1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 // Apply xray attributes to the function (as a string, for now) 803 if (D) { 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::Function)) { 807 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 808 Fn->addFnAttr("function-instrument", "xray-always"); 809 if (XRayAttr->neverXRayInstrument()) 810 Fn->addFnAttr("function-instrument", "xray-never"); 811 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 812 if (ShouldXRayInstrumentFunction()) 813 Fn->addFnAttr("xray-log-args", 814 llvm::utostr(LogArgs->getArgumentCount())); 815 } 816 } else { 817 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 818 Fn->addFnAttr( 819 "xray-instruction-threshold", 820 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 821 } 822 } 823 824 // Add no-jump-tables value. 825 Fn->addFnAttr("no-jump-tables", 826 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 827 828 // Add no-inline-line-tables value. 829 if (CGM.getCodeGenOpts().NoInlineLineTables) 830 Fn->addFnAttr("no-inline-line-tables"); 831 832 // Add profile-sample-accurate value. 833 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 834 Fn->addFnAttr("profile-sample-accurate"); 835 836 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 837 Fn->addFnAttr("cfi-canonical-jump-table"); 838 839 if (getLangOpts().OpenCL) { 840 // Add metadata for a kernel function. 841 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 842 EmitOpenCLKernelMetadata(FD, Fn); 843 } 844 845 // If we are checking function types, emit a function type signature as 846 // prologue data. 847 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 848 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 849 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 850 // Remove any (C++17) exception specifications, to allow calling e.g. a 851 // noexcept function through a non-noexcept pointer. 852 auto ProtoTy = 853 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 854 EST_None); 855 llvm::Constant *FTRTTIConst = 856 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 857 llvm::Constant *FTRTTIConstEncoded = 858 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 859 llvm::Constant *PrologueStructElems[] = {PrologueSig, 860 FTRTTIConstEncoded}; 861 llvm::Constant *PrologueStructConst = 862 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 863 Fn->setPrologueData(PrologueStructConst); 864 } 865 } 866 } 867 868 // If we're checking nullability, we need to know whether we can check the 869 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 870 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 871 auto Nullability = FnRetTy->getNullability(getContext()); 872 if (Nullability && *Nullability == NullabilityKind::NonNull) { 873 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 874 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 875 RetValNullabilityPrecondition = 876 llvm::ConstantInt::getTrue(getLLVMContext()); 877 } 878 } 879 880 // If we're in C++ mode and the function name is "main", it is guaranteed 881 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 882 // used within a program"). 883 if (getLangOpts().CPlusPlus) 884 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 885 if (FD->isMain()) 886 Fn->addFnAttr(llvm::Attribute::NoRecurse); 887 888 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 889 if (FD->usesFPIntrin()) 890 Fn->addFnAttr(llvm::Attribute::StrictFP); 891 892 // If a custom alignment is used, force realigning to this alignment on 893 // any main function which certainly will need it. 894 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 895 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 896 CGM.getCodeGenOpts().StackAlignment) 897 Fn->addFnAttr("stackrealign"); 898 899 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 900 901 // Create a marker to make it easy to insert allocas into the entryblock 902 // later. Don't create this with the builder, because we don't want it 903 // folded. 904 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 905 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 906 907 ReturnBlock = getJumpDestInCurrentScope("return"); 908 909 Builder.SetInsertPoint(EntryBB); 910 911 // If we're checking the return value, allocate space for a pointer to a 912 // precise source location of the checked return statement. 913 if (requiresReturnValueCheck()) { 914 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 915 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 916 } 917 918 // Emit subprogram debug descriptor. 919 if (CGDebugInfo *DI = getDebugInfo()) { 920 // Reconstruct the type from the argument list so that implicit parameters, 921 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 922 // convention. 923 CallingConv CC = CallingConv::CC_C; 924 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 925 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 926 CC = SrcFnTy->getCallConv(); 927 SmallVector<QualType, 16> ArgTypes; 928 for (const VarDecl *VD : Args) 929 ArgTypes.push_back(VD->getType()); 930 QualType FnType = getContext().getFunctionType( 931 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 932 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 933 Builder); 934 } 935 936 if (ShouldInstrumentFunction()) { 937 if (CGM.getCodeGenOpts().InstrumentFunctions) 938 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 939 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 940 CurFn->addFnAttr("instrument-function-entry-inlined", 941 "__cyg_profile_func_enter"); 942 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 943 CurFn->addFnAttr("instrument-function-entry-inlined", 944 "__cyg_profile_func_enter_bare"); 945 } 946 947 // Since emitting the mcount call here impacts optimizations such as function 948 // inlining, we just add an attribute to insert a mcount call in backend. 949 // The attribute "counting-function" is set to mcount function name which is 950 // architecture dependent. 951 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 952 // Calls to fentry/mcount should not be generated if function has 953 // the no_instrument_function attribute. 954 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 955 if (CGM.getCodeGenOpts().CallFEntry) 956 Fn->addFnAttr("fentry-call", "true"); 957 else { 958 Fn->addFnAttr("instrument-function-entry-inlined", 959 getTarget().getMCountName()); 960 } 961 if (CGM.getCodeGenOpts().MNopMCount) { 962 if (getContext().getTargetInfo().getTriple().getArch() != 963 llvm::Triple::systemz) 964 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 965 << "-mnop-mcount"; 966 if (!CGM.getCodeGenOpts().CallFEntry) 967 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 968 << "-mnop-mcount" << "-mfentry"; 969 Fn->addFnAttr("mnop-mcount", "true"); 970 } 971 } 972 } 973 974 if (RetTy->isVoidType()) { 975 // Void type; nothing to return. 976 ReturnValue = Address::invalid(); 977 978 // Count the implicit return. 979 if (!endsWithReturn(D)) 980 ++NumReturnExprs; 981 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 982 // Indirect return; emit returned value directly into sret slot. 983 // This reduces code size, and affects correctness in C++. 984 auto AI = CurFn->arg_begin(); 985 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 986 ++AI; 987 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 988 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 989 ReturnValuePointer = 990 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 991 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 992 ReturnValue.getPointer(), Int8PtrTy), 993 ReturnValuePointer); 994 } 995 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 996 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 997 // Load the sret pointer from the argument struct and return into that. 998 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 999 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1000 --EI; 1001 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1002 ReturnValuePointer = Address(Addr, getPointerAlign()); 1003 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1004 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1005 } else { 1006 ReturnValue = CreateIRTemp(RetTy, "retval"); 1007 1008 // Tell the epilog emitter to autorelease the result. We do this 1009 // now so that various specialized functions can suppress it 1010 // during their IR-generation. 1011 if (getLangOpts().ObjCAutoRefCount && 1012 !CurFnInfo->isReturnsRetained() && 1013 RetTy->isObjCRetainableType()) 1014 AutoreleaseResult = true; 1015 } 1016 1017 EmitStartEHSpec(CurCodeDecl); 1018 1019 PrologueCleanupDepth = EHStack.stable_begin(); 1020 1021 // Emit OpenMP specific initialization of the device functions. 1022 if (getLangOpts().OpenMP && CurCodeDecl) 1023 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1024 1025 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1026 1027 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1028 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1029 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1030 if (MD->getParent()->isLambda() && 1031 MD->getOverloadedOperator() == OO_Call) { 1032 // We're in a lambda; figure out the captures. 1033 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1034 LambdaThisCaptureField); 1035 if (LambdaThisCaptureField) { 1036 // If the lambda captures the object referred to by '*this' - either by 1037 // value or by reference, make sure CXXThisValue points to the correct 1038 // object. 1039 1040 // Get the lvalue for the field (which is a copy of the enclosing object 1041 // or contains the address of the enclosing object). 1042 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1043 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1044 // If the enclosing object was captured by value, just use its address. 1045 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1046 } else { 1047 // Load the lvalue pointed to by the field, since '*this' was captured 1048 // by reference. 1049 CXXThisValue = 1050 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1051 } 1052 } 1053 for (auto *FD : MD->getParent()->fields()) { 1054 if (FD->hasCapturedVLAType()) { 1055 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1056 SourceLocation()).getScalarVal(); 1057 auto VAT = FD->getCapturedVLAType(); 1058 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1059 } 1060 } 1061 } else { 1062 // Not in a lambda; just use 'this' from the method. 1063 // FIXME: Should we generate a new load for each use of 'this'? The 1064 // fast register allocator would be happier... 1065 CXXThisValue = CXXABIThisValue; 1066 } 1067 1068 // Check the 'this' pointer once per function, if it's available. 1069 if (CXXABIThisValue) { 1070 SanitizerSet SkippedChecks; 1071 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1072 QualType ThisTy = MD->getThisType(); 1073 1074 // If this is the call operator of a lambda with no capture-default, it 1075 // may have a static invoker function, which may call this operator with 1076 // a null 'this' pointer. 1077 if (isLambdaCallOperator(MD) && 1078 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1079 SkippedChecks.set(SanitizerKind::Null, true); 1080 1081 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1082 : TCK_MemberCall, 1083 Loc, CXXABIThisValue, ThisTy, 1084 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1085 SkippedChecks); 1086 } 1087 } 1088 1089 // If any of the arguments have a variably modified type, make sure to 1090 // emit the type size. 1091 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1092 i != e; ++i) { 1093 const VarDecl *VD = *i; 1094 1095 // Dig out the type as written from ParmVarDecls; it's unclear whether 1096 // the standard (C99 6.9.1p10) requires this, but we're following the 1097 // precedent set by gcc. 1098 QualType Ty; 1099 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1100 Ty = PVD->getOriginalType(); 1101 else 1102 Ty = VD->getType(); 1103 1104 if (Ty->isVariablyModifiedType()) 1105 EmitVariablyModifiedType(Ty); 1106 } 1107 // Emit a location at the end of the prologue. 1108 if (CGDebugInfo *DI = getDebugInfo()) 1109 DI->EmitLocation(Builder, StartLoc); 1110 1111 // TODO: Do we need to handle this in two places like we do with 1112 // target-features/target-cpu? 1113 if (CurFuncDecl) 1114 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1115 LargestVectorWidth = VecWidth->getVectorWidth(); 1116 } 1117 1118 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1119 incrementProfileCounter(Body); 1120 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1121 EmitCompoundStmtWithoutScope(*S); 1122 else 1123 EmitStmt(Body); 1124 } 1125 1126 /// When instrumenting to collect profile data, the counts for some blocks 1127 /// such as switch cases need to not include the fall-through counts, so 1128 /// emit a branch around the instrumentation code. When not instrumenting, 1129 /// this just calls EmitBlock(). 1130 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1131 const Stmt *S) { 1132 llvm::BasicBlock *SkipCountBB = nullptr; 1133 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1134 // When instrumenting for profiling, the fallthrough to certain 1135 // statements needs to skip over the instrumentation code so that we 1136 // get an accurate count. 1137 SkipCountBB = createBasicBlock("skipcount"); 1138 EmitBranch(SkipCountBB); 1139 } 1140 EmitBlock(BB); 1141 uint64_t CurrentCount = getCurrentProfileCount(); 1142 incrementProfileCounter(S); 1143 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1144 if (SkipCountBB) 1145 EmitBlock(SkipCountBB); 1146 } 1147 1148 /// Tries to mark the given function nounwind based on the 1149 /// non-existence of any throwing calls within it. We believe this is 1150 /// lightweight enough to do at -O0. 1151 static void TryMarkNoThrow(llvm::Function *F) { 1152 // LLVM treats 'nounwind' on a function as part of the type, so we 1153 // can't do this on functions that can be overwritten. 1154 if (F->isInterposable()) return; 1155 1156 for (llvm::BasicBlock &BB : *F) 1157 for (llvm::Instruction &I : BB) 1158 if (I.mayThrow()) 1159 return; 1160 1161 F->setDoesNotThrow(); 1162 } 1163 1164 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1165 FunctionArgList &Args) { 1166 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1167 QualType ResTy = FD->getReturnType(); 1168 1169 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1170 if (MD && MD->isInstance()) { 1171 if (CGM.getCXXABI().HasThisReturn(GD)) 1172 ResTy = MD->getThisType(); 1173 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1174 ResTy = CGM.getContext().VoidPtrTy; 1175 CGM.getCXXABI().buildThisParam(*this, Args); 1176 } 1177 1178 // The base version of an inheriting constructor whose constructed base is a 1179 // virtual base is not passed any arguments (because it doesn't actually call 1180 // the inherited constructor). 1181 bool PassedParams = true; 1182 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1183 if (auto Inherited = CD->getInheritedConstructor()) 1184 PassedParams = 1185 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1186 1187 if (PassedParams) { 1188 for (auto *Param : FD->parameters()) { 1189 Args.push_back(Param); 1190 if (!Param->hasAttr<PassObjectSizeAttr>()) 1191 continue; 1192 1193 auto *Implicit = ImplicitParamDecl::Create( 1194 getContext(), Param->getDeclContext(), Param->getLocation(), 1195 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1196 SizeArguments[Param] = Implicit; 1197 Args.push_back(Implicit); 1198 } 1199 } 1200 1201 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1202 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1203 1204 return ResTy; 1205 } 1206 1207 static bool 1208 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1209 const ASTContext &Context) { 1210 QualType T = FD->getReturnType(); 1211 // Avoid the optimization for functions that return a record type with a 1212 // trivial destructor or another trivially copyable type. 1213 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1214 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1215 return !ClassDecl->hasTrivialDestructor(); 1216 } 1217 return !T.isTriviallyCopyableType(Context); 1218 } 1219 1220 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1221 const CGFunctionInfo &FnInfo) { 1222 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1223 CurGD = GD; 1224 1225 FunctionArgList Args; 1226 QualType ResTy = BuildFunctionArgList(GD, Args); 1227 1228 // Check if we should generate debug info for this function. 1229 if (FD->hasAttr<NoDebugAttr>()) 1230 DebugInfo = nullptr; // disable debug info indefinitely for this function 1231 1232 // The function might not have a body if we're generating thunks for a 1233 // function declaration. 1234 SourceRange BodyRange; 1235 if (Stmt *Body = FD->getBody()) 1236 BodyRange = Body->getSourceRange(); 1237 else 1238 BodyRange = FD->getLocation(); 1239 CurEHLocation = BodyRange.getEnd(); 1240 1241 // Use the location of the start of the function to determine where 1242 // the function definition is located. By default use the location 1243 // of the declaration as the location for the subprogram. A function 1244 // may lack a declaration in the source code if it is created by code 1245 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1246 SourceLocation Loc = FD->getLocation(); 1247 1248 // If this is a function specialization then use the pattern body 1249 // as the location for the function. 1250 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1251 if (SpecDecl->hasBody(SpecDecl)) 1252 Loc = SpecDecl->getLocation(); 1253 1254 Stmt *Body = FD->getBody(); 1255 1256 // Initialize helper which will detect jumps which can cause invalid lifetime 1257 // markers. 1258 if (Body && ShouldEmitLifetimeMarkers) 1259 Bypasses.Init(Body); 1260 1261 // Emit the standard function prologue. 1262 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1263 1264 // Generate the body of the function. 1265 PGO.assignRegionCounters(GD, CurFn); 1266 if (isa<CXXDestructorDecl>(FD)) 1267 EmitDestructorBody(Args); 1268 else if (isa<CXXConstructorDecl>(FD)) 1269 EmitConstructorBody(Args); 1270 else if (getLangOpts().CUDA && 1271 !getLangOpts().CUDAIsDevice && 1272 FD->hasAttr<CUDAGlobalAttr>()) 1273 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1274 else if (isa<CXXMethodDecl>(FD) && 1275 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1276 // The lambda static invoker function is special, because it forwards or 1277 // clones the body of the function call operator (but is actually static). 1278 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1279 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1280 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1281 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1282 // Implicit copy-assignment gets the same special treatment as implicit 1283 // copy-constructors. 1284 emitImplicitAssignmentOperatorBody(Args); 1285 } else if (Body) { 1286 EmitFunctionBody(Body); 1287 } else 1288 llvm_unreachable("no definition for emitted function"); 1289 1290 // C++11 [stmt.return]p2: 1291 // Flowing off the end of a function [...] results in undefined behavior in 1292 // a value-returning function. 1293 // C11 6.9.1p12: 1294 // If the '}' that terminates a function is reached, and the value of the 1295 // function call is used by the caller, the behavior is undefined. 1296 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1297 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1298 bool ShouldEmitUnreachable = 1299 CGM.getCodeGenOpts().StrictReturn || 1300 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1301 if (SanOpts.has(SanitizerKind::Return)) { 1302 SanitizerScope SanScope(this); 1303 llvm::Value *IsFalse = Builder.getFalse(); 1304 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1305 SanitizerHandler::MissingReturn, 1306 EmitCheckSourceLocation(FD->getLocation()), None); 1307 } else if (ShouldEmitUnreachable) { 1308 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1309 EmitTrapCall(llvm::Intrinsic::trap); 1310 } 1311 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1312 Builder.CreateUnreachable(); 1313 Builder.ClearInsertionPoint(); 1314 } 1315 } 1316 1317 // Emit the standard function epilogue. 1318 FinishFunction(BodyRange.getEnd()); 1319 1320 // If we haven't marked the function nothrow through other means, do 1321 // a quick pass now to see if we can. 1322 if (!CurFn->doesNotThrow()) 1323 TryMarkNoThrow(CurFn); 1324 } 1325 1326 /// ContainsLabel - Return true if the statement contains a label in it. If 1327 /// this statement is not executed normally, it not containing a label means 1328 /// that we can just remove the code. 1329 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1330 // Null statement, not a label! 1331 if (!S) return false; 1332 1333 // If this is a label, we have to emit the code, consider something like: 1334 // if (0) { ... foo: bar(); } goto foo; 1335 // 1336 // TODO: If anyone cared, we could track __label__'s, since we know that you 1337 // can't jump to one from outside their declared region. 1338 if (isa<LabelStmt>(S)) 1339 return true; 1340 1341 // If this is a case/default statement, and we haven't seen a switch, we have 1342 // to emit the code. 1343 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1344 return true; 1345 1346 // If this is a switch statement, we want to ignore cases below it. 1347 if (isa<SwitchStmt>(S)) 1348 IgnoreCaseStmts = true; 1349 1350 // Scan subexpressions for verboten labels. 1351 for (const Stmt *SubStmt : S->children()) 1352 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1353 return true; 1354 1355 return false; 1356 } 1357 1358 /// containsBreak - Return true if the statement contains a break out of it. 1359 /// If the statement (recursively) contains a switch or loop with a break 1360 /// inside of it, this is fine. 1361 bool CodeGenFunction::containsBreak(const Stmt *S) { 1362 // Null statement, not a label! 1363 if (!S) return false; 1364 1365 // If this is a switch or loop that defines its own break scope, then we can 1366 // include it and anything inside of it. 1367 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1368 isa<ForStmt>(S)) 1369 return false; 1370 1371 if (isa<BreakStmt>(S)) 1372 return true; 1373 1374 // Scan subexpressions for verboten breaks. 1375 for (const Stmt *SubStmt : S->children()) 1376 if (containsBreak(SubStmt)) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1383 if (!S) return false; 1384 1385 // Some statement kinds add a scope and thus never add a decl to the current 1386 // scope. Note, this list is longer than the list of statements that might 1387 // have an unscoped decl nested within them, but this way is conservatively 1388 // correct even if more statement kinds are added. 1389 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1390 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1391 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1392 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1393 return false; 1394 1395 if (isa<DeclStmt>(S)) 1396 return true; 1397 1398 for (const Stmt *SubStmt : S->children()) 1399 if (mightAddDeclToScope(SubStmt)) 1400 return true; 1401 1402 return false; 1403 } 1404 1405 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1406 /// to a constant, or if it does but contains a label, return false. If it 1407 /// constant folds return true and set the boolean result in Result. 1408 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1409 bool &ResultBool, 1410 bool AllowLabels) { 1411 llvm::APSInt ResultInt; 1412 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1413 return false; 1414 1415 ResultBool = ResultInt.getBoolValue(); 1416 return true; 1417 } 1418 1419 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1420 /// to a constant, or if it does but contains a label, return false. If it 1421 /// constant folds return true and set the folded value. 1422 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1423 llvm::APSInt &ResultInt, 1424 bool AllowLabels) { 1425 // FIXME: Rename and handle conversion of other evaluatable things 1426 // to bool. 1427 Expr::EvalResult Result; 1428 if (!Cond->EvaluateAsInt(Result, getContext())) 1429 return false; // Not foldable, not integer or not fully evaluatable. 1430 1431 llvm::APSInt Int = Result.Val.getInt(); 1432 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1433 return false; // Contains a label. 1434 1435 ResultInt = Int; 1436 return true; 1437 } 1438 1439 1440 1441 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1442 /// statement) to the specified blocks. Based on the condition, this might try 1443 /// to simplify the codegen of the conditional based on the branch. 1444 /// 1445 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1446 llvm::BasicBlock *TrueBlock, 1447 llvm::BasicBlock *FalseBlock, 1448 uint64_t TrueCount) { 1449 Cond = Cond->IgnoreParens(); 1450 1451 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1452 1453 // Handle X && Y in a condition. 1454 if (CondBOp->getOpcode() == BO_LAnd) { 1455 // If we have "1 && X", simplify the code. "0 && X" would have constant 1456 // folded if the case was simple enough. 1457 bool ConstantBool = false; 1458 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1459 ConstantBool) { 1460 // br(1 && X) -> br(X). 1461 incrementProfileCounter(CondBOp); 1462 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1463 TrueCount); 1464 } 1465 1466 // If we have "X && 1", simplify the code to use an uncond branch. 1467 // "X && 0" would have been constant folded to 0. 1468 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1469 ConstantBool) { 1470 // br(X && 1) -> br(X). 1471 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1472 TrueCount); 1473 } 1474 1475 // Emit the LHS as a conditional. If the LHS conditional is false, we 1476 // want to jump to the FalseBlock. 1477 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1478 // The counter tells us how often we evaluate RHS, and all of TrueCount 1479 // can be propagated to that branch. 1480 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1481 1482 ConditionalEvaluation eval(*this); 1483 { 1484 ApplyDebugLocation DL(*this, Cond); 1485 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1486 EmitBlock(LHSTrue); 1487 } 1488 1489 incrementProfileCounter(CondBOp); 1490 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1491 1492 // Any temporaries created here are conditional. 1493 eval.begin(*this); 1494 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1495 eval.end(*this); 1496 1497 return; 1498 } 1499 1500 if (CondBOp->getOpcode() == BO_LOr) { 1501 // If we have "0 || X", simplify the code. "1 || X" would have constant 1502 // folded if the case was simple enough. 1503 bool ConstantBool = false; 1504 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1505 !ConstantBool) { 1506 // br(0 || X) -> br(X). 1507 incrementProfileCounter(CondBOp); 1508 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1509 TrueCount); 1510 } 1511 1512 // If we have "X || 0", simplify the code to use an uncond branch. 1513 // "X || 1" would have been constant folded to 1. 1514 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1515 !ConstantBool) { 1516 // br(X || 0) -> br(X). 1517 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1518 TrueCount); 1519 } 1520 1521 // Emit the LHS as a conditional. If the LHS conditional is true, we 1522 // want to jump to the TrueBlock. 1523 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1524 // We have the count for entry to the RHS and for the whole expression 1525 // being true, so we can divy up True count between the short circuit and 1526 // the RHS. 1527 uint64_t LHSCount = 1528 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1529 uint64_t RHSCount = TrueCount - LHSCount; 1530 1531 ConditionalEvaluation eval(*this); 1532 { 1533 ApplyDebugLocation DL(*this, Cond); 1534 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1535 EmitBlock(LHSFalse); 1536 } 1537 1538 incrementProfileCounter(CondBOp); 1539 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1540 1541 // Any temporaries created here are conditional. 1542 eval.begin(*this); 1543 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1544 1545 eval.end(*this); 1546 1547 return; 1548 } 1549 } 1550 1551 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1552 // br(!x, t, f) -> br(x, f, t) 1553 if (CondUOp->getOpcode() == UO_LNot) { 1554 // Negate the count. 1555 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1556 // Negate the condition and swap the destination blocks. 1557 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1558 FalseCount); 1559 } 1560 } 1561 1562 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1563 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1564 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1565 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1566 1567 ConditionalEvaluation cond(*this); 1568 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1569 getProfileCount(CondOp)); 1570 1571 // When computing PGO branch weights, we only know the overall count for 1572 // the true block. This code is essentially doing tail duplication of the 1573 // naive code-gen, introducing new edges for which counts are not 1574 // available. Divide the counts proportionally between the LHS and RHS of 1575 // the conditional operator. 1576 uint64_t LHSScaledTrueCount = 0; 1577 if (TrueCount) { 1578 double LHSRatio = 1579 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1580 LHSScaledTrueCount = TrueCount * LHSRatio; 1581 } 1582 1583 cond.begin(*this); 1584 EmitBlock(LHSBlock); 1585 incrementProfileCounter(CondOp); 1586 { 1587 ApplyDebugLocation DL(*this, Cond); 1588 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1589 LHSScaledTrueCount); 1590 } 1591 cond.end(*this); 1592 1593 cond.begin(*this); 1594 EmitBlock(RHSBlock); 1595 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1596 TrueCount - LHSScaledTrueCount); 1597 cond.end(*this); 1598 1599 return; 1600 } 1601 1602 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1603 // Conditional operator handling can give us a throw expression as a 1604 // condition for a case like: 1605 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1606 // Fold this to: 1607 // br(c, throw x, br(y, t, f)) 1608 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1609 return; 1610 } 1611 1612 // If the branch has a condition wrapped by __builtin_unpredictable, 1613 // create metadata that specifies that the branch is unpredictable. 1614 // Don't bother if not optimizing because that metadata would not be used. 1615 llvm::MDNode *Unpredictable = nullptr; 1616 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1617 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1618 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1619 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1620 llvm::MDBuilder MDHelper(getLLVMContext()); 1621 Unpredictable = MDHelper.createUnpredictable(); 1622 } 1623 } 1624 1625 // Create branch weights based on the number of times we get here and the 1626 // number of times the condition should be true. 1627 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1628 llvm::MDNode *Weights = 1629 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1630 1631 // Emit the code with the fully general case. 1632 llvm::Value *CondV; 1633 { 1634 ApplyDebugLocation DL(*this, Cond); 1635 CondV = EvaluateExprAsBool(Cond); 1636 } 1637 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1638 } 1639 1640 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1641 /// specified stmt yet. 1642 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1643 CGM.ErrorUnsupported(S, Type); 1644 } 1645 1646 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1647 /// variable-length array whose elements have a non-zero bit-pattern. 1648 /// 1649 /// \param baseType the inner-most element type of the array 1650 /// \param src - a char* pointing to the bit-pattern for a single 1651 /// base element of the array 1652 /// \param sizeInChars - the total size of the VLA, in chars 1653 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1654 Address dest, Address src, 1655 llvm::Value *sizeInChars) { 1656 CGBuilderTy &Builder = CGF.Builder; 1657 1658 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1659 llvm::Value *baseSizeInChars 1660 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1661 1662 Address begin = 1663 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1664 llvm::Value *end = 1665 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1666 1667 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1668 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1669 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1670 1671 // Make a loop over the VLA. C99 guarantees that the VLA element 1672 // count must be nonzero. 1673 CGF.EmitBlock(loopBB); 1674 1675 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1676 cur->addIncoming(begin.getPointer(), originBB); 1677 1678 CharUnits curAlign = 1679 dest.getAlignment().alignmentOfArrayElement(baseSize); 1680 1681 // memcpy the individual element bit-pattern. 1682 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1683 /*volatile*/ false); 1684 1685 // Go to the next element. 1686 llvm::Value *next = 1687 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1688 1689 // Leave if that's the end of the VLA. 1690 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1691 Builder.CreateCondBr(done, contBB, loopBB); 1692 cur->addIncoming(next, loopBB); 1693 1694 CGF.EmitBlock(contBB); 1695 } 1696 1697 void 1698 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1699 // Ignore empty classes in C++. 1700 if (getLangOpts().CPlusPlus) { 1701 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1702 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1703 return; 1704 } 1705 } 1706 1707 // Cast the dest ptr to the appropriate i8 pointer type. 1708 if (DestPtr.getElementType() != Int8Ty) 1709 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1710 1711 // Get size and alignment info for this aggregate. 1712 CharUnits size = getContext().getTypeSizeInChars(Ty); 1713 1714 llvm::Value *SizeVal; 1715 const VariableArrayType *vla; 1716 1717 // Don't bother emitting a zero-byte memset. 1718 if (size.isZero()) { 1719 // But note that getTypeInfo returns 0 for a VLA. 1720 if (const VariableArrayType *vlaType = 1721 dyn_cast_or_null<VariableArrayType>( 1722 getContext().getAsArrayType(Ty))) { 1723 auto VlaSize = getVLASize(vlaType); 1724 SizeVal = VlaSize.NumElts; 1725 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1726 if (!eltSize.isOne()) 1727 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1728 vla = vlaType; 1729 } else { 1730 return; 1731 } 1732 } else { 1733 SizeVal = CGM.getSize(size); 1734 vla = nullptr; 1735 } 1736 1737 // If the type contains a pointer to data member we can't memset it to zero. 1738 // Instead, create a null constant and copy it to the destination. 1739 // TODO: there are other patterns besides zero that we can usefully memset, 1740 // like -1, which happens to be the pattern used by member-pointers. 1741 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1742 // For a VLA, emit a single element, then splat that over the VLA. 1743 if (vla) Ty = getContext().getBaseElementType(vla); 1744 1745 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1746 1747 llvm::GlobalVariable *NullVariable = 1748 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1749 /*isConstant=*/true, 1750 llvm::GlobalVariable::PrivateLinkage, 1751 NullConstant, Twine()); 1752 CharUnits NullAlign = DestPtr.getAlignment(); 1753 NullVariable->setAlignment(NullAlign.getAsAlign()); 1754 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1755 NullAlign); 1756 1757 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1758 1759 // Get and call the appropriate llvm.memcpy overload. 1760 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1761 return; 1762 } 1763 1764 // Otherwise, just memset the whole thing to zero. This is legal 1765 // because in LLVM, all default initializers (other than the ones we just 1766 // handled above) are guaranteed to have a bit pattern of all zeros. 1767 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1768 } 1769 1770 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1771 // Make sure that there is a block for the indirect goto. 1772 if (!IndirectBranch) 1773 GetIndirectGotoBlock(); 1774 1775 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1776 1777 // Make sure the indirect branch includes all of the address-taken blocks. 1778 IndirectBranch->addDestination(BB); 1779 return llvm::BlockAddress::get(CurFn, BB); 1780 } 1781 1782 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1783 // If we already made the indirect branch for indirect goto, return its block. 1784 if (IndirectBranch) return IndirectBranch->getParent(); 1785 1786 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1787 1788 // Create the PHI node that indirect gotos will add entries to. 1789 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1790 "indirect.goto.dest"); 1791 1792 // Create the indirect branch instruction. 1793 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1794 return IndirectBranch->getParent(); 1795 } 1796 1797 /// Computes the length of an array in elements, as well as the base 1798 /// element type and a properly-typed first element pointer. 1799 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1800 QualType &baseType, 1801 Address &addr) { 1802 const ArrayType *arrayType = origArrayType; 1803 1804 // If it's a VLA, we have to load the stored size. Note that 1805 // this is the size of the VLA in bytes, not its size in elements. 1806 llvm::Value *numVLAElements = nullptr; 1807 if (isa<VariableArrayType>(arrayType)) { 1808 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1809 1810 // Walk into all VLAs. This doesn't require changes to addr, 1811 // which has type T* where T is the first non-VLA element type. 1812 do { 1813 QualType elementType = arrayType->getElementType(); 1814 arrayType = getContext().getAsArrayType(elementType); 1815 1816 // If we only have VLA components, 'addr' requires no adjustment. 1817 if (!arrayType) { 1818 baseType = elementType; 1819 return numVLAElements; 1820 } 1821 } while (isa<VariableArrayType>(arrayType)); 1822 1823 // We get out here only if we find a constant array type 1824 // inside the VLA. 1825 } 1826 1827 // We have some number of constant-length arrays, so addr should 1828 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1829 // down to the first element of addr. 1830 SmallVector<llvm::Value*, 8> gepIndices; 1831 1832 // GEP down to the array type. 1833 llvm::ConstantInt *zero = Builder.getInt32(0); 1834 gepIndices.push_back(zero); 1835 1836 uint64_t countFromCLAs = 1; 1837 QualType eltType; 1838 1839 llvm::ArrayType *llvmArrayType = 1840 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1841 while (llvmArrayType) { 1842 assert(isa<ConstantArrayType>(arrayType)); 1843 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1844 == llvmArrayType->getNumElements()); 1845 1846 gepIndices.push_back(zero); 1847 countFromCLAs *= llvmArrayType->getNumElements(); 1848 eltType = arrayType->getElementType(); 1849 1850 llvmArrayType = 1851 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1852 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1853 assert((!llvmArrayType || arrayType) && 1854 "LLVM and Clang types are out-of-synch"); 1855 } 1856 1857 if (arrayType) { 1858 // From this point onwards, the Clang array type has been emitted 1859 // as some other type (probably a packed struct). Compute the array 1860 // size, and just emit the 'begin' expression as a bitcast. 1861 while (arrayType) { 1862 countFromCLAs *= 1863 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1864 eltType = arrayType->getElementType(); 1865 arrayType = getContext().getAsArrayType(eltType); 1866 } 1867 1868 llvm::Type *baseType = ConvertType(eltType); 1869 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1870 } else { 1871 // Create the actual GEP. 1872 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1873 gepIndices, "array.begin"), 1874 addr.getAlignment()); 1875 } 1876 1877 baseType = eltType; 1878 1879 llvm::Value *numElements 1880 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1881 1882 // If we had any VLA dimensions, factor them in. 1883 if (numVLAElements) 1884 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1885 1886 return numElements; 1887 } 1888 1889 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1890 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1891 assert(vla && "type was not a variable array type!"); 1892 return getVLASize(vla); 1893 } 1894 1895 CodeGenFunction::VlaSizePair 1896 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1897 // The number of elements so far; always size_t. 1898 llvm::Value *numElements = nullptr; 1899 1900 QualType elementType; 1901 do { 1902 elementType = type->getElementType(); 1903 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1904 assert(vlaSize && "no size for VLA!"); 1905 assert(vlaSize->getType() == SizeTy); 1906 1907 if (!numElements) { 1908 numElements = vlaSize; 1909 } else { 1910 // It's undefined behavior if this wraps around, so mark it that way. 1911 // FIXME: Teach -fsanitize=undefined to trap this. 1912 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1913 } 1914 } while ((type = getContext().getAsVariableArrayType(elementType))); 1915 1916 return { numElements, elementType }; 1917 } 1918 1919 CodeGenFunction::VlaSizePair 1920 CodeGenFunction::getVLAElements1D(QualType type) { 1921 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1922 assert(vla && "type was not a variable array type!"); 1923 return getVLAElements1D(vla); 1924 } 1925 1926 CodeGenFunction::VlaSizePair 1927 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1928 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1929 assert(VlaSize && "no size for VLA!"); 1930 assert(VlaSize->getType() == SizeTy); 1931 return { VlaSize, Vla->getElementType() }; 1932 } 1933 1934 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1935 assert(type->isVariablyModifiedType() && 1936 "Must pass variably modified type to EmitVLASizes!"); 1937 1938 EnsureInsertPoint(); 1939 1940 // We're going to walk down into the type and look for VLA 1941 // expressions. 1942 do { 1943 assert(type->isVariablyModifiedType()); 1944 1945 const Type *ty = type.getTypePtr(); 1946 switch (ty->getTypeClass()) { 1947 1948 #define TYPE(Class, Base) 1949 #define ABSTRACT_TYPE(Class, Base) 1950 #define NON_CANONICAL_TYPE(Class, Base) 1951 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1952 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1953 #include "clang/AST/TypeNodes.inc" 1954 llvm_unreachable("unexpected dependent type!"); 1955 1956 // These types are never variably-modified. 1957 case Type::Builtin: 1958 case Type::Complex: 1959 case Type::Vector: 1960 case Type::ExtVector: 1961 case Type::Record: 1962 case Type::Enum: 1963 case Type::Elaborated: 1964 case Type::TemplateSpecialization: 1965 case Type::ObjCTypeParam: 1966 case Type::ObjCObject: 1967 case Type::ObjCInterface: 1968 case Type::ObjCObjectPointer: 1969 llvm_unreachable("type class is never variably-modified!"); 1970 1971 case Type::Adjusted: 1972 type = cast<AdjustedType>(ty)->getAdjustedType(); 1973 break; 1974 1975 case Type::Decayed: 1976 type = cast<DecayedType>(ty)->getPointeeType(); 1977 break; 1978 1979 case Type::Pointer: 1980 type = cast<PointerType>(ty)->getPointeeType(); 1981 break; 1982 1983 case Type::BlockPointer: 1984 type = cast<BlockPointerType>(ty)->getPointeeType(); 1985 break; 1986 1987 case Type::LValueReference: 1988 case Type::RValueReference: 1989 type = cast<ReferenceType>(ty)->getPointeeType(); 1990 break; 1991 1992 case Type::MemberPointer: 1993 type = cast<MemberPointerType>(ty)->getPointeeType(); 1994 break; 1995 1996 case Type::ConstantArray: 1997 case Type::IncompleteArray: 1998 // Losing element qualification here is fine. 1999 type = cast<ArrayType>(ty)->getElementType(); 2000 break; 2001 2002 case Type::VariableArray: { 2003 // Losing element qualification here is fine. 2004 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2005 2006 // Unknown size indication requires no size computation. 2007 // Otherwise, evaluate and record it. 2008 if (const Expr *size = vat->getSizeExpr()) { 2009 // It's possible that we might have emitted this already, 2010 // e.g. with a typedef and a pointer to it. 2011 llvm::Value *&entry = VLASizeMap[size]; 2012 if (!entry) { 2013 llvm::Value *Size = EmitScalarExpr(size); 2014 2015 // C11 6.7.6.2p5: 2016 // If the size is an expression that is not an integer constant 2017 // expression [...] each time it is evaluated it shall have a value 2018 // greater than zero. 2019 if (SanOpts.has(SanitizerKind::VLABound) && 2020 size->getType()->isSignedIntegerType()) { 2021 SanitizerScope SanScope(this); 2022 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2023 llvm::Constant *StaticArgs[] = { 2024 EmitCheckSourceLocation(size->getBeginLoc()), 2025 EmitCheckTypeDescriptor(size->getType())}; 2026 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2027 SanitizerKind::VLABound), 2028 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2029 } 2030 2031 // Always zexting here would be wrong if it weren't 2032 // undefined behavior to have a negative bound. 2033 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2034 } 2035 } 2036 type = vat->getElementType(); 2037 break; 2038 } 2039 2040 case Type::FunctionProto: 2041 case Type::FunctionNoProto: 2042 type = cast<FunctionType>(ty)->getReturnType(); 2043 break; 2044 2045 case Type::Paren: 2046 case Type::TypeOf: 2047 case Type::UnaryTransform: 2048 case Type::Attributed: 2049 case Type::SubstTemplateTypeParm: 2050 case Type::PackExpansion: 2051 case Type::MacroQualified: 2052 // Keep walking after single level desugaring. 2053 type = type.getSingleStepDesugaredType(getContext()); 2054 break; 2055 2056 case Type::Typedef: 2057 case Type::Decltype: 2058 case Type::Auto: 2059 case Type::DeducedTemplateSpecialization: 2060 // Stop walking: nothing to do. 2061 return; 2062 2063 case Type::TypeOfExpr: 2064 // Stop walking: emit typeof expression. 2065 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2066 return; 2067 2068 case Type::Atomic: 2069 type = cast<AtomicType>(ty)->getValueType(); 2070 break; 2071 2072 case Type::Pipe: 2073 type = cast<PipeType>(ty)->getElementType(); 2074 break; 2075 } 2076 } while (type->isVariablyModifiedType()); 2077 } 2078 2079 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2080 if (getContext().getBuiltinVaListType()->isArrayType()) 2081 return EmitPointerWithAlignment(E); 2082 return EmitLValue(E).getAddress(*this); 2083 } 2084 2085 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2086 return EmitLValue(E).getAddress(*this); 2087 } 2088 2089 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2090 const APValue &Init) { 2091 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2092 if (CGDebugInfo *Dbg = getDebugInfo()) 2093 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2094 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2095 } 2096 2097 CodeGenFunction::PeepholeProtection 2098 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2099 // At the moment, the only aggressive peephole we do in IR gen 2100 // is trunc(zext) folding, but if we add more, we can easily 2101 // extend this protection. 2102 2103 if (!rvalue.isScalar()) return PeepholeProtection(); 2104 llvm::Value *value = rvalue.getScalarVal(); 2105 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2106 2107 // Just make an extra bitcast. 2108 assert(HaveInsertPoint()); 2109 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2110 Builder.GetInsertBlock()); 2111 2112 PeepholeProtection protection; 2113 protection.Inst = inst; 2114 return protection; 2115 } 2116 2117 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2118 if (!protection.Inst) return; 2119 2120 // In theory, we could try to duplicate the peepholes now, but whatever. 2121 protection.Inst->eraseFromParent(); 2122 } 2123 2124 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2125 QualType Ty, SourceLocation Loc, 2126 SourceLocation AssumptionLoc, 2127 llvm::Value *Alignment, 2128 llvm::Value *OffsetValue) { 2129 llvm::Value *TheCheck; 2130 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2131 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2132 if (SanOpts.has(SanitizerKind::Alignment)) { 2133 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2134 OffsetValue, TheCheck, Assumption); 2135 } 2136 } 2137 2138 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2139 const Expr *E, 2140 SourceLocation AssumptionLoc, 2141 llvm::Value *Alignment, 2142 llvm::Value *OffsetValue) { 2143 if (auto *CE = dyn_cast<CastExpr>(E)) 2144 E = CE->getSubExprAsWritten(); 2145 QualType Ty = E->getType(); 2146 SourceLocation Loc = E->getExprLoc(); 2147 2148 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2149 OffsetValue); 2150 } 2151 2152 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2153 llvm::Value *AnnotatedVal, 2154 StringRef AnnotationStr, 2155 SourceLocation Location) { 2156 llvm::Value *Args[4] = { 2157 AnnotatedVal, 2158 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2159 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2160 CGM.EmitAnnotationLineNo(Location) 2161 }; 2162 return Builder.CreateCall(AnnotationFn, Args); 2163 } 2164 2165 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2166 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2167 // FIXME We create a new bitcast for every annotation because that's what 2168 // llvm-gcc was doing. 2169 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2170 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2171 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2172 I->getAnnotation(), D->getLocation()); 2173 } 2174 2175 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2176 Address Addr) { 2177 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2178 llvm::Value *V = Addr.getPointer(); 2179 llvm::Type *VTy = V->getType(); 2180 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2181 CGM.Int8PtrTy); 2182 2183 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2184 // FIXME Always emit the cast inst so we can differentiate between 2185 // annotation on the first field of a struct and annotation on the struct 2186 // itself. 2187 if (VTy != CGM.Int8PtrTy) 2188 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2189 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2190 V = Builder.CreateBitCast(V, VTy); 2191 } 2192 2193 return Address(V, Addr.getAlignment()); 2194 } 2195 2196 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2197 2198 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2199 : CGF(CGF) { 2200 assert(!CGF->IsSanitizerScope); 2201 CGF->IsSanitizerScope = true; 2202 } 2203 2204 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2205 CGF->IsSanitizerScope = false; 2206 } 2207 2208 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2209 const llvm::Twine &Name, 2210 llvm::BasicBlock *BB, 2211 llvm::BasicBlock::iterator InsertPt) const { 2212 LoopStack.InsertHelper(I); 2213 if (IsSanitizerScope) 2214 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2215 } 2216 2217 void CGBuilderInserter::InsertHelper( 2218 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2219 llvm::BasicBlock::iterator InsertPt) const { 2220 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2221 if (CGF) 2222 CGF->InsertHelper(I, Name, BB, InsertPt); 2223 } 2224 2225 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2226 CodeGenModule &CGM, const FunctionDecl *FD, 2227 std::string &FirstMissing) { 2228 // If there aren't any required features listed then go ahead and return. 2229 if (ReqFeatures.empty()) 2230 return false; 2231 2232 // Now build up the set of caller features and verify that all the required 2233 // features are there. 2234 llvm::StringMap<bool> CallerFeatureMap; 2235 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2236 2237 // If we have at least one of the features in the feature list return 2238 // true, otherwise return false. 2239 return std::all_of( 2240 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2241 SmallVector<StringRef, 1> OrFeatures; 2242 Feature.split(OrFeatures, '|'); 2243 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2244 if (!CallerFeatureMap.lookup(Feature)) { 2245 FirstMissing = Feature.str(); 2246 return false; 2247 } 2248 return true; 2249 }); 2250 }); 2251 } 2252 2253 // Emits an error if we don't have a valid set of target features for the 2254 // called function. 2255 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2256 const FunctionDecl *TargetDecl) { 2257 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2258 } 2259 2260 // Emits an error if we don't have a valid set of target features for the 2261 // called function. 2262 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2263 const FunctionDecl *TargetDecl) { 2264 // Early exit if this is an indirect call. 2265 if (!TargetDecl) 2266 return; 2267 2268 // Get the current enclosing function if it exists. If it doesn't 2269 // we can't check the target features anyhow. 2270 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2271 if (!FD) 2272 return; 2273 2274 // Grab the required features for the call. For a builtin this is listed in 2275 // the td file with the default cpu, for an always_inline function this is any 2276 // listed cpu and any listed features. 2277 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2278 std::string MissingFeature; 2279 if (BuiltinID) { 2280 SmallVector<StringRef, 1> ReqFeatures; 2281 const char *FeatureList = 2282 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2283 // Return if the builtin doesn't have any required features. 2284 if (!FeatureList || StringRef(FeatureList) == "") 2285 return; 2286 StringRef(FeatureList).split(ReqFeatures, ','); 2287 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2288 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2289 << TargetDecl->getDeclName() 2290 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2291 2292 } else if (!TargetDecl->isMultiVersion() && 2293 TargetDecl->hasAttr<TargetAttr>()) { 2294 // Get the required features for the callee. 2295 2296 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2297 ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2298 2299 SmallVector<StringRef, 1> ReqFeatures; 2300 llvm::StringMap<bool> CalleeFeatureMap; 2301 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2302 2303 for (const auto &F : ParsedAttr.Features) { 2304 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2305 ReqFeatures.push_back(StringRef(F).substr(1)); 2306 } 2307 2308 for (const auto &F : CalleeFeatureMap) { 2309 // Only positive features are "required". 2310 if (F.getValue()) 2311 ReqFeatures.push_back(F.getKey()); 2312 } 2313 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2314 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2315 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2316 } 2317 } 2318 2319 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2320 if (!CGM.getCodeGenOpts().SanitizeStats) 2321 return; 2322 2323 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2324 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2325 CGM.getSanStats().create(IRB, SSK); 2326 } 2327 2328 llvm::Value * 2329 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2330 llvm::Value *Condition = nullptr; 2331 2332 if (!RO.Conditions.Architecture.empty()) 2333 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2334 2335 if (!RO.Conditions.Features.empty()) { 2336 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2337 Condition = 2338 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2339 } 2340 return Condition; 2341 } 2342 2343 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2344 llvm::Function *Resolver, 2345 CGBuilderTy &Builder, 2346 llvm::Function *FuncToReturn, 2347 bool SupportsIFunc) { 2348 if (SupportsIFunc) { 2349 Builder.CreateRet(FuncToReturn); 2350 return; 2351 } 2352 2353 llvm::SmallVector<llvm::Value *, 10> Args; 2354 llvm::for_each(Resolver->args(), 2355 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2356 2357 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2358 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2359 2360 if (Resolver->getReturnType()->isVoidTy()) 2361 Builder.CreateRetVoid(); 2362 else 2363 Builder.CreateRet(Result); 2364 } 2365 2366 void CodeGenFunction::EmitMultiVersionResolver( 2367 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2368 assert((getContext().getTargetInfo().getTriple().getArch() == 2369 llvm::Triple::x86 || 2370 getContext().getTargetInfo().getTriple().getArch() == 2371 llvm::Triple::x86_64) && 2372 "Only implemented for x86 targets"); 2373 2374 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2375 2376 // Main function's basic block. 2377 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2378 Builder.SetInsertPoint(CurBlock); 2379 EmitX86CpuInit(); 2380 2381 for (const MultiVersionResolverOption &RO : Options) { 2382 Builder.SetInsertPoint(CurBlock); 2383 llvm::Value *Condition = FormResolverCondition(RO); 2384 2385 // The 'default' or 'generic' case. 2386 if (!Condition) { 2387 assert(&RO == Options.end() - 1 && 2388 "Default or Generic case must be last"); 2389 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2390 SupportsIFunc); 2391 return; 2392 } 2393 2394 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2395 CGBuilderTy RetBuilder(*this, RetBlock); 2396 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2397 SupportsIFunc); 2398 CurBlock = createBasicBlock("resolver_else", Resolver); 2399 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2400 } 2401 2402 // If no generic/default, emit an unreachable. 2403 Builder.SetInsertPoint(CurBlock); 2404 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2405 TrapCall->setDoesNotReturn(); 2406 TrapCall->setDoesNotThrow(); 2407 Builder.CreateUnreachable(); 2408 Builder.ClearInsertionPoint(); 2409 } 2410 2411 // Loc - where the diagnostic will point, where in the source code this 2412 // alignment has failed. 2413 // SecondaryLoc - if present (will be present if sufficiently different from 2414 // Loc), the diagnostic will additionally point a "Note:" to this location. 2415 // It should be the location where the __attribute__((assume_aligned)) 2416 // was written e.g. 2417 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2418 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2419 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2420 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2421 llvm::Instruction *Assumption) { 2422 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2423 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2424 llvm::Intrinsic::getDeclaration( 2425 Builder.GetInsertBlock()->getParent()->getParent(), 2426 llvm::Intrinsic::assume) && 2427 "Assumption should be a call to llvm.assume()."); 2428 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2429 "Assumption should be the last instruction of the basic block, " 2430 "since the basic block is still being generated."); 2431 2432 if (!SanOpts.has(SanitizerKind::Alignment)) 2433 return; 2434 2435 // Don't check pointers to volatile data. The behavior here is implementation- 2436 // defined. 2437 if (Ty->getPointeeType().isVolatileQualified()) 2438 return; 2439 2440 // We need to temorairly remove the assumption so we can insert the 2441 // sanitizer check before it, else the check will be dropped by optimizations. 2442 Assumption->removeFromParent(); 2443 2444 { 2445 SanitizerScope SanScope(this); 2446 2447 if (!OffsetValue) 2448 OffsetValue = Builder.getInt1(0); // no offset. 2449 2450 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2451 EmitCheckSourceLocation(SecondaryLoc), 2452 EmitCheckTypeDescriptor(Ty)}; 2453 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2454 EmitCheckValue(Alignment), 2455 EmitCheckValue(OffsetValue)}; 2456 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2457 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2458 } 2459 2460 // We are now in the (new, empty) "cont" basic block. 2461 // Reintroduce the assumption. 2462 Builder.Insert(Assumption); 2463 // FIXME: Assumption still has it's original basic block as it's Parent. 2464 } 2465 2466 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2467 if (CGDebugInfo *DI = getDebugInfo()) 2468 return DI->SourceLocToDebugLoc(Location); 2469 2470 return llvm::DebugLoc(); 2471 } 2472