1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
43 /// markers.
44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
45                                       const LangOptions &LangOpts) {
46   if (CGOpts.DisableLifetimeMarkers)
47     return false;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // Asan uses markers for use-after-scope checks.
55   if (CGOpts.SanitizeAddressUseAfterScope)
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       CurFn(nullptr), ReturnValue(Address::invalid()),
67       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
68       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
69       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
70       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
71       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
72       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
73       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
74       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
75       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
76       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
77       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
78       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
79       CXXStructorImplicitParamDecl(nullptr),
80       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
81       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
82       TerminateHandler(nullptr), TrapBB(nullptr),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87 
88   llvm::FastMathFlags FMF;
89   if (CGM.getLangOpts().FastMath)
90     FMF.setUnsafeAlgebra();
91   if (CGM.getLangOpts().FiniteMathOnly) {
92     FMF.setNoNaNs();
93     FMF.setNoInfs();
94   }
95   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
96     FMF.setNoNaNs();
97   }
98   if (CGM.getCodeGenOpts().NoSignedZeros) {
99     FMF.setNoSignedZeros();
100   }
101   if (CGM.getCodeGenOpts().ReciprocalMath) {
102     FMF.setAllowReciprocal();
103   }
104   Builder.setFastMathFlags(FMF);
105 }
106 
107 CodeGenFunction::~CodeGenFunction() {
108   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
109 
110   // If there are any unclaimed block infos, go ahead and destroy them
111   // now.  This can happen if IR-gen gets clever and skips evaluating
112   // something.
113   if (FirstBlockInfo)
114     destroyBlockInfos(FirstBlockInfo);
115 
116   if (getLangOpts().OpenMP && CurFn)
117     CGM.getOpenMPRuntime().functionFinished(*this);
118 }
119 
120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
121                                                     LValueBaseInfo *BaseInfo) {
122   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
123                                  /*forPointee*/ true);
124 }
125 
126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
127                                                    LValueBaseInfo *BaseInfo,
128                                                    bool forPointeeType) {
129   // Honor alignment typedef attributes even on incomplete types.
130   // We also honor them straight for C++ class types, even as pointees;
131   // there's an expressivity gap here.
132   if (auto TT = T->getAs<TypedefType>()) {
133     if (auto Align = TT->getDecl()->getMaxAlignment()) {
134       if (BaseInfo)
135         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
136       return getContext().toCharUnitsFromBits(Align);
137     }
138   }
139 
140   if (BaseInfo)
141     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
142 
143   CharUnits Alignment;
144   if (T->isIncompleteType()) {
145     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
146   } else {
147     // For C++ class pointees, we don't know whether we're pointing at a
148     // base or a complete object, so we generally need to use the
149     // non-virtual alignment.
150     const CXXRecordDecl *RD;
151     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
152       Alignment = CGM.getClassPointerAlignment(RD);
153     } else {
154       Alignment = getContext().getTypeAlignInChars(T);
155       if (T.getQualifiers().hasUnaligned())
156         Alignment = CharUnits::One();
157     }
158 
159     // Cap to the global maximum type alignment unless the alignment
160     // was somehow explicit on the type.
161     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
162       if (Alignment.getQuantity() > MaxAlign &&
163           !getContext().isAlignmentRequired(T))
164         Alignment = CharUnits::fromQuantity(MaxAlign);
165     }
166   }
167   return Alignment;
168 }
169 
170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
171   LValueBaseInfo BaseInfo;
172   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
173   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
174                           CGM.getTBAAInfo(T));
175 }
176 
177 /// Given a value of type T* that may not be to a complete object,
178 /// construct an l-value with the natural pointee alignment of T.
179 LValue
180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
183   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
184 }
185 
186 
187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
188   return CGM.getTypes().ConvertTypeForMem(T);
189 }
190 
191 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
192   return CGM.getTypes().ConvertType(T);
193 }
194 
195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
196   type = type.getCanonicalType();
197   while (true) {
198     switch (type->getTypeClass()) {
199 #define TYPE(name, parent)
200 #define ABSTRACT_TYPE(name, parent)
201 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
202 #define DEPENDENT_TYPE(name, parent) case Type::name:
203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
204 #include "clang/AST/TypeNodes.def"
205       llvm_unreachable("non-canonical or dependent type in IR-generation");
206 
207     case Type::Auto:
208     case Type::DeducedTemplateSpecialization:
209       llvm_unreachable("undeduced type in IR-generation");
210 
211     // Various scalar types.
212     case Type::Builtin:
213     case Type::Pointer:
214     case Type::BlockPointer:
215     case Type::LValueReference:
216     case Type::RValueReference:
217     case Type::MemberPointer:
218     case Type::Vector:
219     case Type::ExtVector:
220     case Type::FunctionProto:
221     case Type::FunctionNoProto:
222     case Type::Enum:
223     case Type::ObjCObjectPointer:
224     case Type::Pipe:
225       return TEK_Scalar;
226 
227     // Complexes.
228     case Type::Complex:
229       return TEK_Complex;
230 
231     // Arrays, records, and Objective-C objects.
232     case Type::ConstantArray:
233     case Type::IncompleteArray:
234     case Type::VariableArray:
235     case Type::Record:
236     case Type::ObjCObject:
237     case Type::ObjCInterface:
238       return TEK_Aggregate;
239 
240     // We operate on atomic values according to their underlying type.
241     case Type::Atomic:
242       type = cast<AtomicType>(type)->getValueType();
243       continue;
244     }
245     llvm_unreachable("unknown type kind!");
246   }
247 }
248 
249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
250   // For cleanliness, we try to avoid emitting the return block for
251   // simple cases.
252   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
253 
254   if (CurBB) {
255     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
256 
257     // We have a valid insert point, reuse it if it is empty or there are no
258     // explicit jumps to the return block.
259     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
260       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
261       delete ReturnBlock.getBlock();
262     } else
263       EmitBlock(ReturnBlock.getBlock());
264     return llvm::DebugLoc();
265   }
266 
267   // Otherwise, if the return block is the target of a single direct
268   // branch then we can just put the code in that block instead. This
269   // cleans up functions which started with a unified return block.
270   if (ReturnBlock.getBlock()->hasOneUse()) {
271     llvm::BranchInst *BI =
272       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
273     if (BI && BI->isUnconditional() &&
274         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
275       // Record/return the DebugLoc of the simple 'return' expression to be used
276       // later by the actual 'ret' instruction.
277       llvm::DebugLoc Loc = BI->getDebugLoc();
278       Builder.SetInsertPoint(BI->getParent());
279       BI->eraseFromParent();
280       delete ReturnBlock.getBlock();
281       return Loc;
282     }
283   }
284 
285   // FIXME: We are at an unreachable point, there is no reason to emit the block
286   // unless it has uses. However, we still need a place to put the debug
287   // region.end for now.
288 
289   EmitBlock(ReturnBlock.getBlock());
290   return llvm::DebugLoc();
291 }
292 
293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
294   if (!BB) return;
295   if (!BB->use_empty())
296     return CGF.CurFn->getBasicBlockList().push_back(BB);
297   delete BB;
298 }
299 
300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
301   assert(BreakContinueStack.empty() &&
302          "mismatched push/pop in break/continue stack!");
303 
304   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
305     && NumSimpleReturnExprs == NumReturnExprs
306     && ReturnBlock.getBlock()->use_empty();
307   // Usually the return expression is evaluated before the cleanup
308   // code.  If the function contains only a simple return statement,
309   // such as a constant, the location before the cleanup code becomes
310   // the last useful breakpoint in the function, because the simple
311   // return expression will be evaluated after the cleanup code. To be
312   // safe, set the debug location for cleanup code to the location of
313   // the return statement.  Otherwise the cleanup code should be at the
314   // end of the function's lexical scope.
315   //
316   // If there are multiple branches to the return block, the branch
317   // instructions will get the location of the return statements and
318   // all will be fine.
319   if (CGDebugInfo *DI = getDebugInfo()) {
320     if (OnlySimpleReturnStmts)
321       DI->EmitLocation(Builder, LastStopPoint);
322     else
323       DI->EmitLocation(Builder, EndLoc);
324   }
325 
326   // Pop any cleanups that might have been associated with the
327   // parameters.  Do this in whatever block we're currently in; it's
328   // important to do this before we enter the return block or return
329   // edges will be *really* confused.
330   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
331   bool HasOnlyLifetimeMarkers =
332       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
333   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
334   if (HasCleanups) {
335     // Make sure the line table doesn't jump back into the body for
336     // the ret after it's been at EndLoc.
337     if (CGDebugInfo *DI = getDebugInfo())
338       if (OnlySimpleReturnStmts)
339         DI->EmitLocation(Builder, EndLoc);
340 
341     PopCleanupBlocks(PrologueCleanupDepth);
342   }
343 
344   // Emit function epilog (to return).
345   llvm::DebugLoc Loc = EmitReturnBlock();
346 
347   if (ShouldInstrumentFunction())
348     EmitFunctionInstrumentation("__cyg_profile_func_exit");
349 
350   // Emit debug descriptor for function end.
351   if (CGDebugInfo *DI = getDebugInfo())
352     DI->EmitFunctionEnd(Builder, CurFn);
353 
354   // Reset the debug location to that of the simple 'return' expression, if any
355   // rather than that of the end of the function's scope '}'.
356   ApplyDebugLocation AL(*this, Loc);
357   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
358   EmitEndEHSpec(CurCodeDecl);
359 
360   assert(EHStack.empty() &&
361          "did not remove all scopes from cleanup stack!");
362 
363   // If someone did an indirect goto, emit the indirect goto block at the end of
364   // the function.
365   if (IndirectBranch) {
366     EmitBlock(IndirectBranch->getParent());
367     Builder.ClearInsertionPoint();
368   }
369 
370   // If some of our locals escaped, insert a call to llvm.localescape in the
371   // entry block.
372   if (!EscapedLocals.empty()) {
373     // Invert the map from local to index into a simple vector. There should be
374     // no holes.
375     SmallVector<llvm::Value *, 4> EscapeArgs;
376     EscapeArgs.resize(EscapedLocals.size());
377     for (auto &Pair : EscapedLocals)
378       EscapeArgs[Pair.second] = Pair.first;
379     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
380         &CGM.getModule(), llvm::Intrinsic::localescape);
381     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
382   }
383 
384   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
385   llvm::Instruction *Ptr = AllocaInsertPt;
386   AllocaInsertPt = nullptr;
387   Ptr->eraseFromParent();
388 
389   // If someone took the address of a label but never did an indirect goto, we
390   // made a zero entry PHI node, which is illegal, zap it now.
391   if (IndirectBranch) {
392     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
393     if (PN->getNumIncomingValues() == 0) {
394       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
395       PN->eraseFromParent();
396     }
397   }
398 
399   EmitIfUsed(*this, EHResumeBlock);
400   EmitIfUsed(*this, TerminateLandingPad);
401   EmitIfUsed(*this, TerminateHandler);
402   EmitIfUsed(*this, UnreachableBlock);
403 
404   if (CGM.getCodeGenOpts().EmitDeclMetadata)
405     EmitDeclMetadata();
406 
407   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
408            I = DeferredReplacements.begin(),
409            E = DeferredReplacements.end();
410        I != E; ++I) {
411     I->first->replaceAllUsesWith(I->second);
412     I->first->eraseFromParent();
413   }
414 }
415 
416 /// ShouldInstrumentFunction - Return true if the current function should be
417 /// instrumented with __cyg_profile_func_* calls
418 bool CodeGenFunction::ShouldInstrumentFunction() {
419   if (!CGM.getCodeGenOpts().InstrumentFunctions)
420     return false;
421   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
422     return false;
423   return true;
424 }
425 
426 /// ShouldXRayInstrument - Return true if the current function should be
427 /// instrumented with XRay nop sleds.
428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
429   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
430 }
431 
432 llvm::Constant *
433 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
434                                             llvm::Constant *Addr) {
435   // Addresses stored in prologue data can't require run-time fixups and must
436   // be PC-relative. Run-time fixups are undesirable because they necessitate
437   // writable text segments, which are unsafe. And absolute addresses are
438   // undesirable because they break PIE mode.
439 
440   // Add a layer of indirection through a private global. Taking its address
441   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
442   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
443                                       /*isConstant=*/true,
444                                       llvm::GlobalValue::PrivateLinkage, Addr);
445 
446   // Create a PC-relative address.
447   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
448   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
449   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
450   return (IntPtrTy == Int32Ty)
451              ? PCRelAsInt
452              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
453 }
454 
455 llvm::Value *
456 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
457                                           llvm::Value *EncodedAddr) {
458   // Reconstruct the address of the global.
459   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
460   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
461   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
462   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
463 
464   // Load the original pointer through the global.
465   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
466                             "decoded_addr");
467 }
468 
469 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
470 /// instrumentation function with the current function and the call site, if
471 /// function instrumentation is enabled.
472 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
473   auto NL = ApplyDebugLocation::CreateArtificial(*this);
474   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
475   llvm::PointerType *PointerTy = Int8PtrTy;
476   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
477   llvm::FunctionType *FunctionTy =
478     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
479 
480   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
481   llvm::CallInst *CallSite = Builder.CreateCall(
482     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
483     llvm::ConstantInt::get(Int32Ty, 0),
484     "callsite");
485 
486   llvm::Value *args[] = {
487     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
488     CallSite
489   };
490 
491   EmitNounwindRuntimeCall(F, args);
492 }
493 
494 static void removeImageAccessQualifier(std::string& TyName) {
495   std::string ReadOnlyQual("__read_only");
496   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
497   if (ReadOnlyPos != std::string::npos)
498     // "+ 1" for the space after access qualifier.
499     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
500   else {
501     std::string WriteOnlyQual("__write_only");
502     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
503     if (WriteOnlyPos != std::string::npos)
504       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
505     else {
506       std::string ReadWriteQual("__read_write");
507       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
508       if (ReadWritePos != std::string::npos)
509         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
510     }
511   }
512 }
513 
514 // Returns the address space id that should be produced to the
515 // kernel_arg_addr_space metadata. This is always fixed to the ids
516 // as specified in the SPIR 2.0 specification in order to differentiate
517 // for example in clGetKernelArgInfo() implementation between the address
518 // spaces with targets without unique mapping to the OpenCL address spaces
519 // (basically all single AS CPUs).
520 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
521   switch (LangAS) {
522   case LangAS::opencl_global:   return 1;
523   case LangAS::opencl_constant: return 2;
524   case LangAS::opencl_local:    return 3;
525   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
526   default:
527     return 0; // Assume private.
528   }
529 }
530 
531 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
532 // information in the program executable. The argument information stored
533 // includes the argument name, its type, the address and access qualifiers used.
534 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
535                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
536                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
537   // Create MDNodes that represent the kernel arg metadata.
538   // Each MDNode is a list in the form of "key", N number of values which is
539   // the same number of values as their are kernel arguments.
540 
541   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
542 
543   // MDNode for the kernel argument address space qualifiers.
544   SmallVector<llvm::Metadata *, 8> addressQuals;
545 
546   // MDNode for the kernel argument access qualifiers (images only).
547   SmallVector<llvm::Metadata *, 8> accessQuals;
548 
549   // MDNode for the kernel argument type names.
550   SmallVector<llvm::Metadata *, 8> argTypeNames;
551 
552   // MDNode for the kernel argument base type names.
553   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
554 
555   // MDNode for the kernel argument type qualifiers.
556   SmallVector<llvm::Metadata *, 8> argTypeQuals;
557 
558   // MDNode for the kernel argument names.
559   SmallVector<llvm::Metadata *, 8> argNames;
560 
561   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
562     const ParmVarDecl *parm = FD->getParamDecl(i);
563     QualType ty = parm->getType();
564     std::string typeQuals;
565 
566     if (ty->isPointerType()) {
567       QualType pointeeTy = ty->getPointeeType();
568 
569       // Get address qualifier.
570       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
571         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
572 
573       // Get argument type name.
574       std::string typeName =
575           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
576 
577       // Turn "unsigned type" to "utype"
578       std::string::size_type pos = typeName.find("unsigned");
579       if (pointeeTy.isCanonical() && pos != std::string::npos)
580         typeName.erase(pos+1, 8);
581 
582       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
583 
584       std::string baseTypeName =
585           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
586               Policy) +
587           "*";
588 
589       // Turn "unsigned type" to "utype"
590       pos = baseTypeName.find("unsigned");
591       if (pos != std::string::npos)
592         baseTypeName.erase(pos+1, 8);
593 
594       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
595 
596       // Get argument type qualifiers:
597       if (ty.isRestrictQualified())
598         typeQuals = "restrict";
599       if (pointeeTy.isConstQualified() ||
600           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
601         typeQuals += typeQuals.empty() ? "const" : " const";
602       if (pointeeTy.isVolatileQualified())
603         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
604     } else {
605       uint32_t AddrSpc = 0;
606       bool isPipe = ty->isPipeType();
607       if (ty->isImageType() || isPipe)
608         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
609 
610       addressQuals.push_back(
611           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
612 
613       // Get argument type name.
614       std::string typeName;
615       if (isPipe)
616         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
617                      .getAsString(Policy);
618       else
619         typeName = ty.getUnqualifiedType().getAsString(Policy);
620 
621       // Turn "unsigned type" to "utype"
622       std::string::size_type pos = typeName.find("unsigned");
623       if (ty.isCanonical() && pos != std::string::npos)
624         typeName.erase(pos+1, 8);
625 
626       std::string baseTypeName;
627       if (isPipe)
628         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
629                           ->getElementType().getCanonicalType()
630                           .getAsString(Policy);
631       else
632         baseTypeName =
633           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
634 
635       // Remove access qualifiers on images
636       // (as they are inseparable from type in clang implementation,
637       // but OpenCL spec provides a special query to get access qualifier
638       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
639       if (ty->isImageType()) {
640         removeImageAccessQualifier(typeName);
641         removeImageAccessQualifier(baseTypeName);
642       }
643 
644       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
645 
646       // Turn "unsigned type" to "utype"
647       pos = baseTypeName.find("unsigned");
648       if (pos != std::string::npos)
649         baseTypeName.erase(pos+1, 8);
650 
651       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
652 
653       if (isPipe)
654         typeQuals = "pipe";
655     }
656 
657     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
658 
659     // Get image and pipe access qualifier:
660     if (ty->isImageType()|| ty->isPipeType()) {
661       const Decl *PDecl = parm;
662       if (auto *TD = dyn_cast<TypedefType>(ty))
663         PDecl = TD->getDecl();
664       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
665       if (A && A->isWriteOnly())
666         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
667       else if (A && A->isReadWrite())
668         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
669       else
670         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
671     } else
672       accessQuals.push_back(llvm::MDString::get(Context, "none"));
673 
674     // Get argument name.
675     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
676   }
677 
678   Fn->setMetadata("kernel_arg_addr_space",
679                   llvm::MDNode::get(Context, addressQuals));
680   Fn->setMetadata("kernel_arg_access_qual",
681                   llvm::MDNode::get(Context, accessQuals));
682   Fn->setMetadata("kernel_arg_type",
683                   llvm::MDNode::get(Context, argTypeNames));
684   Fn->setMetadata("kernel_arg_base_type",
685                   llvm::MDNode::get(Context, argBaseTypeNames));
686   Fn->setMetadata("kernel_arg_type_qual",
687                   llvm::MDNode::get(Context, argTypeQuals));
688   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
689     Fn->setMetadata("kernel_arg_name",
690                     llvm::MDNode::get(Context, argNames));
691 }
692 
693 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
694                                                llvm::Function *Fn)
695 {
696   if (!FD->hasAttr<OpenCLKernelAttr>())
697     return;
698 
699   llvm::LLVMContext &Context = getLLVMContext();
700 
701   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
702 
703   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
704     QualType HintQTy = A->getTypeHint();
705     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
706     bool IsSignedInteger =
707         HintQTy->isSignedIntegerType() ||
708         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
709     llvm::Metadata *AttrMDArgs[] = {
710         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
711             CGM.getTypes().ConvertType(A->getTypeHint()))),
712         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
713             llvm::IntegerType::get(Context, 32),
714             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
715     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
716   }
717 
718   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
719     llvm::Metadata *AttrMDArgs[] = {
720         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
721         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
722         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
723     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
724   }
725 
726   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
727     llvm::Metadata *AttrMDArgs[] = {
728         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
729         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
731     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
732   }
733 
734   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
735           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
736     llvm::Metadata *AttrMDArgs[] = {
737         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
738     Fn->setMetadata("intel_reqd_sub_group_size",
739                     llvm::MDNode::get(Context, AttrMDArgs));
740   }
741 }
742 
743 /// Determine whether the function F ends with a return stmt.
744 static bool endsWithReturn(const Decl* F) {
745   const Stmt *Body = nullptr;
746   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
747     Body = FD->getBody();
748   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
749     Body = OMD->getBody();
750 
751   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
752     auto LastStmt = CS->body_rbegin();
753     if (LastStmt != CS->body_rend())
754       return isa<ReturnStmt>(*LastStmt);
755   }
756   return false;
757 }
758 
759 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
760   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
761   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
762 }
763 
764 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
765   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
766   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
767       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
768       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
769     return false;
770 
771   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
772     return false;
773 
774   if (MD->getNumParams() == 2) {
775     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
776     if (!PT || !PT->isVoidPointerType() ||
777         !PT->getPointeeType().isConstQualified())
778       return false;
779   }
780 
781   return true;
782 }
783 
784 void CodeGenFunction::StartFunction(GlobalDecl GD,
785                                     QualType RetTy,
786                                     llvm::Function *Fn,
787                                     const CGFunctionInfo &FnInfo,
788                                     const FunctionArgList &Args,
789                                     SourceLocation Loc,
790                                     SourceLocation StartLoc) {
791   assert(!CurFn &&
792          "Do not use a CodeGenFunction object for more than one function");
793 
794   const Decl *D = GD.getDecl();
795 
796   DidCallStackSave = false;
797   CurCodeDecl = D;
798   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
799     if (FD->usesSEHTry())
800       CurSEHParent = FD;
801   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
802   FnRetTy = RetTy;
803   CurFn = Fn;
804   CurFnInfo = &FnInfo;
805   assert(CurFn->isDeclaration() && "Function already has body?");
806 
807   // If this function has been blacklisted for any of the enabled sanitizers,
808   // disable the sanitizer for the function.
809   do {
810 #define SANITIZER(NAME, ID)                                                    \
811   if (SanOpts.empty())                                                         \
812     break;                                                                     \
813   if (SanOpts.has(SanitizerKind::ID))                                          \
814     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
815       SanOpts.set(SanitizerKind::ID, false);
816 
817 #include "clang/Basic/Sanitizers.def"
818 #undef SANITIZER
819   } while (0);
820 
821   if (D) {
822     // Apply the no_sanitize* attributes to SanOpts.
823     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
824       SanOpts.Mask &= ~Attr->getMask();
825   }
826 
827   // Apply sanitizer attributes to the function.
828   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
829     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
830   if (SanOpts.has(SanitizerKind::Thread))
831     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
832   if (SanOpts.has(SanitizerKind::Memory))
833     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
834   if (SanOpts.has(SanitizerKind::SafeStack))
835     Fn->addFnAttr(llvm::Attribute::SafeStack);
836 
837   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
838   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
839   if (SanOpts.has(SanitizerKind::Thread)) {
840     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
841       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
842       if (OMD->getMethodFamily() == OMF_dealloc ||
843           OMD->getMethodFamily() == OMF_initialize ||
844           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
845         markAsIgnoreThreadCheckingAtRuntime(Fn);
846       }
847     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
848       IdentifierInfo *II = FD->getIdentifier();
849       if (II && II->isStr("__destroy_helper_block_"))
850         markAsIgnoreThreadCheckingAtRuntime(Fn);
851     }
852   }
853 
854   // Ignore unrelated casts in STL allocate() since the allocator must cast
855   // from void* to T* before object initialization completes. Don't match on the
856   // namespace because not all allocators are in std::
857   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
858     if (matchesStlAllocatorFn(D, getContext()))
859       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
860   }
861 
862   // Apply xray attributes to the function (as a string, for now)
863   if (D && ShouldXRayInstrumentFunction()) {
864     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
865       if (XRayAttr->alwaysXRayInstrument())
866         Fn->addFnAttr("function-instrument", "xray-always");
867       if (XRayAttr->neverXRayInstrument())
868         Fn->addFnAttr("function-instrument", "xray-never");
869       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
870         Fn->addFnAttr("xray-log-args",
871                       llvm::utostr(LogArgs->getArgumentCount()));
872       }
873     } else {
874       if (!CGM.imbueXRayAttrs(Fn, Loc))
875         Fn->addFnAttr(
876             "xray-instruction-threshold",
877             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
878     }
879   }
880 
881   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
882     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
883       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
884 
885   // Add no-jump-tables value.
886   Fn->addFnAttr("no-jump-tables",
887                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
888 
889   // Add profile-sample-accurate value.
890   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
891     Fn->addFnAttr("profile-sample-accurate");
892 
893   if (getLangOpts().OpenCL) {
894     // Add metadata for a kernel function.
895     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
896       EmitOpenCLKernelMetadata(FD, Fn);
897   }
898 
899   // If we are checking function types, emit a function type signature as
900   // prologue data.
901   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
902     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
903       if (llvm::Constant *PrologueSig =
904               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
905         llvm::Constant *FTRTTIConst =
906             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
907         llvm::Constant *FTRTTIConstEncoded =
908             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
909         llvm::Constant *PrologueStructElems[] = {PrologueSig,
910                                                  FTRTTIConstEncoded};
911         llvm::Constant *PrologueStructConst =
912             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
913         Fn->setPrologueData(PrologueStructConst);
914       }
915     }
916   }
917 
918   // If we're checking nullability, we need to know whether we can check the
919   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
920   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
921     auto Nullability = FnRetTy->getNullability(getContext());
922     if (Nullability && *Nullability == NullabilityKind::NonNull) {
923       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
924             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
925         RetValNullabilityPrecondition =
926             llvm::ConstantInt::getTrue(getLLVMContext());
927     }
928   }
929 
930   // If we're in C++ mode and the function name is "main", it is guaranteed
931   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
932   // used within a program").
933   if (getLangOpts().CPlusPlus)
934     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
935       if (FD->isMain())
936         Fn->addFnAttr(llvm::Attribute::NoRecurse);
937 
938   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
939 
940   // Create a marker to make it easy to insert allocas into the entryblock
941   // later.  Don't create this with the builder, because we don't want it
942   // folded.
943   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
944   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
945 
946   ReturnBlock = getJumpDestInCurrentScope("return");
947 
948   Builder.SetInsertPoint(EntryBB);
949 
950   // If we're checking the return value, allocate space for a pointer to a
951   // precise source location of the checked return statement.
952   if (requiresReturnValueCheck()) {
953     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
954     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
955   }
956 
957   // Emit subprogram debug descriptor.
958   if (CGDebugInfo *DI = getDebugInfo()) {
959     // Reconstruct the type from the argument list so that implicit parameters,
960     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
961     // convention.
962     CallingConv CC = CallingConv::CC_C;
963     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
964       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
965         CC = SrcFnTy->getCallConv();
966     SmallVector<QualType, 16> ArgTypes;
967     for (const VarDecl *VD : Args)
968       ArgTypes.push_back(VD->getType());
969     QualType FnType = getContext().getFunctionType(
970         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
971     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
972   }
973 
974   if (ShouldInstrumentFunction())
975     EmitFunctionInstrumentation("__cyg_profile_func_enter");
976 
977   // Since emitting the mcount call here impacts optimizations such as function
978   // inlining, we just add an attribute to insert a mcount call in backend.
979   // The attribute "counting-function" is set to mcount function name which is
980   // architecture dependent.
981   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
982     if (CGM.getCodeGenOpts().CallFEntry)
983       Fn->addFnAttr("fentry-call", "true");
984     else {
985       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
986         Fn->addFnAttr("counting-function", getTarget().getMCountName());
987     }
988   }
989 
990   if (RetTy->isVoidType()) {
991     // Void type; nothing to return.
992     ReturnValue = Address::invalid();
993 
994     // Count the implicit return.
995     if (!endsWithReturn(D))
996       ++NumReturnExprs;
997   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
998              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
999     // Indirect aggregate return; emit returned value directly into sret slot.
1000     // This reduces code size, and affects correctness in C++.
1001     auto AI = CurFn->arg_begin();
1002     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1003       ++AI;
1004     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1005   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1006              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1007     // Load the sret pointer from the argument struct and return into that.
1008     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1009     llvm::Function::arg_iterator EI = CurFn->arg_end();
1010     --EI;
1011     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1012     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1013     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1014   } else {
1015     ReturnValue = CreateIRTemp(RetTy, "retval");
1016 
1017     // Tell the epilog emitter to autorelease the result.  We do this
1018     // now so that various specialized functions can suppress it
1019     // during their IR-generation.
1020     if (getLangOpts().ObjCAutoRefCount &&
1021         !CurFnInfo->isReturnsRetained() &&
1022         RetTy->isObjCRetainableType())
1023       AutoreleaseResult = true;
1024   }
1025 
1026   EmitStartEHSpec(CurCodeDecl);
1027 
1028   PrologueCleanupDepth = EHStack.stable_begin();
1029   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1030 
1031   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1032     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1033     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1034     if (MD->getParent()->isLambda() &&
1035         MD->getOverloadedOperator() == OO_Call) {
1036       // We're in a lambda; figure out the captures.
1037       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1038                                         LambdaThisCaptureField);
1039       if (LambdaThisCaptureField) {
1040         // If the lambda captures the object referred to by '*this' - either by
1041         // value or by reference, make sure CXXThisValue points to the correct
1042         // object.
1043 
1044         // Get the lvalue for the field (which is a copy of the enclosing object
1045         // or contains the address of the enclosing object).
1046         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1047         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1048           // If the enclosing object was captured by value, just use its address.
1049           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1050         } else {
1051           // Load the lvalue pointed to by the field, since '*this' was captured
1052           // by reference.
1053           CXXThisValue =
1054               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1055         }
1056       }
1057       for (auto *FD : MD->getParent()->fields()) {
1058         if (FD->hasCapturedVLAType()) {
1059           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1060                                            SourceLocation()).getScalarVal();
1061           auto VAT = FD->getCapturedVLAType();
1062           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1063         }
1064       }
1065     } else {
1066       // Not in a lambda; just use 'this' from the method.
1067       // FIXME: Should we generate a new load for each use of 'this'?  The
1068       // fast register allocator would be happier...
1069       CXXThisValue = CXXABIThisValue;
1070     }
1071 
1072     // Check the 'this' pointer once per function, if it's available.
1073     if (CXXABIThisValue) {
1074       SanitizerSet SkippedChecks;
1075       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1076       QualType ThisTy = MD->getThisType(getContext());
1077 
1078       // If this is the call operator of a lambda with no capture-default, it
1079       // may have a static invoker function, which may call this operator with
1080       // a null 'this' pointer.
1081       if (isLambdaCallOperator(MD) &&
1082           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1083               LCD_None)
1084         SkippedChecks.set(SanitizerKind::Null, true);
1085 
1086       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1087                                                 : TCK_MemberCall,
1088                     Loc, CXXABIThisValue, ThisTy,
1089                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1090                     SkippedChecks);
1091     }
1092   }
1093 
1094   // If any of the arguments have a variably modified type, make sure to
1095   // emit the type size.
1096   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1097        i != e; ++i) {
1098     const VarDecl *VD = *i;
1099 
1100     // Dig out the type as written from ParmVarDecls; it's unclear whether
1101     // the standard (C99 6.9.1p10) requires this, but we're following the
1102     // precedent set by gcc.
1103     QualType Ty;
1104     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1105       Ty = PVD->getOriginalType();
1106     else
1107       Ty = VD->getType();
1108 
1109     if (Ty->isVariablyModifiedType())
1110       EmitVariablyModifiedType(Ty);
1111   }
1112   // Emit a location at the end of the prologue.
1113   if (CGDebugInfo *DI = getDebugInfo())
1114     DI->EmitLocation(Builder, StartLoc);
1115 }
1116 
1117 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1118                                        const Stmt *Body) {
1119   incrementProfileCounter(Body);
1120   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1121     EmitCompoundStmtWithoutScope(*S);
1122   else
1123     EmitStmt(Body);
1124 }
1125 
1126 /// When instrumenting to collect profile data, the counts for some blocks
1127 /// such as switch cases need to not include the fall-through counts, so
1128 /// emit a branch around the instrumentation code. When not instrumenting,
1129 /// this just calls EmitBlock().
1130 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1131                                                const Stmt *S) {
1132   llvm::BasicBlock *SkipCountBB = nullptr;
1133   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1134     // When instrumenting for profiling, the fallthrough to certain
1135     // statements needs to skip over the instrumentation code so that we
1136     // get an accurate count.
1137     SkipCountBB = createBasicBlock("skipcount");
1138     EmitBranch(SkipCountBB);
1139   }
1140   EmitBlock(BB);
1141   uint64_t CurrentCount = getCurrentProfileCount();
1142   incrementProfileCounter(S);
1143   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1144   if (SkipCountBB)
1145     EmitBlock(SkipCountBB);
1146 }
1147 
1148 /// Tries to mark the given function nounwind based on the
1149 /// non-existence of any throwing calls within it.  We believe this is
1150 /// lightweight enough to do at -O0.
1151 static void TryMarkNoThrow(llvm::Function *F) {
1152   // LLVM treats 'nounwind' on a function as part of the type, so we
1153   // can't do this on functions that can be overwritten.
1154   if (F->isInterposable()) return;
1155 
1156   for (llvm::BasicBlock &BB : *F)
1157     for (llvm::Instruction &I : BB)
1158       if (I.mayThrow())
1159         return;
1160 
1161   F->setDoesNotThrow();
1162 }
1163 
1164 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1165                                                FunctionArgList &Args) {
1166   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1167   QualType ResTy = FD->getReturnType();
1168 
1169   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1170   if (MD && MD->isInstance()) {
1171     if (CGM.getCXXABI().HasThisReturn(GD))
1172       ResTy = MD->getThisType(getContext());
1173     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1174       ResTy = CGM.getContext().VoidPtrTy;
1175     CGM.getCXXABI().buildThisParam(*this, Args);
1176   }
1177 
1178   // The base version of an inheriting constructor whose constructed base is a
1179   // virtual base is not passed any arguments (because it doesn't actually call
1180   // the inherited constructor).
1181   bool PassedParams = true;
1182   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1183     if (auto Inherited = CD->getInheritedConstructor())
1184       PassedParams =
1185           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1186 
1187   if (PassedParams) {
1188     for (auto *Param : FD->parameters()) {
1189       Args.push_back(Param);
1190       if (!Param->hasAttr<PassObjectSizeAttr>())
1191         continue;
1192 
1193       auto *Implicit = ImplicitParamDecl::Create(
1194           getContext(), Param->getDeclContext(), Param->getLocation(),
1195           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1196       SizeArguments[Param] = Implicit;
1197       Args.push_back(Implicit);
1198     }
1199   }
1200 
1201   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1202     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1203 
1204   return ResTy;
1205 }
1206 
1207 static bool
1208 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1209                                              const ASTContext &Context) {
1210   QualType T = FD->getReturnType();
1211   // Avoid the optimization for functions that return a record type with a
1212   // trivial destructor or another trivially copyable type.
1213   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1214     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1215       return !ClassDecl->hasTrivialDestructor();
1216   }
1217   return !T.isTriviallyCopyableType(Context);
1218 }
1219 
1220 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1221                                    const CGFunctionInfo &FnInfo) {
1222   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1223   CurGD = GD;
1224 
1225   FunctionArgList Args;
1226   QualType ResTy = BuildFunctionArgList(GD, Args);
1227 
1228   // Check if we should generate debug info for this function.
1229   if (FD->hasAttr<NoDebugAttr>())
1230     DebugInfo = nullptr; // disable debug info indefinitely for this function
1231 
1232   // The function might not have a body if we're generating thunks for a
1233   // function declaration.
1234   SourceRange BodyRange;
1235   if (Stmt *Body = FD->getBody())
1236     BodyRange = Body->getSourceRange();
1237   else
1238     BodyRange = FD->getLocation();
1239   CurEHLocation = BodyRange.getEnd();
1240 
1241   // Use the location of the start of the function to determine where
1242   // the function definition is located. By default use the location
1243   // of the declaration as the location for the subprogram. A function
1244   // may lack a declaration in the source code if it is created by code
1245   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1246   SourceLocation Loc = FD->getLocation();
1247 
1248   // If this is a function specialization then use the pattern body
1249   // as the location for the function.
1250   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1251     if (SpecDecl->hasBody(SpecDecl))
1252       Loc = SpecDecl->getLocation();
1253 
1254   Stmt *Body = FD->getBody();
1255 
1256   // Initialize helper which will detect jumps which can cause invalid lifetime
1257   // markers.
1258   if (Body && ShouldEmitLifetimeMarkers)
1259     Bypasses.Init(Body);
1260 
1261   // Emit the standard function prologue.
1262   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1263 
1264   // Generate the body of the function.
1265   PGO.assignRegionCounters(GD, CurFn);
1266   if (isa<CXXDestructorDecl>(FD))
1267     EmitDestructorBody(Args);
1268   else if (isa<CXXConstructorDecl>(FD))
1269     EmitConstructorBody(Args);
1270   else if (getLangOpts().CUDA &&
1271            !getLangOpts().CUDAIsDevice &&
1272            FD->hasAttr<CUDAGlobalAttr>())
1273     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1274   else if (isa<CXXMethodDecl>(FD) &&
1275            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1276     // The lambda static invoker function is special, because it forwards or
1277     // clones the body of the function call operator (but is actually static).
1278     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1279   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1280              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1281               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1282     // Implicit copy-assignment gets the same special treatment as implicit
1283     // copy-constructors.
1284     emitImplicitAssignmentOperatorBody(Args);
1285   } else if (Body) {
1286     EmitFunctionBody(Args, Body);
1287   } else
1288     llvm_unreachable("no definition for emitted function");
1289 
1290   // C++11 [stmt.return]p2:
1291   //   Flowing off the end of a function [...] results in undefined behavior in
1292   //   a value-returning function.
1293   // C11 6.9.1p12:
1294   //   If the '}' that terminates a function is reached, and the value of the
1295   //   function call is used by the caller, the behavior is undefined.
1296   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1297       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1298     bool ShouldEmitUnreachable =
1299         CGM.getCodeGenOpts().StrictReturn ||
1300         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1301     if (SanOpts.has(SanitizerKind::Return)) {
1302       SanitizerScope SanScope(this);
1303       llvm::Value *IsFalse = Builder.getFalse();
1304       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1305                 SanitizerHandler::MissingReturn,
1306                 EmitCheckSourceLocation(FD->getLocation()), None);
1307     } else if (ShouldEmitUnreachable) {
1308       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1309         EmitTrapCall(llvm::Intrinsic::trap);
1310     }
1311     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1312       Builder.CreateUnreachable();
1313       Builder.ClearInsertionPoint();
1314     }
1315   }
1316 
1317   // Emit the standard function epilogue.
1318   FinishFunction(BodyRange.getEnd());
1319 
1320   // If we haven't marked the function nothrow through other means, do
1321   // a quick pass now to see if we can.
1322   if (!CurFn->doesNotThrow())
1323     TryMarkNoThrow(CurFn);
1324 }
1325 
1326 /// ContainsLabel - Return true if the statement contains a label in it.  If
1327 /// this statement is not executed normally, it not containing a label means
1328 /// that we can just remove the code.
1329 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1330   // Null statement, not a label!
1331   if (!S) return false;
1332 
1333   // If this is a label, we have to emit the code, consider something like:
1334   // if (0) {  ...  foo:  bar(); }  goto foo;
1335   //
1336   // TODO: If anyone cared, we could track __label__'s, since we know that you
1337   // can't jump to one from outside their declared region.
1338   if (isa<LabelStmt>(S))
1339     return true;
1340 
1341   // If this is a case/default statement, and we haven't seen a switch, we have
1342   // to emit the code.
1343   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1344     return true;
1345 
1346   // If this is a switch statement, we want to ignore cases below it.
1347   if (isa<SwitchStmt>(S))
1348     IgnoreCaseStmts = true;
1349 
1350   // Scan subexpressions for verboten labels.
1351   for (const Stmt *SubStmt : S->children())
1352     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1353       return true;
1354 
1355   return false;
1356 }
1357 
1358 /// containsBreak - Return true if the statement contains a break out of it.
1359 /// If the statement (recursively) contains a switch or loop with a break
1360 /// inside of it, this is fine.
1361 bool CodeGenFunction::containsBreak(const Stmt *S) {
1362   // Null statement, not a label!
1363   if (!S) return false;
1364 
1365   // If this is a switch or loop that defines its own break scope, then we can
1366   // include it and anything inside of it.
1367   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1368       isa<ForStmt>(S))
1369     return false;
1370 
1371   if (isa<BreakStmt>(S))
1372     return true;
1373 
1374   // Scan subexpressions for verboten breaks.
1375   for (const Stmt *SubStmt : S->children())
1376     if (containsBreak(SubStmt))
1377       return true;
1378 
1379   return false;
1380 }
1381 
1382 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1383   if (!S) return false;
1384 
1385   // Some statement kinds add a scope and thus never add a decl to the current
1386   // scope. Note, this list is longer than the list of statements that might
1387   // have an unscoped decl nested within them, but this way is conservatively
1388   // correct even if more statement kinds are added.
1389   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1390       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1391       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1392       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1393     return false;
1394 
1395   if (isa<DeclStmt>(S))
1396     return true;
1397 
1398   for (const Stmt *SubStmt : S->children())
1399     if (mightAddDeclToScope(SubStmt))
1400       return true;
1401 
1402   return false;
1403 }
1404 
1405 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1406 /// to a constant, or if it does but contains a label, return false.  If it
1407 /// constant folds return true and set the boolean result in Result.
1408 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1409                                                    bool &ResultBool,
1410                                                    bool AllowLabels) {
1411   llvm::APSInt ResultInt;
1412   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1413     return false;
1414 
1415   ResultBool = ResultInt.getBoolValue();
1416   return true;
1417 }
1418 
1419 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1420 /// to a constant, or if it does but contains a label, return false.  If it
1421 /// constant folds return true and set the folded value.
1422 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1423                                                    llvm::APSInt &ResultInt,
1424                                                    bool AllowLabels) {
1425   // FIXME: Rename and handle conversion of other evaluatable things
1426   // to bool.
1427   llvm::APSInt Int;
1428   if (!Cond->EvaluateAsInt(Int, getContext()))
1429     return false;  // Not foldable, not integer or not fully evaluatable.
1430 
1431   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1432     return false;  // Contains a label.
1433 
1434   ResultInt = Int;
1435   return true;
1436 }
1437 
1438 
1439 
1440 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1441 /// statement) to the specified blocks.  Based on the condition, this might try
1442 /// to simplify the codegen of the conditional based on the branch.
1443 ///
1444 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1445                                            llvm::BasicBlock *TrueBlock,
1446                                            llvm::BasicBlock *FalseBlock,
1447                                            uint64_t TrueCount) {
1448   Cond = Cond->IgnoreParens();
1449 
1450   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1451 
1452     // Handle X && Y in a condition.
1453     if (CondBOp->getOpcode() == BO_LAnd) {
1454       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1455       // folded if the case was simple enough.
1456       bool ConstantBool = false;
1457       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1458           ConstantBool) {
1459         // br(1 && X) -> br(X).
1460         incrementProfileCounter(CondBOp);
1461         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1462                                     TrueCount);
1463       }
1464 
1465       // If we have "X && 1", simplify the code to use an uncond branch.
1466       // "X && 0" would have been constant folded to 0.
1467       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1468           ConstantBool) {
1469         // br(X && 1) -> br(X).
1470         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1471                                     TrueCount);
1472       }
1473 
1474       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1475       // want to jump to the FalseBlock.
1476       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1477       // The counter tells us how often we evaluate RHS, and all of TrueCount
1478       // can be propagated to that branch.
1479       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1480 
1481       ConditionalEvaluation eval(*this);
1482       {
1483         ApplyDebugLocation DL(*this, Cond);
1484         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1485         EmitBlock(LHSTrue);
1486       }
1487 
1488       incrementProfileCounter(CondBOp);
1489       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1490 
1491       // Any temporaries created here are conditional.
1492       eval.begin(*this);
1493       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1494       eval.end(*this);
1495 
1496       return;
1497     }
1498 
1499     if (CondBOp->getOpcode() == BO_LOr) {
1500       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1501       // folded if the case was simple enough.
1502       bool ConstantBool = false;
1503       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1504           !ConstantBool) {
1505         // br(0 || X) -> br(X).
1506         incrementProfileCounter(CondBOp);
1507         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1508                                     TrueCount);
1509       }
1510 
1511       // If we have "X || 0", simplify the code to use an uncond branch.
1512       // "X || 1" would have been constant folded to 1.
1513       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1514           !ConstantBool) {
1515         // br(X || 0) -> br(X).
1516         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1517                                     TrueCount);
1518       }
1519 
1520       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1521       // want to jump to the TrueBlock.
1522       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1523       // We have the count for entry to the RHS and for the whole expression
1524       // being true, so we can divy up True count between the short circuit and
1525       // the RHS.
1526       uint64_t LHSCount =
1527           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1528       uint64_t RHSCount = TrueCount - LHSCount;
1529 
1530       ConditionalEvaluation eval(*this);
1531       {
1532         ApplyDebugLocation DL(*this, Cond);
1533         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1534         EmitBlock(LHSFalse);
1535       }
1536 
1537       incrementProfileCounter(CondBOp);
1538       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1539 
1540       // Any temporaries created here are conditional.
1541       eval.begin(*this);
1542       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1543 
1544       eval.end(*this);
1545 
1546       return;
1547     }
1548   }
1549 
1550   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1551     // br(!x, t, f) -> br(x, f, t)
1552     if (CondUOp->getOpcode() == UO_LNot) {
1553       // Negate the count.
1554       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1555       // Negate the condition and swap the destination blocks.
1556       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1557                                   FalseCount);
1558     }
1559   }
1560 
1561   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1562     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1563     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1564     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1565 
1566     ConditionalEvaluation cond(*this);
1567     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1568                          getProfileCount(CondOp));
1569 
1570     // When computing PGO branch weights, we only know the overall count for
1571     // the true block. This code is essentially doing tail duplication of the
1572     // naive code-gen, introducing new edges for which counts are not
1573     // available. Divide the counts proportionally between the LHS and RHS of
1574     // the conditional operator.
1575     uint64_t LHSScaledTrueCount = 0;
1576     if (TrueCount) {
1577       double LHSRatio =
1578           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1579       LHSScaledTrueCount = TrueCount * LHSRatio;
1580     }
1581 
1582     cond.begin(*this);
1583     EmitBlock(LHSBlock);
1584     incrementProfileCounter(CondOp);
1585     {
1586       ApplyDebugLocation DL(*this, Cond);
1587       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1588                            LHSScaledTrueCount);
1589     }
1590     cond.end(*this);
1591 
1592     cond.begin(*this);
1593     EmitBlock(RHSBlock);
1594     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1595                          TrueCount - LHSScaledTrueCount);
1596     cond.end(*this);
1597 
1598     return;
1599   }
1600 
1601   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1602     // Conditional operator handling can give us a throw expression as a
1603     // condition for a case like:
1604     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1605     // Fold this to:
1606     //   br(c, throw x, br(y, t, f))
1607     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1608     return;
1609   }
1610 
1611   // If the branch has a condition wrapped by __builtin_unpredictable,
1612   // create metadata that specifies that the branch is unpredictable.
1613   // Don't bother if not optimizing because that metadata would not be used.
1614   llvm::MDNode *Unpredictable = nullptr;
1615   auto *Call = dyn_cast<CallExpr>(Cond);
1616   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1617     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1618     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1619       llvm::MDBuilder MDHelper(getLLVMContext());
1620       Unpredictable = MDHelper.createUnpredictable();
1621     }
1622   }
1623 
1624   // Create branch weights based on the number of times we get here and the
1625   // number of times the condition should be true.
1626   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1627   llvm::MDNode *Weights =
1628       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1629 
1630   // Emit the code with the fully general case.
1631   llvm::Value *CondV;
1632   {
1633     ApplyDebugLocation DL(*this, Cond);
1634     CondV = EvaluateExprAsBool(Cond);
1635   }
1636   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1637 }
1638 
1639 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1640 /// specified stmt yet.
1641 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1642   CGM.ErrorUnsupported(S, Type);
1643 }
1644 
1645 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1646 /// variable-length array whose elements have a non-zero bit-pattern.
1647 ///
1648 /// \param baseType the inner-most element type of the array
1649 /// \param src - a char* pointing to the bit-pattern for a single
1650 /// base element of the array
1651 /// \param sizeInChars - the total size of the VLA, in chars
1652 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1653                                Address dest, Address src,
1654                                llvm::Value *sizeInChars) {
1655   CGBuilderTy &Builder = CGF.Builder;
1656 
1657   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1658   llvm::Value *baseSizeInChars
1659     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1660 
1661   Address begin =
1662     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1663   llvm::Value *end =
1664     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1665 
1666   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1667   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1668   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1669 
1670   // Make a loop over the VLA.  C99 guarantees that the VLA element
1671   // count must be nonzero.
1672   CGF.EmitBlock(loopBB);
1673 
1674   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1675   cur->addIncoming(begin.getPointer(), originBB);
1676 
1677   CharUnits curAlign =
1678     dest.getAlignment().alignmentOfArrayElement(baseSize);
1679 
1680   // memcpy the individual element bit-pattern.
1681   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1682                        /*volatile*/ false);
1683 
1684   // Go to the next element.
1685   llvm::Value *next =
1686     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1687 
1688   // Leave if that's the end of the VLA.
1689   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1690   Builder.CreateCondBr(done, contBB, loopBB);
1691   cur->addIncoming(next, loopBB);
1692 
1693   CGF.EmitBlock(contBB);
1694 }
1695 
1696 void
1697 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1698   // Ignore empty classes in C++.
1699   if (getLangOpts().CPlusPlus) {
1700     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1701       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1702         return;
1703     }
1704   }
1705 
1706   // Cast the dest ptr to the appropriate i8 pointer type.
1707   if (DestPtr.getElementType() != Int8Ty)
1708     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1709 
1710   // Get size and alignment info for this aggregate.
1711   CharUnits size = getContext().getTypeSizeInChars(Ty);
1712 
1713   llvm::Value *SizeVal;
1714   const VariableArrayType *vla;
1715 
1716   // Don't bother emitting a zero-byte memset.
1717   if (size.isZero()) {
1718     // But note that getTypeInfo returns 0 for a VLA.
1719     if (const VariableArrayType *vlaType =
1720           dyn_cast_or_null<VariableArrayType>(
1721                                           getContext().getAsArrayType(Ty))) {
1722       QualType eltType;
1723       llvm::Value *numElts;
1724       std::tie(numElts, eltType) = getVLASize(vlaType);
1725 
1726       SizeVal = numElts;
1727       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1728       if (!eltSize.isOne())
1729         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1730       vla = vlaType;
1731     } else {
1732       return;
1733     }
1734   } else {
1735     SizeVal = CGM.getSize(size);
1736     vla = nullptr;
1737   }
1738 
1739   // If the type contains a pointer to data member we can't memset it to zero.
1740   // Instead, create a null constant and copy it to the destination.
1741   // TODO: there are other patterns besides zero that we can usefully memset,
1742   // like -1, which happens to be the pattern used by member-pointers.
1743   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1744     // For a VLA, emit a single element, then splat that over the VLA.
1745     if (vla) Ty = getContext().getBaseElementType(vla);
1746 
1747     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1748 
1749     llvm::GlobalVariable *NullVariable =
1750       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1751                                /*isConstant=*/true,
1752                                llvm::GlobalVariable::PrivateLinkage,
1753                                NullConstant, Twine());
1754     CharUnits NullAlign = DestPtr.getAlignment();
1755     NullVariable->setAlignment(NullAlign.getQuantity());
1756     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1757                    NullAlign);
1758 
1759     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1760 
1761     // Get and call the appropriate llvm.memcpy overload.
1762     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1763     return;
1764   }
1765 
1766   // Otherwise, just memset the whole thing to zero.  This is legal
1767   // because in LLVM, all default initializers (other than the ones we just
1768   // handled above) are guaranteed to have a bit pattern of all zeros.
1769   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1770 }
1771 
1772 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1773   // Make sure that there is a block for the indirect goto.
1774   if (!IndirectBranch)
1775     GetIndirectGotoBlock();
1776 
1777   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1778 
1779   // Make sure the indirect branch includes all of the address-taken blocks.
1780   IndirectBranch->addDestination(BB);
1781   return llvm::BlockAddress::get(CurFn, BB);
1782 }
1783 
1784 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1785   // If we already made the indirect branch for indirect goto, return its block.
1786   if (IndirectBranch) return IndirectBranch->getParent();
1787 
1788   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1789 
1790   // Create the PHI node that indirect gotos will add entries to.
1791   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1792                                               "indirect.goto.dest");
1793 
1794   // Create the indirect branch instruction.
1795   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1796   return IndirectBranch->getParent();
1797 }
1798 
1799 /// Computes the length of an array in elements, as well as the base
1800 /// element type and a properly-typed first element pointer.
1801 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1802                                               QualType &baseType,
1803                                               Address &addr) {
1804   const ArrayType *arrayType = origArrayType;
1805 
1806   // If it's a VLA, we have to load the stored size.  Note that
1807   // this is the size of the VLA in bytes, not its size in elements.
1808   llvm::Value *numVLAElements = nullptr;
1809   if (isa<VariableArrayType>(arrayType)) {
1810     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1811 
1812     // Walk into all VLAs.  This doesn't require changes to addr,
1813     // which has type T* where T is the first non-VLA element type.
1814     do {
1815       QualType elementType = arrayType->getElementType();
1816       arrayType = getContext().getAsArrayType(elementType);
1817 
1818       // If we only have VLA components, 'addr' requires no adjustment.
1819       if (!arrayType) {
1820         baseType = elementType;
1821         return numVLAElements;
1822       }
1823     } while (isa<VariableArrayType>(arrayType));
1824 
1825     // We get out here only if we find a constant array type
1826     // inside the VLA.
1827   }
1828 
1829   // We have some number of constant-length arrays, so addr should
1830   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1831   // down to the first element of addr.
1832   SmallVector<llvm::Value*, 8> gepIndices;
1833 
1834   // GEP down to the array type.
1835   llvm::ConstantInt *zero = Builder.getInt32(0);
1836   gepIndices.push_back(zero);
1837 
1838   uint64_t countFromCLAs = 1;
1839   QualType eltType;
1840 
1841   llvm::ArrayType *llvmArrayType =
1842     dyn_cast<llvm::ArrayType>(addr.getElementType());
1843   while (llvmArrayType) {
1844     assert(isa<ConstantArrayType>(arrayType));
1845     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1846              == llvmArrayType->getNumElements());
1847 
1848     gepIndices.push_back(zero);
1849     countFromCLAs *= llvmArrayType->getNumElements();
1850     eltType = arrayType->getElementType();
1851 
1852     llvmArrayType =
1853       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1854     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1855     assert((!llvmArrayType || arrayType) &&
1856            "LLVM and Clang types are out-of-synch");
1857   }
1858 
1859   if (arrayType) {
1860     // From this point onwards, the Clang array type has been emitted
1861     // as some other type (probably a packed struct). Compute the array
1862     // size, and just emit the 'begin' expression as a bitcast.
1863     while (arrayType) {
1864       countFromCLAs *=
1865           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1866       eltType = arrayType->getElementType();
1867       arrayType = getContext().getAsArrayType(eltType);
1868     }
1869 
1870     llvm::Type *baseType = ConvertType(eltType);
1871     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1872   } else {
1873     // Create the actual GEP.
1874     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1875                                              gepIndices, "array.begin"),
1876                    addr.getAlignment());
1877   }
1878 
1879   baseType = eltType;
1880 
1881   llvm::Value *numElements
1882     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1883 
1884   // If we had any VLA dimensions, factor them in.
1885   if (numVLAElements)
1886     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1887 
1888   return numElements;
1889 }
1890 
1891 std::pair<llvm::Value*, QualType>
1892 CodeGenFunction::getVLASize(QualType type) {
1893   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1894   assert(vla && "type was not a variable array type!");
1895   return getVLASize(vla);
1896 }
1897 
1898 std::pair<llvm::Value*, QualType>
1899 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1900   // The number of elements so far; always size_t.
1901   llvm::Value *numElements = nullptr;
1902 
1903   QualType elementType;
1904   do {
1905     elementType = type->getElementType();
1906     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1907     assert(vlaSize && "no size for VLA!");
1908     assert(vlaSize->getType() == SizeTy);
1909 
1910     if (!numElements) {
1911       numElements = vlaSize;
1912     } else {
1913       // It's undefined behavior if this wraps around, so mark it that way.
1914       // FIXME: Teach -fsanitize=undefined to trap this.
1915       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1916     }
1917   } while ((type = getContext().getAsVariableArrayType(elementType)));
1918 
1919   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1920 }
1921 
1922 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1923   assert(type->isVariablyModifiedType() &&
1924          "Must pass variably modified type to EmitVLASizes!");
1925 
1926   EnsureInsertPoint();
1927 
1928   // We're going to walk down into the type and look for VLA
1929   // expressions.
1930   do {
1931     assert(type->isVariablyModifiedType());
1932 
1933     const Type *ty = type.getTypePtr();
1934     switch (ty->getTypeClass()) {
1935 
1936 #define TYPE(Class, Base)
1937 #define ABSTRACT_TYPE(Class, Base)
1938 #define NON_CANONICAL_TYPE(Class, Base)
1939 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1940 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1941 #include "clang/AST/TypeNodes.def"
1942       llvm_unreachable("unexpected dependent type!");
1943 
1944     // These types are never variably-modified.
1945     case Type::Builtin:
1946     case Type::Complex:
1947     case Type::Vector:
1948     case Type::ExtVector:
1949     case Type::Record:
1950     case Type::Enum:
1951     case Type::Elaborated:
1952     case Type::TemplateSpecialization:
1953     case Type::ObjCTypeParam:
1954     case Type::ObjCObject:
1955     case Type::ObjCInterface:
1956     case Type::ObjCObjectPointer:
1957       llvm_unreachable("type class is never variably-modified!");
1958 
1959     case Type::Adjusted:
1960       type = cast<AdjustedType>(ty)->getAdjustedType();
1961       break;
1962 
1963     case Type::Decayed:
1964       type = cast<DecayedType>(ty)->getPointeeType();
1965       break;
1966 
1967     case Type::Pointer:
1968       type = cast<PointerType>(ty)->getPointeeType();
1969       break;
1970 
1971     case Type::BlockPointer:
1972       type = cast<BlockPointerType>(ty)->getPointeeType();
1973       break;
1974 
1975     case Type::LValueReference:
1976     case Type::RValueReference:
1977       type = cast<ReferenceType>(ty)->getPointeeType();
1978       break;
1979 
1980     case Type::MemberPointer:
1981       type = cast<MemberPointerType>(ty)->getPointeeType();
1982       break;
1983 
1984     case Type::ConstantArray:
1985     case Type::IncompleteArray:
1986       // Losing element qualification here is fine.
1987       type = cast<ArrayType>(ty)->getElementType();
1988       break;
1989 
1990     case Type::VariableArray: {
1991       // Losing element qualification here is fine.
1992       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1993 
1994       // Unknown size indication requires no size computation.
1995       // Otherwise, evaluate and record it.
1996       if (const Expr *size = vat->getSizeExpr()) {
1997         // It's possible that we might have emitted this already,
1998         // e.g. with a typedef and a pointer to it.
1999         llvm::Value *&entry = VLASizeMap[size];
2000         if (!entry) {
2001           llvm::Value *Size = EmitScalarExpr(size);
2002 
2003           // C11 6.7.6.2p5:
2004           //   If the size is an expression that is not an integer constant
2005           //   expression [...] each time it is evaluated it shall have a value
2006           //   greater than zero.
2007           if (SanOpts.has(SanitizerKind::VLABound) &&
2008               size->getType()->isSignedIntegerType()) {
2009             SanitizerScope SanScope(this);
2010             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2011             llvm::Constant *StaticArgs[] = {
2012               EmitCheckSourceLocation(size->getLocStart()),
2013               EmitCheckTypeDescriptor(size->getType())
2014             };
2015             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2016                                      SanitizerKind::VLABound),
2017                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2018           }
2019 
2020           // Always zexting here would be wrong if it weren't
2021           // undefined behavior to have a negative bound.
2022           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2023         }
2024       }
2025       type = vat->getElementType();
2026       break;
2027     }
2028 
2029     case Type::FunctionProto:
2030     case Type::FunctionNoProto:
2031       type = cast<FunctionType>(ty)->getReturnType();
2032       break;
2033 
2034     case Type::Paren:
2035     case Type::TypeOf:
2036     case Type::UnaryTransform:
2037     case Type::Attributed:
2038     case Type::SubstTemplateTypeParm:
2039     case Type::PackExpansion:
2040       // Keep walking after single level desugaring.
2041       type = type.getSingleStepDesugaredType(getContext());
2042       break;
2043 
2044     case Type::Typedef:
2045     case Type::Decltype:
2046     case Type::Auto:
2047     case Type::DeducedTemplateSpecialization:
2048       // Stop walking: nothing to do.
2049       return;
2050 
2051     case Type::TypeOfExpr:
2052       // Stop walking: emit typeof expression.
2053       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2054       return;
2055 
2056     case Type::Atomic:
2057       type = cast<AtomicType>(ty)->getValueType();
2058       break;
2059 
2060     case Type::Pipe:
2061       type = cast<PipeType>(ty)->getElementType();
2062       break;
2063     }
2064   } while (type->isVariablyModifiedType());
2065 }
2066 
2067 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2068   if (getContext().getBuiltinVaListType()->isArrayType())
2069     return EmitPointerWithAlignment(E);
2070   return EmitLValue(E).getAddress();
2071 }
2072 
2073 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2074   return EmitLValue(E).getAddress();
2075 }
2076 
2077 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2078                                               const APValue &Init) {
2079   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2080   if (CGDebugInfo *Dbg = getDebugInfo())
2081     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2082       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2083 }
2084 
2085 CodeGenFunction::PeepholeProtection
2086 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2087   // At the moment, the only aggressive peephole we do in IR gen
2088   // is trunc(zext) folding, but if we add more, we can easily
2089   // extend this protection.
2090 
2091   if (!rvalue.isScalar()) return PeepholeProtection();
2092   llvm::Value *value = rvalue.getScalarVal();
2093   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2094 
2095   // Just make an extra bitcast.
2096   assert(HaveInsertPoint());
2097   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2098                                                   Builder.GetInsertBlock());
2099 
2100   PeepholeProtection protection;
2101   protection.Inst = inst;
2102   return protection;
2103 }
2104 
2105 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2106   if (!protection.Inst) return;
2107 
2108   // In theory, we could try to duplicate the peepholes now, but whatever.
2109   protection.Inst->eraseFromParent();
2110 }
2111 
2112 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2113                                                  llvm::Value *AnnotatedVal,
2114                                                  StringRef AnnotationStr,
2115                                                  SourceLocation Location) {
2116   llvm::Value *Args[4] = {
2117     AnnotatedVal,
2118     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2119     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2120     CGM.EmitAnnotationLineNo(Location)
2121   };
2122   return Builder.CreateCall(AnnotationFn, Args);
2123 }
2124 
2125 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2126   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2127   // FIXME We create a new bitcast for every annotation because that's what
2128   // llvm-gcc was doing.
2129   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2130     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2131                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2132                        I->getAnnotation(), D->getLocation());
2133 }
2134 
2135 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2136                                               Address Addr) {
2137   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2138   llvm::Value *V = Addr.getPointer();
2139   llvm::Type *VTy = V->getType();
2140   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2141                                     CGM.Int8PtrTy);
2142 
2143   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2144     // FIXME Always emit the cast inst so we can differentiate between
2145     // annotation on the first field of a struct and annotation on the struct
2146     // itself.
2147     if (VTy != CGM.Int8PtrTy)
2148       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2149     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2150     V = Builder.CreateBitCast(V, VTy);
2151   }
2152 
2153   return Address(V, Addr.getAlignment());
2154 }
2155 
2156 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2157 
2158 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2159     : CGF(CGF) {
2160   assert(!CGF->IsSanitizerScope);
2161   CGF->IsSanitizerScope = true;
2162 }
2163 
2164 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2165   CGF->IsSanitizerScope = false;
2166 }
2167 
2168 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2169                                    const llvm::Twine &Name,
2170                                    llvm::BasicBlock *BB,
2171                                    llvm::BasicBlock::iterator InsertPt) const {
2172   LoopStack.InsertHelper(I);
2173   if (IsSanitizerScope)
2174     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2175 }
2176 
2177 void CGBuilderInserter::InsertHelper(
2178     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2179     llvm::BasicBlock::iterator InsertPt) const {
2180   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2181   if (CGF)
2182     CGF->InsertHelper(I, Name, BB, InsertPt);
2183 }
2184 
2185 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2186                                 CodeGenModule &CGM, const FunctionDecl *FD,
2187                                 std::string &FirstMissing) {
2188   // If there aren't any required features listed then go ahead and return.
2189   if (ReqFeatures.empty())
2190     return false;
2191 
2192   // Now build up the set of caller features and verify that all the required
2193   // features are there.
2194   llvm::StringMap<bool> CallerFeatureMap;
2195   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2196 
2197   // If we have at least one of the features in the feature list return
2198   // true, otherwise return false.
2199   return std::all_of(
2200       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2201         SmallVector<StringRef, 1> OrFeatures;
2202         Feature.split(OrFeatures, "|");
2203         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2204                            [&](StringRef Feature) {
2205                              if (!CallerFeatureMap.lookup(Feature)) {
2206                                FirstMissing = Feature.str();
2207                                return false;
2208                              }
2209                              return true;
2210                            });
2211       });
2212 }
2213 
2214 // Emits an error if we don't have a valid set of target features for the
2215 // called function.
2216 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2217                                           const FunctionDecl *TargetDecl) {
2218   // Early exit if this is an indirect call.
2219   if (!TargetDecl)
2220     return;
2221 
2222   // Get the current enclosing function if it exists. If it doesn't
2223   // we can't check the target features anyhow.
2224   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2225   if (!FD)
2226     return;
2227 
2228   // Grab the required features for the call. For a builtin this is listed in
2229   // the td file with the default cpu, for an always_inline function this is any
2230   // listed cpu and any listed features.
2231   unsigned BuiltinID = TargetDecl->getBuiltinID();
2232   std::string MissingFeature;
2233   if (BuiltinID) {
2234     SmallVector<StringRef, 1> ReqFeatures;
2235     const char *FeatureList =
2236         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2237     // Return if the builtin doesn't have any required features.
2238     if (!FeatureList || StringRef(FeatureList) == "")
2239       return;
2240     StringRef(FeatureList).split(ReqFeatures, ",");
2241     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2242       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2243           << TargetDecl->getDeclName()
2244           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2245 
2246   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2247     // Get the required features for the callee.
2248     SmallVector<StringRef, 1> ReqFeatures;
2249     llvm::StringMap<bool> CalleeFeatureMap;
2250     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2251     for (const auto &F : CalleeFeatureMap) {
2252       // Only positive features are "required".
2253       if (F.getValue())
2254         ReqFeatures.push_back(F.getKey());
2255     }
2256     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2257       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2258           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2259   }
2260 }
2261 
2262 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2263   if (!CGM.getCodeGenOpts().SanitizeStats)
2264     return;
2265 
2266   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2267   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2268   CGM.getSanStats().create(IRB, SSK);
2269 }
2270 
2271 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2272   if (CGDebugInfo *DI = getDebugInfo())
2273     return DI->SourceLocToDebugLoc(Location);
2274 
2275   return llvm::DebugLoc();
2276 }
2277