1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : CodeGenTypeCache(cgm), CGM(cgm),
32     Target(CGM.getContext().getTargetInfo()),
33     Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
36     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
40     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
41     TerminateHandler(0), TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 CodeGenFunction::~CodeGenFunction() {
48   // If there are any unclaimed block infos, go ahead and destroy them
49   // now.  This can happen if IR-gen gets clever and skips evaluating
50   // something.
51   if (FirstBlockInfo)
52     destroyBlockInfos(FirstBlockInfo);
53 }
54 
55 
56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57   return CGM.getTypes().ConvertTypeForMem(T);
58 }
59 
60 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61   return CGM.getTypes().ConvertType(T);
62 }
63 
64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65   switch (type.getCanonicalType()->getTypeClass()) {
66 #define TYPE(name, parent)
67 #define ABSTRACT_TYPE(name, parent)
68 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
69 #define DEPENDENT_TYPE(name, parent) case Type::name:
70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71 #include "clang/AST/TypeNodes.def"
72     llvm_unreachable("non-canonical or dependent type in IR-generation");
73 
74   case Type::Builtin:
75   case Type::Pointer:
76   case Type::BlockPointer:
77   case Type::LValueReference:
78   case Type::RValueReference:
79   case Type::MemberPointer:
80   case Type::Vector:
81   case Type::ExtVector:
82   case Type::FunctionProto:
83   case Type::FunctionNoProto:
84   case Type::Enum:
85   case Type::ObjCObjectPointer:
86     return false;
87 
88   // Complexes, arrays, records, and Objective-C objects.
89   case Type::Complex:
90   case Type::ConstantArray:
91   case Type::IncompleteArray:
92   case Type::VariableArray:
93   case Type::Record:
94   case Type::ObjCObject:
95   case Type::ObjCInterface:
96     return true;
97 
98   // In IRGen, atomic types are just the underlying type
99   case Type::Atomic:
100     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101   }
102   llvm_unreachable("unknown type kind!");
103 }
104 
105 void CodeGenFunction::EmitReturnBlock() {
106   // For cleanliness, we try to avoid emitting the return block for
107   // simple cases.
108   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109 
110   if (CurBB) {
111     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112 
113     // We have a valid insert point, reuse it if it is empty or there are no
114     // explicit jumps to the return block.
115     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117       delete ReturnBlock.getBlock();
118     } else
119       EmitBlock(ReturnBlock.getBlock());
120     return;
121   }
122 
123   // Otherwise, if the return block is the target of a single direct
124   // branch then we can just put the code in that block instead. This
125   // cleans up functions which started with a unified return block.
126   if (ReturnBlock.getBlock()->hasOneUse()) {
127     llvm::BranchInst *BI =
128       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129     if (BI && BI->isUnconditional() &&
130         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131       // Reset insertion point, including debug location, and delete the branch.
132       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133       Builder.SetInsertPoint(BI->getParent());
134       BI->eraseFromParent();
135       delete ReturnBlock.getBlock();
136       return;
137     }
138   }
139 
140   // FIXME: We are at an unreachable point, there is no reason to emit the block
141   // unless it has uses. However, we still need a place to put the debug
142   // region.end for now.
143 
144   EmitBlock(ReturnBlock.getBlock());
145 }
146 
147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148   if (!BB) return;
149   if (!BB->use_empty())
150     return CGF.CurFn->getBasicBlockList().push_back(BB);
151   delete BB;
152 }
153 
154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155   assert(BreakContinueStack.empty() &&
156          "mismatched push/pop in break/continue stack!");
157 
158   // Pop any cleanups that might have been associated with the
159   // parameters.  Do this in whatever block we're currently in; it's
160   // important to do this before we enter the return block or return
161   // edges will be *really* confused.
162   if (EHStack.stable_begin() != PrologueCleanupDepth)
163     PopCleanupBlocks(PrologueCleanupDepth);
164 
165   // Emit function epilog (to return).
166   EmitReturnBlock();
167 
168   if (ShouldInstrumentFunction())
169     EmitFunctionInstrumentation("__cyg_profile_func_exit");
170 
171   // Emit debug descriptor for function end.
172   if (CGDebugInfo *DI = getDebugInfo()) {
173     DI->setLocation(EndLoc);
174     DI->EmitFunctionEnd(Builder);
175   }
176 
177   EmitFunctionEpilog(*CurFnInfo);
178   EmitEndEHSpec(CurCodeDecl);
179 
180   assert(EHStack.empty() &&
181          "did not remove all scopes from cleanup stack!");
182 
183   // If someone did an indirect goto, emit the indirect goto block at the end of
184   // the function.
185   if (IndirectBranch) {
186     EmitBlock(IndirectBranch->getParent());
187     Builder.ClearInsertionPoint();
188   }
189 
190   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191   llvm::Instruction *Ptr = AllocaInsertPt;
192   AllocaInsertPt = 0;
193   Ptr->eraseFromParent();
194 
195   // If someone took the address of a label but never did an indirect goto, we
196   // made a zero entry PHI node, which is illegal, zap it now.
197   if (IndirectBranch) {
198     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199     if (PN->getNumIncomingValues() == 0) {
200       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201       PN->eraseFromParent();
202     }
203   }
204 
205   EmitIfUsed(*this, EHResumeBlock);
206   EmitIfUsed(*this, TerminateLandingPad);
207   EmitIfUsed(*this, TerminateHandler);
208   EmitIfUsed(*this, UnreachableBlock);
209 
210   if (CGM.getCodeGenOpts().EmitDeclMetadata)
211     EmitDeclMetadata();
212 }
213 
214 /// ShouldInstrumentFunction - Return true if the current function should be
215 /// instrumented with __cyg_profile_func_* calls
216 bool CodeGenFunction::ShouldInstrumentFunction() {
217   if (!CGM.getCodeGenOpts().InstrumentFunctions)
218     return false;
219   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220     return false;
221   return true;
222 }
223 
224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225 /// instrumentation function with the current function and the call site, if
226 /// function instrumentation is enabled.
227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229   llvm::PointerType *PointerTy = Int8PtrTy;
230   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231   llvm::FunctionType *FunctionTy =
232     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233 
234   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235   llvm::CallInst *CallSite = Builder.CreateCall(
236     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237     llvm::ConstantInt::get(Int32Ty, 0),
238     "callsite");
239 
240   Builder.CreateCall2(F,
241                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                       CallSite);
243 }
244 
245 void CodeGenFunction::EmitMCountInstrumentation() {
246   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247 
248   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                        Target.getMCountName());
250   Builder.CreateCall(MCountFn);
251 }
252 
253 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                     llvm::Function *Fn,
255                                     const CGFunctionInfo &FnInfo,
256                                     const FunctionArgList &Args,
257                                     SourceLocation StartLoc) {
258   const Decl *D = GD.getDecl();
259 
260   DidCallStackSave = false;
261   CurCodeDecl = CurFuncDecl = D;
262   FnRetTy = RetTy;
263   CurFn = Fn;
264   CurFnInfo = &FnInfo;
265   assert(CurFn->isDeclaration() && "Function already has body?");
266 
267   // Pass inline keyword to optimizer if it appears explicitly on any
268   // declaration.
269   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
271            RE = FD->redecls_end(); RI != RE; ++RI)
272       if (RI->isInlineSpecified()) {
273         Fn->addFnAttr(llvm::Attribute::InlineHint);
274         break;
275       }
276 
277   if (getContext().getLangOptions().OpenCL) {
278     // Add metadata for a kernel function.
279     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
280       if (FD->hasAttr<OpenCLKernelAttr>()) {
281         llvm::LLVMContext &Context = getLLVMContext();
282         llvm::NamedMDNode *OpenCLMetadata =
283           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
284 
285         llvm::Value *Op = Fn;
286         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
287       }
288   }
289 
290   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
291 
292   // Create a marker to make it easy to insert allocas into the entryblock
293   // later.  Don't create this with the builder, because we don't want it
294   // folded.
295   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
296   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
297   if (Builder.isNamePreserving())
298     AllocaInsertPt->setName("allocapt");
299 
300   ReturnBlock = getJumpDestInCurrentScope("return");
301 
302   Builder.SetInsertPoint(EntryBB);
303 
304   // Emit subprogram debug descriptor.
305   if (CGDebugInfo *DI = getDebugInfo()) {
306     unsigned NumArgs = 0;
307     QualType *ArgsArray = new QualType[Args.size()];
308     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
309 	 i != e; ++i) {
310       ArgsArray[NumArgs++] = (*i)->getType();
311     }
312 
313     QualType FnType =
314       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
315                                    FunctionProtoType::ExtProtoInfo());
316 
317     delete[] ArgsArray;
318 
319     DI->setLocation(StartLoc);
320     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
321   }
322 
323   if (ShouldInstrumentFunction())
324     EmitFunctionInstrumentation("__cyg_profile_func_enter");
325 
326   if (CGM.getCodeGenOpts().InstrumentForProfiling)
327     EmitMCountInstrumentation();
328 
329   if (RetTy->isVoidType()) {
330     // Void type; nothing to return.
331     ReturnValue = 0;
332   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
333              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
334     // Indirect aggregate return; emit returned value directly into sret slot.
335     // This reduces code size, and affects correctness in C++.
336     ReturnValue = CurFn->arg_begin();
337   } else {
338     ReturnValue = CreateIRTemp(RetTy, "retval");
339 
340     // Tell the epilog emitter to autorelease the result.  We do this
341     // now so that various specialized functions can suppress it
342     // during their IR-generation.
343     if (getLangOptions().ObjCAutoRefCount &&
344         !CurFnInfo->isReturnsRetained() &&
345         RetTy->isObjCRetainableType())
346       AutoreleaseResult = true;
347   }
348 
349   EmitStartEHSpec(CurCodeDecl);
350 
351   PrologueCleanupDepth = EHStack.stable_begin();
352   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
353 
354   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
355     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
356     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
357     if (MD->getParent()->isLambda() &&
358         MD->getOverloadedOperator() == OO_Call) {
359       // We're in a lambda; figure out the captures.
360       MD->getParent()->getCaptureFields(LambdaCaptureFields,
361                                         LambdaThisCaptureField);
362       if (LambdaThisCaptureField) {
363         // If this lambda captures this, load it.
364         LValue ThisLValue = EmitLValueForField(CXXABIThisValue,
365                                                LambdaThisCaptureField, 0);
366         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
367       }
368     } else {
369       // Not in a lambda; just use 'this' from the method.
370       // FIXME: Should we generate a new load for each use of 'this'?  The
371       // fast register allocator would be happier...
372       CXXThisValue = CXXABIThisValue;
373     }
374   }
375 
376   // If any of the arguments have a variably modified type, make sure to
377   // emit the type size.
378   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
379        i != e; ++i) {
380     QualType Ty = (*i)->getType();
381 
382     if (Ty->isVariablyModifiedType())
383       EmitVariablyModifiedType(Ty);
384   }
385   // Emit a location at the end of the prologue.
386   if (CGDebugInfo *DI = getDebugInfo())
387     DI->EmitLocation(Builder, StartLoc);
388 }
389 
390 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
391   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
392   assert(FD->getBody());
393   EmitStmt(FD->getBody());
394 }
395 
396 /// Tries to mark the given function nounwind based on the
397 /// non-existence of any throwing calls within it.  We believe this is
398 /// lightweight enough to do at -O0.
399 static void TryMarkNoThrow(llvm::Function *F) {
400   // LLVM treats 'nounwind' on a function as part of the type, so we
401   // can't do this on functions that can be overwritten.
402   if (F->mayBeOverridden()) return;
403 
404   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
405     for (llvm::BasicBlock::iterator
406            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
407       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
408         if (!Call->doesNotThrow())
409           return;
410       } else if (isa<llvm::ResumeInst>(&*BI)) {
411         return;
412       }
413   F->setDoesNotThrow(true);
414 }
415 
416 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
417                                    const CGFunctionInfo &FnInfo) {
418   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
419 
420   // Check if we should generate debug info for this function.
421   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
422     DebugInfo = CGM.getModuleDebugInfo();
423 
424   FunctionArgList Args;
425   QualType ResTy = FD->getResultType();
426 
427   CurGD = GD;
428   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
429     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
430 
431   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
432     Args.push_back(FD->getParamDecl(i));
433 
434   SourceRange BodyRange;
435   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
436 
437   // Emit the standard function prologue.
438   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
439 
440   // Generate the body of the function.
441   if (isa<CXXDestructorDecl>(FD))
442     EmitDestructorBody(Args);
443   else if (isa<CXXConstructorDecl>(FD))
444     EmitConstructorBody(Args);
445   else if (getContext().getLangOptions().CUDA &&
446            !CGM.getCodeGenOpts().CUDAIsDevice &&
447            FD->hasAttr<CUDAGlobalAttr>())
448     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
449   else if (isa<CXXConversionDecl>(FD) &&
450            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
451     // The lambda conversion to block pointer is special; the semantics can't be
452     // expressed in the AST, so IRGen needs to special-case it.
453     EmitLambdaToBlockPointerBody(Args);
454   } else if (isa<CXXMethodDecl>(FD) &&
455              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
456     // The lambda "__invoke" function is special, because it forwards or
457     // clones the body of the function call operator (but is actually static).
458     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
459   }
460   else
461     EmitFunctionBody(Args);
462 
463   // Emit the standard function epilogue.
464   FinishFunction(BodyRange.getEnd());
465 
466   // If we haven't marked the function nothrow through other means, do
467   // a quick pass now to see if we can.
468   if (!CurFn->doesNotThrow())
469     TryMarkNoThrow(CurFn);
470 }
471 
472 /// ContainsLabel - Return true if the statement contains a label in it.  If
473 /// this statement is not executed normally, it not containing a label means
474 /// that we can just remove the code.
475 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
476   // Null statement, not a label!
477   if (S == 0) return false;
478 
479   // If this is a label, we have to emit the code, consider something like:
480   // if (0) {  ...  foo:  bar(); }  goto foo;
481   //
482   // TODO: If anyone cared, we could track __label__'s, since we know that you
483   // can't jump to one from outside their declared region.
484   if (isa<LabelStmt>(S))
485     return true;
486 
487   // If this is a case/default statement, and we haven't seen a switch, we have
488   // to emit the code.
489   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
490     return true;
491 
492   // If this is a switch statement, we want to ignore cases below it.
493   if (isa<SwitchStmt>(S))
494     IgnoreCaseStmts = true;
495 
496   // Scan subexpressions for verboten labels.
497   for (Stmt::const_child_range I = S->children(); I; ++I)
498     if (ContainsLabel(*I, IgnoreCaseStmts))
499       return true;
500 
501   return false;
502 }
503 
504 /// containsBreak - Return true if the statement contains a break out of it.
505 /// If the statement (recursively) contains a switch or loop with a break
506 /// inside of it, this is fine.
507 bool CodeGenFunction::containsBreak(const Stmt *S) {
508   // Null statement, not a label!
509   if (S == 0) return false;
510 
511   // If this is a switch or loop that defines its own break scope, then we can
512   // include it and anything inside of it.
513   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
514       isa<ForStmt>(S))
515     return false;
516 
517   if (isa<BreakStmt>(S))
518     return true;
519 
520   // Scan subexpressions for verboten breaks.
521   for (Stmt::const_child_range I = S->children(); I; ++I)
522     if (containsBreak(*I))
523       return true;
524 
525   return false;
526 }
527 
528 
529 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
530 /// to a constant, or if it does but contains a label, return false.  If it
531 /// constant folds return true and set the boolean result in Result.
532 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
533                                                    bool &ResultBool) {
534   llvm::APInt ResultInt;
535   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
536     return false;
537 
538   ResultBool = ResultInt.getBoolValue();
539   return true;
540 }
541 
542 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
543 /// to a constant, or if it does but contains a label, return false.  If it
544 /// constant folds return true and set the folded value.
545 bool CodeGenFunction::
546 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
547   // FIXME: Rename and handle conversion of other evaluatable things
548   // to bool.
549   llvm::APSInt Int;
550   if (!Cond->EvaluateAsInt(Int, getContext()))
551     return false;  // Not foldable, not integer or not fully evaluatable.
552 
553   if (CodeGenFunction::ContainsLabel(Cond))
554     return false;  // Contains a label.
555 
556   ResultInt = Int;
557   return true;
558 }
559 
560 
561 
562 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
563 /// statement) to the specified blocks.  Based on the condition, this might try
564 /// to simplify the codegen of the conditional based on the branch.
565 ///
566 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
567                                            llvm::BasicBlock *TrueBlock,
568                                            llvm::BasicBlock *FalseBlock) {
569   Cond = Cond->IgnoreParens();
570 
571   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
572     // Handle X && Y in a condition.
573     if (CondBOp->getOpcode() == BO_LAnd) {
574       // If we have "1 && X", simplify the code.  "0 && X" would have constant
575       // folded if the case was simple enough.
576       bool ConstantBool = false;
577       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
578           ConstantBool) {
579         // br(1 && X) -> br(X).
580         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
581       }
582 
583       // If we have "X && 1", simplify the code to use an uncond branch.
584       // "X && 0" would have been constant folded to 0.
585       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
586           ConstantBool) {
587         // br(X && 1) -> br(X).
588         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
589       }
590 
591       // Emit the LHS as a conditional.  If the LHS conditional is false, we
592       // want to jump to the FalseBlock.
593       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
594 
595       ConditionalEvaluation eval(*this);
596       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
597       EmitBlock(LHSTrue);
598 
599       // Any temporaries created here are conditional.
600       eval.begin(*this);
601       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
602       eval.end(*this);
603 
604       return;
605     }
606 
607     if (CondBOp->getOpcode() == BO_LOr) {
608       // If we have "0 || X", simplify the code.  "1 || X" would have constant
609       // folded if the case was simple enough.
610       bool ConstantBool = false;
611       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
612           !ConstantBool) {
613         // br(0 || X) -> br(X).
614         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
615       }
616 
617       // If we have "X || 0", simplify the code to use an uncond branch.
618       // "X || 1" would have been constant folded to 1.
619       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
620           !ConstantBool) {
621         // br(X || 0) -> br(X).
622         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
623       }
624 
625       // Emit the LHS as a conditional.  If the LHS conditional is true, we
626       // want to jump to the TrueBlock.
627       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
628 
629       ConditionalEvaluation eval(*this);
630       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
631       EmitBlock(LHSFalse);
632 
633       // Any temporaries created here are conditional.
634       eval.begin(*this);
635       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
636       eval.end(*this);
637 
638       return;
639     }
640   }
641 
642   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
643     // br(!x, t, f) -> br(x, f, t)
644     if (CondUOp->getOpcode() == UO_LNot)
645       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
646   }
647 
648   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
649     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
650     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
651     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
652 
653     ConditionalEvaluation cond(*this);
654     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
655 
656     cond.begin(*this);
657     EmitBlock(LHSBlock);
658     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
659     cond.end(*this);
660 
661     cond.begin(*this);
662     EmitBlock(RHSBlock);
663     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
664     cond.end(*this);
665 
666     return;
667   }
668 
669   // Emit the code with the fully general case.
670   llvm::Value *CondV = EvaluateExprAsBool(Cond);
671   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
672 }
673 
674 /// ErrorUnsupported - Print out an error that codegen doesn't support the
675 /// specified stmt yet.
676 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
677                                        bool OmitOnError) {
678   CGM.ErrorUnsupported(S, Type, OmitOnError);
679 }
680 
681 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
682 /// variable-length array whose elements have a non-zero bit-pattern.
683 ///
684 /// \param src - a char* pointing to the bit-pattern for a single
685 /// base element of the array
686 /// \param sizeInChars - the total size of the VLA, in chars
687 /// \param align - the total alignment of the VLA
688 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
689                                llvm::Value *dest, llvm::Value *src,
690                                llvm::Value *sizeInChars) {
691   std::pair<CharUnits,CharUnits> baseSizeAndAlign
692     = CGF.getContext().getTypeInfoInChars(baseType);
693 
694   CGBuilderTy &Builder = CGF.Builder;
695 
696   llvm::Value *baseSizeInChars
697     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
698 
699   llvm::Type *i8p = Builder.getInt8PtrTy();
700 
701   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
702   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
703 
704   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
705   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
706   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
707 
708   // Make a loop over the VLA.  C99 guarantees that the VLA element
709   // count must be nonzero.
710   CGF.EmitBlock(loopBB);
711 
712   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
713   cur->addIncoming(begin, originBB);
714 
715   // memcpy the individual element bit-pattern.
716   Builder.CreateMemCpy(cur, src, baseSizeInChars,
717                        baseSizeAndAlign.second.getQuantity(),
718                        /*volatile*/ false);
719 
720   // Go to the next element.
721   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
722 
723   // Leave if that's the end of the VLA.
724   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
725   Builder.CreateCondBr(done, contBB, loopBB);
726   cur->addIncoming(next, loopBB);
727 
728   CGF.EmitBlock(contBB);
729 }
730 
731 void
732 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
733   // Ignore empty classes in C++.
734   if (getContext().getLangOptions().CPlusPlus) {
735     if (const RecordType *RT = Ty->getAs<RecordType>()) {
736       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
737         return;
738     }
739   }
740 
741   // Cast the dest ptr to the appropriate i8 pointer type.
742   unsigned DestAS =
743     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
744   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
745   if (DestPtr->getType() != BP)
746     DestPtr = Builder.CreateBitCast(DestPtr, BP);
747 
748   // Get size and alignment info for this aggregate.
749   std::pair<CharUnits, CharUnits> TypeInfo =
750     getContext().getTypeInfoInChars(Ty);
751   CharUnits Size = TypeInfo.first;
752   CharUnits Align = TypeInfo.second;
753 
754   llvm::Value *SizeVal;
755   const VariableArrayType *vla;
756 
757   // Don't bother emitting a zero-byte memset.
758   if (Size.isZero()) {
759     // But note that getTypeInfo returns 0 for a VLA.
760     if (const VariableArrayType *vlaType =
761           dyn_cast_or_null<VariableArrayType>(
762                                           getContext().getAsArrayType(Ty))) {
763       QualType eltType;
764       llvm::Value *numElts;
765       llvm::tie(numElts, eltType) = getVLASize(vlaType);
766 
767       SizeVal = numElts;
768       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
769       if (!eltSize.isOne())
770         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
771       vla = vlaType;
772     } else {
773       return;
774     }
775   } else {
776     SizeVal = CGM.getSize(Size);
777     vla = 0;
778   }
779 
780   // If the type contains a pointer to data member we can't memset it to zero.
781   // Instead, create a null constant and copy it to the destination.
782   // TODO: there are other patterns besides zero that we can usefully memset,
783   // like -1, which happens to be the pattern used by member-pointers.
784   if (!CGM.getTypes().isZeroInitializable(Ty)) {
785     // For a VLA, emit a single element, then splat that over the VLA.
786     if (vla) Ty = getContext().getBaseElementType(vla);
787 
788     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
789 
790     llvm::GlobalVariable *NullVariable =
791       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
792                                /*isConstant=*/true,
793                                llvm::GlobalVariable::PrivateLinkage,
794                                NullConstant, Twine());
795     llvm::Value *SrcPtr =
796       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
797 
798     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
799 
800     // Get and call the appropriate llvm.memcpy overload.
801     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
802     return;
803   }
804 
805   // Otherwise, just memset the whole thing to zero.  This is legal
806   // because in LLVM, all default initializers (other than the ones we just
807   // handled above) are guaranteed to have a bit pattern of all zeros.
808   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
809                        Align.getQuantity(), false);
810 }
811 
812 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
813   // Make sure that there is a block for the indirect goto.
814   if (IndirectBranch == 0)
815     GetIndirectGotoBlock();
816 
817   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
818 
819   // Make sure the indirect branch includes all of the address-taken blocks.
820   IndirectBranch->addDestination(BB);
821   return llvm::BlockAddress::get(CurFn, BB);
822 }
823 
824 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
825   // If we already made the indirect branch for indirect goto, return its block.
826   if (IndirectBranch) return IndirectBranch->getParent();
827 
828   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
829 
830   // Create the PHI node that indirect gotos will add entries to.
831   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
832                                               "indirect.goto.dest");
833 
834   // Create the indirect branch instruction.
835   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
836   return IndirectBranch->getParent();
837 }
838 
839 /// Computes the length of an array in elements, as well as the base
840 /// element type and a properly-typed first element pointer.
841 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
842                                               QualType &baseType,
843                                               llvm::Value *&addr) {
844   const ArrayType *arrayType = origArrayType;
845 
846   // If it's a VLA, we have to load the stored size.  Note that
847   // this is the size of the VLA in bytes, not its size in elements.
848   llvm::Value *numVLAElements = 0;
849   if (isa<VariableArrayType>(arrayType)) {
850     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
851 
852     // Walk into all VLAs.  This doesn't require changes to addr,
853     // which has type T* where T is the first non-VLA element type.
854     do {
855       QualType elementType = arrayType->getElementType();
856       arrayType = getContext().getAsArrayType(elementType);
857 
858       // If we only have VLA components, 'addr' requires no adjustment.
859       if (!arrayType) {
860         baseType = elementType;
861         return numVLAElements;
862       }
863     } while (isa<VariableArrayType>(arrayType));
864 
865     // We get out here only if we find a constant array type
866     // inside the VLA.
867   }
868 
869   // We have some number of constant-length arrays, so addr should
870   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
871   // down to the first element of addr.
872   SmallVector<llvm::Value*, 8> gepIndices;
873 
874   // GEP down to the array type.
875   llvm::ConstantInt *zero = Builder.getInt32(0);
876   gepIndices.push_back(zero);
877 
878   // It's more efficient to calculate the count from the LLVM
879   // constant-length arrays than to re-evaluate the array bounds.
880   uint64_t countFromCLAs = 1;
881 
882   llvm::ArrayType *llvmArrayType =
883     cast<llvm::ArrayType>(
884       cast<llvm::PointerType>(addr->getType())->getElementType());
885   while (true) {
886     assert(isa<ConstantArrayType>(arrayType));
887     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
888              == llvmArrayType->getNumElements());
889 
890     gepIndices.push_back(zero);
891     countFromCLAs *= llvmArrayType->getNumElements();
892 
893     llvmArrayType =
894       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
895     if (!llvmArrayType) break;
896 
897     arrayType = getContext().getAsArrayType(arrayType->getElementType());
898     assert(arrayType && "LLVM and Clang types are out-of-synch");
899   }
900 
901   baseType = arrayType->getElementType();
902 
903   // Create the actual GEP.
904   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
905 
906   llvm::Value *numElements
907     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
908 
909   // If we had any VLA dimensions, factor them in.
910   if (numVLAElements)
911     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
912 
913   return numElements;
914 }
915 
916 std::pair<llvm::Value*, QualType>
917 CodeGenFunction::getVLASize(QualType type) {
918   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
919   assert(vla && "type was not a variable array type!");
920   return getVLASize(vla);
921 }
922 
923 std::pair<llvm::Value*, QualType>
924 CodeGenFunction::getVLASize(const VariableArrayType *type) {
925   // The number of elements so far; always size_t.
926   llvm::Value *numElements = 0;
927 
928   QualType elementType;
929   do {
930     elementType = type->getElementType();
931     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
932     assert(vlaSize && "no size for VLA!");
933     assert(vlaSize->getType() == SizeTy);
934 
935     if (!numElements) {
936       numElements = vlaSize;
937     } else {
938       // It's undefined behavior if this wraps around, so mark it that way.
939       numElements = Builder.CreateNUWMul(numElements, vlaSize);
940     }
941   } while ((type = getContext().getAsVariableArrayType(elementType)));
942 
943   return std::pair<llvm::Value*,QualType>(numElements, elementType);
944 }
945 
946 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
947   assert(type->isVariablyModifiedType() &&
948          "Must pass variably modified type to EmitVLASizes!");
949 
950   EnsureInsertPoint();
951 
952   // We're going to walk down into the type and look for VLA
953   // expressions.
954   do {
955     assert(type->isVariablyModifiedType());
956 
957     const Type *ty = type.getTypePtr();
958     switch (ty->getTypeClass()) {
959 
960 #define TYPE(Class, Base)
961 #define ABSTRACT_TYPE(Class, Base)
962 #define NON_CANONICAL_TYPE(Class, Base)
963 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
964 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
965 #include "clang/AST/TypeNodes.def"
966       llvm_unreachable("unexpected dependent type!");
967 
968     // These types are never variably-modified.
969     case Type::Builtin:
970     case Type::Complex:
971     case Type::Vector:
972     case Type::ExtVector:
973     case Type::Record:
974     case Type::Enum:
975     case Type::Elaborated:
976     case Type::TemplateSpecialization:
977     case Type::ObjCObject:
978     case Type::ObjCInterface:
979     case Type::ObjCObjectPointer:
980       llvm_unreachable("type class is never variably-modified!");
981 
982     case Type::Pointer:
983       type = cast<PointerType>(ty)->getPointeeType();
984       break;
985 
986     case Type::BlockPointer:
987       type = cast<BlockPointerType>(ty)->getPointeeType();
988       break;
989 
990     case Type::LValueReference:
991     case Type::RValueReference:
992       type = cast<ReferenceType>(ty)->getPointeeType();
993       break;
994 
995     case Type::MemberPointer:
996       type = cast<MemberPointerType>(ty)->getPointeeType();
997       break;
998 
999     case Type::ConstantArray:
1000     case Type::IncompleteArray:
1001       // Losing element qualification here is fine.
1002       type = cast<ArrayType>(ty)->getElementType();
1003       break;
1004 
1005     case Type::VariableArray: {
1006       // Losing element qualification here is fine.
1007       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1008 
1009       // Unknown size indication requires no size computation.
1010       // Otherwise, evaluate and record it.
1011       if (const Expr *size = vat->getSizeExpr()) {
1012         // It's possible that we might have emitted this already,
1013         // e.g. with a typedef and a pointer to it.
1014         llvm::Value *&entry = VLASizeMap[size];
1015         if (!entry) {
1016           // Always zexting here would be wrong if it weren't
1017           // undefined behavior to have a negative bound.
1018           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1019                                         /*signed*/ false);
1020         }
1021       }
1022       type = vat->getElementType();
1023       break;
1024     }
1025 
1026     case Type::FunctionProto:
1027     case Type::FunctionNoProto:
1028       type = cast<FunctionType>(ty)->getResultType();
1029       break;
1030 
1031     case Type::Paren:
1032     case Type::TypeOf:
1033     case Type::UnaryTransform:
1034     case Type::Attributed:
1035     case Type::SubstTemplateTypeParm:
1036       // Keep walking after single level desugaring.
1037       type = type.getSingleStepDesugaredType(getContext());
1038       break;
1039 
1040     case Type::Typedef:
1041     case Type::Decltype:
1042     case Type::Auto:
1043       // Stop walking: nothing to do.
1044       return;
1045 
1046     case Type::TypeOfExpr:
1047       // Stop walking: emit typeof expression.
1048       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1049       return;
1050 
1051     case Type::Atomic:
1052       type = cast<AtomicType>(ty)->getValueType();
1053       break;
1054     }
1055   } while (type->isVariablyModifiedType());
1056 }
1057 
1058 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1059   if (getContext().getBuiltinVaListType()->isArrayType())
1060     return EmitScalarExpr(E);
1061   return EmitLValue(E).getAddress();
1062 }
1063 
1064 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1065                                               llvm::Constant *Init) {
1066   assert (Init && "Invalid DeclRefExpr initializer!");
1067   if (CGDebugInfo *Dbg = getDebugInfo())
1068     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1069 }
1070 
1071 CodeGenFunction::PeepholeProtection
1072 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1073   // At the moment, the only aggressive peephole we do in IR gen
1074   // is trunc(zext) folding, but if we add more, we can easily
1075   // extend this protection.
1076 
1077   if (!rvalue.isScalar()) return PeepholeProtection();
1078   llvm::Value *value = rvalue.getScalarVal();
1079   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1080 
1081   // Just make an extra bitcast.
1082   assert(HaveInsertPoint());
1083   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1084                                                   Builder.GetInsertBlock());
1085 
1086   PeepholeProtection protection;
1087   protection.Inst = inst;
1088   return protection;
1089 }
1090 
1091 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1092   if (!protection.Inst) return;
1093 
1094   // In theory, we could try to duplicate the peepholes now, but whatever.
1095   protection.Inst->eraseFromParent();
1096 }
1097 
1098 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1099                                                  llvm::Value *AnnotatedVal,
1100                                                  llvm::StringRef AnnotationStr,
1101                                                  SourceLocation Location) {
1102   llvm::Value *Args[4] = {
1103     AnnotatedVal,
1104     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1105     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1106     CGM.EmitAnnotationLineNo(Location)
1107   };
1108   return Builder.CreateCall(AnnotationFn, Args);
1109 }
1110 
1111 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1112   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1113   // FIXME We create a new bitcast for every annotation because that's what
1114   // llvm-gcc was doing.
1115   for (specific_attr_iterator<AnnotateAttr>
1116        ai = D->specific_attr_begin<AnnotateAttr>(),
1117        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1118     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1119                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1120                        (*ai)->getAnnotation(), D->getLocation());
1121 }
1122 
1123 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1124                                                    llvm::Value *V) {
1125   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1126   llvm::Type *VTy = V->getType();
1127   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1128                                     CGM.Int8PtrTy);
1129 
1130   for (specific_attr_iterator<AnnotateAttr>
1131        ai = D->specific_attr_begin<AnnotateAttr>(),
1132        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1133     // FIXME Always emit the cast inst so we can differentiate between
1134     // annotation on the first field of a struct and annotation on the struct
1135     // itself.
1136     if (VTy != CGM.Int8PtrTy)
1137       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1138     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1139     V = Builder.CreateBitCast(V, VTy);
1140   }
1141 
1142   return V;
1143 }
1144