1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 47 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 48 OutermostConditional(0), TerminateLandingPad(0), 49 TerminateHandler(0), TrapBB(0) { 50 if (!suppressNewContext) 51 CGM.getCXXABI().getMangleContext().startNewFunction(); 52 53 llvm::FastMathFlags FMF; 54 if (CGM.getLangOpts().FastMath) 55 FMF.setUnsafeAlgebra(); 56 if (CGM.getLangOpts().FiniteMathOnly) { 57 FMF.setNoNaNs(); 58 FMF.setNoInfs(); 59 } 60 Builder.SetFastMathFlags(FMF); 61 } 62 63 CodeGenFunction::~CodeGenFunction() { 64 // If there are any unclaimed block infos, go ahead and destroy them 65 // now. This can happen if IR-gen gets clever and skips evaluating 66 // something. 67 if (FirstBlockInfo) 68 destroyBlockInfos(FirstBlockInfo); 69 } 70 71 72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 73 return CGM.getTypes().ConvertTypeForMem(T); 74 } 75 76 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 77 return CGM.getTypes().ConvertType(T); 78 } 79 80 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 81 switch (type.getCanonicalType()->getTypeClass()) { 82 #define TYPE(name, parent) 83 #define ABSTRACT_TYPE(name, parent) 84 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 85 #define DEPENDENT_TYPE(name, parent) case Type::name: 86 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 87 #include "clang/AST/TypeNodes.def" 88 llvm_unreachable("non-canonical or dependent type in IR-generation"); 89 90 case Type::Builtin: 91 case Type::Pointer: 92 case Type::BlockPointer: 93 case Type::LValueReference: 94 case Type::RValueReference: 95 case Type::MemberPointer: 96 case Type::Vector: 97 case Type::ExtVector: 98 case Type::FunctionProto: 99 case Type::FunctionNoProto: 100 case Type::Enum: 101 case Type::ObjCObjectPointer: 102 return false; 103 104 // Complexes, arrays, records, and Objective-C objects. 105 case Type::Complex: 106 case Type::ConstantArray: 107 case Type::IncompleteArray: 108 case Type::VariableArray: 109 case Type::Record: 110 case Type::ObjCObject: 111 case Type::ObjCInterface: 112 return true; 113 114 // In IRGen, atomic types are just the underlying type 115 case Type::Atomic: 116 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 117 } 118 llvm_unreachable("unknown type kind!"); 119 } 120 121 void CodeGenFunction::EmitReturnBlock() { 122 // For cleanliness, we try to avoid emitting the return block for 123 // simple cases. 124 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 125 126 if (CurBB) { 127 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 128 129 // We have a valid insert point, reuse it if it is empty or there are no 130 // explicit jumps to the return block. 131 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 132 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 133 delete ReturnBlock.getBlock(); 134 } else 135 EmitBlock(ReturnBlock.getBlock()); 136 return; 137 } 138 139 // Otherwise, if the return block is the target of a single direct 140 // branch then we can just put the code in that block instead. This 141 // cleans up functions which started with a unified return block. 142 if (ReturnBlock.getBlock()->hasOneUse()) { 143 llvm::BranchInst *BI = 144 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 145 if (BI && BI->isUnconditional() && 146 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 147 // Reset insertion point, including debug location, and delete the branch. 148 // This is really subtle & only works because the next change in location 149 // will hit the caching in CGDebugInfo::EmitLocation & not override this. 150 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 151 Builder.SetInsertPoint(BI->getParent()); 152 BI->eraseFromParent(); 153 delete ReturnBlock.getBlock(); 154 return; 155 } 156 } 157 158 // FIXME: We are at an unreachable point, there is no reason to emit the block 159 // unless it has uses. However, we still need a place to put the debug 160 // region.end for now. 161 162 EmitBlock(ReturnBlock.getBlock()); 163 } 164 165 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 166 if (!BB) return; 167 if (!BB->use_empty()) 168 return CGF.CurFn->getBasicBlockList().push_back(BB); 169 delete BB; 170 } 171 172 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 173 assert(BreakContinueStack.empty() && 174 "mismatched push/pop in break/continue stack!"); 175 176 if (CGDebugInfo *DI = getDebugInfo()) 177 DI->EmitLocation(Builder, EndLoc); 178 179 // Pop any cleanups that might have been associated with the 180 // parameters. Do this in whatever block we're currently in; it's 181 // important to do this before we enter the return block or return 182 // edges will be *really* confused. 183 if (EHStack.stable_begin() != PrologueCleanupDepth) 184 PopCleanupBlocks(PrologueCleanupDepth); 185 186 // Emit function epilog (to return). 187 EmitReturnBlock(); 188 189 if (ShouldInstrumentFunction()) 190 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 191 192 // Emit debug descriptor for function end. 193 if (CGDebugInfo *DI = getDebugInfo()) { 194 DI->EmitFunctionEnd(Builder); 195 } 196 197 EmitFunctionEpilog(*CurFnInfo); 198 EmitEndEHSpec(CurCodeDecl); 199 200 assert(EHStack.empty() && 201 "did not remove all scopes from cleanup stack!"); 202 203 // If someone did an indirect goto, emit the indirect goto block at the end of 204 // the function. 205 if (IndirectBranch) { 206 EmitBlock(IndirectBranch->getParent()); 207 Builder.ClearInsertionPoint(); 208 } 209 210 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 211 llvm::Instruction *Ptr = AllocaInsertPt; 212 AllocaInsertPt = 0; 213 Ptr->eraseFromParent(); 214 215 // If someone took the address of a label but never did an indirect goto, we 216 // made a zero entry PHI node, which is illegal, zap it now. 217 if (IndirectBranch) { 218 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 219 if (PN->getNumIncomingValues() == 0) { 220 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 221 PN->eraseFromParent(); 222 } 223 } 224 225 EmitIfUsed(*this, EHResumeBlock); 226 EmitIfUsed(*this, TerminateLandingPad); 227 EmitIfUsed(*this, TerminateHandler); 228 EmitIfUsed(*this, UnreachableBlock); 229 230 if (CGM.getCodeGenOpts().EmitDeclMetadata) 231 EmitDeclMetadata(); 232 } 233 234 /// ShouldInstrumentFunction - Return true if the current function should be 235 /// instrumented with __cyg_profile_func_* calls 236 bool CodeGenFunction::ShouldInstrumentFunction() { 237 if (!CGM.getCodeGenOpts().InstrumentFunctions) 238 return false; 239 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 240 return false; 241 return true; 242 } 243 244 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 245 /// instrumentation function with the current function and the call site, if 246 /// function instrumentation is enabled. 247 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 248 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 249 llvm::PointerType *PointerTy = Int8PtrTy; 250 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 251 llvm::FunctionType *FunctionTy = 252 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 253 254 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 255 llvm::CallInst *CallSite = Builder.CreateCall( 256 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 257 llvm::ConstantInt::get(Int32Ty, 0), 258 "callsite"); 259 260 Builder.CreateCall2(F, 261 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 262 CallSite); 263 } 264 265 void CodeGenFunction::EmitMCountInstrumentation() { 266 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 267 268 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 269 Target.getMCountName()); 270 Builder.CreateCall(MCountFn); 271 } 272 273 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 274 // information in the program executable. The argument information stored 275 // includes the argument name, its type, the address and access qualifiers used. 276 // FIXME: Add type, address, and access qualifiers. 277 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 278 CodeGenModule &CGM,llvm::LLVMContext &Context, 279 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 280 281 // Create MDNodes that represents the kernel arg metadata. 282 // Each MDNode is a list in the form of "key", N number of values which is 283 // the same number of values as their are kernel arguments. 284 285 // MDNode for the kernel argument names. 286 SmallVector<llvm::Value*, 8> argNames; 287 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 288 289 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 290 const ParmVarDecl *parm = FD->getParamDecl(i); 291 292 // Get argument name. 293 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 294 295 } 296 // Add MDNode to the list of all metadata. 297 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 298 } 299 300 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 301 llvm::Function *Fn) 302 { 303 if (!FD->hasAttr<OpenCLKernelAttr>()) 304 return; 305 306 llvm::LLVMContext &Context = getLLVMContext(); 307 308 SmallVector <llvm::Value*, 5> kernelMDArgs; 309 kernelMDArgs.push_back(Fn); 310 311 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 312 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 313 314 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 315 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 316 llvm::Value *attrMDArgs[] = { 317 llvm::MDString::get(Context, "work_group_size_hint"), 318 Builder.getInt32(attr->getXDim()), 319 Builder.getInt32(attr->getYDim()), 320 Builder.getInt32(attr->getZDim()) 321 }; 322 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 323 } 324 325 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 326 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 327 llvm::Value *attrMDArgs[] = { 328 llvm::MDString::get(Context, "reqd_work_group_size"), 329 Builder.getInt32(attr->getXDim()), 330 Builder.getInt32(attr->getYDim()), 331 Builder.getInt32(attr->getZDim()) 332 }; 333 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 334 } 335 336 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 337 llvm::NamedMDNode *OpenCLKernelMetadata = 338 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 339 OpenCLKernelMetadata->addOperand(kernelMDNode); 340 } 341 342 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 343 llvm::Function *Fn, 344 const CGFunctionInfo &FnInfo, 345 const FunctionArgList &Args, 346 SourceLocation StartLoc) { 347 const Decl *D = GD.getDecl(); 348 349 DidCallStackSave = false; 350 CurCodeDecl = CurFuncDecl = D; 351 FnRetTy = RetTy; 352 CurFn = Fn; 353 CurFnInfo = &FnInfo; 354 assert(CurFn->isDeclaration() && "Function already has body?"); 355 356 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 357 SanOpts = &SanitizerOptions::Disabled; 358 SanitizePerformTypeCheck = false; 359 } 360 361 // Pass inline keyword to optimizer if it appears explicitly on any 362 // declaration. 363 if (!CGM.getCodeGenOpts().NoInline) 364 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 365 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 366 RE = FD->redecls_end(); RI != RE; ++RI) 367 if (RI->isInlineSpecified()) { 368 Fn->addFnAttr(llvm::Attribute::InlineHint); 369 break; 370 } 371 372 if (getLangOpts().OpenCL) { 373 // Add metadata for a kernel function. 374 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 375 EmitOpenCLKernelMetadata(FD, Fn); 376 } 377 378 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 379 380 // Create a marker to make it easy to insert allocas into the entryblock 381 // later. Don't create this with the builder, because we don't want it 382 // folded. 383 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 384 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 385 if (Builder.isNamePreserving()) 386 AllocaInsertPt->setName("allocapt"); 387 388 ReturnBlock = getJumpDestInCurrentScope("return"); 389 390 Builder.SetInsertPoint(EntryBB); 391 392 // Emit subprogram debug descriptor. 393 if (CGDebugInfo *DI = getDebugInfo()) { 394 unsigned NumArgs = 0; 395 QualType *ArgsArray = new QualType[Args.size()]; 396 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 397 i != e; ++i) { 398 ArgsArray[NumArgs++] = (*i)->getType(); 399 } 400 401 QualType FnType = 402 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 403 FunctionProtoType::ExtProtoInfo()); 404 405 delete[] ArgsArray; 406 407 DI->setLocation(StartLoc); 408 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 409 } 410 411 if (ShouldInstrumentFunction()) 412 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 413 414 if (CGM.getCodeGenOpts().InstrumentForProfiling) 415 EmitMCountInstrumentation(); 416 417 if (RetTy->isVoidType()) { 418 // Void type; nothing to return. 419 ReturnValue = 0; 420 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 421 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 422 // Indirect aggregate return; emit returned value directly into sret slot. 423 // This reduces code size, and affects correctness in C++. 424 ReturnValue = CurFn->arg_begin(); 425 } else { 426 ReturnValue = CreateIRTemp(RetTy, "retval"); 427 428 // Tell the epilog emitter to autorelease the result. We do this 429 // now so that various specialized functions can suppress it 430 // during their IR-generation. 431 if (getLangOpts().ObjCAutoRefCount && 432 !CurFnInfo->isReturnsRetained() && 433 RetTy->isObjCRetainableType()) 434 AutoreleaseResult = true; 435 } 436 437 EmitStartEHSpec(CurCodeDecl); 438 439 PrologueCleanupDepth = EHStack.stable_begin(); 440 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 441 442 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 443 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 444 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 445 if (MD->getParent()->isLambda() && 446 MD->getOverloadedOperator() == OO_Call) { 447 // We're in a lambda; figure out the captures. 448 MD->getParent()->getCaptureFields(LambdaCaptureFields, 449 LambdaThisCaptureField); 450 if (LambdaThisCaptureField) { 451 // If this lambda captures this, load it. 452 QualType LambdaTagType = 453 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 454 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 455 LambdaTagType); 456 LValue ThisLValue = EmitLValueForField(LambdaLV, 457 LambdaThisCaptureField); 458 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 459 } 460 } else { 461 // Not in a lambda; just use 'this' from the method. 462 // FIXME: Should we generate a new load for each use of 'this'? The 463 // fast register allocator would be happier... 464 CXXThisValue = CXXABIThisValue; 465 } 466 } 467 468 // If any of the arguments have a variably modified type, make sure to 469 // emit the type size. 470 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 471 i != e; ++i) { 472 const VarDecl *VD = *i; 473 474 // Dig out the type as written from ParmVarDecls; it's unclear whether 475 // the standard (C99 6.9.1p10) requires this, but we're following the 476 // precedent set by gcc. 477 QualType Ty; 478 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 479 Ty = PVD->getOriginalType(); 480 else 481 Ty = VD->getType(); 482 483 if (Ty->isVariablyModifiedType()) 484 EmitVariablyModifiedType(Ty); 485 } 486 // Emit a location at the end of the prologue. 487 if (CGDebugInfo *DI = getDebugInfo()) 488 DI->EmitLocation(Builder, StartLoc); 489 } 490 491 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 492 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 493 assert(FD->getBody()); 494 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 495 EmitCompoundStmtWithoutScope(*S); 496 else 497 EmitStmt(FD->getBody()); 498 } 499 500 /// Tries to mark the given function nounwind based on the 501 /// non-existence of any throwing calls within it. We believe this is 502 /// lightweight enough to do at -O0. 503 static void TryMarkNoThrow(llvm::Function *F) { 504 // LLVM treats 'nounwind' on a function as part of the type, so we 505 // can't do this on functions that can be overwritten. 506 if (F->mayBeOverridden()) return; 507 508 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 509 for (llvm::BasicBlock::iterator 510 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 511 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 512 if (!Call->doesNotThrow()) 513 return; 514 } else if (isa<llvm::ResumeInst>(&*BI)) { 515 return; 516 } 517 F->setDoesNotThrow(); 518 } 519 520 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 521 const CGFunctionInfo &FnInfo) { 522 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 523 524 // Check if we should generate debug info for this function. 525 if (!FD->hasAttr<NoDebugAttr>()) 526 maybeInitializeDebugInfo(); 527 528 FunctionArgList Args; 529 QualType ResTy = FD->getResultType(); 530 531 CurGD = GD; 532 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 533 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 534 535 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 536 Args.push_back(FD->getParamDecl(i)); 537 538 SourceRange BodyRange; 539 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 540 541 // Emit the standard function prologue. 542 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 543 544 // Generate the body of the function. 545 if (isa<CXXDestructorDecl>(FD)) 546 EmitDestructorBody(Args); 547 else if (isa<CXXConstructorDecl>(FD)) 548 EmitConstructorBody(Args); 549 else if (getLangOpts().CUDA && 550 !CGM.getCodeGenOpts().CUDAIsDevice && 551 FD->hasAttr<CUDAGlobalAttr>()) 552 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 553 else if (isa<CXXConversionDecl>(FD) && 554 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 555 // The lambda conversion to block pointer is special; the semantics can't be 556 // expressed in the AST, so IRGen needs to special-case it. 557 EmitLambdaToBlockPointerBody(Args); 558 } else if (isa<CXXMethodDecl>(FD) && 559 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 560 // The lambda "__invoke" function is special, because it forwards or 561 // clones the body of the function call operator (but is actually static). 562 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 563 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 564 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 565 // Implicit copy-assignment gets the same special treatment as implicit 566 // copy-constructors. 567 emitImplicitAssignmentOperatorBody(Args); 568 } 569 else 570 EmitFunctionBody(Args); 571 572 // C++11 [stmt.return]p2: 573 // Flowing off the end of a function [...] results in undefined behavior in 574 // a value-returning function. 575 // C11 6.9.1p12: 576 // If the '}' that terminates a function is reached, and the value of the 577 // function call is used by the caller, the behavior is undefined. 578 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 579 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 580 if (SanOpts->Return) 581 EmitCheck(Builder.getFalse(), "missing_return", 582 EmitCheckSourceLocation(FD->getLocation()), 583 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 584 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 585 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 586 Builder.CreateUnreachable(); 587 Builder.ClearInsertionPoint(); 588 } 589 590 // Emit the standard function epilogue. 591 FinishFunction(BodyRange.getEnd()); 592 593 // If we haven't marked the function nothrow through other means, do 594 // a quick pass now to see if we can. 595 if (!CurFn->doesNotThrow()) 596 TryMarkNoThrow(CurFn); 597 } 598 599 /// ContainsLabel - Return true if the statement contains a label in it. If 600 /// this statement is not executed normally, it not containing a label means 601 /// that we can just remove the code. 602 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 603 // Null statement, not a label! 604 if (S == 0) return false; 605 606 // If this is a label, we have to emit the code, consider something like: 607 // if (0) { ... foo: bar(); } goto foo; 608 // 609 // TODO: If anyone cared, we could track __label__'s, since we know that you 610 // can't jump to one from outside their declared region. 611 if (isa<LabelStmt>(S)) 612 return true; 613 614 // If this is a case/default statement, and we haven't seen a switch, we have 615 // to emit the code. 616 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 617 return true; 618 619 // If this is a switch statement, we want to ignore cases below it. 620 if (isa<SwitchStmt>(S)) 621 IgnoreCaseStmts = true; 622 623 // Scan subexpressions for verboten labels. 624 for (Stmt::const_child_range I = S->children(); I; ++I) 625 if (ContainsLabel(*I, IgnoreCaseStmts)) 626 return true; 627 628 return false; 629 } 630 631 /// containsBreak - Return true if the statement contains a break out of it. 632 /// If the statement (recursively) contains a switch or loop with a break 633 /// inside of it, this is fine. 634 bool CodeGenFunction::containsBreak(const Stmt *S) { 635 // Null statement, not a label! 636 if (S == 0) return false; 637 638 // If this is a switch or loop that defines its own break scope, then we can 639 // include it and anything inside of it. 640 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 641 isa<ForStmt>(S)) 642 return false; 643 644 if (isa<BreakStmt>(S)) 645 return true; 646 647 // Scan subexpressions for verboten breaks. 648 for (Stmt::const_child_range I = S->children(); I; ++I) 649 if (containsBreak(*I)) 650 return true; 651 652 return false; 653 } 654 655 656 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 657 /// to a constant, or if it does but contains a label, return false. If it 658 /// constant folds return true and set the boolean result in Result. 659 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 660 bool &ResultBool) { 661 llvm::APSInt ResultInt; 662 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 663 return false; 664 665 ResultBool = ResultInt.getBoolValue(); 666 return true; 667 } 668 669 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 670 /// to a constant, or if it does but contains a label, return false. If it 671 /// constant folds return true and set the folded value. 672 bool CodeGenFunction:: 673 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 674 // FIXME: Rename and handle conversion of other evaluatable things 675 // to bool. 676 llvm::APSInt Int; 677 if (!Cond->EvaluateAsInt(Int, getContext())) 678 return false; // Not foldable, not integer or not fully evaluatable. 679 680 if (CodeGenFunction::ContainsLabel(Cond)) 681 return false; // Contains a label. 682 683 ResultInt = Int; 684 return true; 685 } 686 687 688 689 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 690 /// statement) to the specified blocks. Based on the condition, this might try 691 /// to simplify the codegen of the conditional based on the branch. 692 /// 693 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 694 llvm::BasicBlock *TrueBlock, 695 llvm::BasicBlock *FalseBlock) { 696 Cond = Cond->IgnoreParens(); 697 698 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 699 // Handle X && Y in a condition. 700 if (CondBOp->getOpcode() == BO_LAnd) { 701 // If we have "1 && X", simplify the code. "0 && X" would have constant 702 // folded if the case was simple enough. 703 bool ConstantBool = false; 704 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 705 ConstantBool) { 706 // br(1 && X) -> br(X). 707 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 708 } 709 710 // If we have "X && 1", simplify the code to use an uncond branch. 711 // "X && 0" would have been constant folded to 0. 712 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 713 ConstantBool) { 714 // br(X && 1) -> br(X). 715 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 716 } 717 718 // Emit the LHS as a conditional. If the LHS conditional is false, we 719 // want to jump to the FalseBlock. 720 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 721 722 ConditionalEvaluation eval(*this); 723 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 724 EmitBlock(LHSTrue); 725 726 // Any temporaries created here are conditional. 727 eval.begin(*this); 728 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 729 eval.end(*this); 730 731 return; 732 } 733 734 if (CondBOp->getOpcode() == BO_LOr) { 735 // If we have "0 || X", simplify the code. "1 || X" would have constant 736 // folded if the case was simple enough. 737 bool ConstantBool = false; 738 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 739 !ConstantBool) { 740 // br(0 || X) -> br(X). 741 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 742 } 743 744 // If we have "X || 0", simplify the code to use an uncond branch. 745 // "X || 1" would have been constant folded to 1. 746 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 747 !ConstantBool) { 748 // br(X || 0) -> br(X). 749 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 750 } 751 752 // Emit the LHS as a conditional. If the LHS conditional is true, we 753 // want to jump to the TrueBlock. 754 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 755 756 ConditionalEvaluation eval(*this); 757 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 758 EmitBlock(LHSFalse); 759 760 // Any temporaries created here are conditional. 761 eval.begin(*this); 762 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 763 eval.end(*this); 764 765 return; 766 } 767 } 768 769 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 770 // br(!x, t, f) -> br(x, f, t) 771 if (CondUOp->getOpcode() == UO_LNot) 772 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 773 } 774 775 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 776 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 777 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 778 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 779 780 ConditionalEvaluation cond(*this); 781 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 782 783 cond.begin(*this); 784 EmitBlock(LHSBlock); 785 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 786 cond.end(*this); 787 788 cond.begin(*this); 789 EmitBlock(RHSBlock); 790 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 791 cond.end(*this); 792 793 return; 794 } 795 796 // Emit the code with the fully general case. 797 llvm::Value *CondV = EvaluateExprAsBool(Cond); 798 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 799 } 800 801 /// ErrorUnsupported - Print out an error that codegen doesn't support the 802 /// specified stmt yet. 803 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 804 bool OmitOnError) { 805 CGM.ErrorUnsupported(S, Type, OmitOnError); 806 } 807 808 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 809 /// variable-length array whose elements have a non-zero bit-pattern. 810 /// 811 /// \param baseType the inner-most element type of the array 812 /// \param src - a char* pointing to the bit-pattern for a single 813 /// base element of the array 814 /// \param sizeInChars - the total size of the VLA, in chars 815 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 816 llvm::Value *dest, llvm::Value *src, 817 llvm::Value *sizeInChars) { 818 std::pair<CharUnits,CharUnits> baseSizeAndAlign 819 = CGF.getContext().getTypeInfoInChars(baseType); 820 821 CGBuilderTy &Builder = CGF.Builder; 822 823 llvm::Value *baseSizeInChars 824 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 825 826 llvm::Type *i8p = Builder.getInt8PtrTy(); 827 828 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 829 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 830 831 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 832 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 833 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 834 835 // Make a loop over the VLA. C99 guarantees that the VLA element 836 // count must be nonzero. 837 CGF.EmitBlock(loopBB); 838 839 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 840 cur->addIncoming(begin, originBB); 841 842 // memcpy the individual element bit-pattern. 843 Builder.CreateMemCpy(cur, src, baseSizeInChars, 844 baseSizeAndAlign.second.getQuantity(), 845 /*volatile*/ false); 846 847 // Go to the next element. 848 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 849 850 // Leave if that's the end of the VLA. 851 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 852 Builder.CreateCondBr(done, contBB, loopBB); 853 cur->addIncoming(next, loopBB); 854 855 CGF.EmitBlock(contBB); 856 } 857 858 void 859 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 860 // Ignore empty classes in C++. 861 if (getLangOpts().CPlusPlus) { 862 if (const RecordType *RT = Ty->getAs<RecordType>()) { 863 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 864 return; 865 } 866 } 867 868 // Cast the dest ptr to the appropriate i8 pointer type. 869 unsigned DestAS = 870 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 871 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 872 if (DestPtr->getType() != BP) 873 DestPtr = Builder.CreateBitCast(DestPtr, BP); 874 875 // Get size and alignment info for this aggregate. 876 std::pair<CharUnits, CharUnits> TypeInfo = 877 getContext().getTypeInfoInChars(Ty); 878 CharUnits Size = TypeInfo.first; 879 CharUnits Align = TypeInfo.second; 880 881 llvm::Value *SizeVal; 882 const VariableArrayType *vla; 883 884 // Don't bother emitting a zero-byte memset. 885 if (Size.isZero()) { 886 // But note that getTypeInfo returns 0 for a VLA. 887 if (const VariableArrayType *vlaType = 888 dyn_cast_or_null<VariableArrayType>( 889 getContext().getAsArrayType(Ty))) { 890 QualType eltType; 891 llvm::Value *numElts; 892 llvm::tie(numElts, eltType) = getVLASize(vlaType); 893 894 SizeVal = numElts; 895 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 896 if (!eltSize.isOne()) 897 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 898 vla = vlaType; 899 } else { 900 return; 901 } 902 } else { 903 SizeVal = CGM.getSize(Size); 904 vla = 0; 905 } 906 907 // If the type contains a pointer to data member we can't memset it to zero. 908 // Instead, create a null constant and copy it to the destination. 909 // TODO: there are other patterns besides zero that we can usefully memset, 910 // like -1, which happens to be the pattern used by member-pointers. 911 if (!CGM.getTypes().isZeroInitializable(Ty)) { 912 // For a VLA, emit a single element, then splat that over the VLA. 913 if (vla) Ty = getContext().getBaseElementType(vla); 914 915 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 916 917 llvm::GlobalVariable *NullVariable = 918 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 919 /*isConstant=*/true, 920 llvm::GlobalVariable::PrivateLinkage, 921 NullConstant, Twine()); 922 llvm::Value *SrcPtr = 923 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 924 925 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 926 927 // Get and call the appropriate llvm.memcpy overload. 928 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 929 return; 930 } 931 932 // Otherwise, just memset the whole thing to zero. This is legal 933 // because in LLVM, all default initializers (other than the ones we just 934 // handled above) are guaranteed to have a bit pattern of all zeros. 935 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 936 Align.getQuantity(), false); 937 } 938 939 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 940 // Make sure that there is a block for the indirect goto. 941 if (IndirectBranch == 0) 942 GetIndirectGotoBlock(); 943 944 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 945 946 // Make sure the indirect branch includes all of the address-taken blocks. 947 IndirectBranch->addDestination(BB); 948 return llvm::BlockAddress::get(CurFn, BB); 949 } 950 951 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 952 // If we already made the indirect branch for indirect goto, return its block. 953 if (IndirectBranch) return IndirectBranch->getParent(); 954 955 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 956 957 // Create the PHI node that indirect gotos will add entries to. 958 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 959 "indirect.goto.dest"); 960 961 // Create the indirect branch instruction. 962 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 963 return IndirectBranch->getParent(); 964 } 965 966 /// Computes the length of an array in elements, as well as the base 967 /// element type and a properly-typed first element pointer. 968 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 969 QualType &baseType, 970 llvm::Value *&addr) { 971 const ArrayType *arrayType = origArrayType; 972 973 // If it's a VLA, we have to load the stored size. Note that 974 // this is the size of the VLA in bytes, not its size in elements. 975 llvm::Value *numVLAElements = 0; 976 if (isa<VariableArrayType>(arrayType)) { 977 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 978 979 // Walk into all VLAs. This doesn't require changes to addr, 980 // which has type T* where T is the first non-VLA element type. 981 do { 982 QualType elementType = arrayType->getElementType(); 983 arrayType = getContext().getAsArrayType(elementType); 984 985 // If we only have VLA components, 'addr' requires no adjustment. 986 if (!arrayType) { 987 baseType = elementType; 988 return numVLAElements; 989 } 990 } while (isa<VariableArrayType>(arrayType)); 991 992 // We get out here only if we find a constant array type 993 // inside the VLA. 994 } 995 996 // We have some number of constant-length arrays, so addr should 997 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 998 // down to the first element of addr. 999 SmallVector<llvm::Value*, 8> gepIndices; 1000 1001 // GEP down to the array type. 1002 llvm::ConstantInt *zero = Builder.getInt32(0); 1003 gepIndices.push_back(zero); 1004 1005 uint64_t countFromCLAs = 1; 1006 QualType eltType; 1007 1008 llvm::ArrayType *llvmArrayType = 1009 dyn_cast<llvm::ArrayType>( 1010 cast<llvm::PointerType>(addr->getType())->getElementType()); 1011 while (llvmArrayType) { 1012 assert(isa<ConstantArrayType>(arrayType)); 1013 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1014 == llvmArrayType->getNumElements()); 1015 1016 gepIndices.push_back(zero); 1017 countFromCLAs *= llvmArrayType->getNumElements(); 1018 eltType = arrayType->getElementType(); 1019 1020 llvmArrayType = 1021 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1022 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1023 assert((!llvmArrayType || arrayType) && 1024 "LLVM and Clang types are out-of-synch"); 1025 } 1026 1027 if (arrayType) { 1028 // From this point onwards, the Clang array type has been emitted 1029 // as some other type (probably a packed struct). Compute the array 1030 // size, and just emit the 'begin' expression as a bitcast. 1031 while (arrayType) { 1032 countFromCLAs *= 1033 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1034 eltType = arrayType->getElementType(); 1035 arrayType = getContext().getAsArrayType(eltType); 1036 } 1037 1038 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1039 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1040 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1041 } else { 1042 // Create the actual GEP. 1043 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1044 } 1045 1046 baseType = eltType; 1047 1048 llvm::Value *numElements 1049 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1050 1051 // If we had any VLA dimensions, factor them in. 1052 if (numVLAElements) 1053 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1054 1055 return numElements; 1056 } 1057 1058 std::pair<llvm::Value*, QualType> 1059 CodeGenFunction::getVLASize(QualType type) { 1060 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1061 assert(vla && "type was not a variable array type!"); 1062 return getVLASize(vla); 1063 } 1064 1065 std::pair<llvm::Value*, QualType> 1066 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1067 // The number of elements so far; always size_t. 1068 llvm::Value *numElements = 0; 1069 1070 QualType elementType; 1071 do { 1072 elementType = type->getElementType(); 1073 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1074 assert(vlaSize && "no size for VLA!"); 1075 assert(vlaSize->getType() == SizeTy); 1076 1077 if (!numElements) { 1078 numElements = vlaSize; 1079 } else { 1080 // It's undefined behavior if this wraps around, so mark it that way. 1081 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1082 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1083 } 1084 } while ((type = getContext().getAsVariableArrayType(elementType))); 1085 1086 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1087 } 1088 1089 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1090 assert(type->isVariablyModifiedType() && 1091 "Must pass variably modified type to EmitVLASizes!"); 1092 1093 EnsureInsertPoint(); 1094 1095 // We're going to walk down into the type and look for VLA 1096 // expressions. 1097 do { 1098 assert(type->isVariablyModifiedType()); 1099 1100 const Type *ty = type.getTypePtr(); 1101 switch (ty->getTypeClass()) { 1102 1103 #define TYPE(Class, Base) 1104 #define ABSTRACT_TYPE(Class, Base) 1105 #define NON_CANONICAL_TYPE(Class, Base) 1106 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1107 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1108 #include "clang/AST/TypeNodes.def" 1109 llvm_unreachable("unexpected dependent type!"); 1110 1111 // These types are never variably-modified. 1112 case Type::Builtin: 1113 case Type::Complex: 1114 case Type::Vector: 1115 case Type::ExtVector: 1116 case Type::Record: 1117 case Type::Enum: 1118 case Type::Elaborated: 1119 case Type::TemplateSpecialization: 1120 case Type::ObjCObject: 1121 case Type::ObjCInterface: 1122 case Type::ObjCObjectPointer: 1123 llvm_unreachable("type class is never variably-modified!"); 1124 1125 case Type::Pointer: 1126 type = cast<PointerType>(ty)->getPointeeType(); 1127 break; 1128 1129 case Type::BlockPointer: 1130 type = cast<BlockPointerType>(ty)->getPointeeType(); 1131 break; 1132 1133 case Type::LValueReference: 1134 case Type::RValueReference: 1135 type = cast<ReferenceType>(ty)->getPointeeType(); 1136 break; 1137 1138 case Type::MemberPointer: 1139 type = cast<MemberPointerType>(ty)->getPointeeType(); 1140 break; 1141 1142 case Type::ConstantArray: 1143 case Type::IncompleteArray: 1144 // Losing element qualification here is fine. 1145 type = cast<ArrayType>(ty)->getElementType(); 1146 break; 1147 1148 case Type::VariableArray: { 1149 // Losing element qualification here is fine. 1150 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1151 1152 // Unknown size indication requires no size computation. 1153 // Otherwise, evaluate and record it. 1154 if (const Expr *size = vat->getSizeExpr()) { 1155 // It's possible that we might have emitted this already, 1156 // e.g. with a typedef and a pointer to it. 1157 llvm::Value *&entry = VLASizeMap[size]; 1158 if (!entry) { 1159 llvm::Value *Size = EmitScalarExpr(size); 1160 1161 // C11 6.7.6.2p5: 1162 // If the size is an expression that is not an integer constant 1163 // expression [...] each time it is evaluated it shall have a value 1164 // greater than zero. 1165 if (SanOpts->VLABound && 1166 size->getType()->isSignedIntegerType()) { 1167 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1168 llvm::Constant *StaticArgs[] = { 1169 EmitCheckSourceLocation(size->getLocStart()), 1170 EmitCheckTypeDescriptor(size->getType()) 1171 }; 1172 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1173 "vla_bound_not_positive", StaticArgs, Size, 1174 CRK_Recoverable); 1175 } 1176 1177 // Always zexting here would be wrong if it weren't 1178 // undefined behavior to have a negative bound. 1179 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1180 } 1181 } 1182 type = vat->getElementType(); 1183 break; 1184 } 1185 1186 case Type::FunctionProto: 1187 case Type::FunctionNoProto: 1188 type = cast<FunctionType>(ty)->getResultType(); 1189 break; 1190 1191 case Type::Paren: 1192 case Type::TypeOf: 1193 case Type::UnaryTransform: 1194 case Type::Attributed: 1195 case Type::SubstTemplateTypeParm: 1196 // Keep walking after single level desugaring. 1197 type = type.getSingleStepDesugaredType(getContext()); 1198 break; 1199 1200 case Type::Typedef: 1201 case Type::Decltype: 1202 case Type::Auto: 1203 // Stop walking: nothing to do. 1204 return; 1205 1206 case Type::TypeOfExpr: 1207 // Stop walking: emit typeof expression. 1208 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1209 return; 1210 1211 case Type::Atomic: 1212 type = cast<AtomicType>(ty)->getValueType(); 1213 break; 1214 } 1215 } while (type->isVariablyModifiedType()); 1216 } 1217 1218 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1219 if (getContext().getBuiltinVaListType()->isArrayType()) 1220 return EmitScalarExpr(E); 1221 return EmitLValue(E).getAddress(); 1222 } 1223 1224 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1225 llvm::Constant *Init) { 1226 assert (Init && "Invalid DeclRefExpr initializer!"); 1227 if (CGDebugInfo *Dbg = getDebugInfo()) 1228 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1229 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1230 } 1231 1232 CodeGenFunction::PeepholeProtection 1233 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1234 // At the moment, the only aggressive peephole we do in IR gen 1235 // is trunc(zext) folding, but if we add more, we can easily 1236 // extend this protection. 1237 1238 if (!rvalue.isScalar()) return PeepholeProtection(); 1239 llvm::Value *value = rvalue.getScalarVal(); 1240 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1241 1242 // Just make an extra bitcast. 1243 assert(HaveInsertPoint()); 1244 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1245 Builder.GetInsertBlock()); 1246 1247 PeepholeProtection protection; 1248 protection.Inst = inst; 1249 return protection; 1250 } 1251 1252 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1253 if (!protection.Inst) return; 1254 1255 // In theory, we could try to duplicate the peepholes now, but whatever. 1256 protection.Inst->eraseFromParent(); 1257 } 1258 1259 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1260 llvm::Value *AnnotatedVal, 1261 StringRef AnnotationStr, 1262 SourceLocation Location) { 1263 llvm::Value *Args[4] = { 1264 AnnotatedVal, 1265 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1266 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1267 CGM.EmitAnnotationLineNo(Location) 1268 }; 1269 return Builder.CreateCall(AnnotationFn, Args); 1270 } 1271 1272 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1273 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1274 // FIXME We create a new bitcast for every annotation because that's what 1275 // llvm-gcc was doing. 1276 for (specific_attr_iterator<AnnotateAttr> 1277 ai = D->specific_attr_begin<AnnotateAttr>(), 1278 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1279 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1280 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1281 (*ai)->getAnnotation(), D->getLocation()); 1282 } 1283 1284 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1285 llvm::Value *V) { 1286 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1287 llvm::Type *VTy = V->getType(); 1288 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1289 CGM.Int8PtrTy); 1290 1291 for (specific_attr_iterator<AnnotateAttr> 1292 ai = D->specific_attr_begin<AnnotateAttr>(), 1293 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1294 // FIXME Always emit the cast inst so we can differentiate between 1295 // annotation on the first field of a struct and annotation on the struct 1296 // itself. 1297 if (VTy != CGM.Int8PtrTy) 1298 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1299 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1300 V = Builder.CreateBitCast(V, VTy); 1301 } 1302 1303 return V; 1304 } 1305