1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGDebugInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/AST/APValue.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "llvm/Support/CFG.h"
22 using namespace clang;
23 using namespace CodeGen;
24 
25 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
26   : CGM(cgm), Target(CGM.getContext().Target), SwitchInsn(NULL),
27     CaseRangeBlock(NULL) {
28     LLVMIntTy = ConvertType(getContext().IntTy);
29     LLVMPointerWidth = Target.getPointerWidth(0);
30 }
31 
32 ASTContext &CodeGenFunction::getContext() const {
33   return CGM.getContext();
34 }
35 
36 
37 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) {
38   llvm::BasicBlock *&BB = LabelMap[S];
39   if (BB) return BB;
40 
41   // Create, but don't insert, the new block.
42   return BB = createBasicBlock(S->getName());
43 }
44 
45 llvm::Constant *
46 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
47   return cast<llvm::Constant>(LocalDeclMap[BVD]);
48 }
49 
50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD)
51 {
52   return LocalDeclMap[VD];
53 }
54 
55 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
56   return CGM.getTypes().ConvertType(T);
57 }
58 
59 bool CodeGenFunction::isObjCPointerType(QualType T) {
60   // All Objective-C types are pointers.
61   return T->isObjCInterfaceType() ||
62     T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType();
63 }
64 
65 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
66   // FIXME: Use positive checks instead of negative ones to be more
67   // robust in the face of extension.
68   return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerLikeType() &&
69     !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() &&
70     !T->isBlockPointerType();
71 }
72 
73 void CodeGenFunction::EmitReturnBlock() {
74   // For cleanliness, we try to avoid emitting the return block for
75   // simple cases.
76   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
77 
78   if (CurBB) {
79     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
80 
81     // We have a valid insert point, reuse it if there are no explicit
82     // jumps to the return block.
83     if (ReturnBlock->use_empty())
84       delete ReturnBlock;
85     else
86       EmitBlock(ReturnBlock);
87     return;
88   }
89 
90   // Otherwise, if the return block is the target of a single direct
91   // branch then we can just put the code in that block instead. This
92   // cleans up functions which started with a unified return block.
93   if (ReturnBlock->hasOneUse()) {
94     llvm::BranchInst *BI =
95       dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin());
96     if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) {
97       // Reset insertion point and delete the branch.
98       Builder.SetInsertPoint(BI->getParent());
99       BI->eraseFromParent();
100       delete ReturnBlock;
101       return;
102     }
103   }
104 
105   // FIXME: We are at an unreachable point, there is no reason to emit
106   // the block unless it has uses. However, we still need a place to
107   // put the debug region.end for now.
108 
109   EmitBlock(ReturnBlock);
110 }
111 
112 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
113   // Finish emission of indirect switches.
114   EmitIndirectSwitches();
115 
116   assert(BreakContinueStack.empty() &&
117          "mismatched push/pop in break/continue stack!");
118 
119   // Emit function epilog (to return).
120   EmitReturnBlock();
121 
122   // Emit debug descriptor for function end.
123   if (CGDebugInfo *DI = CGM.getDebugInfo()) {
124     DI->setLocation(EndLoc);
125     DI->EmitRegionEnd(CurFn, Builder);
126   }
127 
128   EmitFunctionEpilog(*CurFnInfo, ReturnValue);
129 
130   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
131   AllocaInsertPt->eraseFromParent();
132   AllocaInsertPt = 0;
133 }
134 
135 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy,
136                                     llvm::Function *Fn,
137                                     const FunctionArgList &Args,
138                                     SourceLocation StartLoc) {
139   CurFuncDecl = D;
140   FnRetTy = RetTy;
141   CurFn = Fn;
142   assert(CurFn->isDeclaration() && "Function already has body?");
143 
144   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
145 
146   // Create a marker to make it easy to insert allocas into the entryblock
147   // later.  Don't create this with the builder, because we don't want it
148   // folded.
149   llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty);
150   AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "allocapt",
151                                          EntryBB);
152 
153   ReturnBlock = createBasicBlock("return");
154   ReturnValue = 0;
155   if (!RetTy->isVoidType())
156     ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval");
157 
158   Builder.SetInsertPoint(EntryBB);
159 
160   // Emit subprogram debug descriptor.
161   // FIXME: The cast here is a huge hack.
162   if (CGDebugInfo *DI = CGM.getDebugInfo()) {
163     DI->setLocation(StartLoc);
164     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
165       DI->EmitFunctionStart(FD->getIdentifier()->getName(),
166                             RetTy, CurFn, Builder);
167     } else {
168       // Just use LLVM function name.
169       DI->EmitFunctionStart(Fn->getName().c_str(),
170                             RetTy, CurFn, Builder);
171     }
172   }
173 
174   // FIXME: Leaked.
175   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args);
176   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
177 
178   // If any of the arguments have a variably modified type, make sure to
179   // emit the type size.
180   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
181        i != e; ++i) {
182     QualType Ty = i->second;
183 
184     if (Ty->isVariablyModifiedType())
185       EmitVLASize(Ty);
186   }
187 }
188 
189 void CodeGenFunction::GenerateCode(const FunctionDecl *FD,
190                                    llvm::Function *Fn) {
191   FunctionArgList Args;
192   if (FD->getNumParams()) {
193     const FunctionTypeProto* FProto = FD->getType()->getAsFunctionTypeProto();
194     assert(FProto && "Function def must have prototype!");
195 
196     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
197       Args.push_back(std::make_pair(FD->getParamDecl(i),
198                                     FProto->getArgType(i)));
199   }
200 
201   StartFunction(FD, FD->getResultType(), Fn, Args,
202                 cast<CompoundStmt>(FD->getBody())->getLBracLoc());
203 
204   EmitStmt(FD->getBody());
205 
206   const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody());
207   if (S) {
208     FinishFunction(S->getRBracLoc());
209   } else {
210     FinishFunction();
211   }
212 }
213 
214 /// ContainsLabel - Return true if the statement contains a label in it.  If
215 /// this statement is not executed normally, it not containing a label means
216 /// that we can just remove the code.
217 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
218   // Null statement, not a label!
219   if (S == 0) return false;
220 
221   // If this is a label, we have to emit the code, consider something like:
222   // if (0) {  ...  foo:  bar(); }  goto foo;
223   if (isa<LabelStmt>(S))
224     return true;
225 
226   // If this is a case/default statement, and we haven't seen a switch, we have
227   // to emit the code.
228   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
229     return true;
230 
231   // If this is a switch statement, we want to ignore cases below it.
232   if (isa<SwitchStmt>(S))
233     IgnoreCaseStmts = true;
234 
235   // Scan subexpressions for verboten labels.
236   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
237        I != E; ++I)
238     if (ContainsLabel(*I, IgnoreCaseStmts))
239       return true;
240 
241   return false;
242 }
243 
244 
245 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
246 /// a constant, or if it does but contains a label, return 0.  If it constant
247 /// folds to 'true' and does not contain a label, return 1, if it constant folds
248 /// to 'false' and does not contain a label, return -1.
249 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
250   // FIXME: Rename and handle conversion of other evaluatable things
251   // to bool.
252   Expr::EvalResult Result;
253   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
254       Result.HasSideEffects)
255     return 0;  // Not foldable, not integer or not fully evaluatable.
256 
257   if (CodeGenFunction::ContainsLabel(Cond))
258     return 0;  // Contains a label.
259 
260   return Result.Val.getInt().getBoolValue() ? 1 : -1;
261 }
262 
263 
264 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
265 /// statement) to the specified blocks.  Based on the condition, this might try
266 /// to simplify the codegen of the conditional based on the branch.
267 ///
268 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
269                                            llvm::BasicBlock *TrueBlock,
270                                            llvm::BasicBlock *FalseBlock) {
271   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
272     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
273 
274   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
275     // Handle X && Y in a condition.
276     if (CondBOp->getOpcode() == BinaryOperator::LAnd) {
277       // If we have "1 && X", simplify the code.  "0 && X" would have constant
278       // folded if the case was simple enough.
279       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
280         // br(1 && X) -> br(X).
281         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
282       }
283 
284       // If we have "X && 1", simplify the code to use an uncond branch.
285       // "X && 0" would have been constant folded to 0.
286       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
287         // br(X && 1) -> br(X).
288         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
289       }
290 
291       // Emit the LHS as a conditional.  If the LHS conditional is false, we
292       // want to jump to the FalseBlock.
293       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
294       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
295       EmitBlock(LHSTrue);
296 
297       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
298       return;
299     } else if (CondBOp->getOpcode() == BinaryOperator::LOr) {
300       // If we have "0 || X", simplify the code.  "1 || X" would have constant
301       // folded if the case was simple enough.
302       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
303         // br(0 || X) -> br(X).
304         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
305       }
306 
307       // If we have "X || 0", simplify the code to use an uncond branch.
308       // "X || 1" would have been constant folded to 1.
309       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
310         // br(X || 0) -> br(X).
311         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
312       }
313 
314       // Emit the LHS as a conditional.  If the LHS conditional is true, we
315       // want to jump to the TrueBlock.
316       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
317       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
318       EmitBlock(LHSFalse);
319 
320       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
321       return;
322     }
323   }
324 
325   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
326     // br(!x, t, f) -> br(x, f, t)
327     if (CondUOp->getOpcode() == UnaryOperator::LNot)
328       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
329   }
330 
331   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
332     // Handle ?: operator.
333 
334     // Just ignore GNU ?: extension.
335     if (CondOp->getLHS()) {
336       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
337       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
338       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
339       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
340       EmitBlock(LHSBlock);
341       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
342       EmitBlock(RHSBlock);
343       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
344       return;
345     }
346   }
347 
348   // Emit the code with the fully general case.
349   llvm::Value *CondV = EvaluateExprAsBool(Cond);
350   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
351 }
352 
353 /// getCGRecordLayout - Return record layout info.
354 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT,
355                                                          QualType Ty) {
356   const RecordType *RTy = Ty->getAsRecordType();
357   assert (RTy && "Unexpected type. RecordType expected here.");
358 
359   return CGT.getCGRecordLayout(RTy->getDecl());
360 }
361 
362 /// ErrorUnsupported - Print out an error that codegen doesn't support the
363 /// specified stmt yet.
364 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
365                                        bool OmitOnError) {
366   CGM.ErrorUnsupported(S, Type, OmitOnError);
367 }
368 
369 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) {
370   // Use LabelIDs.size() as the new ID if one hasn't been assigned.
371   return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second;
372 }
373 
374 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty)
375 {
376   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
377   if (DestPtr->getType() != BP)
378     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
379 
380   // Get size and alignment info for this aggregate.
381   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
382 
383   // FIXME: Handle variable sized types.
384   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
385 
386   Builder.CreateCall4(CGM.getMemSetFn(), DestPtr,
387                       llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty),
388                       // TypeInfo.first describes size in bits.
389                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
390                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
391                                              TypeInfo.second/8));
392 }
393 
394 void CodeGenFunction::EmitIndirectSwitches() {
395   llvm::BasicBlock *Default;
396 
397   if (IndirectSwitches.empty())
398     return;
399 
400   if (!LabelIDs.empty()) {
401     Default = getBasicBlockForLabel(LabelIDs.begin()->first);
402   } else {
403     // No possible targets for indirect goto, just emit an infinite
404     // loop.
405     Default = createBasicBlock("indirectgoto.loop", CurFn);
406     llvm::BranchInst::Create(Default, Default);
407   }
408 
409   for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(),
410          e = IndirectSwitches.end(); i != e; ++i) {
411     llvm::SwitchInst *I = *i;
412 
413     I->setSuccessor(0, Default);
414     for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(),
415            LE = LabelIDs.end(); LI != LE; ++LI) {
416       I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty,
417                                         LI->second),
418                  getBasicBlockForLabel(LI->first));
419     }
420   }
421 }
422 
423 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty)
424 {
425   // FIXME: This entire method is hardcoded for 32-bit X86.
426 
427   const char *TargetPrefix = getContext().Target.getTargetPrefix();
428 
429   if (strcmp(TargetPrefix, "x86") != 0 ||
430       getContext().Target.getPointerWidth(0) != 32)
431     return 0;
432 
433   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
434   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
435 
436   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
437                                                        "ap");
438   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
439   llvm::Value *AddrTyped =
440     Builder.CreateBitCast(Addr,
441                           llvm::PointerType::getUnqual(ConvertType(Ty)));
442 
443   uint64_t SizeInBytes = getContext().getTypeSize(Ty) / 8;
444   const unsigned ArgumentSizeInBytes = 4;
445   if (SizeInBytes < ArgumentSizeInBytes)
446     SizeInBytes = ArgumentSizeInBytes;
447 
448   llvm::Value *NextAddr =
449     Builder.CreateGEP(Addr,
450                       llvm::ConstantInt::get(llvm::Type::Int32Ty, SizeInBytes),
451                       "ap.next");
452   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
453 
454   return AddrTyped;
455 }
456 
457 
458 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT)
459 {
460   llvm::Value *&SizeEntry = VLASizeMap[VAT];
461 
462   assert(SizeEntry && "Did not emit size for type");
463   return SizeEntry;
464 }
465 
466 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty)
467 {
468   assert(Ty->isVariablyModifiedType() &&
469          "Must pass variably modified type to EmitVLASizes!");
470 
471   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
472     llvm::Value *&SizeEntry = VLASizeMap[VAT];
473 
474     if (!SizeEntry) {
475       // Get the element size;
476       llvm::Value *ElemSize;
477 
478       QualType ElemTy = VAT->getElementType();
479 
480       if (ElemTy->isVariableArrayType())
481         ElemSize = EmitVLASize(ElemTy);
482       else {
483         // FIXME: We use Int32Ty here because the alloca instruction takes a
484         // 32-bit integer. What should we do about overflow?
485         ElemSize = llvm::ConstantInt::get(llvm::Type::Int32Ty,
486                                           getContext().getTypeSize(ElemTy) / 8);
487       }
488 
489       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
490 
491       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
492     }
493 
494     return SizeEntry;
495   } else if (const PointerType *PT = Ty->getAsPointerType())
496     EmitVLASize(PT->getPointeeType());
497   else {
498     assert(0 && "unknown VM type!");
499   }
500 
501   return 0;
502 }
503 
504 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
505   if (CGM.getContext().getBuiltinVaListType()->isArrayType()) {
506     return EmitScalarExpr(E);
507   }
508   return EmitLValue(E).getAddress();
509 }
510