1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Disable lifetime markers in msan builds. 49 // FIXME: Remove this when msan works with lifetime markers. 50 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 51 return false; 52 53 // Asan uses markers for use-after-scope checks. 54 if (CGOpts.SanitizeAddressUseAfterScope) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 LValueBaseInfo *BaseInfo) { 121 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (BaseInfo) 140 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 141 142 CharUnits Alignment; 143 if (T->isIncompleteType()) { 144 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 145 } else { 146 // For C++ class pointees, we don't know whether we're pointing at a 147 // base or a complete object, so we generally need to use the 148 // non-virtual alignment. 149 const CXXRecordDecl *RD; 150 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 151 Alignment = CGM.getClassPointerAlignment(RD); 152 } else { 153 Alignment = getContext().getTypeAlignInChars(T); 154 if (T.getQualifiers().hasUnaligned()) 155 Alignment = CharUnits::One(); 156 } 157 158 // Cap to the global maximum type alignment unless the alignment 159 // was somehow explicit on the type. 160 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 161 if (Alignment.getQuantity() > MaxAlign && 162 !getContext().isAlignmentRequired(T)) 163 Alignment = CharUnits::fromQuantity(MaxAlign); 164 } 165 } 166 return Alignment; 167 } 168 169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 170 LValueBaseInfo BaseInfo; 171 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 172 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 173 CGM.getTBAAInfo(T)); 174 } 175 176 /// Given a value of type T* that may not be to a complete object, 177 /// construct an l-value with the natural pointee alignment of T. 178 LValue 179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 180 LValueBaseInfo BaseInfo; 181 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 182 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 183 } 184 185 186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 187 return CGM.getTypes().ConvertTypeForMem(T); 188 } 189 190 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 191 return CGM.getTypes().ConvertType(T); 192 } 193 194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 195 type = type.getCanonicalType(); 196 while (true) { 197 switch (type->getTypeClass()) { 198 #define TYPE(name, parent) 199 #define ABSTRACT_TYPE(name, parent) 200 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 201 #define DEPENDENT_TYPE(name, parent) case Type::name: 202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 203 #include "clang/AST/TypeNodes.def" 204 llvm_unreachable("non-canonical or dependent type in IR-generation"); 205 206 case Type::Auto: 207 case Type::DeducedTemplateSpecialization: 208 llvm_unreachable("undeduced type in IR-generation"); 209 210 // Various scalar types. 211 case Type::Builtin: 212 case Type::Pointer: 213 case Type::BlockPointer: 214 case Type::LValueReference: 215 case Type::RValueReference: 216 case Type::MemberPointer: 217 case Type::Vector: 218 case Type::ExtVector: 219 case Type::FunctionProto: 220 case Type::FunctionNoProto: 221 case Type::Enum: 222 case Type::ObjCObjectPointer: 223 case Type::Pipe: 224 return TEK_Scalar; 225 226 // Complexes. 227 case Type::Complex: 228 return TEK_Complex; 229 230 // Arrays, records, and Objective-C objects. 231 case Type::ConstantArray: 232 case Type::IncompleteArray: 233 case Type::VariableArray: 234 case Type::Record: 235 case Type::ObjCObject: 236 case Type::ObjCInterface: 237 return TEK_Aggregate; 238 239 // We operate on atomic values according to their underlying type. 240 case Type::Atomic: 241 type = cast<AtomicType>(type)->getValueType(); 242 continue; 243 } 244 llvm_unreachable("unknown type kind!"); 245 } 246 } 247 248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 249 // For cleanliness, we try to avoid emitting the return block for 250 // simple cases. 251 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 252 253 if (CurBB) { 254 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 255 256 // We have a valid insert point, reuse it if it is empty or there are no 257 // explicit jumps to the return block. 258 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 259 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 260 delete ReturnBlock.getBlock(); 261 } else 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 // Otherwise, if the return block is the target of a single direct 267 // branch then we can just put the code in that block instead. This 268 // cleans up functions which started with a unified return block. 269 if (ReturnBlock.getBlock()->hasOneUse()) { 270 llvm::BranchInst *BI = 271 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 272 if (BI && BI->isUnconditional() && 273 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 274 // Record/return the DebugLoc of the simple 'return' expression to be used 275 // later by the actual 'ret' instruction. 276 llvm::DebugLoc Loc = BI->getDebugLoc(); 277 Builder.SetInsertPoint(BI->getParent()); 278 BI->eraseFromParent(); 279 delete ReturnBlock.getBlock(); 280 return Loc; 281 } 282 } 283 284 // FIXME: We are at an unreachable point, there is no reason to emit the block 285 // unless it has uses. However, we still need a place to put the debug 286 // region.end for now. 287 288 EmitBlock(ReturnBlock.getBlock()); 289 return llvm::DebugLoc(); 290 } 291 292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 293 if (!BB) return; 294 if (!BB->use_empty()) 295 return CGF.CurFn->getBasicBlockList().push_back(BB); 296 delete BB; 297 } 298 299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 300 assert(BreakContinueStack.empty() && 301 "mismatched push/pop in break/continue stack!"); 302 303 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 304 && NumSimpleReturnExprs == NumReturnExprs 305 && ReturnBlock.getBlock()->use_empty(); 306 // Usually the return expression is evaluated before the cleanup 307 // code. If the function contains only a simple return statement, 308 // such as a constant, the location before the cleanup code becomes 309 // the last useful breakpoint in the function, because the simple 310 // return expression will be evaluated after the cleanup code. To be 311 // safe, set the debug location for cleanup code to the location of 312 // the return statement. Otherwise the cleanup code should be at the 313 // end of the function's lexical scope. 314 // 315 // If there are multiple branches to the return block, the branch 316 // instructions will get the location of the return statements and 317 // all will be fine. 318 if (CGDebugInfo *DI = getDebugInfo()) { 319 if (OnlySimpleReturnStmts) 320 DI->EmitLocation(Builder, LastStopPoint); 321 else 322 DI->EmitLocation(Builder, EndLoc); 323 } 324 325 // Pop any cleanups that might have been associated with the 326 // parameters. Do this in whatever block we're currently in; it's 327 // important to do this before we enter the return block or return 328 // edges will be *really* confused. 329 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 330 bool HasOnlyLifetimeMarkers = 331 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 332 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 333 if (HasCleanups) { 334 // Make sure the line table doesn't jump back into the body for 335 // the ret after it's been at EndLoc. 336 if (CGDebugInfo *DI = getDebugInfo()) 337 if (OnlySimpleReturnStmts) 338 DI->EmitLocation(Builder, EndLoc); 339 340 PopCleanupBlocks(PrologueCleanupDepth); 341 } 342 343 // Emit function epilog (to return). 344 llvm::DebugLoc Loc = EmitReturnBlock(); 345 346 if (ShouldInstrumentFunction()) 347 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 348 349 // Emit debug descriptor for function end. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 DI->EmitFunctionEnd(Builder, CurFn); 352 353 // Reset the debug location to that of the simple 'return' expression, if any 354 // rather than that of the end of the function's scope '}'. 355 ApplyDebugLocation AL(*this, Loc); 356 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 357 EmitEndEHSpec(CurCodeDecl); 358 359 assert(EHStack.empty() && 360 "did not remove all scopes from cleanup stack!"); 361 362 // If someone did an indirect goto, emit the indirect goto block at the end of 363 // the function. 364 if (IndirectBranch) { 365 EmitBlock(IndirectBranch->getParent()); 366 Builder.ClearInsertionPoint(); 367 } 368 369 // If some of our locals escaped, insert a call to llvm.localescape in the 370 // entry block. 371 if (!EscapedLocals.empty()) { 372 // Invert the map from local to index into a simple vector. There should be 373 // no holes. 374 SmallVector<llvm::Value *, 4> EscapeArgs; 375 EscapeArgs.resize(EscapedLocals.size()); 376 for (auto &Pair : EscapedLocals) 377 EscapeArgs[Pair.second] = Pair.first; 378 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 379 &CGM.getModule(), llvm::Intrinsic::localescape); 380 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 381 } 382 383 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 384 llvm::Instruction *Ptr = AllocaInsertPt; 385 AllocaInsertPt = nullptr; 386 Ptr->eraseFromParent(); 387 388 // If someone took the address of a label but never did an indirect goto, we 389 // made a zero entry PHI node, which is illegal, zap it now. 390 if (IndirectBranch) { 391 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 392 if (PN->getNumIncomingValues() == 0) { 393 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 394 PN->eraseFromParent(); 395 } 396 } 397 398 EmitIfUsed(*this, EHResumeBlock); 399 EmitIfUsed(*this, TerminateLandingPad); 400 EmitIfUsed(*this, TerminateHandler); 401 EmitIfUsed(*this, UnreachableBlock); 402 403 if (CGM.getCodeGenOpts().EmitDeclMetadata) 404 EmitDeclMetadata(); 405 406 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 407 I = DeferredReplacements.begin(), 408 E = DeferredReplacements.end(); 409 I != E; ++I) { 410 I->first->replaceAllUsesWith(I->second); 411 I->first->eraseFromParent(); 412 } 413 } 414 415 /// ShouldInstrumentFunction - Return true if the current function should be 416 /// instrumented with __cyg_profile_func_* calls 417 bool CodeGenFunction::ShouldInstrumentFunction() { 418 if (!CGM.getCodeGenOpts().InstrumentFunctions) 419 return false; 420 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 421 return false; 422 return true; 423 } 424 425 /// ShouldXRayInstrument - Return true if the current function should be 426 /// instrumented with XRay nop sleds. 427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 428 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 429 } 430 431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 432 /// instrumentation function with the current function and the call site, if 433 /// function instrumentation is enabled. 434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 435 auto NL = ApplyDebugLocation::CreateArtificial(*this); 436 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 437 llvm::PointerType *PointerTy = Int8PtrTy; 438 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 439 llvm::FunctionType *FunctionTy = 440 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 441 442 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 443 llvm::CallInst *CallSite = Builder.CreateCall( 444 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 445 llvm::ConstantInt::get(Int32Ty, 0), 446 "callsite"); 447 448 llvm::Value *args[] = { 449 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 450 CallSite 451 }; 452 453 EmitNounwindRuntimeCall(F, args); 454 } 455 456 static void removeImageAccessQualifier(std::string& TyName) { 457 std::string ReadOnlyQual("__read_only"); 458 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 459 if (ReadOnlyPos != std::string::npos) 460 // "+ 1" for the space after access qualifier. 461 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 462 else { 463 std::string WriteOnlyQual("__write_only"); 464 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 465 if (WriteOnlyPos != std::string::npos) 466 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 467 else { 468 std::string ReadWriteQual("__read_write"); 469 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 470 if (ReadWritePos != std::string::npos) 471 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 472 } 473 } 474 } 475 476 // Returns the address space id that should be produced to the 477 // kernel_arg_addr_space metadata. This is always fixed to the ids 478 // as specified in the SPIR 2.0 specification in order to differentiate 479 // for example in clGetKernelArgInfo() implementation between the address 480 // spaces with targets without unique mapping to the OpenCL address spaces 481 // (basically all single AS CPUs). 482 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 483 switch (LangAS) { 484 case LangAS::opencl_global: return 1; 485 case LangAS::opencl_constant: return 2; 486 case LangAS::opencl_local: return 3; 487 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 488 default: 489 return 0; // Assume private. 490 } 491 } 492 493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 494 // information in the program executable. The argument information stored 495 // includes the argument name, its type, the address and access qualifiers used. 496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 497 CodeGenModule &CGM, llvm::LLVMContext &Context, 498 CGBuilderTy &Builder, ASTContext &ASTCtx) { 499 // Create MDNodes that represent the kernel arg metadata. 500 // Each MDNode is a list in the form of "key", N number of values which is 501 // the same number of values as their are kernel arguments. 502 503 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 504 505 // MDNode for the kernel argument address space qualifiers. 506 SmallVector<llvm::Metadata *, 8> addressQuals; 507 508 // MDNode for the kernel argument access qualifiers (images only). 509 SmallVector<llvm::Metadata *, 8> accessQuals; 510 511 // MDNode for the kernel argument type names. 512 SmallVector<llvm::Metadata *, 8> argTypeNames; 513 514 // MDNode for the kernel argument base type names. 515 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 516 517 // MDNode for the kernel argument type qualifiers. 518 SmallVector<llvm::Metadata *, 8> argTypeQuals; 519 520 // MDNode for the kernel argument names. 521 SmallVector<llvm::Metadata *, 8> argNames; 522 523 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 524 const ParmVarDecl *parm = FD->getParamDecl(i); 525 QualType ty = parm->getType(); 526 std::string typeQuals; 527 528 if (ty->isPointerType()) { 529 QualType pointeeTy = ty->getPointeeType(); 530 531 // Get address qualifier. 532 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 533 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 534 535 // Get argument type name. 536 std::string typeName = 537 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 538 539 // Turn "unsigned type" to "utype" 540 std::string::size_type pos = typeName.find("unsigned"); 541 if (pointeeTy.isCanonical() && pos != std::string::npos) 542 typeName.erase(pos+1, 8); 543 544 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 545 546 std::string baseTypeName = 547 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 548 Policy) + 549 "*"; 550 551 // Turn "unsigned type" to "utype" 552 pos = baseTypeName.find("unsigned"); 553 if (pos != std::string::npos) 554 baseTypeName.erase(pos+1, 8); 555 556 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 557 558 // Get argument type qualifiers: 559 if (ty.isRestrictQualified()) 560 typeQuals = "restrict"; 561 if (pointeeTy.isConstQualified() || 562 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 563 typeQuals += typeQuals.empty() ? "const" : " const"; 564 if (pointeeTy.isVolatileQualified()) 565 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 566 } else { 567 uint32_t AddrSpc = 0; 568 bool isPipe = ty->isPipeType(); 569 if (ty->isImageType() || isPipe) 570 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 571 572 addressQuals.push_back( 573 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 574 575 // Get argument type name. 576 std::string typeName; 577 if (isPipe) 578 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 579 .getAsString(Policy); 580 else 581 typeName = ty.getUnqualifiedType().getAsString(Policy); 582 583 // Turn "unsigned type" to "utype" 584 std::string::size_type pos = typeName.find("unsigned"); 585 if (ty.isCanonical() && pos != std::string::npos) 586 typeName.erase(pos+1, 8); 587 588 std::string baseTypeName; 589 if (isPipe) 590 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 591 ->getElementType().getCanonicalType() 592 .getAsString(Policy); 593 else 594 baseTypeName = 595 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 596 597 // Remove access qualifiers on images 598 // (as they are inseparable from type in clang implementation, 599 // but OpenCL spec provides a special query to get access qualifier 600 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 601 if (ty->isImageType()) { 602 removeImageAccessQualifier(typeName); 603 removeImageAccessQualifier(baseTypeName); 604 } 605 606 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 607 608 // Turn "unsigned type" to "utype" 609 pos = baseTypeName.find("unsigned"); 610 if (pos != std::string::npos) 611 baseTypeName.erase(pos+1, 8); 612 613 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 614 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const Decl *PDecl = parm; 624 if (auto *TD = dyn_cast<TypedefType>(ty)) 625 PDecl = TD->getDecl(); 626 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 627 if (A && A->isWriteOnly()) 628 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 629 else if (A && A->isReadWrite()) 630 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 631 else 632 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 633 } else 634 accessQuals.push_back(llvm::MDString::get(Context, "none")); 635 636 // Get argument name. 637 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 638 } 639 640 Fn->setMetadata("kernel_arg_addr_space", 641 llvm::MDNode::get(Context, addressQuals)); 642 Fn->setMetadata("kernel_arg_access_qual", 643 llvm::MDNode::get(Context, accessQuals)); 644 Fn->setMetadata("kernel_arg_type", 645 llvm::MDNode::get(Context, argTypeNames)); 646 Fn->setMetadata("kernel_arg_base_type", 647 llvm::MDNode::get(Context, argBaseTypeNames)); 648 Fn->setMetadata("kernel_arg_type_qual", 649 llvm::MDNode::get(Context, argTypeQuals)); 650 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 651 Fn->setMetadata("kernel_arg_name", 652 llvm::MDNode::get(Context, argNames)); 653 } 654 655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 656 llvm::Function *Fn) 657 { 658 if (!FD->hasAttr<OpenCLKernelAttr>()) 659 return; 660 661 llvm::LLVMContext &Context = getLLVMContext(); 662 663 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 664 665 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 666 QualType HintQTy = A->getTypeHint(); 667 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 668 bool IsSignedInteger = 669 HintQTy->isSignedIntegerType() || 670 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 671 llvm::Metadata *AttrMDArgs[] = { 672 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 673 CGM.getTypes().ConvertType(A->getTypeHint()))), 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 llvm::IntegerType::get(Context, 32), 676 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 677 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 680 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 681 llvm::Metadata *AttrMDArgs[] = { 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 685 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 686 } 687 688 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 689 llvm::Metadata *AttrMDArgs[] = { 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 693 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 694 } 695 696 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 697 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 698 llvm::Metadata *AttrMDArgs[] = { 699 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 700 Fn->setMetadata("intel_reqd_sub_group_size", 701 llvm::MDNode::get(Context, AttrMDArgs)); 702 } 703 } 704 705 /// Determine whether the function F ends with a return stmt. 706 static bool endsWithReturn(const Decl* F) { 707 const Stmt *Body = nullptr; 708 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 709 Body = FD->getBody(); 710 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 711 Body = OMD->getBody(); 712 713 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 714 auto LastStmt = CS->body_rbegin(); 715 if (LastStmt != CS->body_rend()) 716 return isa<ReturnStmt>(*LastStmt); 717 } 718 return false; 719 } 720 721 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 722 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 723 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 724 } 725 726 void CodeGenFunction::StartFunction(GlobalDecl GD, 727 QualType RetTy, 728 llvm::Function *Fn, 729 const CGFunctionInfo &FnInfo, 730 const FunctionArgList &Args, 731 SourceLocation Loc, 732 SourceLocation StartLoc) { 733 assert(!CurFn && 734 "Do not use a CodeGenFunction object for more than one function"); 735 736 const Decl *D = GD.getDecl(); 737 738 DidCallStackSave = false; 739 CurCodeDecl = D; 740 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 741 if (FD->usesSEHTry()) 742 CurSEHParent = FD; 743 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 744 FnRetTy = RetTy; 745 CurFn = Fn; 746 CurFnInfo = &FnInfo; 747 assert(CurFn->isDeclaration() && "Function already has body?"); 748 749 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 750 SanOpts.clear(); 751 752 if (D) { 753 // Apply the no_sanitize* attributes to SanOpts. 754 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 755 SanOpts.Mask &= ~Attr->getMask(); 756 } 757 758 // Apply sanitizer attributes to the function. 759 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 761 if (SanOpts.has(SanitizerKind::Thread)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 763 if (SanOpts.has(SanitizerKind::Memory)) 764 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 765 if (SanOpts.has(SanitizerKind::SafeStack)) 766 Fn->addFnAttr(llvm::Attribute::SafeStack); 767 768 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 769 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 770 if (SanOpts.has(SanitizerKind::Thread)) { 771 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 772 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 773 if (OMD->getMethodFamily() == OMF_dealloc || 774 OMD->getMethodFamily() == OMF_initialize || 775 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 776 markAsIgnoreThreadCheckingAtRuntime(Fn); 777 } 778 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 779 IdentifierInfo *II = FD->getIdentifier(); 780 if (II && II->isStr("__destroy_helper_block_")) 781 markAsIgnoreThreadCheckingAtRuntime(Fn); 782 } 783 } 784 785 // Apply xray attributes to the function (as a string, for now) 786 if (D && ShouldXRayInstrumentFunction()) { 787 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 788 if (XRayAttr->alwaysXRayInstrument()) 789 Fn->addFnAttr("function-instrument", "xray-always"); 790 if (XRayAttr->neverXRayInstrument()) 791 Fn->addFnAttr("function-instrument", "xray-never"); 792 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 793 Fn->addFnAttr("xray-log-args", 794 llvm::utostr(LogArgs->getArgumentCount())); 795 } 796 } else { 797 if (!CGM.imbueXRayAttrs(Fn, Loc)) 798 Fn->addFnAttr( 799 "xray-instruction-threshold", 800 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 801 } 802 } 803 804 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 805 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 806 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 807 808 // Add no-jump-tables value. 809 Fn->addFnAttr("no-jump-tables", 810 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 811 812 if (getLangOpts().OpenCL) { 813 // Add metadata for a kernel function. 814 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 815 EmitOpenCLKernelMetadata(FD, Fn); 816 } 817 818 // If we are checking function types, emit a function type signature as 819 // prologue data. 820 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 821 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 822 if (llvm::Constant *PrologueSig = 823 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 824 llvm::Constant *FTRTTIConst = 825 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 826 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 827 llvm::Constant *PrologueStructConst = 828 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 829 Fn->setPrologueData(PrologueStructConst); 830 } 831 } 832 } 833 834 // If we're checking nullability, we need to know whether we can check the 835 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 836 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 837 auto Nullability = FnRetTy->getNullability(getContext()); 838 if (Nullability && *Nullability == NullabilityKind::NonNull) { 839 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 840 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 841 RetValNullabilityPrecondition = 842 llvm::ConstantInt::getTrue(getLLVMContext()); 843 } 844 } 845 846 // If we're in C++ mode and the function name is "main", it is guaranteed 847 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 848 // used within a program"). 849 if (getLangOpts().CPlusPlus) 850 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 851 if (FD->isMain()) 852 Fn->addFnAttr(llvm::Attribute::NoRecurse); 853 854 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 855 856 // Create a marker to make it easy to insert allocas into the entryblock 857 // later. Don't create this with the builder, because we don't want it 858 // folded. 859 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 860 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 861 862 ReturnBlock = getJumpDestInCurrentScope("return"); 863 864 Builder.SetInsertPoint(EntryBB); 865 866 // If we're checking the return value, allocate space for a pointer to a 867 // precise source location of the checked return statement. 868 if (requiresReturnValueCheck()) { 869 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 870 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 871 } 872 873 // Emit subprogram debug descriptor. 874 if (CGDebugInfo *DI = getDebugInfo()) { 875 // Reconstruct the type from the argument list so that implicit parameters, 876 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 877 // convention. 878 CallingConv CC = CallingConv::CC_C; 879 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 880 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 881 CC = SrcFnTy->getCallConv(); 882 SmallVector<QualType, 16> ArgTypes; 883 for (const VarDecl *VD : Args) 884 ArgTypes.push_back(VD->getType()); 885 QualType FnType = getContext().getFunctionType( 886 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 887 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 888 } 889 890 if (ShouldInstrumentFunction()) 891 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 892 893 // Since emitting the mcount call here impacts optimizations such as function 894 // inlining, we just add an attribute to insert a mcount call in backend. 895 // The attribute "counting-function" is set to mcount function name which is 896 // architecture dependent. 897 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 898 if (CGM.getCodeGenOpts().CallFEntry) 899 Fn->addFnAttr("fentry-call", "true"); 900 else { 901 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 902 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 903 } 904 } 905 906 if (RetTy->isVoidType()) { 907 // Void type; nothing to return. 908 ReturnValue = Address::invalid(); 909 910 // Count the implicit return. 911 if (!endsWithReturn(D)) 912 ++NumReturnExprs; 913 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 914 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 915 // Indirect aggregate return; emit returned value directly into sret slot. 916 // This reduces code size, and affects correctness in C++. 917 auto AI = CurFn->arg_begin(); 918 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 919 ++AI; 920 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 921 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 922 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 923 // Load the sret pointer from the argument struct and return into that. 924 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 925 llvm::Function::arg_iterator EI = CurFn->arg_end(); 926 --EI; 927 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 928 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 929 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 930 } else { 931 ReturnValue = CreateIRTemp(RetTy, "retval"); 932 933 // Tell the epilog emitter to autorelease the result. We do this 934 // now so that various specialized functions can suppress it 935 // during their IR-generation. 936 if (getLangOpts().ObjCAutoRefCount && 937 !CurFnInfo->isReturnsRetained() && 938 RetTy->isObjCRetainableType()) 939 AutoreleaseResult = true; 940 } 941 942 EmitStartEHSpec(CurCodeDecl); 943 944 PrologueCleanupDepth = EHStack.stable_begin(); 945 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 946 947 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 948 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 949 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 950 if (MD->getParent()->isLambda() && 951 MD->getOverloadedOperator() == OO_Call) { 952 // We're in a lambda; figure out the captures. 953 MD->getParent()->getCaptureFields(LambdaCaptureFields, 954 LambdaThisCaptureField); 955 if (LambdaThisCaptureField) { 956 // If the lambda captures the object referred to by '*this' - either by 957 // value or by reference, make sure CXXThisValue points to the correct 958 // object. 959 960 // Get the lvalue for the field (which is a copy of the enclosing object 961 // or contains the address of the enclosing object). 962 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 963 if (!LambdaThisCaptureField->getType()->isPointerType()) { 964 // If the enclosing object was captured by value, just use its address. 965 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 966 } else { 967 // Load the lvalue pointed to by the field, since '*this' was captured 968 // by reference. 969 CXXThisValue = 970 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 971 } 972 } 973 for (auto *FD : MD->getParent()->fields()) { 974 if (FD->hasCapturedVLAType()) { 975 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 976 SourceLocation()).getScalarVal(); 977 auto VAT = FD->getCapturedVLAType(); 978 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 979 } 980 } 981 } else { 982 // Not in a lambda; just use 'this' from the method. 983 // FIXME: Should we generate a new load for each use of 'this'? The 984 // fast register allocator would be happier... 985 CXXThisValue = CXXABIThisValue; 986 } 987 988 // Check the 'this' pointer once per function, if it's available. 989 if (CXXThisValue) { 990 SanitizerSet SkippedChecks; 991 SkippedChecks.set(SanitizerKind::ObjectSize, true); 992 QualType ThisTy = MD->getThisType(getContext()); 993 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, 994 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 995 SkippedChecks); 996 } 997 } 998 999 // If any of the arguments have a variably modified type, make sure to 1000 // emit the type size. 1001 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1002 i != e; ++i) { 1003 const VarDecl *VD = *i; 1004 1005 // Dig out the type as written from ParmVarDecls; it's unclear whether 1006 // the standard (C99 6.9.1p10) requires this, but we're following the 1007 // precedent set by gcc. 1008 QualType Ty; 1009 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1010 Ty = PVD->getOriginalType(); 1011 else 1012 Ty = VD->getType(); 1013 1014 if (Ty->isVariablyModifiedType()) 1015 EmitVariablyModifiedType(Ty); 1016 } 1017 // Emit a location at the end of the prologue. 1018 if (CGDebugInfo *DI = getDebugInfo()) 1019 DI->EmitLocation(Builder, StartLoc); 1020 } 1021 1022 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1023 const Stmt *Body) { 1024 incrementProfileCounter(Body); 1025 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1026 EmitCompoundStmtWithoutScope(*S); 1027 else 1028 EmitStmt(Body); 1029 } 1030 1031 /// When instrumenting to collect profile data, the counts for some blocks 1032 /// such as switch cases need to not include the fall-through counts, so 1033 /// emit a branch around the instrumentation code. When not instrumenting, 1034 /// this just calls EmitBlock(). 1035 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1036 const Stmt *S) { 1037 llvm::BasicBlock *SkipCountBB = nullptr; 1038 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1039 // When instrumenting for profiling, the fallthrough to certain 1040 // statements needs to skip over the instrumentation code so that we 1041 // get an accurate count. 1042 SkipCountBB = createBasicBlock("skipcount"); 1043 EmitBranch(SkipCountBB); 1044 } 1045 EmitBlock(BB); 1046 uint64_t CurrentCount = getCurrentProfileCount(); 1047 incrementProfileCounter(S); 1048 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1049 if (SkipCountBB) 1050 EmitBlock(SkipCountBB); 1051 } 1052 1053 /// Tries to mark the given function nounwind based on the 1054 /// non-existence of any throwing calls within it. We believe this is 1055 /// lightweight enough to do at -O0. 1056 static void TryMarkNoThrow(llvm::Function *F) { 1057 // LLVM treats 'nounwind' on a function as part of the type, so we 1058 // can't do this on functions that can be overwritten. 1059 if (F->isInterposable()) return; 1060 1061 for (llvm::BasicBlock &BB : *F) 1062 for (llvm::Instruction &I : BB) 1063 if (I.mayThrow()) 1064 return; 1065 1066 F->setDoesNotThrow(); 1067 } 1068 1069 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1070 FunctionArgList &Args) { 1071 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1072 QualType ResTy = FD->getReturnType(); 1073 1074 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1075 if (MD && MD->isInstance()) { 1076 if (CGM.getCXXABI().HasThisReturn(GD)) 1077 ResTy = MD->getThisType(getContext()); 1078 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1079 ResTy = CGM.getContext().VoidPtrTy; 1080 CGM.getCXXABI().buildThisParam(*this, Args); 1081 } 1082 1083 // The base version of an inheriting constructor whose constructed base is a 1084 // virtual base is not passed any arguments (because it doesn't actually call 1085 // the inherited constructor). 1086 bool PassedParams = true; 1087 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1088 if (auto Inherited = CD->getInheritedConstructor()) 1089 PassedParams = 1090 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1091 1092 if (PassedParams) { 1093 for (auto *Param : FD->parameters()) { 1094 Args.push_back(Param); 1095 if (!Param->hasAttr<PassObjectSizeAttr>()) 1096 continue; 1097 1098 auto *Implicit = ImplicitParamDecl::Create( 1099 getContext(), Param->getDeclContext(), Param->getLocation(), 1100 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1101 SizeArguments[Param] = Implicit; 1102 Args.push_back(Implicit); 1103 } 1104 } 1105 1106 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1107 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1108 1109 return ResTy; 1110 } 1111 1112 static bool 1113 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1114 const ASTContext &Context) { 1115 QualType T = FD->getReturnType(); 1116 // Avoid the optimization for functions that return a record type with a 1117 // trivial destructor or another trivially copyable type. 1118 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1119 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1120 return !ClassDecl->hasTrivialDestructor(); 1121 } 1122 return !T.isTriviallyCopyableType(Context); 1123 } 1124 1125 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1126 const CGFunctionInfo &FnInfo) { 1127 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1128 CurGD = GD; 1129 1130 FunctionArgList Args; 1131 QualType ResTy = BuildFunctionArgList(GD, Args); 1132 1133 // Check if we should generate debug info for this function. 1134 if (FD->hasAttr<NoDebugAttr>()) 1135 DebugInfo = nullptr; // disable debug info indefinitely for this function 1136 1137 // The function might not have a body if we're generating thunks for a 1138 // function declaration. 1139 SourceRange BodyRange; 1140 if (Stmt *Body = FD->getBody()) 1141 BodyRange = Body->getSourceRange(); 1142 else 1143 BodyRange = FD->getLocation(); 1144 CurEHLocation = BodyRange.getEnd(); 1145 1146 // Use the location of the start of the function to determine where 1147 // the function definition is located. By default use the location 1148 // of the declaration as the location for the subprogram. A function 1149 // may lack a declaration in the source code if it is created by code 1150 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1151 SourceLocation Loc = FD->getLocation(); 1152 1153 // If this is a function specialization then use the pattern body 1154 // as the location for the function. 1155 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1156 if (SpecDecl->hasBody(SpecDecl)) 1157 Loc = SpecDecl->getLocation(); 1158 1159 Stmt *Body = FD->getBody(); 1160 1161 // Initialize helper which will detect jumps which can cause invalid lifetime 1162 // markers. 1163 if (Body && ShouldEmitLifetimeMarkers) 1164 Bypasses.Init(Body); 1165 1166 // Emit the standard function prologue. 1167 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1168 1169 // Generate the body of the function. 1170 PGO.assignRegionCounters(GD, CurFn); 1171 if (isa<CXXDestructorDecl>(FD)) 1172 EmitDestructorBody(Args); 1173 else if (isa<CXXConstructorDecl>(FD)) 1174 EmitConstructorBody(Args); 1175 else if (getLangOpts().CUDA && 1176 !getLangOpts().CUDAIsDevice && 1177 FD->hasAttr<CUDAGlobalAttr>()) 1178 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1179 else if (isa<CXXConversionDecl>(FD) && 1180 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1181 // The lambda conversion to block pointer is special; the semantics can't be 1182 // expressed in the AST, so IRGen needs to special-case it. 1183 EmitLambdaToBlockPointerBody(Args); 1184 } else if (isa<CXXMethodDecl>(FD) && 1185 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1186 // The lambda static invoker function is special, because it forwards or 1187 // clones the body of the function call operator (but is actually static). 1188 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1189 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1190 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1191 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1192 // Implicit copy-assignment gets the same special treatment as implicit 1193 // copy-constructors. 1194 emitImplicitAssignmentOperatorBody(Args); 1195 } else if (Body) { 1196 EmitFunctionBody(Args, Body); 1197 } else 1198 llvm_unreachable("no definition for emitted function"); 1199 1200 // C++11 [stmt.return]p2: 1201 // Flowing off the end of a function [...] results in undefined behavior in 1202 // a value-returning function. 1203 // C11 6.9.1p12: 1204 // If the '}' that terminates a function is reached, and the value of the 1205 // function call is used by the caller, the behavior is undefined. 1206 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1207 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1208 bool ShouldEmitUnreachable = 1209 CGM.getCodeGenOpts().StrictReturn || 1210 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1211 if (SanOpts.has(SanitizerKind::Return)) { 1212 SanitizerScope SanScope(this); 1213 llvm::Value *IsFalse = Builder.getFalse(); 1214 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1215 SanitizerHandler::MissingReturn, 1216 EmitCheckSourceLocation(FD->getLocation()), None); 1217 } else if (ShouldEmitUnreachable) { 1218 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1219 EmitTrapCall(llvm::Intrinsic::trap); 1220 } 1221 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1222 Builder.CreateUnreachable(); 1223 Builder.ClearInsertionPoint(); 1224 } 1225 } 1226 1227 // Emit the standard function epilogue. 1228 FinishFunction(BodyRange.getEnd()); 1229 1230 // If we haven't marked the function nothrow through other means, do 1231 // a quick pass now to see if we can. 1232 if (!CurFn->doesNotThrow()) 1233 TryMarkNoThrow(CurFn); 1234 } 1235 1236 /// ContainsLabel - Return true if the statement contains a label in it. If 1237 /// this statement is not executed normally, it not containing a label means 1238 /// that we can just remove the code. 1239 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1240 // Null statement, not a label! 1241 if (!S) return false; 1242 1243 // If this is a label, we have to emit the code, consider something like: 1244 // if (0) { ... foo: bar(); } goto foo; 1245 // 1246 // TODO: If anyone cared, we could track __label__'s, since we know that you 1247 // can't jump to one from outside their declared region. 1248 if (isa<LabelStmt>(S)) 1249 return true; 1250 1251 // If this is a case/default statement, and we haven't seen a switch, we have 1252 // to emit the code. 1253 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1254 return true; 1255 1256 // If this is a switch statement, we want to ignore cases below it. 1257 if (isa<SwitchStmt>(S)) 1258 IgnoreCaseStmts = true; 1259 1260 // Scan subexpressions for verboten labels. 1261 for (const Stmt *SubStmt : S->children()) 1262 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1263 return true; 1264 1265 return false; 1266 } 1267 1268 /// containsBreak - Return true if the statement contains a break out of it. 1269 /// If the statement (recursively) contains a switch or loop with a break 1270 /// inside of it, this is fine. 1271 bool CodeGenFunction::containsBreak(const Stmt *S) { 1272 // Null statement, not a label! 1273 if (!S) return false; 1274 1275 // If this is a switch or loop that defines its own break scope, then we can 1276 // include it and anything inside of it. 1277 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1278 isa<ForStmt>(S)) 1279 return false; 1280 1281 if (isa<BreakStmt>(S)) 1282 return true; 1283 1284 // Scan subexpressions for verboten breaks. 1285 for (const Stmt *SubStmt : S->children()) 1286 if (containsBreak(SubStmt)) 1287 return true; 1288 1289 return false; 1290 } 1291 1292 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1293 if (!S) return false; 1294 1295 // Some statement kinds add a scope and thus never add a decl to the current 1296 // scope. Note, this list is longer than the list of statements that might 1297 // have an unscoped decl nested within them, but this way is conservatively 1298 // correct even if more statement kinds are added. 1299 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1300 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1301 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1302 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1303 return false; 1304 1305 if (isa<DeclStmt>(S)) 1306 return true; 1307 1308 for (const Stmt *SubStmt : S->children()) 1309 if (mightAddDeclToScope(SubStmt)) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1316 /// to a constant, or if it does but contains a label, return false. If it 1317 /// constant folds return true and set the boolean result in Result. 1318 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1319 bool &ResultBool, 1320 bool AllowLabels) { 1321 llvm::APSInt ResultInt; 1322 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1323 return false; 1324 1325 ResultBool = ResultInt.getBoolValue(); 1326 return true; 1327 } 1328 1329 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1330 /// to a constant, or if it does but contains a label, return false. If it 1331 /// constant folds return true and set the folded value. 1332 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1333 llvm::APSInt &ResultInt, 1334 bool AllowLabels) { 1335 // FIXME: Rename and handle conversion of other evaluatable things 1336 // to bool. 1337 llvm::APSInt Int; 1338 if (!Cond->EvaluateAsInt(Int, getContext())) 1339 return false; // Not foldable, not integer or not fully evaluatable. 1340 1341 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1342 return false; // Contains a label. 1343 1344 ResultInt = Int; 1345 return true; 1346 } 1347 1348 1349 1350 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1351 /// statement) to the specified blocks. Based on the condition, this might try 1352 /// to simplify the codegen of the conditional based on the branch. 1353 /// 1354 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1355 llvm::BasicBlock *TrueBlock, 1356 llvm::BasicBlock *FalseBlock, 1357 uint64_t TrueCount) { 1358 Cond = Cond->IgnoreParens(); 1359 1360 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1361 1362 // Handle X && Y in a condition. 1363 if (CondBOp->getOpcode() == BO_LAnd) { 1364 // If we have "1 && X", simplify the code. "0 && X" would have constant 1365 // folded if the case was simple enough. 1366 bool ConstantBool = false; 1367 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1368 ConstantBool) { 1369 // br(1 && X) -> br(X). 1370 incrementProfileCounter(CondBOp); 1371 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1372 TrueCount); 1373 } 1374 1375 // If we have "X && 1", simplify the code to use an uncond branch. 1376 // "X && 0" would have been constant folded to 0. 1377 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1378 ConstantBool) { 1379 // br(X && 1) -> br(X). 1380 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1381 TrueCount); 1382 } 1383 1384 // Emit the LHS as a conditional. If the LHS conditional is false, we 1385 // want to jump to the FalseBlock. 1386 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1387 // The counter tells us how often we evaluate RHS, and all of TrueCount 1388 // can be propagated to that branch. 1389 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1390 1391 ConditionalEvaluation eval(*this); 1392 { 1393 ApplyDebugLocation DL(*this, Cond); 1394 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1395 EmitBlock(LHSTrue); 1396 } 1397 1398 incrementProfileCounter(CondBOp); 1399 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1400 1401 // Any temporaries created here are conditional. 1402 eval.begin(*this); 1403 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1404 eval.end(*this); 1405 1406 return; 1407 } 1408 1409 if (CondBOp->getOpcode() == BO_LOr) { 1410 // If we have "0 || X", simplify the code. "1 || X" would have constant 1411 // folded if the case was simple enough. 1412 bool ConstantBool = false; 1413 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1414 !ConstantBool) { 1415 // br(0 || X) -> br(X). 1416 incrementProfileCounter(CondBOp); 1417 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1418 TrueCount); 1419 } 1420 1421 // If we have "X || 0", simplify the code to use an uncond branch. 1422 // "X || 1" would have been constant folded to 1. 1423 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1424 !ConstantBool) { 1425 // br(X || 0) -> br(X). 1426 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1427 TrueCount); 1428 } 1429 1430 // Emit the LHS as a conditional. If the LHS conditional is true, we 1431 // want to jump to the TrueBlock. 1432 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1433 // We have the count for entry to the RHS and for the whole expression 1434 // being true, so we can divy up True count between the short circuit and 1435 // the RHS. 1436 uint64_t LHSCount = 1437 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1438 uint64_t RHSCount = TrueCount - LHSCount; 1439 1440 ConditionalEvaluation eval(*this); 1441 { 1442 ApplyDebugLocation DL(*this, Cond); 1443 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1444 EmitBlock(LHSFalse); 1445 } 1446 1447 incrementProfileCounter(CondBOp); 1448 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1449 1450 // Any temporaries created here are conditional. 1451 eval.begin(*this); 1452 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1453 1454 eval.end(*this); 1455 1456 return; 1457 } 1458 } 1459 1460 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1461 // br(!x, t, f) -> br(x, f, t) 1462 if (CondUOp->getOpcode() == UO_LNot) { 1463 // Negate the count. 1464 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1465 // Negate the condition and swap the destination blocks. 1466 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1467 FalseCount); 1468 } 1469 } 1470 1471 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1472 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1473 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1474 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1475 1476 ConditionalEvaluation cond(*this); 1477 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1478 getProfileCount(CondOp)); 1479 1480 // When computing PGO branch weights, we only know the overall count for 1481 // the true block. This code is essentially doing tail duplication of the 1482 // naive code-gen, introducing new edges for which counts are not 1483 // available. Divide the counts proportionally between the LHS and RHS of 1484 // the conditional operator. 1485 uint64_t LHSScaledTrueCount = 0; 1486 if (TrueCount) { 1487 double LHSRatio = 1488 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1489 LHSScaledTrueCount = TrueCount * LHSRatio; 1490 } 1491 1492 cond.begin(*this); 1493 EmitBlock(LHSBlock); 1494 incrementProfileCounter(CondOp); 1495 { 1496 ApplyDebugLocation DL(*this, Cond); 1497 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1498 LHSScaledTrueCount); 1499 } 1500 cond.end(*this); 1501 1502 cond.begin(*this); 1503 EmitBlock(RHSBlock); 1504 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1505 TrueCount - LHSScaledTrueCount); 1506 cond.end(*this); 1507 1508 return; 1509 } 1510 1511 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1512 // Conditional operator handling can give us a throw expression as a 1513 // condition for a case like: 1514 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1515 // Fold this to: 1516 // br(c, throw x, br(y, t, f)) 1517 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1518 return; 1519 } 1520 1521 // If the branch has a condition wrapped by __builtin_unpredictable, 1522 // create metadata that specifies that the branch is unpredictable. 1523 // Don't bother if not optimizing because that metadata would not be used. 1524 llvm::MDNode *Unpredictable = nullptr; 1525 auto *Call = dyn_cast<CallExpr>(Cond); 1526 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1527 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1528 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1529 llvm::MDBuilder MDHelper(getLLVMContext()); 1530 Unpredictable = MDHelper.createUnpredictable(); 1531 } 1532 } 1533 1534 // Create branch weights based on the number of times we get here and the 1535 // number of times the condition should be true. 1536 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1537 llvm::MDNode *Weights = 1538 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1539 1540 // Emit the code with the fully general case. 1541 llvm::Value *CondV; 1542 { 1543 ApplyDebugLocation DL(*this, Cond); 1544 CondV = EvaluateExprAsBool(Cond); 1545 } 1546 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1547 } 1548 1549 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1550 /// specified stmt yet. 1551 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1552 CGM.ErrorUnsupported(S, Type); 1553 } 1554 1555 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1556 /// variable-length array whose elements have a non-zero bit-pattern. 1557 /// 1558 /// \param baseType the inner-most element type of the array 1559 /// \param src - a char* pointing to the bit-pattern for a single 1560 /// base element of the array 1561 /// \param sizeInChars - the total size of the VLA, in chars 1562 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1563 Address dest, Address src, 1564 llvm::Value *sizeInChars) { 1565 CGBuilderTy &Builder = CGF.Builder; 1566 1567 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1568 llvm::Value *baseSizeInChars 1569 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1570 1571 Address begin = 1572 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1573 llvm::Value *end = 1574 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1575 1576 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1577 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1578 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1579 1580 // Make a loop over the VLA. C99 guarantees that the VLA element 1581 // count must be nonzero. 1582 CGF.EmitBlock(loopBB); 1583 1584 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1585 cur->addIncoming(begin.getPointer(), originBB); 1586 1587 CharUnits curAlign = 1588 dest.getAlignment().alignmentOfArrayElement(baseSize); 1589 1590 // memcpy the individual element bit-pattern. 1591 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1592 /*volatile*/ false); 1593 1594 // Go to the next element. 1595 llvm::Value *next = 1596 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1597 1598 // Leave if that's the end of the VLA. 1599 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1600 Builder.CreateCondBr(done, contBB, loopBB); 1601 cur->addIncoming(next, loopBB); 1602 1603 CGF.EmitBlock(contBB); 1604 } 1605 1606 void 1607 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1608 // Ignore empty classes in C++. 1609 if (getLangOpts().CPlusPlus) { 1610 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1611 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1612 return; 1613 } 1614 } 1615 1616 // Cast the dest ptr to the appropriate i8 pointer type. 1617 if (DestPtr.getElementType() != Int8Ty) 1618 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1619 1620 // Get size and alignment info for this aggregate. 1621 CharUnits size = getContext().getTypeSizeInChars(Ty); 1622 1623 llvm::Value *SizeVal; 1624 const VariableArrayType *vla; 1625 1626 // Don't bother emitting a zero-byte memset. 1627 if (size.isZero()) { 1628 // But note that getTypeInfo returns 0 for a VLA. 1629 if (const VariableArrayType *vlaType = 1630 dyn_cast_or_null<VariableArrayType>( 1631 getContext().getAsArrayType(Ty))) { 1632 QualType eltType; 1633 llvm::Value *numElts; 1634 std::tie(numElts, eltType) = getVLASize(vlaType); 1635 1636 SizeVal = numElts; 1637 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1638 if (!eltSize.isOne()) 1639 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1640 vla = vlaType; 1641 } else { 1642 return; 1643 } 1644 } else { 1645 SizeVal = CGM.getSize(size); 1646 vla = nullptr; 1647 } 1648 1649 // If the type contains a pointer to data member we can't memset it to zero. 1650 // Instead, create a null constant and copy it to the destination. 1651 // TODO: there are other patterns besides zero that we can usefully memset, 1652 // like -1, which happens to be the pattern used by member-pointers. 1653 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1654 // For a VLA, emit a single element, then splat that over the VLA. 1655 if (vla) Ty = getContext().getBaseElementType(vla); 1656 1657 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1658 1659 llvm::GlobalVariable *NullVariable = 1660 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1661 /*isConstant=*/true, 1662 llvm::GlobalVariable::PrivateLinkage, 1663 NullConstant, Twine()); 1664 CharUnits NullAlign = DestPtr.getAlignment(); 1665 NullVariable->setAlignment(NullAlign.getQuantity()); 1666 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1667 NullAlign); 1668 1669 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1670 1671 // Get and call the appropriate llvm.memcpy overload. 1672 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1673 return; 1674 } 1675 1676 // Otherwise, just memset the whole thing to zero. This is legal 1677 // because in LLVM, all default initializers (other than the ones we just 1678 // handled above) are guaranteed to have a bit pattern of all zeros. 1679 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1680 } 1681 1682 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1683 // Make sure that there is a block for the indirect goto. 1684 if (!IndirectBranch) 1685 GetIndirectGotoBlock(); 1686 1687 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1688 1689 // Make sure the indirect branch includes all of the address-taken blocks. 1690 IndirectBranch->addDestination(BB); 1691 return llvm::BlockAddress::get(CurFn, BB); 1692 } 1693 1694 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1695 // If we already made the indirect branch for indirect goto, return its block. 1696 if (IndirectBranch) return IndirectBranch->getParent(); 1697 1698 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1699 1700 // Create the PHI node that indirect gotos will add entries to. 1701 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1702 "indirect.goto.dest"); 1703 1704 // Create the indirect branch instruction. 1705 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1706 return IndirectBranch->getParent(); 1707 } 1708 1709 /// Computes the length of an array in elements, as well as the base 1710 /// element type and a properly-typed first element pointer. 1711 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1712 QualType &baseType, 1713 Address &addr) { 1714 const ArrayType *arrayType = origArrayType; 1715 1716 // If it's a VLA, we have to load the stored size. Note that 1717 // this is the size of the VLA in bytes, not its size in elements. 1718 llvm::Value *numVLAElements = nullptr; 1719 if (isa<VariableArrayType>(arrayType)) { 1720 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1721 1722 // Walk into all VLAs. This doesn't require changes to addr, 1723 // which has type T* where T is the first non-VLA element type. 1724 do { 1725 QualType elementType = arrayType->getElementType(); 1726 arrayType = getContext().getAsArrayType(elementType); 1727 1728 // If we only have VLA components, 'addr' requires no adjustment. 1729 if (!arrayType) { 1730 baseType = elementType; 1731 return numVLAElements; 1732 } 1733 } while (isa<VariableArrayType>(arrayType)); 1734 1735 // We get out here only if we find a constant array type 1736 // inside the VLA. 1737 } 1738 1739 // We have some number of constant-length arrays, so addr should 1740 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1741 // down to the first element of addr. 1742 SmallVector<llvm::Value*, 8> gepIndices; 1743 1744 // GEP down to the array type. 1745 llvm::ConstantInt *zero = Builder.getInt32(0); 1746 gepIndices.push_back(zero); 1747 1748 uint64_t countFromCLAs = 1; 1749 QualType eltType; 1750 1751 llvm::ArrayType *llvmArrayType = 1752 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1753 while (llvmArrayType) { 1754 assert(isa<ConstantArrayType>(arrayType)); 1755 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1756 == llvmArrayType->getNumElements()); 1757 1758 gepIndices.push_back(zero); 1759 countFromCLAs *= llvmArrayType->getNumElements(); 1760 eltType = arrayType->getElementType(); 1761 1762 llvmArrayType = 1763 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1764 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1765 assert((!llvmArrayType || arrayType) && 1766 "LLVM and Clang types are out-of-synch"); 1767 } 1768 1769 if (arrayType) { 1770 // From this point onwards, the Clang array type has been emitted 1771 // as some other type (probably a packed struct). Compute the array 1772 // size, and just emit the 'begin' expression as a bitcast. 1773 while (arrayType) { 1774 countFromCLAs *= 1775 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1776 eltType = arrayType->getElementType(); 1777 arrayType = getContext().getAsArrayType(eltType); 1778 } 1779 1780 llvm::Type *baseType = ConvertType(eltType); 1781 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1782 } else { 1783 // Create the actual GEP. 1784 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1785 gepIndices, "array.begin"), 1786 addr.getAlignment()); 1787 } 1788 1789 baseType = eltType; 1790 1791 llvm::Value *numElements 1792 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1793 1794 // If we had any VLA dimensions, factor them in. 1795 if (numVLAElements) 1796 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1797 1798 return numElements; 1799 } 1800 1801 std::pair<llvm::Value*, QualType> 1802 CodeGenFunction::getVLASize(QualType type) { 1803 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1804 assert(vla && "type was not a variable array type!"); 1805 return getVLASize(vla); 1806 } 1807 1808 std::pair<llvm::Value*, QualType> 1809 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1810 // The number of elements so far; always size_t. 1811 llvm::Value *numElements = nullptr; 1812 1813 QualType elementType; 1814 do { 1815 elementType = type->getElementType(); 1816 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1817 assert(vlaSize && "no size for VLA!"); 1818 assert(vlaSize->getType() == SizeTy); 1819 1820 if (!numElements) { 1821 numElements = vlaSize; 1822 } else { 1823 // It's undefined behavior if this wraps around, so mark it that way. 1824 // FIXME: Teach -fsanitize=undefined to trap this. 1825 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1826 } 1827 } while ((type = getContext().getAsVariableArrayType(elementType))); 1828 1829 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1830 } 1831 1832 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1833 assert(type->isVariablyModifiedType() && 1834 "Must pass variably modified type to EmitVLASizes!"); 1835 1836 EnsureInsertPoint(); 1837 1838 // We're going to walk down into the type and look for VLA 1839 // expressions. 1840 do { 1841 assert(type->isVariablyModifiedType()); 1842 1843 const Type *ty = type.getTypePtr(); 1844 switch (ty->getTypeClass()) { 1845 1846 #define TYPE(Class, Base) 1847 #define ABSTRACT_TYPE(Class, Base) 1848 #define NON_CANONICAL_TYPE(Class, Base) 1849 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1850 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1851 #include "clang/AST/TypeNodes.def" 1852 llvm_unreachable("unexpected dependent type!"); 1853 1854 // These types are never variably-modified. 1855 case Type::Builtin: 1856 case Type::Complex: 1857 case Type::Vector: 1858 case Type::ExtVector: 1859 case Type::Record: 1860 case Type::Enum: 1861 case Type::Elaborated: 1862 case Type::TemplateSpecialization: 1863 case Type::ObjCTypeParam: 1864 case Type::ObjCObject: 1865 case Type::ObjCInterface: 1866 case Type::ObjCObjectPointer: 1867 llvm_unreachable("type class is never variably-modified!"); 1868 1869 case Type::Adjusted: 1870 type = cast<AdjustedType>(ty)->getAdjustedType(); 1871 break; 1872 1873 case Type::Decayed: 1874 type = cast<DecayedType>(ty)->getPointeeType(); 1875 break; 1876 1877 case Type::Pointer: 1878 type = cast<PointerType>(ty)->getPointeeType(); 1879 break; 1880 1881 case Type::BlockPointer: 1882 type = cast<BlockPointerType>(ty)->getPointeeType(); 1883 break; 1884 1885 case Type::LValueReference: 1886 case Type::RValueReference: 1887 type = cast<ReferenceType>(ty)->getPointeeType(); 1888 break; 1889 1890 case Type::MemberPointer: 1891 type = cast<MemberPointerType>(ty)->getPointeeType(); 1892 break; 1893 1894 case Type::ConstantArray: 1895 case Type::IncompleteArray: 1896 // Losing element qualification here is fine. 1897 type = cast<ArrayType>(ty)->getElementType(); 1898 break; 1899 1900 case Type::VariableArray: { 1901 // Losing element qualification here is fine. 1902 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1903 1904 // Unknown size indication requires no size computation. 1905 // Otherwise, evaluate and record it. 1906 if (const Expr *size = vat->getSizeExpr()) { 1907 // It's possible that we might have emitted this already, 1908 // e.g. with a typedef and a pointer to it. 1909 llvm::Value *&entry = VLASizeMap[size]; 1910 if (!entry) { 1911 llvm::Value *Size = EmitScalarExpr(size); 1912 1913 // C11 6.7.6.2p5: 1914 // If the size is an expression that is not an integer constant 1915 // expression [...] each time it is evaluated it shall have a value 1916 // greater than zero. 1917 if (SanOpts.has(SanitizerKind::VLABound) && 1918 size->getType()->isSignedIntegerType()) { 1919 SanitizerScope SanScope(this); 1920 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1921 llvm::Constant *StaticArgs[] = { 1922 EmitCheckSourceLocation(size->getLocStart()), 1923 EmitCheckTypeDescriptor(size->getType()) 1924 }; 1925 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1926 SanitizerKind::VLABound), 1927 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1928 } 1929 1930 // Always zexting here would be wrong if it weren't 1931 // undefined behavior to have a negative bound. 1932 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1933 } 1934 } 1935 type = vat->getElementType(); 1936 break; 1937 } 1938 1939 case Type::FunctionProto: 1940 case Type::FunctionNoProto: 1941 type = cast<FunctionType>(ty)->getReturnType(); 1942 break; 1943 1944 case Type::Paren: 1945 case Type::TypeOf: 1946 case Type::UnaryTransform: 1947 case Type::Attributed: 1948 case Type::SubstTemplateTypeParm: 1949 case Type::PackExpansion: 1950 // Keep walking after single level desugaring. 1951 type = type.getSingleStepDesugaredType(getContext()); 1952 break; 1953 1954 case Type::Typedef: 1955 case Type::Decltype: 1956 case Type::Auto: 1957 case Type::DeducedTemplateSpecialization: 1958 // Stop walking: nothing to do. 1959 return; 1960 1961 case Type::TypeOfExpr: 1962 // Stop walking: emit typeof expression. 1963 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1964 return; 1965 1966 case Type::Atomic: 1967 type = cast<AtomicType>(ty)->getValueType(); 1968 break; 1969 1970 case Type::Pipe: 1971 type = cast<PipeType>(ty)->getElementType(); 1972 break; 1973 } 1974 } while (type->isVariablyModifiedType()); 1975 } 1976 1977 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1978 if (getContext().getBuiltinVaListType()->isArrayType()) 1979 return EmitPointerWithAlignment(E); 1980 return EmitLValue(E).getAddress(); 1981 } 1982 1983 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1984 return EmitLValue(E).getAddress(); 1985 } 1986 1987 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1988 const APValue &Init) { 1989 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1990 if (CGDebugInfo *Dbg = getDebugInfo()) 1991 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1992 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1993 } 1994 1995 CodeGenFunction::PeepholeProtection 1996 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1997 // At the moment, the only aggressive peephole we do in IR gen 1998 // is trunc(zext) folding, but if we add more, we can easily 1999 // extend this protection. 2000 2001 if (!rvalue.isScalar()) return PeepholeProtection(); 2002 llvm::Value *value = rvalue.getScalarVal(); 2003 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2004 2005 // Just make an extra bitcast. 2006 assert(HaveInsertPoint()); 2007 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2008 Builder.GetInsertBlock()); 2009 2010 PeepholeProtection protection; 2011 protection.Inst = inst; 2012 return protection; 2013 } 2014 2015 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2016 if (!protection.Inst) return; 2017 2018 // In theory, we could try to duplicate the peepholes now, but whatever. 2019 protection.Inst->eraseFromParent(); 2020 } 2021 2022 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2023 llvm::Value *AnnotatedVal, 2024 StringRef AnnotationStr, 2025 SourceLocation Location) { 2026 llvm::Value *Args[4] = { 2027 AnnotatedVal, 2028 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2029 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2030 CGM.EmitAnnotationLineNo(Location) 2031 }; 2032 return Builder.CreateCall(AnnotationFn, Args); 2033 } 2034 2035 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2036 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2037 // FIXME We create a new bitcast for every annotation because that's what 2038 // llvm-gcc was doing. 2039 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2040 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2041 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2042 I->getAnnotation(), D->getLocation()); 2043 } 2044 2045 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2046 Address Addr) { 2047 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2048 llvm::Value *V = Addr.getPointer(); 2049 llvm::Type *VTy = V->getType(); 2050 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2051 CGM.Int8PtrTy); 2052 2053 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2054 // FIXME Always emit the cast inst so we can differentiate between 2055 // annotation on the first field of a struct and annotation on the struct 2056 // itself. 2057 if (VTy != CGM.Int8PtrTy) 2058 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2059 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2060 V = Builder.CreateBitCast(V, VTy); 2061 } 2062 2063 return Address(V, Addr.getAlignment()); 2064 } 2065 2066 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2067 2068 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2069 : CGF(CGF) { 2070 assert(!CGF->IsSanitizerScope); 2071 CGF->IsSanitizerScope = true; 2072 } 2073 2074 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2075 CGF->IsSanitizerScope = false; 2076 } 2077 2078 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2079 const llvm::Twine &Name, 2080 llvm::BasicBlock *BB, 2081 llvm::BasicBlock::iterator InsertPt) const { 2082 LoopStack.InsertHelper(I); 2083 if (IsSanitizerScope) 2084 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2085 } 2086 2087 void CGBuilderInserter::InsertHelper( 2088 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2089 llvm::BasicBlock::iterator InsertPt) const { 2090 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2091 if (CGF) 2092 CGF->InsertHelper(I, Name, BB, InsertPt); 2093 } 2094 2095 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2096 CodeGenModule &CGM, const FunctionDecl *FD, 2097 std::string &FirstMissing) { 2098 // If there aren't any required features listed then go ahead and return. 2099 if (ReqFeatures.empty()) 2100 return false; 2101 2102 // Now build up the set of caller features and verify that all the required 2103 // features are there. 2104 llvm::StringMap<bool> CallerFeatureMap; 2105 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2106 2107 // If we have at least one of the features in the feature list return 2108 // true, otherwise return false. 2109 return std::all_of( 2110 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2111 SmallVector<StringRef, 1> OrFeatures; 2112 Feature.split(OrFeatures, "|"); 2113 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2114 [&](StringRef Feature) { 2115 if (!CallerFeatureMap.lookup(Feature)) { 2116 FirstMissing = Feature.str(); 2117 return false; 2118 } 2119 return true; 2120 }); 2121 }); 2122 } 2123 2124 // Emits an error if we don't have a valid set of target features for the 2125 // called function. 2126 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2127 const FunctionDecl *TargetDecl) { 2128 // Early exit if this is an indirect call. 2129 if (!TargetDecl) 2130 return; 2131 2132 // Get the current enclosing function if it exists. If it doesn't 2133 // we can't check the target features anyhow. 2134 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2135 if (!FD) 2136 return; 2137 2138 // Grab the required features for the call. For a builtin this is listed in 2139 // the td file with the default cpu, for an always_inline function this is any 2140 // listed cpu and any listed features. 2141 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2142 std::string MissingFeature; 2143 if (BuiltinID) { 2144 SmallVector<StringRef, 1> ReqFeatures; 2145 const char *FeatureList = 2146 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2147 // Return if the builtin doesn't have any required features. 2148 if (!FeatureList || StringRef(FeatureList) == "") 2149 return; 2150 StringRef(FeatureList).split(ReqFeatures, ","); 2151 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2152 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2153 << TargetDecl->getDeclName() 2154 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2155 2156 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2157 // Get the required features for the callee. 2158 SmallVector<StringRef, 1> ReqFeatures; 2159 llvm::StringMap<bool> CalleeFeatureMap; 2160 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2161 for (const auto &F : CalleeFeatureMap) { 2162 // Only positive features are "required". 2163 if (F.getValue()) 2164 ReqFeatures.push_back(F.getKey()); 2165 } 2166 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2167 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2168 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2169 } 2170 } 2171 2172 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2173 if (!CGM.getCodeGenOpts().SanitizeStats) 2174 return; 2175 2176 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2177 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2178 CGM.getSanStats().create(IRB, SSK); 2179 } 2180 2181 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2182 if (CGDebugInfo *DI = getDebugInfo()) 2183 return DI->SourceLocToDebugLoc(Location); 2184 2185 return llvm::DebugLoc(); 2186 } 2187