1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   if (CGOpts.DisableLifetimeMarkers)
46     return false;
47 
48   // Disable lifetime markers in msan builds.
49   // FIXME: Remove this when msan works with lifetime markers.
50   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
51     return false;
52 
53   // Asan uses markers for use-after-scope checks.
54   if (CGOpts.SanitizeAddressUseAfterScope)
55     return true;
56 
57   // For now, only in optimized builds.
58   return CGOpts.OptimizationLevel != 0;
59 }
60 
61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
62     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
63       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
64               CGBuilderInserterTy(this)),
65       CurFn(nullptr), ReturnValue(Address::invalid()),
66       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
67       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
68       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
69       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
70       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
71       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
72       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
73       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
74       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
75       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
76       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
77       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
78       CXXStructorImplicitParamDecl(nullptr),
79       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
80       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
81       TerminateHandler(nullptr), TrapBB(nullptr),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86 
87   llvm::FastMathFlags FMF;
88   if (CGM.getLangOpts().FastMath)
89     FMF.setUnsafeAlgebra();
90   if (CGM.getLangOpts().FiniteMathOnly) {
91     FMF.setNoNaNs();
92     FMF.setNoInfs();
93   }
94   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
95     FMF.setNoNaNs();
96   }
97   if (CGM.getCodeGenOpts().NoSignedZeros) {
98     FMF.setNoSignedZeros();
99   }
100   if (CGM.getCodeGenOpts().ReciprocalMath) {
101     FMF.setAllowReciprocal();
102   }
103   Builder.setFastMathFlags(FMF);
104 }
105 
106 CodeGenFunction::~CodeGenFunction() {
107   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
108 
109   // If there are any unclaimed block infos, go ahead and destroy them
110   // now.  This can happen if IR-gen gets clever and skips evaluating
111   // something.
112   if (FirstBlockInfo)
113     destroyBlockInfos(FirstBlockInfo);
114 
115   if (getLangOpts().OpenMP && CurFn)
116     CGM.getOpenMPRuntime().functionFinished(*this);
117 }
118 
119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
120                                                     LValueBaseInfo *BaseInfo) {
121   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
122                                  /*forPointee*/ true);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
126                                                    LValueBaseInfo *BaseInfo,
127                                                    bool forPointeeType) {
128   // Honor alignment typedef attributes even on incomplete types.
129   // We also honor them straight for C++ class types, even as pointees;
130   // there's an expressivity gap here.
131   if (auto TT = T->getAs<TypedefType>()) {
132     if (auto Align = TT->getDecl()->getMaxAlignment()) {
133       if (BaseInfo)
134         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
135       return getContext().toCharUnitsFromBits(Align);
136     }
137   }
138 
139   if (BaseInfo)
140     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
141 
142   CharUnits Alignment;
143   if (T->isIncompleteType()) {
144     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
145   } else {
146     // For C++ class pointees, we don't know whether we're pointing at a
147     // base or a complete object, so we generally need to use the
148     // non-virtual alignment.
149     const CXXRecordDecl *RD;
150     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
151       Alignment = CGM.getClassPointerAlignment(RD);
152     } else {
153       Alignment = getContext().getTypeAlignInChars(T);
154       if (T.getQualifiers().hasUnaligned())
155         Alignment = CharUnits::One();
156     }
157 
158     // Cap to the global maximum type alignment unless the alignment
159     // was somehow explicit on the type.
160     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
161       if (Alignment.getQuantity() > MaxAlign &&
162           !getContext().isAlignmentRequired(T))
163         Alignment = CharUnits::fromQuantity(MaxAlign);
164     }
165   }
166   return Alignment;
167 }
168 
169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
170   LValueBaseInfo BaseInfo;
171   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
172   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
173                           CGM.getTBAAInfo(T));
174 }
175 
176 /// Given a value of type T* that may not be to a complete object,
177 /// construct an l-value with the natural pointee alignment of T.
178 LValue
179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
180   LValueBaseInfo BaseInfo;
181   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
182   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
183 }
184 
185 
186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
187   return CGM.getTypes().ConvertTypeForMem(T);
188 }
189 
190 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
191   return CGM.getTypes().ConvertType(T);
192 }
193 
194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
195   type = type.getCanonicalType();
196   while (true) {
197     switch (type->getTypeClass()) {
198 #define TYPE(name, parent)
199 #define ABSTRACT_TYPE(name, parent)
200 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
201 #define DEPENDENT_TYPE(name, parent) case Type::name:
202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
203 #include "clang/AST/TypeNodes.def"
204       llvm_unreachable("non-canonical or dependent type in IR-generation");
205 
206     case Type::Auto:
207     case Type::DeducedTemplateSpecialization:
208       llvm_unreachable("undeduced type in IR-generation");
209 
210     // Various scalar types.
211     case Type::Builtin:
212     case Type::Pointer:
213     case Type::BlockPointer:
214     case Type::LValueReference:
215     case Type::RValueReference:
216     case Type::MemberPointer:
217     case Type::Vector:
218     case Type::ExtVector:
219     case Type::FunctionProto:
220     case Type::FunctionNoProto:
221     case Type::Enum:
222     case Type::ObjCObjectPointer:
223     case Type::Pipe:
224       return TEK_Scalar;
225 
226     // Complexes.
227     case Type::Complex:
228       return TEK_Complex;
229 
230     // Arrays, records, and Objective-C objects.
231     case Type::ConstantArray:
232     case Type::IncompleteArray:
233     case Type::VariableArray:
234     case Type::Record:
235     case Type::ObjCObject:
236     case Type::ObjCInterface:
237       return TEK_Aggregate;
238 
239     // We operate on atomic values according to their underlying type.
240     case Type::Atomic:
241       type = cast<AtomicType>(type)->getValueType();
242       continue;
243     }
244     llvm_unreachable("unknown type kind!");
245   }
246 }
247 
248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
249   // For cleanliness, we try to avoid emitting the return block for
250   // simple cases.
251   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
252 
253   if (CurBB) {
254     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
255 
256     // We have a valid insert point, reuse it if it is empty or there are no
257     // explicit jumps to the return block.
258     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
259       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
260       delete ReturnBlock.getBlock();
261     } else
262       EmitBlock(ReturnBlock.getBlock());
263     return llvm::DebugLoc();
264   }
265 
266   // Otherwise, if the return block is the target of a single direct
267   // branch then we can just put the code in that block instead. This
268   // cleans up functions which started with a unified return block.
269   if (ReturnBlock.getBlock()->hasOneUse()) {
270     llvm::BranchInst *BI =
271       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
272     if (BI && BI->isUnconditional() &&
273         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
274       // Record/return the DebugLoc of the simple 'return' expression to be used
275       // later by the actual 'ret' instruction.
276       llvm::DebugLoc Loc = BI->getDebugLoc();
277       Builder.SetInsertPoint(BI->getParent());
278       BI->eraseFromParent();
279       delete ReturnBlock.getBlock();
280       return Loc;
281     }
282   }
283 
284   // FIXME: We are at an unreachable point, there is no reason to emit the block
285   // unless it has uses. However, we still need a place to put the debug
286   // region.end for now.
287 
288   EmitBlock(ReturnBlock.getBlock());
289   return llvm::DebugLoc();
290 }
291 
292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
293   if (!BB) return;
294   if (!BB->use_empty())
295     return CGF.CurFn->getBasicBlockList().push_back(BB);
296   delete BB;
297 }
298 
299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
300   assert(BreakContinueStack.empty() &&
301          "mismatched push/pop in break/continue stack!");
302 
303   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
304     && NumSimpleReturnExprs == NumReturnExprs
305     && ReturnBlock.getBlock()->use_empty();
306   // Usually the return expression is evaluated before the cleanup
307   // code.  If the function contains only a simple return statement,
308   // such as a constant, the location before the cleanup code becomes
309   // the last useful breakpoint in the function, because the simple
310   // return expression will be evaluated after the cleanup code. To be
311   // safe, set the debug location for cleanup code to the location of
312   // the return statement.  Otherwise the cleanup code should be at the
313   // end of the function's lexical scope.
314   //
315   // If there are multiple branches to the return block, the branch
316   // instructions will get the location of the return statements and
317   // all will be fine.
318   if (CGDebugInfo *DI = getDebugInfo()) {
319     if (OnlySimpleReturnStmts)
320       DI->EmitLocation(Builder, LastStopPoint);
321     else
322       DI->EmitLocation(Builder, EndLoc);
323   }
324 
325   // Pop any cleanups that might have been associated with the
326   // parameters.  Do this in whatever block we're currently in; it's
327   // important to do this before we enter the return block or return
328   // edges will be *really* confused.
329   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
330   bool HasOnlyLifetimeMarkers =
331       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
332   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
333   if (HasCleanups) {
334     // Make sure the line table doesn't jump back into the body for
335     // the ret after it's been at EndLoc.
336     if (CGDebugInfo *DI = getDebugInfo())
337       if (OnlySimpleReturnStmts)
338         DI->EmitLocation(Builder, EndLoc);
339 
340     PopCleanupBlocks(PrologueCleanupDepth);
341   }
342 
343   // Emit function epilog (to return).
344   llvm::DebugLoc Loc = EmitReturnBlock();
345 
346   if (ShouldInstrumentFunction())
347     EmitFunctionInstrumentation("__cyg_profile_func_exit");
348 
349   // Emit debug descriptor for function end.
350   if (CGDebugInfo *DI = getDebugInfo())
351     DI->EmitFunctionEnd(Builder, CurFn);
352 
353   // Reset the debug location to that of the simple 'return' expression, if any
354   // rather than that of the end of the function's scope '}'.
355   ApplyDebugLocation AL(*this, Loc);
356   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
357   EmitEndEHSpec(CurCodeDecl);
358 
359   assert(EHStack.empty() &&
360          "did not remove all scopes from cleanup stack!");
361 
362   // If someone did an indirect goto, emit the indirect goto block at the end of
363   // the function.
364   if (IndirectBranch) {
365     EmitBlock(IndirectBranch->getParent());
366     Builder.ClearInsertionPoint();
367   }
368 
369   // If some of our locals escaped, insert a call to llvm.localescape in the
370   // entry block.
371   if (!EscapedLocals.empty()) {
372     // Invert the map from local to index into a simple vector. There should be
373     // no holes.
374     SmallVector<llvm::Value *, 4> EscapeArgs;
375     EscapeArgs.resize(EscapedLocals.size());
376     for (auto &Pair : EscapedLocals)
377       EscapeArgs[Pair.second] = Pair.first;
378     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
379         &CGM.getModule(), llvm::Intrinsic::localescape);
380     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
381   }
382 
383   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
384   llvm::Instruction *Ptr = AllocaInsertPt;
385   AllocaInsertPt = nullptr;
386   Ptr->eraseFromParent();
387 
388   // If someone took the address of a label but never did an indirect goto, we
389   // made a zero entry PHI node, which is illegal, zap it now.
390   if (IndirectBranch) {
391     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
392     if (PN->getNumIncomingValues() == 0) {
393       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
394       PN->eraseFromParent();
395     }
396   }
397 
398   EmitIfUsed(*this, EHResumeBlock);
399   EmitIfUsed(*this, TerminateLandingPad);
400   EmitIfUsed(*this, TerminateHandler);
401   EmitIfUsed(*this, UnreachableBlock);
402 
403   if (CGM.getCodeGenOpts().EmitDeclMetadata)
404     EmitDeclMetadata();
405 
406   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
407            I = DeferredReplacements.begin(),
408            E = DeferredReplacements.end();
409        I != E; ++I) {
410     I->first->replaceAllUsesWith(I->second);
411     I->first->eraseFromParent();
412   }
413 }
414 
415 /// ShouldInstrumentFunction - Return true if the current function should be
416 /// instrumented with __cyg_profile_func_* calls
417 bool CodeGenFunction::ShouldInstrumentFunction() {
418   if (!CGM.getCodeGenOpts().InstrumentFunctions)
419     return false;
420   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
421     return false;
422   return true;
423 }
424 
425 /// ShouldXRayInstrument - Return true if the current function should be
426 /// instrumented with XRay nop sleds.
427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
428   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
429 }
430 
431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
432 /// instrumentation function with the current function and the call site, if
433 /// function instrumentation is enabled.
434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
435   auto NL = ApplyDebugLocation::CreateArtificial(*this);
436   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
437   llvm::PointerType *PointerTy = Int8PtrTy;
438   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
439   llvm::FunctionType *FunctionTy =
440     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
441 
442   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
443   llvm::CallInst *CallSite = Builder.CreateCall(
444     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
445     llvm::ConstantInt::get(Int32Ty, 0),
446     "callsite");
447 
448   llvm::Value *args[] = {
449     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
450     CallSite
451   };
452 
453   EmitNounwindRuntimeCall(F, args);
454 }
455 
456 static void removeImageAccessQualifier(std::string& TyName) {
457   std::string ReadOnlyQual("__read_only");
458   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
459   if (ReadOnlyPos != std::string::npos)
460     // "+ 1" for the space after access qualifier.
461     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
462   else {
463     std::string WriteOnlyQual("__write_only");
464     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
465     if (WriteOnlyPos != std::string::npos)
466       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
467     else {
468       std::string ReadWriteQual("__read_write");
469       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
470       if (ReadWritePos != std::string::npos)
471         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
472     }
473   }
474 }
475 
476 // Returns the address space id that should be produced to the
477 // kernel_arg_addr_space metadata. This is always fixed to the ids
478 // as specified in the SPIR 2.0 specification in order to differentiate
479 // for example in clGetKernelArgInfo() implementation between the address
480 // spaces with targets without unique mapping to the OpenCL address spaces
481 // (basically all single AS CPUs).
482 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
483   switch (LangAS) {
484   case LangAS::opencl_global:   return 1;
485   case LangAS::opencl_constant: return 2;
486   case LangAS::opencl_local:    return 3;
487   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
488   default:
489     return 0; // Assume private.
490   }
491 }
492 
493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
494 // information in the program executable. The argument information stored
495 // includes the argument name, its type, the address and access qualifiers used.
496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
497                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
498                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
499   // Create MDNodes that represent the kernel arg metadata.
500   // Each MDNode is a list in the form of "key", N number of values which is
501   // the same number of values as their are kernel arguments.
502 
503   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
504 
505   // MDNode for the kernel argument address space qualifiers.
506   SmallVector<llvm::Metadata *, 8> addressQuals;
507 
508   // MDNode for the kernel argument access qualifiers (images only).
509   SmallVector<llvm::Metadata *, 8> accessQuals;
510 
511   // MDNode for the kernel argument type names.
512   SmallVector<llvm::Metadata *, 8> argTypeNames;
513 
514   // MDNode for the kernel argument base type names.
515   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
516 
517   // MDNode for the kernel argument type qualifiers.
518   SmallVector<llvm::Metadata *, 8> argTypeQuals;
519 
520   // MDNode for the kernel argument names.
521   SmallVector<llvm::Metadata *, 8> argNames;
522 
523   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
524     const ParmVarDecl *parm = FD->getParamDecl(i);
525     QualType ty = parm->getType();
526     std::string typeQuals;
527 
528     if (ty->isPointerType()) {
529       QualType pointeeTy = ty->getPointeeType();
530 
531       // Get address qualifier.
532       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
533         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
534 
535       // Get argument type name.
536       std::string typeName =
537           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
538 
539       // Turn "unsigned type" to "utype"
540       std::string::size_type pos = typeName.find("unsigned");
541       if (pointeeTy.isCanonical() && pos != std::string::npos)
542         typeName.erase(pos+1, 8);
543 
544       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
545 
546       std::string baseTypeName =
547           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
548               Policy) +
549           "*";
550 
551       // Turn "unsigned type" to "utype"
552       pos = baseTypeName.find("unsigned");
553       if (pos != std::string::npos)
554         baseTypeName.erase(pos+1, 8);
555 
556       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
557 
558       // Get argument type qualifiers:
559       if (ty.isRestrictQualified())
560         typeQuals = "restrict";
561       if (pointeeTy.isConstQualified() ||
562           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
563         typeQuals += typeQuals.empty() ? "const" : " const";
564       if (pointeeTy.isVolatileQualified())
565         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
566     } else {
567       uint32_t AddrSpc = 0;
568       bool isPipe = ty->isPipeType();
569       if (ty->isImageType() || isPipe)
570         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
571 
572       addressQuals.push_back(
573           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
574 
575       // Get argument type name.
576       std::string typeName;
577       if (isPipe)
578         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
579                      .getAsString(Policy);
580       else
581         typeName = ty.getUnqualifiedType().getAsString(Policy);
582 
583       // Turn "unsigned type" to "utype"
584       std::string::size_type pos = typeName.find("unsigned");
585       if (ty.isCanonical() && pos != std::string::npos)
586         typeName.erase(pos+1, 8);
587 
588       std::string baseTypeName;
589       if (isPipe)
590         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
591                           ->getElementType().getCanonicalType()
592                           .getAsString(Policy);
593       else
594         baseTypeName =
595           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
596 
597       // Remove access qualifiers on images
598       // (as they are inseparable from type in clang implementation,
599       // but OpenCL spec provides a special query to get access qualifier
600       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
601       if (ty->isImageType()) {
602         removeImageAccessQualifier(typeName);
603         removeImageAccessQualifier(baseTypeName);
604       }
605 
606       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
607 
608       // Turn "unsigned type" to "utype"
609       pos = baseTypeName.find("unsigned");
610       if (pos != std::string::npos)
611         baseTypeName.erase(pos+1, 8);
612 
613       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
614 
615       if (isPipe)
616         typeQuals = "pipe";
617     }
618 
619     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
620 
621     // Get image and pipe access qualifier:
622     if (ty->isImageType()|| ty->isPipeType()) {
623       const Decl *PDecl = parm;
624       if (auto *TD = dyn_cast<TypedefType>(ty))
625         PDecl = TD->getDecl();
626       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
627       if (A && A->isWriteOnly())
628         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
629       else if (A && A->isReadWrite())
630         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
631       else
632         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
633     } else
634       accessQuals.push_back(llvm::MDString::get(Context, "none"));
635 
636     // Get argument name.
637     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
638   }
639 
640   Fn->setMetadata("kernel_arg_addr_space",
641                   llvm::MDNode::get(Context, addressQuals));
642   Fn->setMetadata("kernel_arg_access_qual",
643                   llvm::MDNode::get(Context, accessQuals));
644   Fn->setMetadata("kernel_arg_type",
645                   llvm::MDNode::get(Context, argTypeNames));
646   Fn->setMetadata("kernel_arg_base_type",
647                   llvm::MDNode::get(Context, argBaseTypeNames));
648   Fn->setMetadata("kernel_arg_type_qual",
649                   llvm::MDNode::get(Context, argTypeQuals));
650   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
651     Fn->setMetadata("kernel_arg_name",
652                     llvm::MDNode::get(Context, argNames));
653 }
654 
655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
656                                                llvm::Function *Fn)
657 {
658   if (!FD->hasAttr<OpenCLKernelAttr>())
659     return;
660 
661   llvm::LLVMContext &Context = getLLVMContext();
662 
663   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
664 
665   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
666     QualType HintQTy = A->getTypeHint();
667     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
668     bool IsSignedInteger =
669         HintQTy->isSignedIntegerType() ||
670         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
671     llvm::Metadata *AttrMDArgs[] = {
672         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
673             CGM.getTypes().ConvertType(A->getTypeHint()))),
674         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
675             llvm::IntegerType::get(Context, 32),
676             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
677     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 
680   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
681     llvm::Metadata *AttrMDArgs[] = {
682         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
685     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
686   }
687 
688   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
689     llvm::Metadata *AttrMDArgs[] = {
690         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
693     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
694   }
695 
696   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
697           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
698     llvm::Metadata *AttrMDArgs[] = {
699         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
700     Fn->setMetadata("intel_reqd_sub_group_size",
701                     llvm::MDNode::get(Context, AttrMDArgs));
702   }
703 }
704 
705 /// Determine whether the function F ends with a return stmt.
706 static bool endsWithReturn(const Decl* F) {
707   const Stmt *Body = nullptr;
708   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
709     Body = FD->getBody();
710   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
711     Body = OMD->getBody();
712 
713   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
714     auto LastStmt = CS->body_rbegin();
715     if (LastStmt != CS->body_rend())
716       return isa<ReturnStmt>(*LastStmt);
717   }
718   return false;
719 }
720 
721 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
722   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
723   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
724 }
725 
726 void CodeGenFunction::StartFunction(GlobalDecl GD,
727                                     QualType RetTy,
728                                     llvm::Function *Fn,
729                                     const CGFunctionInfo &FnInfo,
730                                     const FunctionArgList &Args,
731                                     SourceLocation Loc,
732                                     SourceLocation StartLoc) {
733   assert(!CurFn &&
734          "Do not use a CodeGenFunction object for more than one function");
735 
736   const Decl *D = GD.getDecl();
737 
738   DidCallStackSave = false;
739   CurCodeDecl = D;
740   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
741     if (FD->usesSEHTry())
742       CurSEHParent = FD;
743   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
744   FnRetTy = RetTy;
745   CurFn = Fn;
746   CurFnInfo = &FnInfo;
747   assert(CurFn->isDeclaration() && "Function already has body?");
748 
749   if (CGM.isInSanitizerBlacklist(Fn, Loc))
750     SanOpts.clear();
751 
752   if (D) {
753     // Apply the no_sanitize* attributes to SanOpts.
754     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
755       SanOpts.Mask &= ~Attr->getMask();
756   }
757 
758   // Apply sanitizer attributes to the function.
759   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
760     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
761   if (SanOpts.has(SanitizerKind::Thread))
762     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
763   if (SanOpts.has(SanitizerKind::Memory))
764     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
765   if (SanOpts.has(SanitizerKind::SafeStack))
766     Fn->addFnAttr(llvm::Attribute::SafeStack);
767 
768   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
769   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
770   if (SanOpts.has(SanitizerKind::Thread)) {
771     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
772       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
773       if (OMD->getMethodFamily() == OMF_dealloc ||
774           OMD->getMethodFamily() == OMF_initialize ||
775           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
776         markAsIgnoreThreadCheckingAtRuntime(Fn);
777       }
778     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
779       IdentifierInfo *II = FD->getIdentifier();
780       if (II && II->isStr("__destroy_helper_block_"))
781         markAsIgnoreThreadCheckingAtRuntime(Fn);
782     }
783   }
784 
785   // Apply xray attributes to the function (as a string, for now)
786   if (D && ShouldXRayInstrumentFunction()) {
787     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
788       if (XRayAttr->alwaysXRayInstrument())
789         Fn->addFnAttr("function-instrument", "xray-always");
790       if (XRayAttr->neverXRayInstrument())
791         Fn->addFnAttr("function-instrument", "xray-never");
792       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
793         Fn->addFnAttr("xray-log-args",
794                       llvm::utostr(LogArgs->getArgumentCount()));
795       }
796     } else {
797       if (!CGM.imbueXRayAttrs(Fn, Loc))
798         Fn->addFnAttr(
799             "xray-instruction-threshold",
800             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
801     }
802   }
803 
804   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
805     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
806       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
807 
808   // Add no-jump-tables value.
809   Fn->addFnAttr("no-jump-tables",
810                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
811 
812   if (getLangOpts().OpenCL) {
813     // Add metadata for a kernel function.
814     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
815       EmitOpenCLKernelMetadata(FD, Fn);
816   }
817 
818   // If we are checking function types, emit a function type signature as
819   // prologue data.
820   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
821     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
822       if (llvm::Constant *PrologueSig =
823               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
824         llvm::Constant *FTRTTIConst =
825             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
826         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
827         llvm::Constant *PrologueStructConst =
828             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
829         Fn->setPrologueData(PrologueStructConst);
830       }
831     }
832   }
833 
834   // If we're checking nullability, we need to know whether we can check the
835   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
836   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
837     auto Nullability = FnRetTy->getNullability(getContext());
838     if (Nullability && *Nullability == NullabilityKind::NonNull) {
839       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
840             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
841         RetValNullabilityPrecondition =
842             llvm::ConstantInt::getTrue(getLLVMContext());
843     }
844   }
845 
846   // If we're in C++ mode and the function name is "main", it is guaranteed
847   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
848   // used within a program").
849   if (getLangOpts().CPlusPlus)
850     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
851       if (FD->isMain())
852         Fn->addFnAttr(llvm::Attribute::NoRecurse);
853 
854   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
855 
856   // Create a marker to make it easy to insert allocas into the entryblock
857   // later.  Don't create this with the builder, because we don't want it
858   // folded.
859   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
860   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
861 
862   ReturnBlock = getJumpDestInCurrentScope("return");
863 
864   Builder.SetInsertPoint(EntryBB);
865 
866   // If we're checking the return value, allocate space for a pointer to a
867   // precise source location of the checked return statement.
868   if (requiresReturnValueCheck()) {
869     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
870     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
871   }
872 
873   // Emit subprogram debug descriptor.
874   if (CGDebugInfo *DI = getDebugInfo()) {
875     // Reconstruct the type from the argument list so that implicit parameters,
876     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
877     // convention.
878     CallingConv CC = CallingConv::CC_C;
879     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
880       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
881         CC = SrcFnTy->getCallConv();
882     SmallVector<QualType, 16> ArgTypes;
883     for (const VarDecl *VD : Args)
884       ArgTypes.push_back(VD->getType());
885     QualType FnType = getContext().getFunctionType(
886         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
887     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
888   }
889 
890   if (ShouldInstrumentFunction())
891     EmitFunctionInstrumentation("__cyg_profile_func_enter");
892 
893   // Since emitting the mcount call here impacts optimizations such as function
894   // inlining, we just add an attribute to insert a mcount call in backend.
895   // The attribute "counting-function" is set to mcount function name which is
896   // architecture dependent.
897   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
898     if (CGM.getCodeGenOpts().CallFEntry)
899       Fn->addFnAttr("fentry-call", "true");
900     else {
901       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
902         Fn->addFnAttr("counting-function", getTarget().getMCountName());
903     }
904   }
905 
906   if (RetTy->isVoidType()) {
907     // Void type; nothing to return.
908     ReturnValue = Address::invalid();
909 
910     // Count the implicit return.
911     if (!endsWithReturn(D))
912       ++NumReturnExprs;
913   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
914              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
915     // Indirect aggregate return; emit returned value directly into sret slot.
916     // This reduces code size, and affects correctness in C++.
917     auto AI = CurFn->arg_begin();
918     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
919       ++AI;
920     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
921   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
922              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
923     // Load the sret pointer from the argument struct and return into that.
924     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
925     llvm::Function::arg_iterator EI = CurFn->arg_end();
926     --EI;
927     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
928     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
929     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
930   } else {
931     ReturnValue = CreateIRTemp(RetTy, "retval");
932 
933     // Tell the epilog emitter to autorelease the result.  We do this
934     // now so that various specialized functions can suppress it
935     // during their IR-generation.
936     if (getLangOpts().ObjCAutoRefCount &&
937         !CurFnInfo->isReturnsRetained() &&
938         RetTy->isObjCRetainableType())
939       AutoreleaseResult = true;
940   }
941 
942   EmitStartEHSpec(CurCodeDecl);
943 
944   PrologueCleanupDepth = EHStack.stable_begin();
945   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
946 
947   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
948     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
949     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
950     if (MD->getParent()->isLambda() &&
951         MD->getOverloadedOperator() == OO_Call) {
952       // We're in a lambda; figure out the captures.
953       MD->getParent()->getCaptureFields(LambdaCaptureFields,
954                                         LambdaThisCaptureField);
955       if (LambdaThisCaptureField) {
956         // If the lambda captures the object referred to by '*this' - either by
957         // value or by reference, make sure CXXThisValue points to the correct
958         // object.
959 
960         // Get the lvalue for the field (which is a copy of the enclosing object
961         // or contains the address of the enclosing object).
962         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
963         if (!LambdaThisCaptureField->getType()->isPointerType()) {
964           // If the enclosing object was captured by value, just use its address.
965           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
966         } else {
967           // Load the lvalue pointed to by the field, since '*this' was captured
968           // by reference.
969           CXXThisValue =
970               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
971         }
972       }
973       for (auto *FD : MD->getParent()->fields()) {
974         if (FD->hasCapturedVLAType()) {
975           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
976                                            SourceLocation()).getScalarVal();
977           auto VAT = FD->getCapturedVLAType();
978           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
979         }
980       }
981     } else {
982       // Not in a lambda; just use 'this' from the method.
983       // FIXME: Should we generate a new load for each use of 'this'?  The
984       // fast register allocator would be happier...
985       CXXThisValue = CXXABIThisValue;
986     }
987 
988     // Check the 'this' pointer once per function, if it's available.
989     if (CXXThisValue) {
990       SanitizerSet SkippedChecks;
991       SkippedChecks.set(SanitizerKind::ObjectSize, true);
992       QualType ThisTy = MD->getThisType(getContext());
993       EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy,
994                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
995                     SkippedChecks);
996     }
997   }
998 
999   // If any of the arguments have a variably modified type, make sure to
1000   // emit the type size.
1001   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1002        i != e; ++i) {
1003     const VarDecl *VD = *i;
1004 
1005     // Dig out the type as written from ParmVarDecls; it's unclear whether
1006     // the standard (C99 6.9.1p10) requires this, but we're following the
1007     // precedent set by gcc.
1008     QualType Ty;
1009     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1010       Ty = PVD->getOriginalType();
1011     else
1012       Ty = VD->getType();
1013 
1014     if (Ty->isVariablyModifiedType())
1015       EmitVariablyModifiedType(Ty);
1016   }
1017   // Emit a location at the end of the prologue.
1018   if (CGDebugInfo *DI = getDebugInfo())
1019     DI->EmitLocation(Builder, StartLoc);
1020 }
1021 
1022 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1023                                        const Stmt *Body) {
1024   incrementProfileCounter(Body);
1025   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1026     EmitCompoundStmtWithoutScope(*S);
1027   else
1028     EmitStmt(Body);
1029 }
1030 
1031 /// When instrumenting to collect profile data, the counts for some blocks
1032 /// such as switch cases need to not include the fall-through counts, so
1033 /// emit a branch around the instrumentation code. When not instrumenting,
1034 /// this just calls EmitBlock().
1035 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1036                                                const Stmt *S) {
1037   llvm::BasicBlock *SkipCountBB = nullptr;
1038   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1039     // When instrumenting for profiling, the fallthrough to certain
1040     // statements needs to skip over the instrumentation code so that we
1041     // get an accurate count.
1042     SkipCountBB = createBasicBlock("skipcount");
1043     EmitBranch(SkipCountBB);
1044   }
1045   EmitBlock(BB);
1046   uint64_t CurrentCount = getCurrentProfileCount();
1047   incrementProfileCounter(S);
1048   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1049   if (SkipCountBB)
1050     EmitBlock(SkipCountBB);
1051 }
1052 
1053 /// Tries to mark the given function nounwind based on the
1054 /// non-existence of any throwing calls within it.  We believe this is
1055 /// lightweight enough to do at -O0.
1056 static void TryMarkNoThrow(llvm::Function *F) {
1057   // LLVM treats 'nounwind' on a function as part of the type, so we
1058   // can't do this on functions that can be overwritten.
1059   if (F->isInterposable()) return;
1060 
1061   for (llvm::BasicBlock &BB : *F)
1062     for (llvm::Instruction &I : BB)
1063       if (I.mayThrow())
1064         return;
1065 
1066   F->setDoesNotThrow();
1067 }
1068 
1069 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1070                                                FunctionArgList &Args) {
1071   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1072   QualType ResTy = FD->getReturnType();
1073 
1074   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1075   if (MD && MD->isInstance()) {
1076     if (CGM.getCXXABI().HasThisReturn(GD))
1077       ResTy = MD->getThisType(getContext());
1078     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1079       ResTy = CGM.getContext().VoidPtrTy;
1080     CGM.getCXXABI().buildThisParam(*this, Args);
1081   }
1082 
1083   // The base version of an inheriting constructor whose constructed base is a
1084   // virtual base is not passed any arguments (because it doesn't actually call
1085   // the inherited constructor).
1086   bool PassedParams = true;
1087   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1088     if (auto Inherited = CD->getInheritedConstructor())
1089       PassedParams =
1090           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1091 
1092   if (PassedParams) {
1093     for (auto *Param : FD->parameters()) {
1094       Args.push_back(Param);
1095       if (!Param->hasAttr<PassObjectSizeAttr>())
1096         continue;
1097 
1098       auto *Implicit = ImplicitParamDecl::Create(
1099           getContext(), Param->getDeclContext(), Param->getLocation(),
1100           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1101       SizeArguments[Param] = Implicit;
1102       Args.push_back(Implicit);
1103     }
1104   }
1105 
1106   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1107     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1108 
1109   return ResTy;
1110 }
1111 
1112 static bool
1113 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1114                                              const ASTContext &Context) {
1115   QualType T = FD->getReturnType();
1116   // Avoid the optimization for functions that return a record type with a
1117   // trivial destructor or another trivially copyable type.
1118   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1119     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1120       return !ClassDecl->hasTrivialDestructor();
1121   }
1122   return !T.isTriviallyCopyableType(Context);
1123 }
1124 
1125 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1126                                    const CGFunctionInfo &FnInfo) {
1127   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1128   CurGD = GD;
1129 
1130   FunctionArgList Args;
1131   QualType ResTy = BuildFunctionArgList(GD, Args);
1132 
1133   // Check if we should generate debug info for this function.
1134   if (FD->hasAttr<NoDebugAttr>())
1135     DebugInfo = nullptr; // disable debug info indefinitely for this function
1136 
1137   // The function might not have a body if we're generating thunks for a
1138   // function declaration.
1139   SourceRange BodyRange;
1140   if (Stmt *Body = FD->getBody())
1141     BodyRange = Body->getSourceRange();
1142   else
1143     BodyRange = FD->getLocation();
1144   CurEHLocation = BodyRange.getEnd();
1145 
1146   // Use the location of the start of the function to determine where
1147   // the function definition is located. By default use the location
1148   // of the declaration as the location for the subprogram. A function
1149   // may lack a declaration in the source code if it is created by code
1150   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1151   SourceLocation Loc = FD->getLocation();
1152 
1153   // If this is a function specialization then use the pattern body
1154   // as the location for the function.
1155   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1156     if (SpecDecl->hasBody(SpecDecl))
1157       Loc = SpecDecl->getLocation();
1158 
1159   Stmt *Body = FD->getBody();
1160 
1161   // Initialize helper which will detect jumps which can cause invalid lifetime
1162   // markers.
1163   if (Body && ShouldEmitLifetimeMarkers)
1164     Bypasses.Init(Body);
1165 
1166   // Emit the standard function prologue.
1167   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1168 
1169   // Generate the body of the function.
1170   PGO.assignRegionCounters(GD, CurFn);
1171   if (isa<CXXDestructorDecl>(FD))
1172     EmitDestructorBody(Args);
1173   else if (isa<CXXConstructorDecl>(FD))
1174     EmitConstructorBody(Args);
1175   else if (getLangOpts().CUDA &&
1176            !getLangOpts().CUDAIsDevice &&
1177            FD->hasAttr<CUDAGlobalAttr>())
1178     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1179   else if (isa<CXXConversionDecl>(FD) &&
1180            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1181     // The lambda conversion to block pointer is special; the semantics can't be
1182     // expressed in the AST, so IRGen needs to special-case it.
1183     EmitLambdaToBlockPointerBody(Args);
1184   } else if (isa<CXXMethodDecl>(FD) &&
1185              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1186     // The lambda static invoker function is special, because it forwards or
1187     // clones the body of the function call operator (but is actually static).
1188     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1189   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1190              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1191               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1192     // Implicit copy-assignment gets the same special treatment as implicit
1193     // copy-constructors.
1194     emitImplicitAssignmentOperatorBody(Args);
1195   } else if (Body) {
1196     EmitFunctionBody(Args, Body);
1197   } else
1198     llvm_unreachable("no definition for emitted function");
1199 
1200   // C++11 [stmt.return]p2:
1201   //   Flowing off the end of a function [...] results in undefined behavior in
1202   //   a value-returning function.
1203   // C11 6.9.1p12:
1204   //   If the '}' that terminates a function is reached, and the value of the
1205   //   function call is used by the caller, the behavior is undefined.
1206   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1207       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1208     bool ShouldEmitUnreachable =
1209         CGM.getCodeGenOpts().StrictReturn ||
1210         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1211     if (SanOpts.has(SanitizerKind::Return)) {
1212       SanitizerScope SanScope(this);
1213       llvm::Value *IsFalse = Builder.getFalse();
1214       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1215                 SanitizerHandler::MissingReturn,
1216                 EmitCheckSourceLocation(FD->getLocation()), None);
1217     } else if (ShouldEmitUnreachable) {
1218       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1219         EmitTrapCall(llvm::Intrinsic::trap);
1220     }
1221     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1222       Builder.CreateUnreachable();
1223       Builder.ClearInsertionPoint();
1224     }
1225   }
1226 
1227   // Emit the standard function epilogue.
1228   FinishFunction(BodyRange.getEnd());
1229 
1230   // If we haven't marked the function nothrow through other means, do
1231   // a quick pass now to see if we can.
1232   if (!CurFn->doesNotThrow())
1233     TryMarkNoThrow(CurFn);
1234 }
1235 
1236 /// ContainsLabel - Return true if the statement contains a label in it.  If
1237 /// this statement is not executed normally, it not containing a label means
1238 /// that we can just remove the code.
1239 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1240   // Null statement, not a label!
1241   if (!S) return false;
1242 
1243   // If this is a label, we have to emit the code, consider something like:
1244   // if (0) {  ...  foo:  bar(); }  goto foo;
1245   //
1246   // TODO: If anyone cared, we could track __label__'s, since we know that you
1247   // can't jump to one from outside their declared region.
1248   if (isa<LabelStmt>(S))
1249     return true;
1250 
1251   // If this is a case/default statement, and we haven't seen a switch, we have
1252   // to emit the code.
1253   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1254     return true;
1255 
1256   // If this is a switch statement, we want to ignore cases below it.
1257   if (isa<SwitchStmt>(S))
1258     IgnoreCaseStmts = true;
1259 
1260   // Scan subexpressions for verboten labels.
1261   for (const Stmt *SubStmt : S->children())
1262     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1263       return true;
1264 
1265   return false;
1266 }
1267 
1268 /// containsBreak - Return true if the statement contains a break out of it.
1269 /// If the statement (recursively) contains a switch or loop with a break
1270 /// inside of it, this is fine.
1271 bool CodeGenFunction::containsBreak(const Stmt *S) {
1272   // Null statement, not a label!
1273   if (!S) return false;
1274 
1275   // If this is a switch or loop that defines its own break scope, then we can
1276   // include it and anything inside of it.
1277   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1278       isa<ForStmt>(S))
1279     return false;
1280 
1281   if (isa<BreakStmt>(S))
1282     return true;
1283 
1284   // Scan subexpressions for verboten breaks.
1285   for (const Stmt *SubStmt : S->children())
1286     if (containsBreak(SubStmt))
1287       return true;
1288 
1289   return false;
1290 }
1291 
1292 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1293   if (!S) return false;
1294 
1295   // Some statement kinds add a scope and thus never add a decl to the current
1296   // scope. Note, this list is longer than the list of statements that might
1297   // have an unscoped decl nested within them, but this way is conservatively
1298   // correct even if more statement kinds are added.
1299   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1300       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1301       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1302       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1303     return false;
1304 
1305   if (isa<DeclStmt>(S))
1306     return true;
1307 
1308   for (const Stmt *SubStmt : S->children())
1309     if (mightAddDeclToScope(SubStmt))
1310       return true;
1311 
1312   return false;
1313 }
1314 
1315 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1316 /// to a constant, or if it does but contains a label, return false.  If it
1317 /// constant folds return true and set the boolean result in Result.
1318 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1319                                                    bool &ResultBool,
1320                                                    bool AllowLabels) {
1321   llvm::APSInt ResultInt;
1322   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1323     return false;
1324 
1325   ResultBool = ResultInt.getBoolValue();
1326   return true;
1327 }
1328 
1329 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1330 /// to a constant, or if it does but contains a label, return false.  If it
1331 /// constant folds return true and set the folded value.
1332 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1333                                                    llvm::APSInt &ResultInt,
1334                                                    bool AllowLabels) {
1335   // FIXME: Rename and handle conversion of other evaluatable things
1336   // to bool.
1337   llvm::APSInt Int;
1338   if (!Cond->EvaluateAsInt(Int, getContext()))
1339     return false;  // Not foldable, not integer or not fully evaluatable.
1340 
1341   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1342     return false;  // Contains a label.
1343 
1344   ResultInt = Int;
1345   return true;
1346 }
1347 
1348 
1349 
1350 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1351 /// statement) to the specified blocks.  Based on the condition, this might try
1352 /// to simplify the codegen of the conditional based on the branch.
1353 ///
1354 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1355                                            llvm::BasicBlock *TrueBlock,
1356                                            llvm::BasicBlock *FalseBlock,
1357                                            uint64_t TrueCount) {
1358   Cond = Cond->IgnoreParens();
1359 
1360   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1361 
1362     // Handle X && Y in a condition.
1363     if (CondBOp->getOpcode() == BO_LAnd) {
1364       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1365       // folded if the case was simple enough.
1366       bool ConstantBool = false;
1367       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1368           ConstantBool) {
1369         // br(1 && X) -> br(X).
1370         incrementProfileCounter(CondBOp);
1371         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1372                                     TrueCount);
1373       }
1374 
1375       // If we have "X && 1", simplify the code to use an uncond branch.
1376       // "X && 0" would have been constant folded to 0.
1377       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1378           ConstantBool) {
1379         // br(X && 1) -> br(X).
1380         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1381                                     TrueCount);
1382       }
1383 
1384       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1385       // want to jump to the FalseBlock.
1386       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1387       // The counter tells us how often we evaluate RHS, and all of TrueCount
1388       // can be propagated to that branch.
1389       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1390 
1391       ConditionalEvaluation eval(*this);
1392       {
1393         ApplyDebugLocation DL(*this, Cond);
1394         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1395         EmitBlock(LHSTrue);
1396       }
1397 
1398       incrementProfileCounter(CondBOp);
1399       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1400 
1401       // Any temporaries created here are conditional.
1402       eval.begin(*this);
1403       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1404       eval.end(*this);
1405 
1406       return;
1407     }
1408 
1409     if (CondBOp->getOpcode() == BO_LOr) {
1410       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1411       // folded if the case was simple enough.
1412       bool ConstantBool = false;
1413       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1414           !ConstantBool) {
1415         // br(0 || X) -> br(X).
1416         incrementProfileCounter(CondBOp);
1417         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1418                                     TrueCount);
1419       }
1420 
1421       // If we have "X || 0", simplify the code to use an uncond branch.
1422       // "X || 1" would have been constant folded to 1.
1423       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1424           !ConstantBool) {
1425         // br(X || 0) -> br(X).
1426         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1427                                     TrueCount);
1428       }
1429 
1430       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1431       // want to jump to the TrueBlock.
1432       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1433       // We have the count for entry to the RHS and for the whole expression
1434       // being true, so we can divy up True count between the short circuit and
1435       // the RHS.
1436       uint64_t LHSCount =
1437           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1438       uint64_t RHSCount = TrueCount - LHSCount;
1439 
1440       ConditionalEvaluation eval(*this);
1441       {
1442         ApplyDebugLocation DL(*this, Cond);
1443         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1444         EmitBlock(LHSFalse);
1445       }
1446 
1447       incrementProfileCounter(CondBOp);
1448       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1449 
1450       // Any temporaries created here are conditional.
1451       eval.begin(*this);
1452       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1453 
1454       eval.end(*this);
1455 
1456       return;
1457     }
1458   }
1459 
1460   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1461     // br(!x, t, f) -> br(x, f, t)
1462     if (CondUOp->getOpcode() == UO_LNot) {
1463       // Negate the count.
1464       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1465       // Negate the condition and swap the destination blocks.
1466       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1467                                   FalseCount);
1468     }
1469   }
1470 
1471   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1472     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1473     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1474     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1475 
1476     ConditionalEvaluation cond(*this);
1477     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1478                          getProfileCount(CondOp));
1479 
1480     // When computing PGO branch weights, we only know the overall count for
1481     // the true block. This code is essentially doing tail duplication of the
1482     // naive code-gen, introducing new edges for which counts are not
1483     // available. Divide the counts proportionally between the LHS and RHS of
1484     // the conditional operator.
1485     uint64_t LHSScaledTrueCount = 0;
1486     if (TrueCount) {
1487       double LHSRatio =
1488           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1489       LHSScaledTrueCount = TrueCount * LHSRatio;
1490     }
1491 
1492     cond.begin(*this);
1493     EmitBlock(LHSBlock);
1494     incrementProfileCounter(CondOp);
1495     {
1496       ApplyDebugLocation DL(*this, Cond);
1497       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1498                            LHSScaledTrueCount);
1499     }
1500     cond.end(*this);
1501 
1502     cond.begin(*this);
1503     EmitBlock(RHSBlock);
1504     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1505                          TrueCount - LHSScaledTrueCount);
1506     cond.end(*this);
1507 
1508     return;
1509   }
1510 
1511   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1512     // Conditional operator handling can give us a throw expression as a
1513     // condition for a case like:
1514     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1515     // Fold this to:
1516     //   br(c, throw x, br(y, t, f))
1517     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1518     return;
1519   }
1520 
1521   // If the branch has a condition wrapped by __builtin_unpredictable,
1522   // create metadata that specifies that the branch is unpredictable.
1523   // Don't bother if not optimizing because that metadata would not be used.
1524   llvm::MDNode *Unpredictable = nullptr;
1525   auto *Call = dyn_cast<CallExpr>(Cond);
1526   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1527     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1528     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1529       llvm::MDBuilder MDHelper(getLLVMContext());
1530       Unpredictable = MDHelper.createUnpredictable();
1531     }
1532   }
1533 
1534   // Create branch weights based on the number of times we get here and the
1535   // number of times the condition should be true.
1536   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1537   llvm::MDNode *Weights =
1538       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1539 
1540   // Emit the code with the fully general case.
1541   llvm::Value *CondV;
1542   {
1543     ApplyDebugLocation DL(*this, Cond);
1544     CondV = EvaluateExprAsBool(Cond);
1545   }
1546   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1547 }
1548 
1549 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1550 /// specified stmt yet.
1551 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1552   CGM.ErrorUnsupported(S, Type);
1553 }
1554 
1555 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1556 /// variable-length array whose elements have a non-zero bit-pattern.
1557 ///
1558 /// \param baseType the inner-most element type of the array
1559 /// \param src - a char* pointing to the bit-pattern for a single
1560 /// base element of the array
1561 /// \param sizeInChars - the total size of the VLA, in chars
1562 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1563                                Address dest, Address src,
1564                                llvm::Value *sizeInChars) {
1565   CGBuilderTy &Builder = CGF.Builder;
1566 
1567   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1568   llvm::Value *baseSizeInChars
1569     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1570 
1571   Address begin =
1572     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1573   llvm::Value *end =
1574     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1575 
1576   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1577   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1578   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1579 
1580   // Make a loop over the VLA.  C99 guarantees that the VLA element
1581   // count must be nonzero.
1582   CGF.EmitBlock(loopBB);
1583 
1584   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1585   cur->addIncoming(begin.getPointer(), originBB);
1586 
1587   CharUnits curAlign =
1588     dest.getAlignment().alignmentOfArrayElement(baseSize);
1589 
1590   // memcpy the individual element bit-pattern.
1591   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1592                        /*volatile*/ false);
1593 
1594   // Go to the next element.
1595   llvm::Value *next =
1596     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1597 
1598   // Leave if that's the end of the VLA.
1599   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1600   Builder.CreateCondBr(done, contBB, loopBB);
1601   cur->addIncoming(next, loopBB);
1602 
1603   CGF.EmitBlock(contBB);
1604 }
1605 
1606 void
1607 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1608   // Ignore empty classes in C++.
1609   if (getLangOpts().CPlusPlus) {
1610     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1611       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1612         return;
1613     }
1614   }
1615 
1616   // Cast the dest ptr to the appropriate i8 pointer type.
1617   if (DestPtr.getElementType() != Int8Ty)
1618     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1619 
1620   // Get size and alignment info for this aggregate.
1621   CharUnits size = getContext().getTypeSizeInChars(Ty);
1622 
1623   llvm::Value *SizeVal;
1624   const VariableArrayType *vla;
1625 
1626   // Don't bother emitting a zero-byte memset.
1627   if (size.isZero()) {
1628     // But note that getTypeInfo returns 0 for a VLA.
1629     if (const VariableArrayType *vlaType =
1630           dyn_cast_or_null<VariableArrayType>(
1631                                           getContext().getAsArrayType(Ty))) {
1632       QualType eltType;
1633       llvm::Value *numElts;
1634       std::tie(numElts, eltType) = getVLASize(vlaType);
1635 
1636       SizeVal = numElts;
1637       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1638       if (!eltSize.isOne())
1639         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1640       vla = vlaType;
1641     } else {
1642       return;
1643     }
1644   } else {
1645     SizeVal = CGM.getSize(size);
1646     vla = nullptr;
1647   }
1648 
1649   // If the type contains a pointer to data member we can't memset it to zero.
1650   // Instead, create a null constant and copy it to the destination.
1651   // TODO: there are other patterns besides zero that we can usefully memset,
1652   // like -1, which happens to be the pattern used by member-pointers.
1653   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1654     // For a VLA, emit a single element, then splat that over the VLA.
1655     if (vla) Ty = getContext().getBaseElementType(vla);
1656 
1657     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1658 
1659     llvm::GlobalVariable *NullVariable =
1660       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1661                                /*isConstant=*/true,
1662                                llvm::GlobalVariable::PrivateLinkage,
1663                                NullConstant, Twine());
1664     CharUnits NullAlign = DestPtr.getAlignment();
1665     NullVariable->setAlignment(NullAlign.getQuantity());
1666     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1667                    NullAlign);
1668 
1669     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1670 
1671     // Get and call the appropriate llvm.memcpy overload.
1672     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1673     return;
1674   }
1675 
1676   // Otherwise, just memset the whole thing to zero.  This is legal
1677   // because in LLVM, all default initializers (other than the ones we just
1678   // handled above) are guaranteed to have a bit pattern of all zeros.
1679   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1680 }
1681 
1682 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1683   // Make sure that there is a block for the indirect goto.
1684   if (!IndirectBranch)
1685     GetIndirectGotoBlock();
1686 
1687   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1688 
1689   // Make sure the indirect branch includes all of the address-taken blocks.
1690   IndirectBranch->addDestination(BB);
1691   return llvm::BlockAddress::get(CurFn, BB);
1692 }
1693 
1694 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1695   // If we already made the indirect branch for indirect goto, return its block.
1696   if (IndirectBranch) return IndirectBranch->getParent();
1697 
1698   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1699 
1700   // Create the PHI node that indirect gotos will add entries to.
1701   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1702                                               "indirect.goto.dest");
1703 
1704   // Create the indirect branch instruction.
1705   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1706   return IndirectBranch->getParent();
1707 }
1708 
1709 /// Computes the length of an array in elements, as well as the base
1710 /// element type and a properly-typed first element pointer.
1711 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1712                                               QualType &baseType,
1713                                               Address &addr) {
1714   const ArrayType *arrayType = origArrayType;
1715 
1716   // If it's a VLA, we have to load the stored size.  Note that
1717   // this is the size of the VLA in bytes, not its size in elements.
1718   llvm::Value *numVLAElements = nullptr;
1719   if (isa<VariableArrayType>(arrayType)) {
1720     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1721 
1722     // Walk into all VLAs.  This doesn't require changes to addr,
1723     // which has type T* where T is the first non-VLA element type.
1724     do {
1725       QualType elementType = arrayType->getElementType();
1726       arrayType = getContext().getAsArrayType(elementType);
1727 
1728       // If we only have VLA components, 'addr' requires no adjustment.
1729       if (!arrayType) {
1730         baseType = elementType;
1731         return numVLAElements;
1732       }
1733     } while (isa<VariableArrayType>(arrayType));
1734 
1735     // We get out here only if we find a constant array type
1736     // inside the VLA.
1737   }
1738 
1739   // We have some number of constant-length arrays, so addr should
1740   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1741   // down to the first element of addr.
1742   SmallVector<llvm::Value*, 8> gepIndices;
1743 
1744   // GEP down to the array type.
1745   llvm::ConstantInt *zero = Builder.getInt32(0);
1746   gepIndices.push_back(zero);
1747 
1748   uint64_t countFromCLAs = 1;
1749   QualType eltType;
1750 
1751   llvm::ArrayType *llvmArrayType =
1752     dyn_cast<llvm::ArrayType>(addr.getElementType());
1753   while (llvmArrayType) {
1754     assert(isa<ConstantArrayType>(arrayType));
1755     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1756              == llvmArrayType->getNumElements());
1757 
1758     gepIndices.push_back(zero);
1759     countFromCLAs *= llvmArrayType->getNumElements();
1760     eltType = arrayType->getElementType();
1761 
1762     llvmArrayType =
1763       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1764     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1765     assert((!llvmArrayType || arrayType) &&
1766            "LLVM and Clang types are out-of-synch");
1767   }
1768 
1769   if (arrayType) {
1770     // From this point onwards, the Clang array type has been emitted
1771     // as some other type (probably a packed struct). Compute the array
1772     // size, and just emit the 'begin' expression as a bitcast.
1773     while (arrayType) {
1774       countFromCLAs *=
1775           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1776       eltType = arrayType->getElementType();
1777       arrayType = getContext().getAsArrayType(eltType);
1778     }
1779 
1780     llvm::Type *baseType = ConvertType(eltType);
1781     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1782   } else {
1783     // Create the actual GEP.
1784     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1785                                              gepIndices, "array.begin"),
1786                    addr.getAlignment());
1787   }
1788 
1789   baseType = eltType;
1790 
1791   llvm::Value *numElements
1792     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1793 
1794   // If we had any VLA dimensions, factor them in.
1795   if (numVLAElements)
1796     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1797 
1798   return numElements;
1799 }
1800 
1801 std::pair<llvm::Value*, QualType>
1802 CodeGenFunction::getVLASize(QualType type) {
1803   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1804   assert(vla && "type was not a variable array type!");
1805   return getVLASize(vla);
1806 }
1807 
1808 std::pair<llvm::Value*, QualType>
1809 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1810   // The number of elements so far; always size_t.
1811   llvm::Value *numElements = nullptr;
1812 
1813   QualType elementType;
1814   do {
1815     elementType = type->getElementType();
1816     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1817     assert(vlaSize && "no size for VLA!");
1818     assert(vlaSize->getType() == SizeTy);
1819 
1820     if (!numElements) {
1821       numElements = vlaSize;
1822     } else {
1823       // It's undefined behavior if this wraps around, so mark it that way.
1824       // FIXME: Teach -fsanitize=undefined to trap this.
1825       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1826     }
1827   } while ((type = getContext().getAsVariableArrayType(elementType)));
1828 
1829   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1830 }
1831 
1832 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1833   assert(type->isVariablyModifiedType() &&
1834          "Must pass variably modified type to EmitVLASizes!");
1835 
1836   EnsureInsertPoint();
1837 
1838   // We're going to walk down into the type and look for VLA
1839   // expressions.
1840   do {
1841     assert(type->isVariablyModifiedType());
1842 
1843     const Type *ty = type.getTypePtr();
1844     switch (ty->getTypeClass()) {
1845 
1846 #define TYPE(Class, Base)
1847 #define ABSTRACT_TYPE(Class, Base)
1848 #define NON_CANONICAL_TYPE(Class, Base)
1849 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1850 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1851 #include "clang/AST/TypeNodes.def"
1852       llvm_unreachable("unexpected dependent type!");
1853 
1854     // These types are never variably-modified.
1855     case Type::Builtin:
1856     case Type::Complex:
1857     case Type::Vector:
1858     case Type::ExtVector:
1859     case Type::Record:
1860     case Type::Enum:
1861     case Type::Elaborated:
1862     case Type::TemplateSpecialization:
1863     case Type::ObjCTypeParam:
1864     case Type::ObjCObject:
1865     case Type::ObjCInterface:
1866     case Type::ObjCObjectPointer:
1867       llvm_unreachable("type class is never variably-modified!");
1868 
1869     case Type::Adjusted:
1870       type = cast<AdjustedType>(ty)->getAdjustedType();
1871       break;
1872 
1873     case Type::Decayed:
1874       type = cast<DecayedType>(ty)->getPointeeType();
1875       break;
1876 
1877     case Type::Pointer:
1878       type = cast<PointerType>(ty)->getPointeeType();
1879       break;
1880 
1881     case Type::BlockPointer:
1882       type = cast<BlockPointerType>(ty)->getPointeeType();
1883       break;
1884 
1885     case Type::LValueReference:
1886     case Type::RValueReference:
1887       type = cast<ReferenceType>(ty)->getPointeeType();
1888       break;
1889 
1890     case Type::MemberPointer:
1891       type = cast<MemberPointerType>(ty)->getPointeeType();
1892       break;
1893 
1894     case Type::ConstantArray:
1895     case Type::IncompleteArray:
1896       // Losing element qualification here is fine.
1897       type = cast<ArrayType>(ty)->getElementType();
1898       break;
1899 
1900     case Type::VariableArray: {
1901       // Losing element qualification here is fine.
1902       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1903 
1904       // Unknown size indication requires no size computation.
1905       // Otherwise, evaluate and record it.
1906       if (const Expr *size = vat->getSizeExpr()) {
1907         // It's possible that we might have emitted this already,
1908         // e.g. with a typedef and a pointer to it.
1909         llvm::Value *&entry = VLASizeMap[size];
1910         if (!entry) {
1911           llvm::Value *Size = EmitScalarExpr(size);
1912 
1913           // C11 6.7.6.2p5:
1914           //   If the size is an expression that is not an integer constant
1915           //   expression [...] each time it is evaluated it shall have a value
1916           //   greater than zero.
1917           if (SanOpts.has(SanitizerKind::VLABound) &&
1918               size->getType()->isSignedIntegerType()) {
1919             SanitizerScope SanScope(this);
1920             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1921             llvm::Constant *StaticArgs[] = {
1922               EmitCheckSourceLocation(size->getLocStart()),
1923               EmitCheckTypeDescriptor(size->getType())
1924             };
1925             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1926                                      SanitizerKind::VLABound),
1927                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1928           }
1929 
1930           // Always zexting here would be wrong if it weren't
1931           // undefined behavior to have a negative bound.
1932           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1933         }
1934       }
1935       type = vat->getElementType();
1936       break;
1937     }
1938 
1939     case Type::FunctionProto:
1940     case Type::FunctionNoProto:
1941       type = cast<FunctionType>(ty)->getReturnType();
1942       break;
1943 
1944     case Type::Paren:
1945     case Type::TypeOf:
1946     case Type::UnaryTransform:
1947     case Type::Attributed:
1948     case Type::SubstTemplateTypeParm:
1949     case Type::PackExpansion:
1950       // Keep walking after single level desugaring.
1951       type = type.getSingleStepDesugaredType(getContext());
1952       break;
1953 
1954     case Type::Typedef:
1955     case Type::Decltype:
1956     case Type::Auto:
1957     case Type::DeducedTemplateSpecialization:
1958       // Stop walking: nothing to do.
1959       return;
1960 
1961     case Type::TypeOfExpr:
1962       // Stop walking: emit typeof expression.
1963       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1964       return;
1965 
1966     case Type::Atomic:
1967       type = cast<AtomicType>(ty)->getValueType();
1968       break;
1969 
1970     case Type::Pipe:
1971       type = cast<PipeType>(ty)->getElementType();
1972       break;
1973     }
1974   } while (type->isVariablyModifiedType());
1975 }
1976 
1977 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1978   if (getContext().getBuiltinVaListType()->isArrayType())
1979     return EmitPointerWithAlignment(E);
1980   return EmitLValue(E).getAddress();
1981 }
1982 
1983 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1984   return EmitLValue(E).getAddress();
1985 }
1986 
1987 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1988                                               const APValue &Init) {
1989   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1990   if (CGDebugInfo *Dbg = getDebugInfo())
1991     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1992       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1993 }
1994 
1995 CodeGenFunction::PeepholeProtection
1996 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1997   // At the moment, the only aggressive peephole we do in IR gen
1998   // is trunc(zext) folding, but if we add more, we can easily
1999   // extend this protection.
2000 
2001   if (!rvalue.isScalar()) return PeepholeProtection();
2002   llvm::Value *value = rvalue.getScalarVal();
2003   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2004 
2005   // Just make an extra bitcast.
2006   assert(HaveInsertPoint());
2007   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2008                                                   Builder.GetInsertBlock());
2009 
2010   PeepholeProtection protection;
2011   protection.Inst = inst;
2012   return protection;
2013 }
2014 
2015 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2016   if (!protection.Inst) return;
2017 
2018   // In theory, we could try to duplicate the peepholes now, but whatever.
2019   protection.Inst->eraseFromParent();
2020 }
2021 
2022 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2023                                                  llvm::Value *AnnotatedVal,
2024                                                  StringRef AnnotationStr,
2025                                                  SourceLocation Location) {
2026   llvm::Value *Args[4] = {
2027     AnnotatedVal,
2028     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2029     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2030     CGM.EmitAnnotationLineNo(Location)
2031   };
2032   return Builder.CreateCall(AnnotationFn, Args);
2033 }
2034 
2035 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2036   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2037   // FIXME We create a new bitcast for every annotation because that's what
2038   // llvm-gcc was doing.
2039   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2040     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2041                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2042                        I->getAnnotation(), D->getLocation());
2043 }
2044 
2045 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2046                                               Address Addr) {
2047   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2048   llvm::Value *V = Addr.getPointer();
2049   llvm::Type *VTy = V->getType();
2050   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2051                                     CGM.Int8PtrTy);
2052 
2053   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2054     // FIXME Always emit the cast inst so we can differentiate between
2055     // annotation on the first field of a struct and annotation on the struct
2056     // itself.
2057     if (VTy != CGM.Int8PtrTy)
2058       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2059     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2060     V = Builder.CreateBitCast(V, VTy);
2061   }
2062 
2063   return Address(V, Addr.getAlignment());
2064 }
2065 
2066 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2067 
2068 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2069     : CGF(CGF) {
2070   assert(!CGF->IsSanitizerScope);
2071   CGF->IsSanitizerScope = true;
2072 }
2073 
2074 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2075   CGF->IsSanitizerScope = false;
2076 }
2077 
2078 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2079                                    const llvm::Twine &Name,
2080                                    llvm::BasicBlock *BB,
2081                                    llvm::BasicBlock::iterator InsertPt) const {
2082   LoopStack.InsertHelper(I);
2083   if (IsSanitizerScope)
2084     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2085 }
2086 
2087 void CGBuilderInserter::InsertHelper(
2088     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2089     llvm::BasicBlock::iterator InsertPt) const {
2090   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2091   if (CGF)
2092     CGF->InsertHelper(I, Name, BB, InsertPt);
2093 }
2094 
2095 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2096                                 CodeGenModule &CGM, const FunctionDecl *FD,
2097                                 std::string &FirstMissing) {
2098   // If there aren't any required features listed then go ahead and return.
2099   if (ReqFeatures.empty())
2100     return false;
2101 
2102   // Now build up the set of caller features and verify that all the required
2103   // features are there.
2104   llvm::StringMap<bool> CallerFeatureMap;
2105   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2106 
2107   // If we have at least one of the features in the feature list return
2108   // true, otherwise return false.
2109   return std::all_of(
2110       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2111         SmallVector<StringRef, 1> OrFeatures;
2112         Feature.split(OrFeatures, "|");
2113         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2114                            [&](StringRef Feature) {
2115                              if (!CallerFeatureMap.lookup(Feature)) {
2116                                FirstMissing = Feature.str();
2117                                return false;
2118                              }
2119                              return true;
2120                            });
2121       });
2122 }
2123 
2124 // Emits an error if we don't have a valid set of target features for the
2125 // called function.
2126 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2127                                           const FunctionDecl *TargetDecl) {
2128   // Early exit if this is an indirect call.
2129   if (!TargetDecl)
2130     return;
2131 
2132   // Get the current enclosing function if it exists. If it doesn't
2133   // we can't check the target features anyhow.
2134   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2135   if (!FD)
2136     return;
2137 
2138   // Grab the required features for the call. For a builtin this is listed in
2139   // the td file with the default cpu, for an always_inline function this is any
2140   // listed cpu and any listed features.
2141   unsigned BuiltinID = TargetDecl->getBuiltinID();
2142   std::string MissingFeature;
2143   if (BuiltinID) {
2144     SmallVector<StringRef, 1> ReqFeatures;
2145     const char *FeatureList =
2146         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2147     // Return if the builtin doesn't have any required features.
2148     if (!FeatureList || StringRef(FeatureList) == "")
2149       return;
2150     StringRef(FeatureList).split(ReqFeatures, ",");
2151     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2152       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2153           << TargetDecl->getDeclName()
2154           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2155 
2156   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2157     // Get the required features for the callee.
2158     SmallVector<StringRef, 1> ReqFeatures;
2159     llvm::StringMap<bool> CalleeFeatureMap;
2160     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2161     for (const auto &F : CalleeFeatureMap) {
2162       // Only positive features are "required".
2163       if (F.getValue())
2164         ReqFeatures.push_back(F.getKey());
2165     }
2166     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2167       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2168           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2169   }
2170 }
2171 
2172 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2173   if (!CGM.getCodeGenOpts().SanitizeStats)
2174     return;
2175 
2176   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2177   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2178   CGM.getSanStats().create(IRB, SSK);
2179 }
2180 
2181 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2182   if (CGDebugInfo *DI = getDebugInfo())
2183     return DI->SourceLocToDebugLoc(Location);
2184 
2185   return llvm::DebugLoc();
2186 }
2187