1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78 
79   SetFastMathFlags(CurFPFeatures);
80   SetFPModel();
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize();
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFPModel() {
112   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
113   auto fpExceptionBehavior = ToConstrainedExceptMD(
114                                getLangOpts().getFPExceptionMode());
115 
116   Builder.setDefaultConstrainedRounding(RM);
117   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
118   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
119                              RM != llvm::RoundingMode::NearestTiesToEven);
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior =
159       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getFPExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
186                                          FPFeatures.getAllowReciprocal() &&
187                                          FPFeatures.getAllowApproxFunc() &&
188                                          FPFeatures.getNoSignedZero());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                                 /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::ConstantMatrix:
251     case Type::FunctionProto:
252     case Type::FunctionNoProto:
253     case Type::Enum:
254     case Type::ObjCObjectPointer:
255     case Type::Pipe:
256     case Type::ExtInt:
257       return TEK_Scalar;
258 
259     // Complexes.
260     case Type::Complex:
261       return TEK_Complex;
262 
263     // Arrays, records, and Objective-C objects.
264     case Type::ConstantArray:
265     case Type::IncompleteArray:
266     case Type::VariableArray:
267     case Type::Record:
268     case Type::ObjCObject:
269     case Type::ObjCInterface:
270       return TEK_Aggregate;
271 
272     // We operate on atomic values according to their underlying type.
273     case Type::Atomic:
274       type = cast<AtomicType>(type)->getValueType();
275       continue;
276     }
277     llvm_unreachable("unknown type kind!");
278   }
279 }
280 
281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
282   // For cleanliness, we try to avoid emitting the return block for
283   // simple cases.
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   if (CurBB) {
287     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
288 
289     // We have a valid insert point, reuse it if it is empty or there are no
290     // explicit jumps to the return block.
291     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
292       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
293       delete ReturnBlock.getBlock();
294       ReturnBlock = JumpDest();
295     } else
296       EmitBlock(ReturnBlock.getBlock());
297     return llvm::DebugLoc();
298   }
299 
300   // Otherwise, if the return block is the target of a single direct
301   // branch then we can just put the code in that block instead. This
302   // cleans up functions which started with a unified return block.
303   if (ReturnBlock.getBlock()->hasOneUse()) {
304     llvm::BranchInst *BI =
305       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
306     if (BI && BI->isUnconditional() &&
307         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
308       // Record/return the DebugLoc of the simple 'return' expression to be used
309       // later by the actual 'ret' instruction.
310       llvm::DebugLoc Loc = BI->getDebugLoc();
311       Builder.SetInsertPoint(BI->getParent());
312       BI->eraseFromParent();
313       delete ReturnBlock.getBlock();
314       ReturnBlock = JumpDest();
315       return Loc;
316     }
317   }
318 
319   // FIXME: We are at an unreachable point, there is no reason to emit the block
320   // unless it has uses. However, we still need a place to put the debug
321   // region.end for now.
322 
323   EmitBlock(ReturnBlock.getBlock());
324   return llvm::DebugLoc();
325 }
326 
327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
328   if (!BB) return;
329   if (!BB->use_empty())
330     return CGF.CurFn->getBasicBlockList().push_back(BB);
331   delete BB;
332 }
333 
334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
335   assert(BreakContinueStack.empty() &&
336          "mismatched push/pop in break/continue stack!");
337 
338   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
339     && NumSimpleReturnExprs == NumReturnExprs
340     && ReturnBlock.getBlock()->use_empty();
341   // Usually the return expression is evaluated before the cleanup
342   // code.  If the function contains only a simple return statement,
343   // such as a constant, the location before the cleanup code becomes
344   // the last useful breakpoint in the function, because the simple
345   // return expression will be evaluated after the cleanup code. To be
346   // safe, set the debug location for cleanup code to the location of
347   // the return statement.  Otherwise the cleanup code should be at the
348   // end of the function's lexical scope.
349   //
350   // If there are multiple branches to the return block, the branch
351   // instructions will get the location of the return statements and
352   // all will be fine.
353   if (CGDebugInfo *DI = getDebugInfo()) {
354     if (OnlySimpleReturnStmts)
355       DI->EmitLocation(Builder, LastStopPoint);
356     else
357       DI->EmitLocation(Builder, EndLoc);
358   }
359 
360   // Pop any cleanups that might have been associated with the
361   // parameters.  Do this in whatever block we're currently in; it's
362   // important to do this before we enter the return block or return
363   // edges will be *really* confused.
364   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
365   bool HasOnlyLifetimeMarkers =
366       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
367   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
368   if (HasCleanups) {
369     // Make sure the line table doesn't jump back into the body for
370     // the ret after it's been at EndLoc.
371     Optional<ApplyDebugLocation> AL;
372     if (CGDebugInfo *DI = getDebugInfo()) {
373       if (OnlySimpleReturnStmts)
374         DI->EmitLocation(Builder, EndLoc);
375       else
376         // We may not have a valid end location. Try to apply it anyway, and
377         // fall back to an artificial location if needed.
378         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379     }
380 
381     PopCleanupBlocks(PrologueCleanupDepth);
382   }
383 
384   // Emit function epilog (to return).
385   llvm::DebugLoc Loc = EmitReturnBlock();
386 
387   if (ShouldInstrumentFunction()) {
388     if (CGM.getCodeGenOpts().InstrumentFunctions)
389       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
390     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
391       CurFn->addFnAttr("instrument-function-exit-inlined",
392                        "__cyg_profile_func_exit");
393   }
394 
395   // Emit debug descriptor for function end.
396   if (CGDebugInfo *DI = getDebugInfo())
397     DI->EmitFunctionEnd(Builder, CurFn);
398 
399   // Reset the debug location to that of the simple 'return' expression, if any
400   // rather than that of the end of the function's scope '}'.
401   ApplyDebugLocation AL(*this, Loc);
402   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
403   EmitEndEHSpec(CurCodeDecl);
404 
405   assert(EHStack.empty() &&
406          "did not remove all scopes from cleanup stack!");
407 
408   // If someone did an indirect goto, emit the indirect goto block at the end of
409   // the function.
410   if (IndirectBranch) {
411     EmitBlock(IndirectBranch->getParent());
412     Builder.ClearInsertionPoint();
413   }
414 
415   // If some of our locals escaped, insert a call to llvm.localescape in the
416   // entry block.
417   if (!EscapedLocals.empty()) {
418     // Invert the map from local to index into a simple vector. There should be
419     // no holes.
420     SmallVector<llvm::Value *, 4> EscapeArgs;
421     EscapeArgs.resize(EscapedLocals.size());
422     for (auto &Pair : EscapedLocals)
423       EscapeArgs[Pair.second] = Pair.first;
424     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
425         &CGM.getModule(), llvm::Intrinsic::localescape);
426     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427   }
428 
429   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
430   llvm::Instruction *Ptr = AllocaInsertPt;
431   AllocaInsertPt = nullptr;
432   Ptr->eraseFromParent();
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
456            I = DeferredReplacements.begin(),
457            E = DeferredReplacements.end();
458        I != E; ++I) {
459     I->first->replaceAllUsesWith(I->second);
460     I->first->eraseFromParent();
461   }
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   // Add the required-vector-width attribute. This contains the max width from:
490   // 1. min-vector-width attribute used in the source program.
491   // 2. Any builtins used that have a vector width specified.
492   // 3. Values passed in and out of inline assembly.
493   // 4. Width of vector arguments and return types for this function.
494   // 5. Width of vector aguments and return types for functions called by this
495   //    function.
496   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
497 
498   // If we generated an unreachable return block, delete it now.
499   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
500     Builder.ClearInsertionPoint();
501     ReturnBlock.getBlock()->eraseFromParent();
502   }
503   if (ReturnValue.isValid()) {
504     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
505     if (RetAlloca && RetAlloca->use_empty()) {
506       RetAlloca->eraseFromParent();
507       ReturnValue = Address::invalid();
508     }
509   }
510 }
511 
512 /// ShouldInstrumentFunction - Return true if the current function should be
513 /// instrumented with __cyg_profile_func_* calls
514 bool CodeGenFunction::ShouldInstrumentFunction() {
515   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
516       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
517       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
518     return false;
519   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
520     return false;
521   return true;
522 }
523 
524 /// ShouldXRayInstrument - Return true if the current function should be
525 /// instrumented with XRay nop sleds.
526 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
527   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
528 }
529 
530 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
531 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
532 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
533   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
534          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
535           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
536               XRayInstrKind::Custom);
537 }
538 
539 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
540   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
541          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
542           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
543               XRayInstrKind::Typed);
544 }
545 
546 llvm::Constant *
547 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
548                                             llvm::Constant *Addr) {
549   // Addresses stored in prologue data can't require run-time fixups and must
550   // be PC-relative. Run-time fixups are undesirable because they necessitate
551   // writable text segments, which are unsafe. And absolute addresses are
552   // undesirable because they break PIE mode.
553 
554   // Add a layer of indirection through a private global. Taking its address
555   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
556   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
557                                       /*isConstant=*/true,
558                                       llvm::GlobalValue::PrivateLinkage, Addr);
559 
560   // Create a PC-relative address.
561   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
562   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
563   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
564   return (IntPtrTy == Int32Ty)
565              ? PCRelAsInt
566              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
567 }
568 
569 llvm::Value *
570 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
571                                           llvm::Value *EncodedAddr) {
572   // Reconstruct the address of the global.
573   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
574   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
575   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
576   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
577 
578   // Load the original pointer through the global.
579   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
580                             "decoded_addr");
581 }
582 
583 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
584                                                llvm::Function *Fn)
585 {
586   if (!FD->hasAttr<OpenCLKernelAttr>())
587     return;
588 
589   llvm::LLVMContext &Context = getLLVMContext();
590 
591   CGM.GenOpenCLArgMetadata(Fn, FD, this);
592 
593   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
594     QualType HintQTy = A->getTypeHint();
595     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
596     bool IsSignedInteger =
597         HintQTy->isSignedIntegerType() ||
598         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
599     llvm::Metadata *AttrMDArgs[] = {
600         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
601             CGM.getTypes().ConvertType(A->getTypeHint()))),
602         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
603             llvm::IntegerType::get(Context, 32),
604             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
605     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
606   }
607 
608   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
609     llvm::Metadata *AttrMDArgs[] = {
610         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
611         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
612         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
613     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
625           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
628     Fn->setMetadata("intel_reqd_sub_group_size",
629                     llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 }
632 
633 /// Determine whether the function F ends with a return stmt.
634 static bool endsWithReturn(const Decl* F) {
635   const Stmt *Body = nullptr;
636   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
637     Body = FD->getBody();
638   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
639     Body = OMD->getBody();
640 
641   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
642     auto LastStmt = CS->body_rbegin();
643     if (LastStmt != CS->body_rend())
644       return isa<ReturnStmt>(*LastStmt);
645   }
646   return false;
647 }
648 
649 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
650   if (SanOpts.has(SanitizerKind::Thread)) {
651     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
652     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
653   }
654 }
655 
656 /// Check if the return value of this function requires sanitization.
657 bool CodeGenFunction::requiresReturnValueCheck() const {
658   return requiresReturnValueNullabilityCheck() ||
659          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
660           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
661 }
662 
663 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
664   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
665   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
666       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
667       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
668     return false;
669 
670   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
671     return false;
672 
673   if (MD->getNumParams() == 2) {
674     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
675     if (!PT || !PT->isVoidPointerType() ||
676         !PT->getPointeeType().isConstQualified())
677       return false;
678   }
679 
680   return true;
681 }
682 
683 /// Return the UBSan prologue signature for \p FD if one is available.
684 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
685                                             const FunctionDecl *FD) {
686   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
687     if (!MD->isStatic())
688       return nullptr;
689   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
693                                     llvm::Function *Fn,
694                                     const CGFunctionInfo &FnInfo,
695                                     const FunctionArgList &Args,
696                                     SourceLocation Loc,
697                                     SourceLocation StartLoc) {
698   assert(!CurFn &&
699          "Do not use a CodeGenFunction object for more than one function");
700 
701   const Decl *D = GD.getDecl();
702 
703   DidCallStackSave = false;
704   CurCodeDecl = D;
705   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
706     if (FD->usesSEHTry())
707       CurSEHParent = FD;
708   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
709   FnRetTy = RetTy;
710   CurFn = Fn;
711   CurFnInfo = &FnInfo;
712   assert(CurFn->isDeclaration() && "Function already has body?");
713 
714   // If this function has been blacklisted for any of the enabled sanitizers,
715   // disable the sanitizer for the function.
716   do {
717 #define SANITIZER(NAME, ID)                                                    \
718   if (SanOpts.empty())                                                         \
719     break;                                                                     \
720   if (SanOpts.has(SanitizerKind::ID))                                          \
721     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
722       SanOpts.set(SanitizerKind::ID, false);
723 
724 #include "clang/Basic/Sanitizers.def"
725 #undef SANITIZER
726   } while (0);
727 
728   if (D) {
729     // Apply the no_sanitize* attributes to SanOpts.
730     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
731       SanitizerMask mask = Attr->getMask();
732       SanOpts.Mask &= ~mask;
733       if (mask & SanitizerKind::Address)
734         SanOpts.set(SanitizerKind::KernelAddress, false);
735       if (mask & SanitizerKind::KernelAddress)
736         SanOpts.set(SanitizerKind::Address, false);
737       if (mask & SanitizerKind::HWAddress)
738         SanOpts.set(SanitizerKind::KernelHWAddress, false);
739       if (mask & SanitizerKind::KernelHWAddress)
740         SanOpts.set(SanitizerKind::HWAddress, false);
741     }
742   }
743 
744   // Apply sanitizer attributes to the function.
745   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
746     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
747   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
748     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
749   if (SanOpts.has(SanitizerKind::MemTag))
750     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
751   if (SanOpts.has(SanitizerKind::Thread))
752     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
753   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
754     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
755   if (SanOpts.has(SanitizerKind::SafeStack))
756     Fn->addFnAttr(llvm::Attribute::SafeStack);
757   if (SanOpts.has(SanitizerKind::ShadowCallStack))
758     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
759 
760   // Apply fuzzing attribute to the function.
761   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
762     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
763 
764   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
765   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
766   if (SanOpts.has(SanitizerKind::Thread)) {
767     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
768       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
769       if (OMD->getMethodFamily() == OMF_dealloc ||
770           OMD->getMethodFamily() == OMF_initialize ||
771           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
772         markAsIgnoreThreadCheckingAtRuntime(Fn);
773       }
774     }
775   }
776 
777   // Ignore unrelated casts in STL allocate() since the allocator must cast
778   // from void* to T* before object initialization completes. Don't match on the
779   // namespace because not all allocators are in std::
780   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
781     if (matchesStlAllocatorFn(D, getContext()))
782       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
783   }
784 
785   // Ignore null checks in coroutine functions since the coroutines passes
786   // are not aware of how to move the extra UBSan instructions across the split
787   // coroutine boundaries.
788   if (D && SanOpts.has(SanitizerKind::Null))
789     if (const auto *FD = dyn_cast<FunctionDecl>(D))
790       if (FD->getBody() &&
791           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
792         SanOpts.Mask &= ~SanitizerKind::Null;
793 
794   // Apply xray attributes to the function (as a string, for now)
795   bool AlwaysXRayAttr = false;
796   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
797     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
798             XRayInstrKind::FunctionEntry) ||
799         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
800             XRayInstrKind::FunctionExit)) {
801       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
802         Fn->addFnAttr("function-instrument", "xray-always");
803         AlwaysXRayAttr = true;
804       }
805       if (XRayAttr->neverXRayInstrument())
806         Fn->addFnAttr("function-instrument", "xray-never");
807       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
808         if (ShouldXRayInstrumentFunction())
809           Fn->addFnAttr("xray-log-args",
810                         llvm::utostr(LogArgs->getArgumentCount()));
811     }
812   } else {
813     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
814       Fn->addFnAttr(
815           "xray-instruction-threshold",
816           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
817   }
818 
819   if (ShouldXRayInstrumentFunction()) {
820     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
821       Fn->addFnAttr("xray-ignore-loops");
822 
823     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
824             XRayInstrKind::FunctionExit))
825       Fn->addFnAttr("xray-skip-exit");
826 
827     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
828             XRayInstrKind::FunctionEntry))
829       Fn->addFnAttr("xray-skip-entry");
830 
831     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
832     if (FuncGroups > 1) {
833       auto FuncName = llvm::makeArrayRef<uint8_t>(
834           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
835       auto Group = crc32(FuncName) % FuncGroups;
836       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
837           !AlwaysXRayAttr)
838         Fn->addFnAttr("function-instrument", "xray-never");
839     }
840   }
841 
842   unsigned Count, Offset;
843   if (const auto *Attr =
844           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
845     Count = Attr->getCount();
846     Offset = Attr->getOffset();
847   } else {
848     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
849     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
850   }
851   if (Count && Offset <= Count) {
852     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
853     if (Offset)
854       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
855   }
856 
857   // Add no-jump-tables value.
858   Fn->addFnAttr("no-jump-tables",
859                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
860 
861   // Add no-inline-line-tables value.
862   if (CGM.getCodeGenOpts().NoInlineLineTables)
863     Fn->addFnAttr("no-inline-line-tables");
864 
865   // Add profile-sample-accurate value.
866   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
867     Fn->addFnAttr("profile-sample-accurate");
868 
869   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
870     Fn->addFnAttr("use-sample-profile");
871 
872   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
873     Fn->addFnAttr("cfi-canonical-jump-table");
874 
875   if (getLangOpts().OpenCL) {
876     // Add metadata for a kernel function.
877     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
878       EmitOpenCLKernelMetadata(FD, Fn);
879   }
880 
881   // If we are checking function types, emit a function type signature as
882   // prologue data.
883   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
884     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
885       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
886         // Remove any (C++17) exception specifications, to allow calling e.g. a
887         // noexcept function through a non-noexcept pointer.
888         auto ProtoTy =
889           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
890                                                         EST_None);
891         llvm::Constant *FTRTTIConst =
892             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
893         llvm::Constant *FTRTTIConstEncoded =
894             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
895         llvm::Constant *PrologueStructElems[] = {PrologueSig,
896                                                  FTRTTIConstEncoded};
897         llvm::Constant *PrologueStructConst =
898             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
899         Fn->setPrologueData(PrologueStructConst);
900       }
901     }
902   }
903 
904   // If we're checking nullability, we need to know whether we can check the
905   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
906   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
907     auto Nullability = FnRetTy->getNullability(getContext());
908     if (Nullability && *Nullability == NullabilityKind::NonNull) {
909       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
910             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
911         RetValNullabilityPrecondition =
912             llvm::ConstantInt::getTrue(getLLVMContext());
913     }
914   }
915 
916   // If we're in C++ mode and the function name is "main", it is guaranteed
917   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
918   // used within a program").
919   //
920   // OpenCL C 2.0 v2.2-11 s6.9.i:
921   //     Recursion is not supported.
922   //
923   // SYCL v1.2.1 s3.10:
924   //     kernels cannot include RTTI information, exception classes,
925   //     recursive code, virtual functions or make use of C++ libraries that
926   //     are not compiled for the device.
927   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
928     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
929         getLangOpts().SYCLIsDevice ||
930         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
931       Fn->addFnAttr(llvm::Attribute::NoRecurse);
932   }
933 
934   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
935     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
936     if (FD->hasAttr<StrictFPAttr>())
937       Fn->addFnAttr(llvm::Attribute::StrictFP);
938   }
939 
940   // If a custom alignment is used, force realigning to this alignment on
941   // any main function which certainly will need it.
942   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
943     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
944         CGM.getCodeGenOpts().StackAlignment)
945       Fn->addFnAttr("stackrealign");
946 
947   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
948 
949   // Create a marker to make it easy to insert allocas into the entryblock
950   // later.  Don't create this with the builder, because we don't want it
951   // folded.
952   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
953   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
954 
955   ReturnBlock = getJumpDestInCurrentScope("return");
956 
957   Builder.SetInsertPoint(EntryBB);
958 
959   // If we're checking the return value, allocate space for a pointer to a
960   // precise source location of the checked return statement.
961   if (requiresReturnValueCheck()) {
962     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
963     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
964   }
965 
966   // Emit subprogram debug descriptor.
967   if (CGDebugInfo *DI = getDebugInfo()) {
968     // Reconstruct the type from the argument list so that implicit parameters,
969     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
970     // convention.
971     CallingConv CC = CallingConv::CC_C;
972     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
973       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
974         CC = SrcFnTy->getCallConv();
975     SmallVector<QualType, 16> ArgTypes;
976     for (const VarDecl *VD : Args)
977       ArgTypes.push_back(VD->getType());
978     QualType FnType = getContext().getFunctionType(
979         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
980     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
981                           Builder);
982   }
983 
984   if (ShouldInstrumentFunction()) {
985     if (CGM.getCodeGenOpts().InstrumentFunctions)
986       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
987     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
988       CurFn->addFnAttr("instrument-function-entry-inlined",
989                        "__cyg_profile_func_enter");
990     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
991       CurFn->addFnAttr("instrument-function-entry-inlined",
992                        "__cyg_profile_func_enter_bare");
993   }
994 
995   // Since emitting the mcount call here impacts optimizations such as function
996   // inlining, we just add an attribute to insert a mcount call in backend.
997   // The attribute "counting-function" is set to mcount function name which is
998   // architecture dependent.
999   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1000     // Calls to fentry/mcount should not be generated if function has
1001     // the no_instrument_function attribute.
1002     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1003       if (CGM.getCodeGenOpts().CallFEntry)
1004         Fn->addFnAttr("fentry-call", "true");
1005       else {
1006         Fn->addFnAttr("instrument-function-entry-inlined",
1007                       getTarget().getMCountName());
1008       }
1009       if (CGM.getCodeGenOpts().MNopMCount) {
1010         if (!CGM.getCodeGenOpts().CallFEntry)
1011           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1012             << "-mnop-mcount" << "-mfentry";
1013         Fn->addFnAttr("mnop-mcount");
1014       }
1015 
1016       if (CGM.getCodeGenOpts().RecordMCount) {
1017         if (!CGM.getCodeGenOpts().CallFEntry)
1018           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1019             << "-mrecord-mcount" << "-mfentry";
1020         Fn->addFnAttr("mrecord-mcount");
1021       }
1022     }
1023   }
1024 
1025   if (CGM.getCodeGenOpts().PackedStack) {
1026     if (getContext().getTargetInfo().getTriple().getArch() !=
1027         llvm::Triple::systemz)
1028       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1029         << "-mpacked-stack";
1030     Fn->addFnAttr("packed-stack");
1031   }
1032 
1033   if (RetTy->isVoidType()) {
1034     // Void type; nothing to return.
1035     ReturnValue = Address::invalid();
1036 
1037     // Count the implicit return.
1038     if (!endsWithReturn(D))
1039       ++NumReturnExprs;
1040   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1041     // Indirect return; emit returned value directly into sret slot.
1042     // This reduces code size, and affects correctness in C++.
1043     auto AI = CurFn->arg_begin();
1044     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1045       ++AI;
1046     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1047     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1048       ReturnValuePointer =
1049           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1050       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1051                               ReturnValue.getPointer(), Int8PtrTy),
1052                           ReturnValuePointer);
1053     }
1054   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1055              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1056     // Load the sret pointer from the argument struct and return into that.
1057     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1058     llvm::Function::arg_iterator EI = CurFn->arg_end();
1059     --EI;
1060     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1061     ReturnValuePointer = Address(Addr, getPointerAlign());
1062     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1063     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1064   } else {
1065     ReturnValue = CreateIRTemp(RetTy, "retval");
1066 
1067     // Tell the epilog emitter to autorelease the result.  We do this
1068     // now so that various specialized functions can suppress it
1069     // during their IR-generation.
1070     if (getLangOpts().ObjCAutoRefCount &&
1071         !CurFnInfo->isReturnsRetained() &&
1072         RetTy->isObjCRetainableType())
1073       AutoreleaseResult = true;
1074   }
1075 
1076   EmitStartEHSpec(CurCodeDecl);
1077 
1078   PrologueCleanupDepth = EHStack.stable_begin();
1079 
1080   // Emit OpenMP specific initialization of the device functions.
1081   if (getLangOpts().OpenMP && CurCodeDecl)
1082     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1083 
1084   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1085 
1086   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1087     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1088     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1089     if (MD->getParent()->isLambda() &&
1090         MD->getOverloadedOperator() == OO_Call) {
1091       // We're in a lambda; figure out the captures.
1092       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1093                                         LambdaThisCaptureField);
1094       if (LambdaThisCaptureField) {
1095         // If the lambda captures the object referred to by '*this' - either by
1096         // value or by reference, make sure CXXThisValue points to the correct
1097         // object.
1098 
1099         // Get the lvalue for the field (which is a copy of the enclosing object
1100         // or contains the address of the enclosing object).
1101         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1102         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1103           // If the enclosing object was captured by value, just use its address.
1104           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1105         } else {
1106           // Load the lvalue pointed to by the field, since '*this' was captured
1107           // by reference.
1108           CXXThisValue =
1109               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1110         }
1111       }
1112       for (auto *FD : MD->getParent()->fields()) {
1113         if (FD->hasCapturedVLAType()) {
1114           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1115                                            SourceLocation()).getScalarVal();
1116           auto VAT = FD->getCapturedVLAType();
1117           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1118         }
1119       }
1120     } else {
1121       // Not in a lambda; just use 'this' from the method.
1122       // FIXME: Should we generate a new load for each use of 'this'?  The
1123       // fast register allocator would be happier...
1124       CXXThisValue = CXXABIThisValue;
1125     }
1126 
1127     // Check the 'this' pointer once per function, if it's available.
1128     if (CXXABIThisValue) {
1129       SanitizerSet SkippedChecks;
1130       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1131       QualType ThisTy = MD->getThisType();
1132 
1133       // If this is the call operator of a lambda with no capture-default, it
1134       // may have a static invoker function, which may call this operator with
1135       // a null 'this' pointer.
1136       if (isLambdaCallOperator(MD) &&
1137           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1138         SkippedChecks.set(SanitizerKind::Null, true);
1139 
1140       EmitTypeCheck(
1141           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1142           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1143     }
1144   }
1145 
1146   // If any of the arguments have a variably modified type, make sure to
1147   // emit the type size.
1148   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1149        i != e; ++i) {
1150     const VarDecl *VD = *i;
1151 
1152     // Dig out the type as written from ParmVarDecls; it's unclear whether
1153     // the standard (C99 6.9.1p10) requires this, but we're following the
1154     // precedent set by gcc.
1155     QualType Ty;
1156     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1157       Ty = PVD->getOriginalType();
1158     else
1159       Ty = VD->getType();
1160 
1161     if (Ty->isVariablyModifiedType())
1162       EmitVariablyModifiedType(Ty);
1163   }
1164   // Emit a location at the end of the prologue.
1165   if (CGDebugInfo *DI = getDebugInfo())
1166     DI->EmitLocation(Builder, StartLoc);
1167 
1168   // TODO: Do we need to handle this in two places like we do with
1169   // target-features/target-cpu?
1170   if (CurFuncDecl)
1171     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1172       LargestVectorWidth = VecWidth->getVectorWidth();
1173 }
1174 
1175 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1176   incrementProfileCounter(Body);
1177   if (CPlusPlusWithProgress())
1178     FnIsMustProgress = true;
1179 
1180   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1181     EmitCompoundStmtWithoutScope(*S);
1182   else
1183     EmitStmt(Body);
1184 
1185   // This is checked after emitting the function body so we know if there
1186   // are any permitted infinite loops.
1187   if (FnIsMustProgress)
1188     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1189 }
1190 
1191 /// When instrumenting to collect profile data, the counts for some blocks
1192 /// such as switch cases need to not include the fall-through counts, so
1193 /// emit a branch around the instrumentation code. When not instrumenting,
1194 /// this just calls EmitBlock().
1195 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1196                                                const Stmt *S) {
1197   llvm::BasicBlock *SkipCountBB = nullptr;
1198   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1199     // When instrumenting for profiling, the fallthrough to certain
1200     // statements needs to skip over the instrumentation code so that we
1201     // get an accurate count.
1202     SkipCountBB = createBasicBlock("skipcount");
1203     EmitBranch(SkipCountBB);
1204   }
1205   EmitBlock(BB);
1206   uint64_t CurrentCount = getCurrentProfileCount();
1207   incrementProfileCounter(S);
1208   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1209   if (SkipCountBB)
1210     EmitBlock(SkipCountBB);
1211 }
1212 
1213 /// Tries to mark the given function nounwind based on the
1214 /// non-existence of any throwing calls within it.  We believe this is
1215 /// lightweight enough to do at -O0.
1216 static void TryMarkNoThrow(llvm::Function *F) {
1217   // LLVM treats 'nounwind' on a function as part of the type, so we
1218   // can't do this on functions that can be overwritten.
1219   if (F->isInterposable()) return;
1220 
1221   for (llvm::BasicBlock &BB : *F)
1222     for (llvm::Instruction &I : BB)
1223       if (I.mayThrow())
1224         return;
1225 
1226   F->setDoesNotThrow();
1227 }
1228 
1229 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1230                                                FunctionArgList &Args) {
1231   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1232   QualType ResTy = FD->getReturnType();
1233 
1234   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1235   if (MD && MD->isInstance()) {
1236     if (CGM.getCXXABI().HasThisReturn(GD))
1237       ResTy = MD->getThisType();
1238     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1239       ResTy = CGM.getContext().VoidPtrTy;
1240     CGM.getCXXABI().buildThisParam(*this, Args);
1241   }
1242 
1243   // The base version of an inheriting constructor whose constructed base is a
1244   // virtual base is not passed any arguments (because it doesn't actually call
1245   // the inherited constructor).
1246   bool PassedParams = true;
1247   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1248     if (auto Inherited = CD->getInheritedConstructor())
1249       PassedParams =
1250           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1251 
1252   if (PassedParams) {
1253     for (auto *Param : FD->parameters()) {
1254       Args.push_back(Param);
1255       if (!Param->hasAttr<PassObjectSizeAttr>())
1256         continue;
1257 
1258       auto *Implicit = ImplicitParamDecl::Create(
1259           getContext(), Param->getDeclContext(), Param->getLocation(),
1260           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1261       SizeArguments[Param] = Implicit;
1262       Args.push_back(Implicit);
1263     }
1264   }
1265 
1266   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1267     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1268 
1269   return ResTy;
1270 }
1271 
1272 static bool
1273 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1274                                              const ASTContext &Context) {
1275   QualType T = FD->getReturnType();
1276   // Avoid the optimization for functions that return a record type with a
1277   // trivial destructor or another trivially copyable type.
1278   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1279     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1280       return !ClassDecl->hasTrivialDestructor();
1281   }
1282   return !T.isTriviallyCopyableType(Context);
1283 }
1284 
1285 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1286                                    const CGFunctionInfo &FnInfo) {
1287   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1288   CurGD = GD;
1289 
1290   FunctionArgList Args;
1291   QualType ResTy = BuildFunctionArgList(GD, Args);
1292 
1293   // Check if we should generate debug info for this function.
1294   if (FD->hasAttr<NoDebugAttr>())
1295     DebugInfo = nullptr; // disable debug info indefinitely for this function
1296 
1297   // The function might not have a body if we're generating thunks for a
1298   // function declaration.
1299   SourceRange BodyRange;
1300   if (Stmt *Body = FD->getBody())
1301     BodyRange = Body->getSourceRange();
1302   else
1303     BodyRange = FD->getLocation();
1304   CurEHLocation = BodyRange.getEnd();
1305 
1306   // Use the location of the start of the function to determine where
1307   // the function definition is located. By default use the location
1308   // of the declaration as the location for the subprogram. A function
1309   // may lack a declaration in the source code if it is created by code
1310   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1311   SourceLocation Loc = FD->getLocation();
1312 
1313   // If this is a function specialization then use the pattern body
1314   // as the location for the function.
1315   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1316     if (SpecDecl->hasBody(SpecDecl))
1317       Loc = SpecDecl->getLocation();
1318 
1319   Stmt *Body = FD->getBody();
1320 
1321   // Initialize helper which will detect jumps which can cause invalid lifetime
1322   // markers.
1323   if (Body && ShouldEmitLifetimeMarkers)
1324     Bypasses.Init(Body);
1325 
1326   // Emit the standard function prologue.
1327   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1328 
1329   // Generate the body of the function.
1330   PGO.assignRegionCounters(GD, CurFn);
1331   if (isa<CXXDestructorDecl>(FD))
1332     EmitDestructorBody(Args);
1333   else if (isa<CXXConstructorDecl>(FD))
1334     EmitConstructorBody(Args);
1335   else if (getLangOpts().CUDA &&
1336            !getLangOpts().CUDAIsDevice &&
1337            FD->hasAttr<CUDAGlobalAttr>())
1338     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1339   else if (isa<CXXMethodDecl>(FD) &&
1340            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1341     // The lambda static invoker function is special, because it forwards or
1342     // clones the body of the function call operator (but is actually static).
1343     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1344   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1345              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1346               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1347     // Implicit copy-assignment gets the same special treatment as implicit
1348     // copy-constructors.
1349     emitImplicitAssignmentOperatorBody(Args);
1350   } else if (Body) {
1351     EmitFunctionBody(Body);
1352   } else
1353     llvm_unreachable("no definition for emitted function");
1354 
1355   // C++11 [stmt.return]p2:
1356   //   Flowing off the end of a function [...] results in undefined behavior in
1357   //   a value-returning function.
1358   // C11 6.9.1p12:
1359   //   If the '}' that terminates a function is reached, and the value of the
1360   //   function call is used by the caller, the behavior is undefined.
1361   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1362       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1363     bool ShouldEmitUnreachable =
1364         CGM.getCodeGenOpts().StrictReturn ||
1365         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1366     if (SanOpts.has(SanitizerKind::Return)) {
1367       SanitizerScope SanScope(this);
1368       llvm::Value *IsFalse = Builder.getFalse();
1369       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1370                 SanitizerHandler::MissingReturn,
1371                 EmitCheckSourceLocation(FD->getLocation()), None);
1372     } else if (ShouldEmitUnreachable) {
1373       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1374         EmitTrapCall(llvm::Intrinsic::trap);
1375     }
1376     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1377       Builder.CreateUnreachable();
1378       Builder.ClearInsertionPoint();
1379     }
1380   }
1381 
1382   // Emit the standard function epilogue.
1383   FinishFunction(BodyRange.getEnd());
1384 
1385   // If we haven't marked the function nothrow through other means, do
1386   // a quick pass now to see if we can.
1387   if (!CurFn->doesNotThrow())
1388     TryMarkNoThrow(CurFn);
1389 }
1390 
1391 /// ContainsLabel - Return true if the statement contains a label in it.  If
1392 /// this statement is not executed normally, it not containing a label means
1393 /// that we can just remove the code.
1394 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1395   // Null statement, not a label!
1396   if (!S) return false;
1397 
1398   // If this is a label, we have to emit the code, consider something like:
1399   // if (0) {  ...  foo:  bar(); }  goto foo;
1400   //
1401   // TODO: If anyone cared, we could track __label__'s, since we know that you
1402   // can't jump to one from outside their declared region.
1403   if (isa<LabelStmt>(S))
1404     return true;
1405 
1406   // If this is a case/default statement, and we haven't seen a switch, we have
1407   // to emit the code.
1408   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1409     return true;
1410 
1411   // If this is a switch statement, we want to ignore cases below it.
1412   if (isa<SwitchStmt>(S))
1413     IgnoreCaseStmts = true;
1414 
1415   // Scan subexpressions for verboten labels.
1416   for (const Stmt *SubStmt : S->children())
1417     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1418       return true;
1419 
1420   return false;
1421 }
1422 
1423 /// containsBreak - Return true if the statement contains a break out of it.
1424 /// If the statement (recursively) contains a switch or loop with a break
1425 /// inside of it, this is fine.
1426 bool CodeGenFunction::containsBreak(const Stmt *S) {
1427   // Null statement, not a label!
1428   if (!S) return false;
1429 
1430   // If this is a switch or loop that defines its own break scope, then we can
1431   // include it and anything inside of it.
1432   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1433       isa<ForStmt>(S))
1434     return false;
1435 
1436   if (isa<BreakStmt>(S))
1437     return true;
1438 
1439   // Scan subexpressions for verboten breaks.
1440   for (const Stmt *SubStmt : S->children())
1441     if (containsBreak(SubStmt))
1442       return true;
1443 
1444   return false;
1445 }
1446 
1447 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1448   if (!S) return false;
1449 
1450   // Some statement kinds add a scope and thus never add a decl to the current
1451   // scope. Note, this list is longer than the list of statements that might
1452   // have an unscoped decl nested within them, but this way is conservatively
1453   // correct even if more statement kinds are added.
1454   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1455       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1456       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1457       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1458     return false;
1459 
1460   if (isa<DeclStmt>(S))
1461     return true;
1462 
1463   for (const Stmt *SubStmt : S->children())
1464     if (mightAddDeclToScope(SubStmt))
1465       return true;
1466 
1467   return false;
1468 }
1469 
1470 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1471 /// to a constant, or if it does but contains a label, return false.  If it
1472 /// constant folds return true and set the boolean result in Result.
1473 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1474                                                    bool &ResultBool,
1475                                                    bool AllowLabels) {
1476   llvm::APSInt ResultInt;
1477   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1478     return false;
1479 
1480   ResultBool = ResultInt.getBoolValue();
1481   return true;
1482 }
1483 
1484 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1485 /// to a constant, or if it does but contains a label, return false.  If it
1486 /// constant folds return true and set the folded value.
1487 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1488                                                    llvm::APSInt &ResultInt,
1489                                                    bool AllowLabels) {
1490   // FIXME: Rename and handle conversion of other evaluatable things
1491   // to bool.
1492   Expr::EvalResult Result;
1493   if (!Cond->EvaluateAsInt(Result, getContext()))
1494     return false;  // Not foldable, not integer or not fully evaluatable.
1495 
1496   llvm::APSInt Int = Result.Val.getInt();
1497   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1498     return false;  // Contains a label.
1499 
1500   ResultInt = Int;
1501   return true;
1502 }
1503 
1504 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1505 /// statement) to the specified blocks.  Based on the condition, this might try
1506 /// to simplify the codegen of the conditional based on the branch.
1507 /// \param LH The value of the likelihood attribute on the True branch.
1508 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1509                                            llvm::BasicBlock *TrueBlock,
1510                                            llvm::BasicBlock *FalseBlock,
1511                                            uint64_t TrueCount,
1512                                            Stmt::Likelihood LH) {
1513   Cond = Cond->IgnoreParens();
1514 
1515   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1516 
1517     // Handle X && Y in a condition.
1518     if (CondBOp->getOpcode() == BO_LAnd) {
1519       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1520       // folded if the case was simple enough.
1521       bool ConstantBool = false;
1522       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1523           ConstantBool) {
1524         // br(1 && X) -> br(X).
1525         incrementProfileCounter(CondBOp);
1526         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1527                                     TrueCount, LH);
1528       }
1529 
1530       // If we have "X && 1", simplify the code to use an uncond branch.
1531       // "X && 0" would have been constant folded to 0.
1532       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1533           ConstantBool) {
1534         // br(X && 1) -> br(X).
1535         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1536                                     TrueCount, LH);
1537       }
1538 
1539       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1540       // want to jump to the FalseBlock.
1541       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1542       // The counter tells us how often we evaluate RHS, and all of TrueCount
1543       // can be propagated to that branch.
1544       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1545 
1546       ConditionalEvaluation eval(*this);
1547       {
1548         ApplyDebugLocation DL(*this, Cond);
1549         // Propagate the likelihood attribute like __builtin_expect
1550         // __builtin_expect(X && Y, 1) -> X and Y are likely
1551         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1552         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1553                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1554         EmitBlock(LHSTrue);
1555       }
1556 
1557       incrementProfileCounter(CondBOp);
1558       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1559 
1560       // Any temporaries created here are conditional.
1561       eval.begin(*this);
1562       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount,
1563                            LH);
1564       eval.end(*this);
1565 
1566       return;
1567     }
1568 
1569     if (CondBOp->getOpcode() == BO_LOr) {
1570       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1571       // folded if the case was simple enough.
1572       bool ConstantBool = false;
1573       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1574           !ConstantBool) {
1575         // br(0 || X) -> br(X).
1576         incrementProfileCounter(CondBOp);
1577         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1578                                     TrueCount, LH);
1579       }
1580 
1581       // If we have "X || 0", simplify the code to use an uncond branch.
1582       // "X || 1" would have been constant folded to 1.
1583       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1584           !ConstantBool) {
1585         // br(X || 0) -> br(X).
1586         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1587                                     TrueCount, LH);
1588       }
1589 
1590       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1591       // want to jump to the TrueBlock.
1592       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1593       // We have the count for entry to the RHS and for the whole expression
1594       // being true, so we can divy up True count between the short circuit and
1595       // the RHS.
1596       uint64_t LHSCount =
1597           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1598       uint64_t RHSCount = TrueCount - LHSCount;
1599 
1600       ConditionalEvaluation eval(*this);
1601       {
1602         // Propagate the likelihood attribute like __builtin_expect
1603         // __builtin_expect(X || Y, 1) -> only Y is likely
1604         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1605         ApplyDebugLocation DL(*this, Cond);
1606         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1607                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1608         EmitBlock(LHSFalse);
1609       }
1610 
1611       incrementProfileCounter(CondBOp);
1612       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1613 
1614       // Any temporaries created here are conditional.
1615       eval.begin(*this);
1616       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount,
1617                            LH);
1618 
1619       eval.end(*this);
1620 
1621       return;
1622     }
1623   }
1624 
1625   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1626     // br(!x, t, f) -> br(x, f, t)
1627     if (CondUOp->getOpcode() == UO_LNot) {
1628       // Negate the count.
1629       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1630       // The values of the enum are chosen to make this negation possible.
1631       LH = static_cast<Stmt::Likelihood>(-LH);
1632       // Negate the condition and swap the destination blocks.
1633       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1634                                   FalseCount, LH);
1635     }
1636   }
1637 
1638   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1639     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1640     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1641     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1642 
1643     // The ConditionalOperator itself has no likelihood information for its
1644     // true and false branches. This matches the behavior of __builtin_expect.
1645     ConditionalEvaluation cond(*this);
1646     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1647                          getProfileCount(CondOp), Stmt::LH_None);
1648 
1649     // When computing PGO branch weights, we only know the overall count for
1650     // the true block. This code is essentially doing tail duplication of the
1651     // naive code-gen, introducing new edges for which counts are not
1652     // available. Divide the counts proportionally between the LHS and RHS of
1653     // the conditional operator.
1654     uint64_t LHSScaledTrueCount = 0;
1655     if (TrueCount) {
1656       double LHSRatio =
1657           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1658       LHSScaledTrueCount = TrueCount * LHSRatio;
1659     }
1660 
1661     cond.begin(*this);
1662     EmitBlock(LHSBlock);
1663     incrementProfileCounter(CondOp);
1664     {
1665       ApplyDebugLocation DL(*this, Cond);
1666       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1667                            LHSScaledTrueCount, LH);
1668     }
1669     cond.end(*this);
1670 
1671     cond.begin(*this);
1672     EmitBlock(RHSBlock);
1673     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1674                          TrueCount - LHSScaledTrueCount, LH);
1675     cond.end(*this);
1676 
1677     return;
1678   }
1679 
1680   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1681     // Conditional operator handling can give us a throw expression as a
1682     // condition for a case like:
1683     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1684     // Fold this to:
1685     //   br(c, throw x, br(y, t, f))
1686     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1687     return;
1688   }
1689 
1690   // If the branch has a condition wrapped by __builtin_unpredictable,
1691   // create metadata that specifies that the branch is unpredictable.
1692   // Don't bother if not optimizing because that metadata would not be used.
1693   llvm::MDNode *Unpredictable = nullptr;
1694   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1695   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1696     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1697     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1698       llvm::MDBuilder MDHelper(getLLVMContext());
1699       Unpredictable = MDHelper.createUnpredictable();
1700     }
1701   }
1702 
1703   llvm::MDNode *Weights = createBranchWeights(LH);
1704   if (!Weights) {
1705     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1706     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1707   }
1708 
1709   // Emit the code with the fully general case.
1710   llvm::Value *CondV;
1711   {
1712     ApplyDebugLocation DL(*this, Cond);
1713     CondV = EvaluateExprAsBool(Cond);
1714   }
1715   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1716 }
1717 
1718 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1719 /// specified stmt yet.
1720 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1721   CGM.ErrorUnsupported(S, Type);
1722 }
1723 
1724 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1725 /// variable-length array whose elements have a non-zero bit-pattern.
1726 ///
1727 /// \param baseType the inner-most element type of the array
1728 /// \param src - a char* pointing to the bit-pattern for a single
1729 /// base element of the array
1730 /// \param sizeInChars - the total size of the VLA, in chars
1731 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1732                                Address dest, Address src,
1733                                llvm::Value *sizeInChars) {
1734   CGBuilderTy &Builder = CGF.Builder;
1735 
1736   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1737   llvm::Value *baseSizeInChars
1738     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1739 
1740   Address begin =
1741     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1742   llvm::Value *end =
1743     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1744 
1745   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1746   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1747   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1748 
1749   // Make a loop over the VLA.  C99 guarantees that the VLA element
1750   // count must be nonzero.
1751   CGF.EmitBlock(loopBB);
1752 
1753   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1754   cur->addIncoming(begin.getPointer(), originBB);
1755 
1756   CharUnits curAlign =
1757     dest.getAlignment().alignmentOfArrayElement(baseSize);
1758 
1759   // memcpy the individual element bit-pattern.
1760   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1761                        /*volatile*/ false);
1762 
1763   // Go to the next element.
1764   llvm::Value *next =
1765     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1766 
1767   // Leave if that's the end of the VLA.
1768   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1769   Builder.CreateCondBr(done, contBB, loopBB);
1770   cur->addIncoming(next, loopBB);
1771 
1772   CGF.EmitBlock(contBB);
1773 }
1774 
1775 void
1776 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1777   // Ignore empty classes in C++.
1778   if (getLangOpts().CPlusPlus) {
1779     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1780       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1781         return;
1782     }
1783   }
1784 
1785   // Cast the dest ptr to the appropriate i8 pointer type.
1786   if (DestPtr.getElementType() != Int8Ty)
1787     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1788 
1789   // Get size and alignment info for this aggregate.
1790   CharUnits size = getContext().getTypeSizeInChars(Ty);
1791 
1792   llvm::Value *SizeVal;
1793   const VariableArrayType *vla;
1794 
1795   // Don't bother emitting a zero-byte memset.
1796   if (size.isZero()) {
1797     // But note that getTypeInfo returns 0 for a VLA.
1798     if (const VariableArrayType *vlaType =
1799           dyn_cast_or_null<VariableArrayType>(
1800                                           getContext().getAsArrayType(Ty))) {
1801       auto VlaSize = getVLASize(vlaType);
1802       SizeVal = VlaSize.NumElts;
1803       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1804       if (!eltSize.isOne())
1805         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1806       vla = vlaType;
1807     } else {
1808       return;
1809     }
1810   } else {
1811     SizeVal = CGM.getSize(size);
1812     vla = nullptr;
1813   }
1814 
1815   // If the type contains a pointer to data member we can't memset it to zero.
1816   // Instead, create a null constant and copy it to the destination.
1817   // TODO: there are other patterns besides zero that we can usefully memset,
1818   // like -1, which happens to be the pattern used by member-pointers.
1819   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1820     // For a VLA, emit a single element, then splat that over the VLA.
1821     if (vla) Ty = getContext().getBaseElementType(vla);
1822 
1823     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1824 
1825     llvm::GlobalVariable *NullVariable =
1826       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1827                                /*isConstant=*/true,
1828                                llvm::GlobalVariable::PrivateLinkage,
1829                                NullConstant, Twine());
1830     CharUnits NullAlign = DestPtr.getAlignment();
1831     NullVariable->setAlignment(NullAlign.getAsAlign());
1832     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1833                    NullAlign);
1834 
1835     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1836 
1837     // Get and call the appropriate llvm.memcpy overload.
1838     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1839     return;
1840   }
1841 
1842   // Otherwise, just memset the whole thing to zero.  This is legal
1843   // because in LLVM, all default initializers (other than the ones we just
1844   // handled above) are guaranteed to have a bit pattern of all zeros.
1845   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1846 }
1847 
1848 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1849   // Make sure that there is a block for the indirect goto.
1850   if (!IndirectBranch)
1851     GetIndirectGotoBlock();
1852 
1853   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1854 
1855   // Make sure the indirect branch includes all of the address-taken blocks.
1856   IndirectBranch->addDestination(BB);
1857   return llvm::BlockAddress::get(CurFn, BB);
1858 }
1859 
1860 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1861   // If we already made the indirect branch for indirect goto, return its block.
1862   if (IndirectBranch) return IndirectBranch->getParent();
1863 
1864   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1865 
1866   // Create the PHI node that indirect gotos will add entries to.
1867   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1868                                               "indirect.goto.dest");
1869 
1870   // Create the indirect branch instruction.
1871   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1872   return IndirectBranch->getParent();
1873 }
1874 
1875 /// Computes the length of an array in elements, as well as the base
1876 /// element type and a properly-typed first element pointer.
1877 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1878                                               QualType &baseType,
1879                                               Address &addr) {
1880   const ArrayType *arrayType = origArrayType;
1881 
1882   // If it's a VLA, we have to load the stored size.  Note that
1883   // this is the size of the VLA in bytes, not its size in elements.
1884   llvm::Value *numVLAElements = nullptr;
1885   if (isa<VariableArrayType>(arrayType)) {
1886     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1887 
1888     // Walk into all VLAs.  This doesn't require changes to addr,
1889     // which has type T* where T is the first non-VLA element type.
1890     do {
1891       QualType elementType = arrayType->getElementType();
1892       arrayType = getContext().getAsArrayType(elementType);
1893 
1894       // If we only have VLA components, 'addr' requires no adjustment.
1895       if (!arrayType) {
1896         baseType = elementType;
1897         return numVLAElements;
1898       }
1899     } while (isa<VariableArrayType>(arrayType));
1900 
1901     // We get out here only if we find a constant array type
1902     // inside the VLA.
1903   }
1904 
1905   // We have some number of constant-length arrays, so addr should
1906   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1907   // down to the first element of addr.
1908   SmallVector<llvm::Value*, 8> gepIndices;
1909 
1910   // GEP down to the array type.
1911   llvm::ConstantInt *zero = Builder.getInt32(0);
1912   gepIndices.push_back(zero);
1913 
1914   uint64_t countFromCLAs = 1;
1915   QualType eltType;
1916 
1917   llvm::ArrayType *llvmArrayType =
1918     dyn_cast<llvm::ArrayType>(addr.getElementType());
1919   while (llvmArrayType) {
1920     assert(isa<ConstantArrayType>(arrayType));
1921     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1922              == llvmArrayType->getNumElements());
1923 
1924     gepIndices.push_back(zero);
1925     countFromCLAs *= llvmArrayType->getNumElements();
1926     eltType = arrayType->getElementType();
1927 
1928     llvmArrayType =
1929       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1930     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1931     assert((!llvmArrayType || arrayType) &&
1932            "LLVM and Clang types are out-of-synch");
1933   }
1934 
1935   if (arrayType) {
1936     // From this point onwards, the Clang array type has been emitted
1937     // as some other type (probably a packed struct). Compute the array
1938     // size, and just emit the 'begin' expression as a bitcast.
1939     while (arrayType) {
1940       countFromCLAs *=
1941           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1942       eltType = arrayType->getElementType();
1943       arrayType = getContext().getAsArrayType(eltType);
1944     }
1945 
1946     llvm::Type *baseType = ConvertType(eltType);
1947     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1948   } else {
1949     // Create the actual GEP.
1950     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1951                                              gepIndices, "array.begin"),
1952                    addr.getAlignment());
1953   }
1954 
1955   baseType = eltType;
1956 
1957   llvm::Value *numElements
1958     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1959 
1960   // If we had any VLA dimensions, factor them in.
1961   if (numVLAElements)
1962     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1963 
1964   return numElements;
1965 }
1966 
1967 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1968   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1969   assert(vla && "type was not a variable array type!");
1970   return getVLASize(vla);
1971 }
1972 
1973 CodeGenFunction::VlaSizePair
1974 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1975   // The number of elements so far; always size_t.
1976   llvm::Value *numElements = nullptr;
1977 
1978   QualType elementType;
1979   do {
1980     elementType = type->getElementType();
1981     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1982     assert(vlaSize && "no size for VLA!");
1983     assert(vlaSize->getType() == SizeTy);
1984 
1985     if (!numElements) {
1986       numElements = vlaSize;
1987     } else {
1988       // It's undefined behavior if this wraps around, so mark it that way.
1989       // FIXME: Teach -fsanitize=undefined to trap this.
1990       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1991     }
1992   } while ((type = getContext().getAsVariableArrayType(elementType)));
1993 
1994   return { numElements, elementType };
1995 }
1996 
1997 CodeGenFunction::VlaSizePair
1998 CodeGenFunction::getVLAElements1D(QualType type) {
1999   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2000   assert(vla && "type was not a variable array type!");
2001   return getVLAElements1D(vla);
2002 }
2003 
2004 CodeGenFunction::VlaSizePair
2005 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2006   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2007   assert(VlaSize && "no size for VLA!");
2008   assert(VlaSize->getType() == SizeTy);
2009   return { VlaSize, Vla->getElementType() };
2010 }
2011 
2012 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2013   assert(type->isVariablyModifiedType() &&
2014          "Must pass variably modified type to EmitVLASizes!");
2015 
2016   EnsureInsertPoint();
2017 
2018   // We're going to walk down into the type and look for VLA
2019   // expressions.
2020   do {
2021     assert(type->isVariablyModifiedType());
2022 
2023     const Type *ty = type.getTypePtr();
2024     switch (ty->getTypeClass()) {
2025 
2026 #define TYPE(Class, Base)
2027 #define ABSTRACT_TYPE(Class, Base)
2028 #define NON_CANONICAL_TYPE(Class, Base)
2029 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2030 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2031 #include "clang/AST/TypeNodes.inc"
2032       llvm_unreachable("unexpected dependent type!");
2033 
2034     // These types are never variably-modified.
2035     case Type::Builtin:
2036     case Type::Complex:
2037     case Type::Vector:
2038     case Type::ExtVector:
2039     case Type::ConstantMatrix:
2040     case Type::Record:
2041     case Type::Enum:
2042     case Type::Elaborated:
2043     case Type::TemplateSpecialization:
2044     case Type::ObjCTypeParam:
2045     case Type::ObjCObject:
2046     case Type::ObjCInterface:
2047     case Type::ObjCObjectPointer:
2048     case Type::ExtInt:
2049       llvm_unreachable("type class is never variably-modified!");
2050 
2051     case Type::Adjusted:
2052       type = cast<AdjustedType>(ty)->getAdjustedType();
2053       break;
2054 
2055     case Type::Decayed:
2056       type = cast<DecayedType>(ty)->getPointeeType();
2057       break;
2058 
2059     case Type::Pointer:
2060       type = cast<PointerType>(ty)->getPointeeType();
2061       break;
2062 
2063     case Type::BlockPointer:
2064       type = cast<BlockPointerType>(ty)->getPointeeType();
2065       break;
2066 
2067     case Type::LValueReference:
2068     case Type::RValueReference:
2069       type = cast<ReferenceType>(ty)->getPointeeType();
2070       break;
2071 
2072     case Type::MemberPointer:
2073       type = cast<MemberPointerType>(ty)->getPointeeType();
2074       break;
2075 
2076     case Type::ConstantArray:
2077     case Type::IncompleteArray:
2078       // Losing element qualification here is fine.
2079       type = cast<ArrayType>(ty)->getElementType();
2080       break;
2081 
2082     case Type::VariableArray: {
2083       // Losing element qualification here is fine.
2084       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2085 
2086       // Unknown size indication requires no size computation.
2087       // Otherwise, evaluate and record it.
2088       if (const Expr *size = vat->getSizeExpr()) {
2089         // It's possible that we might have emitted this already,
2090         // e.g. with a typedef and a pointer to it.
2091         llvm::Value *&entry = VLASizeMap[size];
2092         if (!entry) {
2093           llvm::Value *Size = EmitScalarExpr(size);
2094 
2095           // C11 6.7.6.2p5:
2096           //   If the size is an expression that is not an integer constant
2097           //   expression [...] each time it is evaluated it shall have a value
2098           //   greater than zero.
2099           if (SanOpts.has(SanitizerKind::VLABound) &&
2100               size->getType()->isSignedIntegerType()) {
2101             SanitizerScope SanScope(this);
2102             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2103             llvm::Constant *StaticArgs[] = {
2104                 EmitCheckSourceLocation(size->getBeginLoc()),
2105                 EmitCheckTypeDescriptor(size->getType())};
2106             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2107                                      SanitizerKind::VLABound),
2108                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2109           }
2110 
2111           // Always zexting here would be wrong if it weren't
2112           // undefined behavior to have a negative bound.
2113           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2114         }
2115       }
2116       type = vat->getElementType();
2117       break;
2118     }
2119 
2120     case Type::FunctionProto:
2121     case Type::FunctionNoProto:
2122       type = cast<FunctionType>(ty)->getReturnType();
2123       break;
2124 
2125     case Type::Paren:
2126     case Type::TypeOf:
2127     case Type::UnaryTransform:
2128     case Type::Attributed:
2129     case Type::SubstTemplateTypeParm:
2130     case Type::MacroQualified:
2131       // Keep walking after single level desugaring.
2132       type = type.getSingleStepDesugaredType(getContext());
2133       break;
2134 
2135     case Type::Typedef:
2136     case Type::Decltype:
2137     case Type::Auto:
2138     case Type::DeducedTemplateSpecialization:
2139       // Stop walking: nothing to do.
2140       return;
2141 
2142     case Type::TypeOfExpr:
2143       // Stop walking: emit typeof expression.
2144       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2145       return;
2146 
2147     case Type::Atomic:
2148       type = cast<AtomicType>(ty)->getValueType();
2149       break;
2150 
2151     case Type::Pipe:
2152       type = cast<PipeType>(ty)->getElementType();
2153       break;
2154     }
2155   } while (type->isVariablyModifiedType());
2156 }
2157 
2158 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2159   if (getContext().getBuiltinVaListType()->isArrayType())
2160     return EmitPointerWithAlignment(E);
2161   return EmitLValue(E).getAddress(*this);
2162 }
2163 
2164 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2165   return EmitLValue(E).getAddress(*this);
2166 }
2167 
2168 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2169                                               const APValue &Init) {
2170   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2171   if (CGDebugInfo *Dbg = getDebugInfo())
2172     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2173       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2174 }
2175 
2176 CodeGenFunction::PeepholeProtection
2177 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2178   // At the moment, the only aggressive peephole we do in IR gen
2179   // is trunc(zext) folding, but if we add more, we can easily
2180   // extend this protection.
2181 
2182   if (!rvalue.isScalar()) return PeepholeProtection();
2183   llvm::Value *value = rvalue.getScalarVal();
2184   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2185 
2186   // Just make an extra bitcast.
2187   assert(HaveInsertPoint());
2188   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2189                                                   Builder.GetInsertBlock());
2190 
2191   PeepholeProtection protection;
2192   protection.Inst = inst;
2193   return protection;
2194 }
2195 
2196 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2197   if (!protection.Inst) return;
2198 
2199   // In theory, we could try to duplicate the peepholes now, but whatever.
2200   protection.Inst->eraseFromParent();
2201 }
2202 
2203 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2204                                               QualType Ty, SourceLocation Loc,
2205                                               SourceLocation AssumptionLoc,
2206                                               llvm::Value *Alignment,
2207                                               llvm::Value *OffsetValue) {
2208   if (Alignment->getType() != IntPtrTy)
2209     Alignment =
2210         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2211   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2212     OffsetValue =
2213         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2214   llvm::Value *TheCheck = nullptr;
2215   if (SanOpts.has(SanitizerKind::Alignment)) {
2216     llvm::Value *PtrIntValue =
2217         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2218 
2219     if (OffsetValue) {
2220       bool IsOffsetZero = false;
2221       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2222         IsOffsetZero = CI->isZero();
2223 
2224       if (!IsOffsetZero)
2225         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2226     }
2227 
2228     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2229     llvm::Value *Mask =
2230         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2231     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2232     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2233   }
2234   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2235       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2236 
2237   if (!SanOpts.has(SanitizerKind::Alignment))
2238     return;
2239   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2240                                OffsetValue, TheCheck, Assumption);
2241 }
2242 
2243 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2244                                               const Expr *E,
2245                                               SourceLocation AssumptionLoc,
2246                                               llvm::Value *Alignment,
2247                                               llvm::Value *OffsetValue) {
2248   if (auto *CE = dyn_cast<CastExpr>(E))
2249     E = CE->getSubExprAsWritten();
2250   QualType Ty = E->getType();
2251   SourceLocation Loc = E->getExprLoc();
2252 
2253   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2254                           OffsetValue);
2255 }
2256 
2257 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2258                                                  llvm::Value *AnnotatedVal,
2259                                                  StringRef AnnotationStr,
2260                                                  SourceLocation Location,
2261                                                  const AnnotateAttr *Attr) {
2262   SmallVector<llvm::Value *, 5> Args = {
2263       AnnotatedVal,
2264       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2265       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2266       CGM.EmitAnnotationLineNo(Location),
2267   };
2268   if (Attr)
2269     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2270   return Builder.CreateCall(AnnotationFn, Args);
2271 }
2272 
2273 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2274   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2275   // FIXME We create a new bitcast for every annotation because that's what
2276   // llvm-gcc was doing.
2277   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2278     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2279                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2280                        I->getAnnotation(), D->getLocation(), I);
2281 }
2282 
2283 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2284                                               Address Addr) {
2285   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2286   llvm::Value *V = Addr.getPointer();
2287   llvm::Type *VTy = V->getType();
2288   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2289                                     CGM.Int8PtrTy);
2290 
2291   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2292     // FIXME Always emit the cast inst so we can differentiate between
2293     // annotation on the first field of a struct and annotation on the struct
2294     // itself.
2295     if (VTy != CGM.Int8PtrTy)
2296       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2297     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2298     V = Builder.CreateBitCast(V, VTy);
2299   }
2300 
2301   return Address(V, Addr.getAlignment());
2302 }
2303 
2304 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2305 
2306 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2307     : CGF(CGF) {
2308   assert(!CGF->IsSanitizerScope);
2309   CGF->IsSanitizerScope = true;
2310 }
2311 
2312 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2313   CGF->IsSanitizerScope = false;
2314 }
2315 
2316 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2317                                    const llvm::Twine &Name,
2318                                    llvm::BasicBlock *BB,
2319                                    llvm::BasicBlock::iterator InsertPt) const {
2320   LoopStack.InsertHelper(I);
2321   if (IsSanitizerScope)
2322     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2323 }
2324 
2325 void CGBuilderInserter::InsertHelper(
2326     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2327     llvm::BasicBlock::iterator InsertPt) const {
2328   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2329   if (CGF)
2330     CGF->InsertHelper(I, Name, BB, InsertPt);
2331 }
2332 
2333 // Emits an error if we don't have a valid set of target features for the
2334 // called function.
2335 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2336                                           const FunctionDecl *TargetDecl) {
2337   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2338 }
2339 
2340 // Emits an error if we don't have a valid set of target features for the
2341 // called function.
2342 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2343                                           const FunctionDecl *TargetDecl) {
2344   // Early exit if this is an indirect call.
2345   if (!TargetDecl)
2346     return;
2347 
2348   // Get the current enclosing function if it exists. If it doesn't
2349   // we can't check the target features anyhow.
2350   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2351   if (!FD)
2352     return;
2353 
2354   // Grab the required features for the call. For a builtin this is listed in
2355   // the td file with the default cpu, for an always_inline function this is any
2356   // listed cpu and any listed features.
2357   unsigned BuiltinID = TargetDecl->getBuiltinID();
2358   std::string MissingFeature;
2359   llvm::StringMap<bool> CallerFeatureMap;
2360   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2361   if (BuiltinID) {
2362     StringRef FeatureList(
2363         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2364     // Return if the builtin doesn't have any required features.
2365     if (FeatureList.empty())
2366       return;
2367     assert(FeatureList.find(' ') == StringRef::npos &&
2368            "Space in feature list");
2369     TargetFeatures TF(CallerFeatureMap);
2370     if (!TF.hasRequiredFeatures(FeatureList))
2371       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2372           << TargetDecl->getDeclName() << FeatureList;
2373   } else if (!TargetDecl->isMultiVersion() &&
2374              TargetDecl->hasAttr<TargetAttr>()) {
2375     // Get the required features for the callee.
2376 
2377     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2378     ParsedTargetAttr ParsedAttr =
2379         CGM.getContext().filterFunctionTargetAttrs(TD);
2380 
2381     SmallVector<StringRef, 1> ReqFeatures;
2382     llvm::StringMap<bool> CalleeFeatureMap;
2383     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2384 
2385     for (const auto &F : ParsedAttr.Features) {
2386       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2387         ReqFeatures.push_back(StringRef(F).substr(1));
2388     }
2389 
2390     for (const auto &F : CalleeFeatureMap) {
2391       // Only positive features are "required".
2392       if (F.getValue())
2393         ReqFeatures.push_back(F.getKey());
2394     }
2395     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2396       if (!CallerFeatureMap.lookup(Feature)) {
2397         MissingFeature = Feature.str();
2398         return false;
2399       }
2400       return true;
2401     }))
2402       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2403           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2404   }
2405 }
2406 
2407 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2408   if (!CGM.getCodeGenOpts().SanitizeStats)
2409     return;
2410 
2411   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2412   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2413   CGM.getSanStats().create(IRB, SSK);
2414 }
2415 
2416 llvm::Value *
2417 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2418   llvm::Value *Condition = nullptr;
2419 
2420   if (!RO.Conditions.Architecture.empty())
2421     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2422 
2423   if (!RO.Conditions.Features.empty()) {
2424     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2425     Condition =
2426         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2427   }
2428   return Condition;
2429 }
2430 
2431 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2432                                              llvm::Function *Resolver,
2433                                              CGBuilderTy &Builder,
2434                                              llvm::Function *FuncToReturn,
2435                                              bool SupportsIFunc) {
2436   if (SupportsIFunc) {
2437     Builder.CreateRet(FuncToReturn);
2438     return;
2439   }
2440 
2441   llvm::SmallVector<llvm::Value *, 10> Args;
2442   llvm::for_each(Resolver->args(),
2443                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2444 
2445   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2446   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2447 
2448   if (Resolver->getReturnType()->isVoidTy())
2449     Builder.CreateRetVoid();
2450   else
2451     Builder.CreateRet(Result);
2452 }
2453 
2454 void CodeGenFunction::EmitMultiVersionResolver(
2455     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2456   assert(getContext().getTargetInfo().getTriple().isX86() &&
2457          "Only implemented for x86 targets");
2458 
2459   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2460 
2461   // Main function's basic block.
2462   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2463   Builder.SetInsertPoint(CurBlock);
2464   EmitX86CpuInit();
2465 
2466   for (const MultiVersionResolverOption &RO : Options) {
2467     Builder.SetInsertPoint(CurBlock);
2468     llvm::Value *Condition = FormResolverCondition(RO);
2469 
2470     // The 'default' or 'generic' case.
2471     if (!Condition) {
2472       assert(&RO == Options.end() - 1 &&
2473              "Default or Generic case must be last");
2474       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2475                                        SupportsIFunc);
2476       return;
2477     }
2478 
2479     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2480     CGBuilderTy RetBuilder(*this, RetBlock);
2481     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2482                                      SupportsIFunc);
2483     CurBlock = createBasicBlock("resolver_else", Resolver);
2484     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2485   }
2486 
2487   // If no generic/default, emit an unreachable.
2488   Builder.SetInsertPoint(CurBlock);
2489   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2490   TrapCall->setDoesNotReturn();
2491   TrapCall->setDoesNotThrow();
2492   Builder.CreateUnreachable();
2493   Builder.ClearInsertionPoint();
2494 }
2495 
2496 // Loc - where the diagnostic will point, where in the source code this
2497 //  alignment has failed.
2498 // SecondaryLoc - if present (will be present if sufficiently different from
2499 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2500 //  It should be the location where the __attribute__((assume_aligned))
2501 //  was written e.g.
2502 void CodeGenFunction::emitAlignmentAssumptionCheck(
2503     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2504     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2505     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2506     llvm::Instruction *Assumption) {
2507   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2508          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2509              llvm::Intrinsic::getDeclaration(
2510                  Builder.GetInsertBlock()->getParent()->getParent(),
2511                  llvm::Intrinsic::assume) &&
2512          "Assumption should be a call to llvm.assume().");
2513   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2514          "Assumption should be the last instruction of the basic block, "
2515          "since the basic block is still being generated.");
2516 
2517   if (!SanOpts.has(SanitizerKind::Alignment))
2518     return;
2519 
2520   // Don't check pointers to volatile data. The behavior here is implementation-
2521   // defined.
2522   if (Ty->getPointeeType().isVolatileQualified())
2523     return;
2524 
2525   // We need to temorairly remove the assumption so we can insert the
2526   // sanitizer check before it, else the check will be dropped by optimizations.
2527   Assumption->removeFromParent();
2528 
2529   {
2530     SanitizerScope SanScope(this);
2531 
2532     if (!OffsetValue)
2533       OffsetValue = Builder.getInt1(0); // no offset.
2534 
2535     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2536                                     EmitCheckSourceLocation(SecondaryLoc),
2537                                     EmitCheckTypeDescriptor(Ty)};
2538     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2539                                   EmitCheckValue(Alignment),
2540                                   EmitCheckValue(OffsetValue)};
2541     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2542               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2543   }
2544 
2545   // We are now in the (new, empty) "cont" basic block.
2546   // Reintroduce the assumption.
2547   Builder.Insert(Assumption);
2548   // FIXME: Assumption still has it's original basic block as it's Parent.
2549 }
2550 
2551 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2552   if (CGDebugInfo *DI = getDebugInfo())
2553     return DI->SourceLocToDebugLoc(Location);
2554 
2555   return llvm::DebugLoc();
2556 }
2557 
2558 static Optional<std::pair<uint32_t, uint32_t>>
2559 getLikelihoodWeights(Stmt::Likelihood LH) {
2560   switch (LH) {
2561   case Stmt::LH_Unlikely:
2562     return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight,
2563                                          llvm::LikelyBranchWeight);
2564   case Stmt::LH_None:
2565     return None;
2566   case Stmt::LH_Likely:
2567     return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight,
2568                                          llvm::UnlikelyBranchWeight);
2569   }
2570   llvm_unreachable("Unknown Likelihood");
2571 }
2572 
2573 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const {
2574   Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH);
2575   if (!LHW)
2576     return nullptr;
2577 
2578   llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2579   return MDHelper.createBranchWeights(LHW->first, LHW->second);
2580 }
2581 
2582 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop(
2583     const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const {
2584   llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount);
2585   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
2586     Weights = createBranchWeights(Stmt::getLikelihood(Body));
2587 
2588   return Weights;
2589 }
2590