 
978   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
979   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
980   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
981 
982   // Make a loop over the VLA.  C99 guarantees that the VLA element
983   // count must be nonzero.
984   CGF.EmitBlock(loopBB);
985 
986   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
987   cur->addIncoming(begin, originBB);
988 
989   // memcpy the individual element bit-pattern.
990   Builder.CreateMemCpy(cur, src, baseSizeInChars,
991                        baseSizeAndAlign.second.getQuantity(),
992                        /*volatile*/ false);
993 
994   // Go to the next element.
995   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
996 
997   // Leave if that's the end of the VLA.
998   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
999   Builder.CreateCondBr(done, contBB, loopBB);
1000   cur->addIncoming(next, loopBB);
1001 
1002   CGF.EmitBlock(contBB);
1003 }
1004 
1005 void
1006 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1007   // Ignore empty classes in C++.
1008   if (getLangOpts().CPlusPlus) {
1009     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1010       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1011         return;
1012     }
1013   }
1014 
1015   // Cast the dest ptr to the appropriate i8 pointer type.
1016   unsigned DestAS =
1017     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1018   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1019   if (DestPtr->getType() != BP)
1020     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1021 
1022   // Get size and alignment info for this aggregate.
1023   std::pair<CharUnits, CharUnits> TypeInfo =
1024     getContext().getTypeInfoInChars(Ty);
1025   CharUnits Size = TypeInfo.first;
1026   CharUnits Align = TypeInfo.second;
1027 
1028   llvm::Value *SizeVal;
1029   const VariableArrayType *vla;
1030 
1031   // Don't bother emitting a zero-byte memset.
1032   if (Size.isZero()) {
1033     // But note that getTypeInfo returns 0 for a VLA.
1034     if (const VariableArrayType *vlaType =
1035           dyn_cast_or_null<VariableArrayType>(
1036                                           getContext().getAsArrayType(Ty))) {
1037       QualType eltType;
1038       llvm::Value *numElts;
1039       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1040 
1041       SizeVal = numElts;
1042       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1043       if (!eltSize.isOne())
1044         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1045       vla = vlaType;
1046     } else {
1047       return;
1048     }
1049   } else {
1050     SizeVal = CGM.getSize(Size);
1051     vla = 0;
1052   }
1053 
1054   // If the type contains a pointer to data member we can't memset it to zero.
1055   // Instead, create a null constant and copy it to the destination.
1056   // TODO: there are other patterns besides zero that we can usefully memset,
1057   // like -1, which happens to be the pattern used by member-pointers.
1058   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1059     // For a VLA, emit a single element, then splat that over the VLA.
1060     if (vla) Ty = getContext().getBaseElementType(vla);
1061 
1062     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1063 
1064     llvm::GlobalVariable *NullVariable =
1065       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1066                                /*isConstant=*/true,
1067                                llvm::GlobalVariable::PrivateLinkage,
1068                                NullConstant, Twine());
1069     llvm::Value *SrcPtr =
1070       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1071 
1072     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1073 
1074     // Get and call the appropriate llvm.memcpy overload.
1075     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1076     return;
1077   }
1078 
1079   // Otherwise, just memset the whole thing to zero.  This is legal
1080   // because in LLVM, all default initializers (other than the ones we just
1081   // handled above) are guaranteed to have a bit pattern of all zeros.
1082   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1083                        Align.getQuantity(), false);
1084 }
1085 
1086 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1087   // Make sure that there is a block for the indirect goto.
1088   if (IndirectBranch == 0)
1089     GetIndirectGotoBlock();
1090 
1091   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1092 
1093   // Make sure the indirect branch includes all of the address-taken blocks.
1094   IndirectBranch->addDestination(BB);
1095   return llvm::BlockAddress::get(CurFn, BB);
1096 }
1097 
1098 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1099   // If we already made the indirect branch for indirect goto, return its block.
1100   if (IndirectBranch) return IndirectBranch->getParent();
1101 
1102   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1103 
1104   // Create the PHI node that indirect gotos will add entries to.
1105   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1106                                               "indirect.goto.dest");
1107 
1108   // Create the indirect branch instruction.
1109   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1110   return IndirectBranch->getParent();
1111 }
1112 
1113 /// Computes the length of an array in elements, as well as the base
1114 /// element type and a properly-typed first element pointer.
1115 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1116                                               QualType &baseType,
1117                                               llvm::Value *&addr) {
1118   const ArrayType *arrayType = origArrayType;
1119 
1120   // If it's a VLA, we have to load the stored size.  Note that
1121   // this is the size of the VLA in bytes, not its size in elements.
1122   llvm::Value *numVLAElements = 0;
1123   if (isa<VariableArrayType>(arrayType)) {
1124     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1125 
1126     // Walk into all VLAs.  This doesn't require changes to addr,
1127     // which has type T* where T is the first non-VLA element type.
1128     do {
1129       QualType elementType = arrayType->getElementType();
1130       arrayType = getContext().getAsArrayType(elementType);
1131 
1132       // If we only have VLA components, 'addr' requires no adjustment.
1133       if (!arrayType) {
1134         baseType = elementType;
1135         return numVLAElements;
1136       }
1137     } while (isa<VariableArrayType>(arrayType));
1138 
1139     // We get out here only if we find a constant array type
1140     // inside the VLA.
1141   }
1142 
1143   // We have some number of constant-length arrays, so addr should
1144   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1145   // down to the first element of addr.
1146   SmallVector<llvm::Value*, 8> gepIndices;
1147 
1148   // GEP down to the array type.
1149   llvm::ConstantInt *zero = Builder.getInt32(0);
1150   gepIndices.push_back(zero);
1151 
1152   uint64_t countFromCLAs = 1;
1153   QualType eltType;
1154 
1155   llvm::ArrayType *llvmArrayType =
1156     dyn_cast<llvm::ArrayType>(
1157       cast<llvm::PointerType>(addr->getType())->getElementType());
1158   while (llvmArrayType) {
1159     assert(isa<ConstantArrayType>(arrayType));
1160     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1161              == llvmArrayType->getNumElements());
1162 
1163     gepIndices.push_back(zero);
1164     countFromCLAs *= llvmArrayType->getNumElements();
1165     eltType = arrayType->getElementType();
1166 
1167     llvmArrayType =
1168       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1169     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1170     assert((!llvmArrayType || arrayType) &&
1171            "LLVM and Clang types are out-of-synch");
1172   }
1173 
1174   if (arrayType) {
1175     // From this point onwards, the Clang array type has been emitted
1176     // as some other type (probably a packed struct). Compute the array
1177     // size, and just emit the 'begin' expression as a bitcast.
1178     while (arrayType) {
1179       countFromCLAs *=
1180           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1181       eltType = arrayType->getElementType();
1182       arrayType = getContext().getAsArrayType(eltType);
1183     }
1184 
1185     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1186     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1187     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1188   } else {
1189     // Create the actual GEP.
1190     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1191   }
1192 
1193   baseType = eltType;
1194 
1195   llvm::Value *numElements
1196     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1197 
1198   // If we had any VLA dimensions, factor them in.
1199   if (numVLAElements)
1200     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1201 
1202   return numElements;
1203 }
1204 
1205 std::pair<llvm::Value*, QualType>
1206 CodeGenFunction::getVLASize(QualType type) {
1207   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1208   assert(vla && "type was not a variable array type!");
1209   return getVLASize(vla);
1210 }
1211 
1212 std::pair<llvm::Value*, QualType>
1213 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1214   // The number of elements so far; always size_t.
1215   llvm::Value *numElements = 0;
1216 
1217   QualType elementType;
1218   do {
1219     elementType = type->getElementType();
1220     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1221     assert(vlaSize && "no size for VLA!");
1222     assert(vlaSize->getType() == SizeTy);
1223 
1224     if (!numElements) {
1225       numElements = vlaSize;
1226     } else {
1227       // It's undefined behavior if this wraps around, so mark it that way.
1228       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1229       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1230     }
1231   } while ((type = getContext().getAsVariableArrayType(elementType)));
1232 
1233   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1234 }
1235 
1236 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1237   assert(type->isVariablyModifiedType() &&
1238          "Must pass variably modified type to EmitVLASizes!");
1239 
1240   EnsureInsertPoint();
1241 
1242   // We're going to walk down into the type and look for VLA
1243   // expressions.
1244   do {
1245     assert(type->isVariablyModifiedType());
1246 
1247     const Type *ty = type.getTypePtr();
1248     switch (ty->getTypeClass()) {
1249 
1250 #define TYPE(Class, Base)
1251 #define ABSTRACT_TYPE(Class, Base)
1252 #define NON_CANONICAL_TYPE(Class, Base)
1253 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1254 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1255 #include "clang/AST/TypeNodes.def"
1256       llvm_unreachable("unexpected dependent type!");
1257 
1258     // These types are never variably-modified.
1259     case Type::Builtin:
1260     case Type::Complex:
1261     case Type::Vector:
1262     case Type::ExtVector:
1263     case Type::Record:
1264     case Type::Enum:
1265     case Type::Elaborated:
1266     case Type::TemplateSpecialization:
1267     case Type::ObjCObject:
1268     case Type::ObjCInterface:
1269     case Type::ObjCObjectPointer:
1270       llvm_unreachable("type class is never variably-modified!");
1271 
1272     case Type::Pointer:
1273       type = cast<PointerType>(ty)->getPointeeType();
1274       break;
1275 
1276     case Type::BlockPointer:
1277       type = cast<BlockPointerType>(ty)->getPointeeType();
1278       break;
1279 
1280     case Type::LValueReference:
1281     case Type::RValueReference:
1282       type = cast<ReferenceType>(ty)->getPointeeType();
1283       break;
1284 
1285     case Type::MemberPointer:
1286       type = cast<MemberPointerType>(ty)->getPointeeType();
1287       break;
1288 
1289     case Type::ConstantArray:
1290     case Type::IncompleteArray:
1291       // Losing element qualification here is fine.
1292       type = cast<ArrayType>(ty)->getElementType();
1293       break;
1294 
1295     case Type::VariableArray: {
1296       // Losing element qualification here is fine.
1297       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1298 
1299       // Unknown size indication requires no size computation.
1300       // Otherwise, evaluate and record it.
1301       if (const Expr *size = vat->getSizeExpr()) {
1302         // It's possible that we might have emitted this already,
1303         // e.g. with a typedef and a pointer to it.
1304         llvm::Value *&entry = VLASizeMap[size];
1305         if (!entry) {
1306           llvm::Value *Size = EmitScalarExpr(size);
1307 
1308           // C11 6.7.6.2p5:
1309           //   If the size is an expression that is not an integer constant
1310           //   expression [...] each time it is evaluated it shall have a value
1311           //   greater than zero.
1312           if (SanOpts->VLABound &&
1313               size->getType()->isSignedIntegerType()) {
1314             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1315             llvm::Constant *StaticArgs[] = {
1316               EmitCheckSourceLocation(size->getLocStart()),
1317               EmitCheckTypeDescriptor(size->getType())
1318             };
1319             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1320                       "vla_bound_not_positive", StaticArgs, Size,
1321                       CRK_Recoverable);
1322           }
1323 
1324           // Always zexting here would be wrong if it weren't
1325           // undefined behavior to have a negative bound.
1326           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1327         }
1328       }
1329       type = vat->getElementType();
1330       break;
1331     }
1332 
1333     case Type::FunctionProto:
1334     case Type::FunctionNoProto:
1335       type = cast<FunctionType>(ty)->getResultType();
1336       break;
1337 
1338     case Type::Paren:
1339     case Type::TypeOf:
1340     case Type::UnaryTransform:
1341     case Type::Attributed:
1342     case Type::SubstTemplateTypeParm:
1343       // Keep walking after single level desugaring.
1344       type = type.getSingleStepDesugaredType(getContext());
1345       break;
1346 
1347     case Type::Typedef:
1348     case Type::Decltype:
1349     case Type::Auto:
1350       // Stop walking: nothing to do.
1351       return;
1352 
1353     case Type::TypeOfExpr:
1354       // Stop walking: emit typeof expression.
1355       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1356       return;
1357 
1358     case Type::Atomic:
1359       type = cast<AtomicType>(ty)->getValueType();
1360       break;
1361     }
1362   } while (type->isVariablyModifiedType());
1363 }
1364 
1365 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1366   if (getContext().getBuiltinVaListType()->isArrayType())
1367     return EmitScalarExpr(E);
1368   return EmitLValue(E).getAddress();
1369 }
1370 
1371 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1372                                               llvm::Constant *Init) {
1373   assert (Init && "Invalid DeclRefExpr initializer!");
1374   if (CGDebugInfo *Dbg = getDebugInfo())
1375     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1376       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1377 }
1378 
1379 CodeGenFunction::PeepholeProtection
1380 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1381   // At the moment, the only aggressive peephole we do in IR gen
1382   // is trunc(zext) folding, but if we add more, we can easily
1383   // extend this protection.
1384 
1385   if (!rvalue.isScalar()) return PeepholeProtection();
1386   llvm::Value *value = rvalue.getScalarVal();
1387   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1388 
1389   // Just make an extra bitcast.
1390   assert(HaveInsertPoint());
1391   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1392                                                   Builder.GetInsertBlock());
1393 
1394   PeepholeProtection protection;
1395   protection.Inst = inst;
1396   return protection;
1397 }
1398 
1399 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1400   if (!protection.Inst) return;
1401 
1402   // In theory, we could try to duplicate the peepholes now, but whatever.
1403   protection.Inst->eraseFromParent();
1404 }
1405 
1406 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1407                                                  llvm::Value *AnnotatedVal,
1408                                                  StringRef AnnotationStr,
1409                                                  SourceLocation Location) {
1410   llvm::Value *Args[4] = {
1411     AnnotatedVal,
1412     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1413     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1414     CGM.EmitAnnotationLineNo(Location)
1415   };
1416   return Builder.CreateCall(AnnotationFn, Args);
1417 }
1418 
1419 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1420   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1421   // FIXME We create a new bitcast for every annotation because that's what
1422   // llvm-gcc was doing.
1423   for (specific_attr_iterator<AnnotateAttr>
1424        ai = D->specific_attr_begin<AnnotateAttr>(),
1425        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1426     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1427                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1428                        (*ai)->getAnnotation(), D->getLocation());
1429 }
1430 
1431 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1432                                                    llvm::Value *V) {
1433   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1434   llvm::Type *VTy = V->getType();
1435   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1436                                     CGM.Int8PtrTy);
1437 
1438   for (specific_attr_iterator<AnnotateAttr>
1439        ai = D->specific_attr_begin<AnnotateAttr>(),
1440        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1441     // FIXME Always emit the cast inst so we can differentiate between
1442     // annotation on the first field of a struct and annotation on the struct
1443     // itself.
1444     if (VTy != CGM.Int8PtrTy)
1445       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1446     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1447     V = Builder.CreateBitCast(V, VTy);
1448   }
1449 
1450   return V;
1451 }
1452 
1453 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1454