1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   SetFastMathFlags(FPOptions(CGM.getLangOpts()));
75   SetFPModel();
76 }
77 
78 CodeGenFunction::~CodeGenFunction() {
79   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
80 
81   // If there are any unclaimed block infos, go ahead and destroy them
82   // now.  This can happen if IR-gen gets clever and skips evaluating
83   // something.
84   if (FirstBlockInfo)
85     destroyBlockInfos(FirstBlockInfo);
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
96     OMPBuilder->finalize();
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFPModel() {
113   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114   auto fpExceptionBehavior = ToConstrainedExceptMD(
115                                getLangOpts().getFPExceptionMode());
116 
117   Builder.setDefaultConstrainedRounding(RM);
118   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120                              RM != llvm::RoundingMode::NearestTiesToEven);
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.allowAssociativeMath());
126   FMF.setNoNaNs(FPFeatures.noHonorNaNs());
127   FMF.setNoInfs(FPFeatures.noHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.noSignedZeros());
129   FMF.setAllowReciprocal(FPFeatures.allowReciprocalMath());
130   FMF.setApproxFunc(FPFeatures.allowApproximateFunctions());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
136   LValueBaseInfo BaseInfo;
137   TBAAAccessInfo TBAAInfo;
138   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
139   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
140                           TBAAInfo);
141 }
142 
143 /// Given a value of type T* that may not be to a complete object,
144 /// construct an l-value with the natural pointee alignment of T.
145 LValue
146 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
147   LValueBaseInfo BaseInfo;
148   TBAAAccessInfo TBAAInfo;
149   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
150                                                 /* forPointeeType= */ true);
151   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
152 }
153 
154 
155 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
156   return CGM.getTypes().ConvertTypeForMem(T);
157 }
158 
159 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
160   return CGM.getTypes().ConvertType(T);
161 }
162 
163 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
164   type = type.getCanonicalType();
165   while (true) {
166     switch (type->getTypeClass()) {
167 #define TYPE(name, parent)
168 #define ABSTRACT_TYPE(name, parent)
169 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
170 #define DEPENDENT_TYPE(name, parent) case Type::name:
171 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
172 #include "clang/AST/TypeNodes.inc"
173       llvm_unreachable("non-canonical or dependent type in IR-generation");
174 
175     case Type::Auto:
176     case Type::DeducedTemplateSpecialization:
177       llvm_unreachable("undeduced type in IR-generation");
178 
179     // Various scalar types.
180     case Type::Builtin:
181     case Type::Pointer:
182     case Type::BlockPointer:
183     case Type::LValueReference:
184     case Type::RValueReference:
185     case Type::MemberPointer:
186     case Type::Vector:
187     case Type::ExtVector:
188     case Type::ConstantMatrix:
189     case Type::FunctionProto:
190     case Type::FunctionNoProto:
191     case Type::Enum:
192     case Type::ObjCObjectPointer:
193     case Type::Pipe:
194     case Type::ExtInt:
195       return TEK_Scalar;
196 
197     // Complexes.
198     case Type::Complex:
199       return TEK_Complex;
200 
201     // Arrays, records, and Objective-C objects.
202     case Type::ConstantArray:
203     case Type::IncompleteArray:
204     case Type::VariableArray:
205     case Type::Record:
206     case Type::ObjCObject:
207     case Type::ObjCInterface:
208       return TEK_Aggregate;
209 
210     // We operate on atomic values according to their underlying type.
211     case Type::Atomic:
212       type = cast<AtomicType>(type)->getValueType();
213       continue;
214     }
215     llvm_unreachable("unknown type kind!");
216   }
217 }
218 
219 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
220   // For cleanliness, we try to avoid emitting the return block for
221   // simple cases.
222   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
223 
224   if (CurBB) {
225     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
226 
227     // We have a valid insert point, reuse it if it is empty or there are no
228     // explicit jumps to the return block.
229     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
230       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
231       delete ReturnBlock.getBlock();
232       ReturnBlock = JumpDest();
233     } else
234       EmitBlock(ReturnBlock.getBlock());
235     return llvm::DebugLoc();
236   }
237 
238   // Otherwise, if the return block is the target of a single direct
239   // branch then we can just put the code in that block instead. This
240   // cleans up functions which started with a unified return block.
241   if (ReturnBlock.getBlock()->hasOneUse()) {
242     llvm::BranchInst *BI =
243       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
244     if (BI && BI->isUnconditional() &&
245         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
246       // Record/return the DebugLoc of the simple 'return' expression to be used
247       // later by the actual 'ret' instruction.
248       llvm::DebugLoc Loc = BI->getDebugLoc();
249       Builder.SetInsertPoint(BI->getParent());
250       BI->eraseFromParent();
251       delete ReturnBlock.getBlock();
252       ReturnBlock = JumpDest();
253       return Loc;
254     }
255   }
256 
257   // FIXME: We are at an unreachable point, there is no reason to emit the block
258   // unless it has uses. However, we still need a place to put the debug
259   // region.end for now.
260 
261   EmitBlock(ReturnBlock.getBlock());
262   return llvm::DebugLoc();
263 }
264 
265 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
266   if (!BB) return;
267   if (!BB->use_empty())
268     return CGF.CurFn->getBasicBlockList().push_back(BB);
269   delete BB;
270 }
271 
272 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
273   assert(BreakContinueStack.empty() &&
274          "mismatched push/pop in break/continue stack!");
275 
276   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
277     && NumSimpleReturnExprs == NumReturnExprs
278     && ReturnBlock.getBlock()->use_empty();
279   // Usually the return expression is evaluated before the cleanup
280   // code.  If the function contains only a simple return statement,
281   // such as a constant, the location before the cleanup code becomes
282   // the last useful breakpoint in the function, because the simple
283   // return expression will be evaluated after the cleanup code. To be
284   // safe, set the debug location for cleanup code to the location of
285   // the return statement.  Otherwise the cleanup code should be at the
286   // end of the function's lexical scope.
287   //
288   // If there are multiple branches to the return block, the branch
289   // instructions will get the location of the return statements and
290   // all will be fine.
291   if (CGDebugInfo *DI = getDebugInfo()) {
292     if (OnlySimpleReturnStmts)
293       DI->EmitLocation(Builder, LastStopPoint);
294     else
295       DI->EmitLocation(Builder, EndLoc);
296   }
297 
298   // Pop any cleanups that might have been associated with the
299   // parameters.  Do this in whatever block we're currently in; it's
300   // important to do this before we enter the return block or return
301   // edges will be *really* confused.
302   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
303   bool HasOnlyLifetimeMarkers =
304       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
305   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
306   if (HasCleanups) {
307     // Make sure the line table doesn't jump back into the body for
308     // the ret after it's been at EndLoc.
309     Optional<ApplyDebugLocation> AL;
310     if (CGDebugInfo *DI = getDebugInfo()) {
311       if (OnlySimpleReturnStmts)
312         DI->EmitLocation(Builder, EndLoc);
313       else
314         // We may not have a valid end location. Try to apply it anyway, and
315         // fall back to an artificial location if needed.
316         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
317     }
318 
319     PopCleanupBlocks(PrologueCleanupDepth);
320   }
321 
322   // Emit function epilog (to return).
323   llvm::DebugLoc Loc = EmitReturnBlock();
324 
325   if (ShouldInstrumentFunction()) {
326     if (CGM.getCodeGenOpts().InstrumentFunctions)
327       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
328     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
329       CurFn->addFnAttr("instrument-function-exit-inlined",
330                        "__cyg_profile_func_exit");
331   }
332 
333   // Emit debug descriptor for function end.
334   if (CGDebugInfo *DI = getDebugInfo())
335     DI->EmitFunctionEnd(Builder, CurFn);
336 
337   // Reset the debug location to that of the simple 'return' expression, if any
338   // rather than that of the end of the function's scope '}'.
339   ApplyDebugLocation AL(*this, Loc);
340   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
341   EmitEndEHSpec(CurCodeDecl);
342 
343   assert(EHStack.empty() &&
344          "did not remove all scopes from cleanup stack!");
345 
346   // If someone did an indirect goto, emit the indirect goto block at the end of
347   // the function.
348   if (IndirectBranch) {
349     EmitBlock(IndirectBranch->getParent());
350     Builder.ClearInsertionPoint();
351   }
352 
353   // If some of our locals escaped, insert a call to llvm.localescape in the
354   // entry block.
355   if (!EscapedLocals.empty()) {
356     // Invert the map from local to index into a simple vector. There should be
357     // no holes.
358     SmallVector<llvm::Value *, 4> EscapeArgs;
359     EscapeArgs.resize(EscapedLocals.size());
360     for (auto &Pair : EscapedLocals)
361       EscapeArgs[Pair.second] = Pair.first;
362     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
363         &CGM.getModule(), llvm::Intrinsic::localescape);
364     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
365   }
366 
367   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
368   llvm::Instruction *Ptr = AllocaInsertPt;
369   AllocaInsertPt = nullptr;
370   Ptr->eraseFromParent();
371 
372   // If someone took the address of a label but never did an indirect goto, we
373   // made a zero entry PHI node, which is illegal, zap it now.
374   if (IndirectBranch) {
375     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
376     if (PN->getNumIncomingValues() == 0) {
377       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
378       PN->eraseFromParent();
379     }
380   }
381 
382   EmitIfUsed(*this, EHResumeBlock);
383   EmitIfUsed(*this, TerminateLandingPad);
384   EmitIfUsed(*this, TerminateHandler);
385   EmitIfUsed(*this, UnreachableBlock);
386 
387   for (const auto &FuncletAndParent : TerminateFunclets)
388     EmitIfUsed(*this, FuncletAndParent.second);
389 
390   if (CGM.getCodeGenOpts().EmitDeclMetadata)
391     EmitDeclMetadata();
392 
393   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
394            I = DeferredReplacements.begin(),
395            E = DeferredReplacements.end();
396        I != E; ++I) {
397     I->first->replaceAllUsesWith(I->second);
398     I->first->eraseFromParent();
399   }
400 
401   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
402   // PHIs if the current function is a coroutine. We don't do it for all
403   // functions as it may result in slight increase in numbers of instructions
404   // if compiled with no optimizations. We do it for coroutine as the lifetime
405   // of CleanupDestSlot alloca make correct coroutine frame building very
406   // difficult.
407   if (NormalCleanupDest.isValid() && isCoroutine()) {
408     llvm::DominatorTree DT(*CurFn);
409     llvm::PromoteMemToReg(
410         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
411     NormalCleanupDest = Address::invalid();
412   }
413 
414   // Scan function arguments for vector width.
415   for (llvm::Argument &A : CurFn->args())
416     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
417       LargestVectorWidth =
418           std::max((uint64_t)LargestVectorWidth,
419                    VT->getPrimitiveSizeInBits().getKnownMinSize());
420 
421   // Update vector width based on return type.
422   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
423     LargestVectorWidth =
424         std::max((uint64_t)LargestVectorWidth,
425                  VT->getPrimitiveSizeInBits().getKnownMinSize());
426 
427   // Add the required-vector-width attribute. This contains the max width from:
428   // 1. min-vector-width attribute used in the source program.
429   // 2. Any builtins used that have a vector width specified.
430   // 3. Values passed in and out of inline assembly.
431   // 4. Width of vector arguments and return types for this function.
432   // 5. Width of vector aguments and return types for functions called by this
433   //    function.
434   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
435 
436   // If we generated an unreachable return block, delete it now.
437   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
438     Builder.ClearInsertionPoint();
439     ReturnBlock.getBlock()->eraseFromParent();
440   }
441   if (ReturnValue.isValid()) {
442     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
443     if (RetAlloca && RetAlloca->use_empty()) {
444       RetAlloca->eraseFromParent();
445       ReturnValue = Address::invalid();
446     }
447   }
448 }
449 
450 /// ShouldInstrumentFunction - Return true if the current function should be
451 /// instrumented with __cyg_profile_func_* calls
452 bool CodeGenFunction::ShouldInstrumentFunction() {
453   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
454       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
455       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
456     return false;
457   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
458     return false;
459   return true;
460 }
461 
462 /// ShouldXRayInstrument - Return true if the current function should be
463 /// instrumented with XRay nop sleds.
464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
465   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
466 }
467 
468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
469 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
471   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
472          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
473           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
474               XRayInstrKind::Custom);
475 }
476 
477 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
478   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
479          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
480           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
481               XRayInstrKind::Typed);
482 }
483 
484 llvm::Constant *
485 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
486                                             llvm::Constant *Addr) {
487   // Addresses stored in prologue data can't require run-time fixups and must
488   // be PC-relative. Run-time fixups are undesirable because they necessitate
489   // writable text segments, which are unsafe. And absolute addresses are
490   // undesirable because they break PIE mode.
491 
492   // Add a layer of indirection through a private global. Taking its address
493   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
494   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
495                                       /*isConstant=*/true,
496                                       llvm::GlobalValue::PrivateLinkage, Addr);
497 
498   // Create a PC-relative address.
499   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
500   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
501   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
502   return (IntPtrTy == Int32Ty)
503              ? PCRelAsInt
504              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
505 }
506 
507 llvm::Value *
508 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
509                                           llvm::Value *EncodedAddr) {
510   // Reconstruct the address of the global.
511   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
512   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
513   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
514   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
515 
516   // Load the original pointer through the global.
517   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
518                             "decoded_addr");
519 }
520 
521 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
522                                                llvm::Function *Fn)
523 {
524   if (!FD->hasAttr<OpenCLKernelAttr>())
525     return;
526 
527   llvm::LLVMContext &Context = getLLVMContext();
528 
529   CGM.GenOpenCLArgMetadata(Fn, FD, this);
530 
531   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
532     QualType HintQTy = A->getTypeHint();
533     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
534     bool IsSignedInteger =
535         HintQTy->isSignedIntegerType() ||
536         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
537     llvm::Metadata *AttrMDArgs[] = {
538         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
539             CGM.getTypes().ConvertType(A->getTypeHint()))),
540         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541             llvm::IntegerType::get(Context, 32),
542             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
543     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
544   }
545 
546   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
547     llvm::Metadata *AttrMDArgs[] = {
548         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
549         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
550         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
551     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
552   }
553 
554   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
555     llvm::Metadata *AttrMDArgs[] = {
556         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
557         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
558         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
559     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
560   }
561 
562   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
563           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
564     llvm::Metadata *AttrMDArgs[] = {
565         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
566     Fn->setMetadata("intel_reqd_sub_group_size",
567                     llvm::MDNode::get(Context, AttrMDArgs));
568   }
569 }
570 
571 /// Determine whether the function F ends with a return stmt.
572 static bool endsWithReturn(const Decl* F) {
573   const Stmt *Body = nullptr;
574   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
575     Body = FD->getBody();
576   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
577     Body = OMD->getBody();
578 
579   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
580     auto LastStmt = CS->body_rbegin();
581     if (LastStmt != CS->body_rend())
582       return isa<ReturnStmt>(*LastStmt);
583   }
584   return false;
585 }
586 
587 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
588   if (SanOpts.has(SanitizerKind::Thread)) {
589     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
590     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
591   }
592 }
593 
594 /// Check if the return value of this function requires sanitization.
595 bool CodeGenFunction::requiresReturnValueCheck() const {
596   return requiresReturnValueNullabilityCheck() ||
597          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
598           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
599 }
600 
601 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
602   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
603   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
604       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
605       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
606     return false;
607 
608   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
609     return false;
610 
611   if (MD->getNumParams() == 2) {
612     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
613     if (!PT || !PT->isVoidPointerType() ||
614         !PT->getPointeeType().isConstQualified())
615       return false;
616   }
617 
618   return true;
619 }
620 
621 /// Return the UBSan prologue signature for \p FD if one is available.
622 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
623                                             const FunctionDecl *FD) {
624   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
625     if (!MD->isStatic())
626       return nullptr;
627   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
628 }
629 
630 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
631                                     llvm::Function *Fn,
632                                     const CGFunctionInfo &FnInfo,
633                                     const FunctionArgList &Args,
634                                     SourceLocation Loc,
635                                     SourceLocation StartLoc) {
636   assert(!CurFn &&
637          "Do not use a CodeGenFunction object for more than one function");
638 
639   const Decl *D = GD.getDecl();
640 
641   DidCallStackSave = false;
642   CurCodeDecl = D;
643   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
644     if (FD->usesSEHTry())
645       CurSEHParent = FD;
646   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
647   FnRetTy = RetTy;
648   CurFn = Fn;
649   CurFnInfo = &FnInfo;
650   assert(CurFn->isDeclaration() && "Function already has body?");
651 
652   // If this function has been blacklisted for any of the enabled sanitizers,
653   // disable the sanitizer for the function.
654   do {
655 #define SANITIZER(NAME, ID)                                                    \
656   if (SanOpts.empty())                                                         \
657     break;                                                                     \
658   if (SanOpts.has(SanitizerKind::ID))                                          \
659     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
660       SanOpts.set(SanitizerKind::ID, false);
661 
662 #include "clang/Basic/Sanitizers.def"
663 #undef SANITIZER
664   } while (0);
665 
666   if (D) {
667     // Apply the no_sanitize* attributes to SanOpts.
668     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
669       SanitizerMask mask = Attr->getMask();
670       SanOpts.Mask &= ~mask;
671       if (mask & SanitizerKind::Address)
672         SanOpts.set(SanitizerKind::KernelAddress, false);
673       if (mask & SanitizerKind::KernelAddress)
674         SanOpts.set(SanitizerKind::Address, false);
675       if (mask & SanitizerKind::HWAddress)
676         SanOpts.set(SanitizerKind::KernelHWAddress, false);
677       if (mask & SanitizerKind::KernelHWAddress)
678         SanOpts.set(SanitizerKind::HWAddress, false);
679     }
680   }
681 
682   // Apply sanitizer attributes to the function.
683   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
684     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
685   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
686     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
687   if (SanOpts.has(SanitizerKind::MemTag))
688     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
689   if (SanOpts.has(SanitizerKind::Thread))
690     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
691   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
692     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
693   if (SanOpts.has(SanitizerKind::SafeStack))
694     Fn->addFnAttr(llvm::Attribute::SafeStack);
695   if (SanOpts.has(SanitizerKind::ShadowCallStack))
696     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
697 
698   // Apply fuzzing attribute to the function.
699   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
700     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
701 
702   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
703   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
704   if (SanOpts.has(SanitizerKind::Thread)) {
705     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
706       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
707       if (OMD->getMethodFamily() == OMF_dealloc ||
708           OMD->getMethodFamily() == OMF_initialize ||
709           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
710         markAsIgnoreThreadCheckingAtRuntime(Fn);
711       }
712     }
713   }
714 
715   // Ignore unrelated casts in STL allocate() since the allocator must cast
716   // from void* to T* before object initialization completes. Don't match on the
717   // namespace because not all allocators are in std::
718   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
719     if (matchesStlAllocatorFn(D, getContext()))
720       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
721   }
722 
723   // Ignore null checks in coroutine functions since the coroutines passes
724   // are not aware of how to move the extra UBSan instructions across the split
725   // coroutine boundaries.
726   if (D && SanOpts.has(SanitizerKind::Null))
727     if (const auto *FD = dyn_cast<FunctionDecl>(D))
728       if (FD->getBody() &&
729           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
730         SanOpts.Mask &= ~SanitizerKind::Null;
731 
732   // Apply xray attributes to the function (as a string, for now)
733   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
734     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
735             XRayInstrKind::FunctionEntry) ||
736         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
737             XRayInstrKind::FunctionExit)) {
738       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
739         Fn->addFnAttr("function-instrument", "xray-always");
740       if (XRayAttr->neverXRayInstrument())
741         Fn->addFnAttr("function-instrument", "xray-never");
742       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
743         if (ShouldXRayInstrumentFunction())
744           Fn->addFnAttr("xray-log-args",
745                         llvm::utostr(LogArgs->getArgumentCount()));
746     }
747   } else {
748     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
749       Fn->addFnAttr(
750           "xray-instruction-threshold",
751           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
752   }
753 
754   if (ShouldXRayInstrumentFunction()) {
755     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
756       Fn->addFnAttr("xray-ignore-loops");
757 
758     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
759             XRayInstrKind::FunctionExit))
760       Fn->addFnAttr("xray-skip-exit");
761 
762     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
763             XRayInstrKind::FunctionEntry))
764       Fn->addFnAttr("xray-skip-entry");
765   }
766 
767   unsigned Count, Offset;
768   if (const auto *Attr =
769           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
770     Count = Attr->getCount();
771     Offset = Attr->getOffset();
772   } else {
773     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
774     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
775   }
776   if (Count && Offset <= Count) {
777     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
778     if (Offset)
779       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
780   }
781 
782   // Add no-jump-tables value.
783   Fn->addFnAttr("no-jump-tables",
784                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
785 
786   // Add no-inline-line-tables value.
787   if (CGM.getCodeGenOpts().NoInlineLineTables)
788     Fn->addFnAttr("no-inline-line-tables");
789 
790   // Add profile-sample-accurate value.
791   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
792     Fn->addFnAttr("profile-sample-accurate");
793 
794   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
795     Fn->addFnAttr("cfi-canonical-jump-table");
796 
797   if (getLangOpts().OpenCL) {
798     // Add metadata for a kernel function.
799     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
800       EmitOpenCLKernelMetadata(FD, Fn);
801   }
802 
803   // If we are checking function types, emit a function type signature as
804   // prologue data.
805   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
806     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
807       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
808         // Remove any (C++17) exception specifications, to allow calling e.g. a
809         // noexcept function through a non-noexcept pointer.
810         auto ProtoTy =
811           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
812                                                         EST_None);
813         llvm::Constant *FTRTTIConst =
814             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
815         llvm::Constant *FTRTTIConstEncoded =
816             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
817         llvm::Constant *PrologueStructElems[] = {PrologueSig,
818                                                  FTRTTIConstEncoded};
819         llvm::Constant *PrologueStructConst =
820             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
821         Fn->setPrologueData(PrologueStructConst);
822       }
823     }
824   }
825 
826   // If we're checking nullability, we need to know whether we can check the
827   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
828   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
829     auto Nullability = FnRetTy->getNullability(getContext());
830     if (Nullability && *Nullability == NullabilityKind::NonNull) {
831       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
832             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
833         RetValNullabilityPrecondition =
834             llvm::ConstantInt::getTrue(getLLVMContext());
835     }
836   }
837 
838   // If we're in C++ mode and the function name is "main", it is guaranteed
839   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
840   // used within a program").
841   //
842   // OpenCL C 2.0 v2.2-11 s6.9.i:
843   //     Recursion is not supported.
844   //
845   // SYCL v1.2.1 s3.10:
846   //     kernels cannot include RTTI information, exception classes,
847   //     recursive code, virtual functions or make use of C++ libraries that
848   //     are not compiled for the device.
849   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
850     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
851         getLangOpts().SYCLIsDevice ||
852         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
853       Fn->addFnAttr(llvm::Attribute::NoRecurse);
854   }
855 
856   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
857     Builder.setIsFPConstrained(FD->usesFPIntrin());
858     if (FD->usesFPIntrin())
859       Fn->addFnAttr(llvm::Attribute::StrictFP);
860   }
861 
862   // If a custom alignment is used, force realigning to this alignment on
863   // any main function which certainly will need it.
864   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
865     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
866         CGM.getCodeGenOpts().StackAlignment)
867       Fn->addFnAttr("stackrealign");
868 
869   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
870 
871   // Create a marker to make it easy to insert allocas into the entryblock
872   // later.  Don't create this with the builder, because we don't want it
873   // folded.
874   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
875   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
876 
877   ReturnBlock = getJumpDestInCurrentScope("return");
878 
879   Builder.SetInsertPoint(EntryBB);
880 
881   // If we're checking the return value, allocate space for a pointer to a
882   // precise source location of the checked return statement.
883   if (requiresReturnValueCheck()) {
884     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
885     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
886   }
887 
888   // Emit subprogram debug descriptor.
889   if (CGDebugInfo *DI = getDebugInfo()) {
890     // Reconstruct the type from the argument list so that implicit parameters,
891     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
892     // convention.
893     CallingConv CC = CallingConv::CC_C;
894     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
895       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
896         CC = SrcFnTy->getCallConv();
897     SmallVector<QualType, 16> ArgTypes;
898     for (const VarDecl *VD : Args)
899       ArgTypes.push_back(VD->getType());
900     QualType FnType = getContext().getFunctionType(
901         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
902     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
903                           Builder);
904   }
905 
906   if (ShouldInstrumentFunction()) {
907     if (CGM.getCodeGenOpts().InstrumentFunctions)
908       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
909     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
910       CurFn->addFnAttr("instrument-function-entry-inlined",
911                        "__cyg_profile_func_enter");
912     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
913       CurFn->addFnAttr("instrument-function-entry-inlined",
914                        "__cyg_profile_func_enter_bare");
915   }
916 
917   // Since emitting the mcount call here impacts optimizations such as function
918   // inlining, we just add an attribute to insert a mcount call in backend.
919   // The attribute "counting-function" is set to mcount function name which is
920   // architecture dependent.
921   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
922     // Calls to fentry/mcount should not be generated if function has
923     // the no_instrument_function attribute.
924     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
925       if (CGM.getCodeGenOpts().CallFEntry)
926         Fn->addFnAttr("fentry-call", "true");
927       else {
928         Fn->addFnAttr("instrument-function-entry-inlined",
929                       getTarget().getMCountName());
930       }
931       if (CGM.getCodeGenOpts().MNopMCount) {
932         if (!CGM.getCodeGenOpts().CallFEntry)
933           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
934             << "-mnop-mcount" << "-mfentry";
935         Fn->addFnAttr("mnop-mcount");
936       }
937 
938       if (CGM.getCodeGenOpts().RecordMCount) {
939         if (!CGM.getCodeGenOpts().CallFEntry)
940           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
941             << "-mrecord-mcount" << "-mfentry";
942         Fn->addFnAttr("mrecord-mcount");
943       }
944     }
945   }
946 
947   if (CGM.getCodeGenOpts().PackedStack) {
948     if (getContext().getTargetInfo().getTriple().getArch() !=
949         llvm::Triple::systemz)
950       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
951         << "-mpacked-stack";
952     Fn->addFnAttr("packed-stack");
953   }
954 
955   if (RetTy->isVoidType()) {
956     // Void type; nothing to return.
957     ReturnValue = Address::invalid();
958 
959     // Count the implicit return.
960     if (!endsWithReturn(D))
961       ++NumReturnExprs;
962   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
963     // Indirect return; emit returned value directly into sret slot.
964     // This reduces code size, and affects correctness in C++.
965     auto AI = CurFn->arg_begin();
966     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
967       ++AI;
968     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
969     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
970       ReturnValuePointer =
971           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
972       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
973                               ReturnValue.getPointer(), Int8PtrTy),
974                           ReturnValuePointer);
975     }
976   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
977              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
978     // Load the sret pointer from the argument struct and return into that.
979     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
980     llvm::Function::arg_iterator EI = CurFn->arg_end();
981     --EI;
982     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
983     ReturnValuePointer = Address(Addr, getPointerAlign());
984     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
985     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
986   } else {
987     ReturnValue = CreateIRTemp(RetTy, "retval");
988 
989     // Tell the epilog emitter to autorelease the result.  We do this
990     // now so that various specialized functions can suppress it
991     // during their IR-generation.
992     if (getLangOpts().ObjCAutoRefCount &&
993         !CurFnInfo->isReturnsRetained() &&
994         RetTy->isObjCRetainableType())
995       AutoreleaseResult = true;
996   }
997 
998   EmitStartEHSpec(CurCodeDecl);
999 
1000   PrologueCleanupDepth = EHStack.stable_begin();
1001 
1002   // Emit OpenMP specific initialization of the device functions.
1003   if (getLangOpts().OpenMP && CurCodeDecl)
1004     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1005 
1006   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1007 
1008   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1009     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1010     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1011     if (MD->getParent()->isLambda() &&
1012         MD->getOverloadedOperator() == OO_Call) {
1013       // We're in a lambda; figure out the captures.
1014       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1015                                         LambdaThisCaptureField);
1016       if (LambdaThisCaptureField) {
1017         // If the lambda captures the object referred to by '*this' - either by
1018         // value or by reference, make sure CXXThisValue points to the correct
1019         // object.
1020 
1021         // Get the lvalue for the field (which is a copy of the enclosing object
1022         // or contains the address of the enclosing object).
1023         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1024         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1025           // If the enclosing object was captured by value, just use its address.
1026           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1027         } else {
1028           // Load the lvalue pointed to by the field, since '*this' was captured
1029           // by reference.
1030           CXXThisValue =
1031               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1032         }
1033       }
1034       for (auto *FD : MD->getParent()->fields()) {
1035         if (FD->hasCapturedVLAType()) {
1036           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1037                                            SourceLocation()).getScalarVal();
1038           auto VAT = FD->getCapturedVLAType();
1039           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1040         }
1041       }
1042     } else {
1043       // Not in a lambda; just use 'this' from the method.
1044       // FIXME: Should we generate a new load for each use of 'this'?  The
1045       // fast register allocator would be happier...
1046       CXXThisValue = CXXABIThisValue;
1047     }
1048 
1049     // Check the 'this' pointer once per function, if it's available.
1050     if (CXXABIThisValue) {
1051       SanitizerSet SkippedChecks;
1052       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1053       QualType ThisTy = MD->getThisType();
1054 
1055       // If this is the call operator of a lambda with no capture-default, it
1056       // may have a static invoker function, which may call this operator with
1057       // a null 'this' pointer.
1058       if (isLambdaCallOperator(MD) &&
1059           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1060         SkippedChecks.set(SanitizerKind::Null, true);
1061 
1062       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1063                                                 : TCK_MemberCall,
1064                     Loc, CXXABIThisValue, ThisTy,
1065                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1066                     SkippedChecks);
1067     }
1068   }
1069 
1070   // If any of the arguments have a variably modified type, make sure to
1071   // emit the type size.
1072   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1073        i != e; ++i) {
1074     const VarDecl *VD = *i;
1075 
1076     // Dig out the type as written from ParmVarDecls; it's unclear whether
1077     // the standard (C99 6.9.1p10) requires this, but we're following the
1078     // precedent set by gcc.
1079     QualType Ty;
1080     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1081       Ty = PVD->getOriginalType();
1082     else
1083       Ty = VD->getType();
1084 
1085     if (Ty->isVariablyModifiedType())
1086       EmitVariablyModifiedType(Ty);
1087   }
1088   // Emit a location at the end of the prologue.
1089   if (CGDebugInfo *DI = getDebugInfo())
1090     DI->EmitLocation(Builder, StartLoc);
1091 
1092   // TODO: Do we need to handle this in two places like we do with
1093   // target-features/target-cpu?
1094   if (CurFuncDecl)
1095     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1096       LargestVectorWidth = VecWidth->getVectorWidth();
1097 }
1098 
1099 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1100   incrementProfileCounter(Body);
1101   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1102     EmitCompoundStmtWithoutScope(*S);
1103   else
1104     EmitStmt(Body);
1105 }
1106 
1107 /// When instrumenting to collect profile data, the counts for some blocks
1108 /// such as switch cases need to not include the fall-through counts, so
1109 /// emit a branch around the instrumentation code. When not instrumenting,
1110 /// this just calls EmitBlock().
1111 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1112                                                const Stmt *S) {
1113   llvm::BasicBlock *SkipCountBB = nullptr;
1114   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1115     // When instrumenting for profiling, the fallthrough to certain
1116     // statements needs to skip over the instrumentation code so that we
1117     // get an accurate count.
1118     SkipCountBB = createBasicBlock("skipcount");
1119     EmitBranch(SkipCountBB);
1120   }
1121   EmitBlock(BB);
1122   uint64_t CurrentCount = getCurrentProfileCount();
1123   incrementProfileCounter(S);
1124   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1125   if (SkipCountBB)
1126     EmitBlock(SkipCountBB);
1127 }
1128 
1129 /// Tries to mark the given function nounwind based on the
1130 /// non-existence of any throwing calls within it.  We believe this is
1131 /// lightweight enough to do at -O0.
1132 static void TryMarkNoThrow(llvm::Function *F) {
1133   // LLVM treats 'nounwind' on a function as part of the type, so we
1134   // can't do this on functions that can be overwritten.
1135   if (F->isInterposable()) return;
1136 
1137   for (llvm::BasicBlock &BB : *F)
1138     for (llvm::Instruction &I : BB)
1139       if (I.mayThrow())
1140         return;
1141 
1142   F->setDoesNotThrow();
1143 }
1144 
1145 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1146                                                FunctionArgList &Args) {
1147   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1148   QualType ResTy = FD->getReturnType();
1149 
1150   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1151   if (MD && MD->isInstance()) {
1152     if (CGM.getCXXABI().HasThisReturn(GD))
1153       ResTy = MD->getThisType();
1154     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1155       ResTy = CGM.getContext().VoidPtrTy;
1156     CGM.getCXXABI().buildThisParam(*this, Args);
1157   }
1158 
1159   // The base version of an inheriting constructor whose constructed base is a
1160   // virtual base is not passed any arguments (because it doesn't actually call
1161   // the inherited constructor).
1162   bool PassedParams = true;
1163   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1164     if (auto Inherited = CD->getInheritedConstructor())
1165       PassedParams =
1166           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1167 
1168   if (PassedParams) {
1169     for (auto *Param : FD->parameters()) {
1170       Args.push_back(Param);
1171       if (!Param->hasAttr<PassObjectSizeAttr>())
1172         continue;
1173 
1174       auto *Implicit = ImplicitParamDecl::Create(
1175           getContext(), Param->getDeclContext(), Param->getLocation(),
1176           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1177       SizeArguments[Param] = Implicit;
1178       Args.push_back(Implicit);
1179     }
1180   }
1181 
1182   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1183     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1184 
1185   return ResTy;
1186 }
1187 
1188 static bool
1189 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1190                                              const ASTContext &Context) {
1191   QualType T = FD->getReturnType();
1192   // Avoid the optimization for functions that return a record type with a
1193   // trivial destructor or another trivially copyable type.
1194   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1195     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1196       return !ClassDecl->hasTrivialDestructor();
1197   }
1198   return !T.isTriviallyCopyableType(Context);
1199 }
1200 
1201 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1202                                    const CGFunctionInfo &FnInfo) {
1203   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1204   CurGD = GD;
1205 
1206   FunctionArgList Args;
1207   QualType ResTy = BuildFunctionArgList(GD, Args);
1208 
1209   // Check if we should generate debug info for this function.
1210   if (FD->hasAttr<NoDebugAttr>())
1211     DebugInfo = nullptr; // disable debug info indefinitely for this function
1212 
1213   // The function might not have a body if we're generating thunks for a
1214   // function declaration.
1215   SourceRange BodyRange;
1216   if (Stmt *Body = FD->getBody())
1217     BodyRange = Body->getSourceRange();
1218   else
1219     BodyRange = FD->getLocation();
1220   CurEHLocation = BodyRange.getEnd();
1221 
1222   // Use the location of the start of the function to determine where
1223   // the function definition is located. By default use the location
1224   // of the declaration as the location for the subprogram. A function
1225   // may lack a declaration in the source code if it is created by code
1226   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1227   SourceLocation Loc = FD->getLocation();
1228 
1229   // If this is a function specialization then use the pattern body
1230   // as the location for the function.
1231   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1232     if (SpecDecl->hasBody(SpecDecl))
1233       Loc = SpecDecl->getLocation();
1234 
1235   Stmt *Body = FD->getBody();
1236 
1237   // Initialize helper which will detect jumps which can cause invalid lifetime
1238   // markers.
1239   if (Body && ShouldEmitLifetimeMarkers)
1240     Bypasses.Init(Body);
1241 
1242   // Emit the standard function prologue.
1243   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1244 
1245   // Generate the body of the function.
1246   PGO.assignRegionCounters(GD, CurFn);
1247   if (isa<CXXDestructorDecl>(FD))
1248     EmitDestructorBody(Args);
1249   else if (isa<CXXConstructorDecl>(FD))
1250     EmitConstructorBody(Args);
1251   else if (getLangOpts().CUDA &&
1252            !getLangOpts().CUDAIsDevice &&
1253            FD->hasAttr<CUDAGlobalAttr>())
1254     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1255   else if (isa<CXXMethodDecl>(FD) &&
1256            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1257     // The lambda static invoker function is special, because it forwards or
1258     // clones the body of the function call operator (but is actually static).
1259     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1260   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1261              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1262               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1263     // Implicit copy-assignment gets the same special treatment as implicit
1264     // copy-constructors.
1265     emitImplicitAssignmentOperatorBody(Args);
1266   } else if (Body) {
1267     EmitFunctionBody(Body);
1268   } else
1269     llvm_unreachable("no definition for emitted function");
1270 
1271   // C++11 [stmt.return]p2:
1272   //   Flowing off the end of a function [...] results in undefined behavior in
1273   //   a value-returning function.
1274   // C11 6.9.1p12:
1275   //   If the '}' that terminates a function is reached, and the value of the
1276   //   function call is used by the caller, the behavior is undefined.
1277   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1278       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1279     bool ShouldEmitUnreachable =
1280         CGM.getCodeGenOpts().StrictReturn ||
1281         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1282     if (SanOpts.has(SanitizerKind::Return)) {
1283       SanitizerScope SanScope(this);
1284       llvm::Value *IsFalse = Builder.getFalse();
1285       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1286                 SanitizerHandler::MissingReturn,
1287                 EmitCheckSourceLocation(FD->getLocation()), None);
1288     } else if (ShouldEmitUnreachable) {
1289       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1290         EmitTrapCall(llvm::Intrinsic::trap);
1291     }
1292     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1293       Builder.CreateUnreachable();
1294       Builder.ClearInsertionPoint();
1295     }
1296   }
1297 
1298   // Emit the standard function epilogue.
1299   FinishFunction(BodyRange.getEnd());
1300 
1301   // If we haven't marked the function nothrow through other means, do
1302   // a quick pass now to see if we can.
1303   if (!CurFn->doesNotThrow())
1304     TryMarkNoThrow(CurFn);
1305 }
1306 
1307 /// ContainsLabel - Return true if the statement contains a label in it.  If
1308 /// this statement is not executed normally, it not containing a label means
1309 /// that we can just remove the code.
1310 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1311   // Null statement, not a label!
1312   if (!S) return false;
1313 
1314   // If this is a label, we have to emit the code, consider something like:
1315   // if (0) {  ...  foo:  bar(); }  goto foo;
1316   //
1317   // TODO: If anyone cared, we could track __label__'s, since we know that you
1318   // can't jump to one from outside their declared region.
1319   if (isa<LabelStmt>(S))
1320     return true;
1321 
1322   // If this is a case/default statement, and we haven't seen a switch, we have
1323   // to emit the code.
1324   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1325     return true;
1326 
1327   // If this is a switch statement, we want to ignore cases below it.
1328   if (isa<SwitchStmt>(S))
1329     IgnoreCaseStmts = true;
1330 
1331   // Scan subexpressions for verboten labels.
1332   for (const Stmt *SubStmt : S->children())
1333     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1334       return true;
1335 
1336   return false;
1337 }
1338 
1339 /// containsBreak - Return true if the statement contains a break out of it.
1340 /// If the statement (recursively) contains a switch or loop with a break
1341 /// inside of it, this is fine.
1342 bool CodeGenFunction::containsBreak(const Stmt *S) {
1343   // Null statement, not a label!
1344   if (!S) return false;
1345 
1346   // If this is a switch or loop that defines its own break scope, then we can
1347   // include it and anything inside of it.
1348   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1349       isa<ForStmt>(S))
1350     return false;
1351 
1352   if (isa<BreakStmt>(S))
1353     return true;
1354 
1355   // Scan subexpressions for verboten breaks.
1356   for (const Stmt *SubStmt : S->children())
1357     if (containsBreak(SubStmt))
1358       return true;
1359 
1360   return false;
1361 }
1362 
1363 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1364   if (!S) return false;
1365 
1366   // Some statement kinds add a scope and thus never add a decl to the current
1367   // scope. Note, this list is longer than the list of statements that might
1368   // have an unscoped decl nested within them, but this way is conservatively
1369   // correct even if more statement kinds are added.
1370   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1371       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1372       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1373       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1374     return false;
1375 
1376   if (isa<DeclStmt>(S))
1377     return true;
1378 
1379   for (const Stmt *SubStmt : S->children())
1380     if (mightAddDeclToScope(SubStmt))
1381       return true;
1382 
1383   return false;
1384 }
1385 
1386 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1387 /// to a constant, or if it does but contains a label, return false.  If it
1388 /// constant folds return true and set the boolean result in Result.
1389 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1390                                                    bool &ResultBool,
1391                                                    bool AllowLabels) {
1392   llvm::APSInt ResultInt;
1393   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1394     return false;
1395 
1396   ResultBool = ResultInt.getBoolValue();
1397   return true;
1398 }
1399 
1400 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1401 /// to a constant, or if it does but contains a label, return false.  If it
1402 /// constant folds return true and set the folded value.
1403 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1404                                                    llvm::APSInt &ResultInt,
1405                                                    bool AllowLabels) {
1406   // FIXME: Rename and handle conversion of other evaluatable things
1407   // to bool.
1408   Expr::EvalResult Result;
1409   if (!Cond->EvaluateAsInt(Result, getContext()))
1410     return false;  // Not foldable, not integer or not fully evaluatable.
1411 
1412   llvm::APSInt Int = Result.Val.getInt();
1413   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1414     return false;  // Contains a label.
1415 
1416   ResultInt = Int;
1417   return true;
1418 }
1419 
1420 
1421 
1422 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1423 /// statement) to the specified blocks.  Based on the condition, this might try
1424 /// to simplify the codegen of the conditional based on the branch.
1425 ///
1426 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1427                                            llvm::BasicBlock *TrueBlock,
1428                                            llvm::BasicBlock *FalseBlock,
1429                                            uint64_t TrueCount) {
1430   Cond = Cond->IgnoreParens();
1431 
1432   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1433 
1434     // Handle X && Y in a condition.
1435     if (CondBOp->getOpcode() == BO_LAnd) {
1436       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1437       // folded if the case was simple enough.
1438       bool ConstantBool = false;
1439       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1440           ConstantBool) {
1441         // br(1 && X) -> br(X).
1442         incrementProfileCounter(CondBOp);
1443         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1444                                     TrueCount);
1445       }
1446 
1447       // If we have "X && 1", simplify the code to use an uncond branch.
1448       // "X && 0" would have been constant folded to 0.
1449       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1450           ConstantBool) {
1451         // br(X && 1) -> br(X).
1452         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1453                                     TrueCount);
1454       }
1455 
1456       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1457       // want to jump to the FalseBlock.
1458       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1459       // The counter tells us how often we evaluate RHS, and all of TrueCount
1460       // can be propagated to that branch.
1461       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1462 
1463       ConditionalEvaluation eval(*this);
1464       {
1465         ApplyDebugLocation DL(*this, Cond);
1466         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1467         EmitBlock(LHSTrue);
1468       }
1469 
1470       incrementProfileCounter(CondBOp);
1471       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1472 
1473       // Any temporaries created here are conditional.
1474       eval.begin(*this);
1475       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1476       eval.end(*this);
1477 
1478       return;
1479     }
1480 
1481     if (CondBOp->getOpcode() == BO_LOr) {
1482       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1483       // folded if the case was simple enough.
1484       bool ConstantBool = false;
1485       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1486           !ConstantBool) {
1487         // br(0 || X) -> br(X).
1488         incrementProfileCounter(CondBOp);
1489         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1490                                     TrueCount);
1491       }
1492 
1493       // If we have "X || 0", simplify the code to use an uncond branch.
1494       // "X || 1" would have been constant folded to 1.
1495       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1496           !ConstantBool) {
1497         // br(X || 0) -> br(X).
1498         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1499                                     TrueCount);
1500       }
1501 
1502       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1503       // want to jump to the TrueBlock.
1504       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1505       // We have the count for entry to the RHS and for the whole expression
1506       // being true, so we can divy up True count between the short circuit and
1507       // the RHS.
1508       uint64_t LHSCount =
1509           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1510       uint64_t RHSCount = TrueCount - LHSCount;
1511 
1512       ConditionalEvaluation eval(*this);
1513       {
1514         ApplyDebugLocation DL(*this, Cond);
1515         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1516         EmitBlock(LHSFalse);
1517       }
1518 
1519       incrementProfileCounter(CondBOp);
1520       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1521 
1522       // Any temporaries created here are conditional.
1523       eval.begin(*this);
1524       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1525 
1526       eval.end(*this);
1527 
1528       return;
1529     }
1530   }
1531 
1532   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1533     // br(!x, t, f) -> br(x, f, t)
1534     if (CondUOp->getOpcode() == UO_LNot) {
1535       // Negate the count.
1536       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1537       // Negate the condition and swap the destination blocks.
1538       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1539                                   FalseCount);
1540     }
1541   }
1542 
1543   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1544     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1545     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1546     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1547 
1548     ConditionalEvaluation cond(*this);
1549     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1550                          getProfileCount(CondOp));
1551 
1552     // When computing PGO branch weights, we only know the overall count for
1553     // the true block. This code is essentially doing tail duplication of the
1554     // naive code-gen, introducing new edges for which counts are not
1555     // available. Divide the counts proportionally between the LHS and RHS of
1556     // the conditional operator.
1557     uint64_t LHSScaledTrueCount = 0;
1558     if (TrueCount) {
1559       double LHSRatio =
1560           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1561       LHSScaledTrueCount = TrueCount * LHSRatio;
1562     }
1563 
1564     cond.begin(*this);
1565     EmitBlock(LHSBlock);
1566     incrementProfileCounter(CondOp);
1567     {
1568       ApplyDebugLocation DL(*this, Cond);
1569       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1570                            LHSScaledTrueCount);
1571     }
1572     cond.end(*this);
1573 
1574     cond.begin(*this);
1575     EmitBlock(RHSBlock);
1576     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1577                          TrueCount - LHSScaledTrueCount);
1578     cond.end(*this);
1579 
1580     return;
1581   }
1582 
1583   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1584     // Conditional operator handling can give us a throw expression as a
1585     // condition for a case like:
1586     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1587     // Fold this to:
1588     //   br(c, throw x, br(y, t, f))
1589     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1590     return;
1591   }
1592 
1593   // If the branch has a condition wrapped by __builtin_unpredictable,
1594   // create metadata that specifies that the branch is unpredictable.
1595   // Don't bother if not optimizing because that metadata would not be used.
1596   llvm::MDNode *Unpredictable = nullptr;
1597   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1598   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1599     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1600     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1601       llvm::MDBuilder MDHelper(getLLVMContext());
1602       Unpredictable = MDHelper.createUnpredictable();
1603     }
1604   }
1605 
1606   // Create branch weights based on the number of times we get here and the
1607   // number of times the condition should be true.
1608   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1609   llvm::MDNode *Weights =
1610       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1611 
1612   // Emit the code with the fully general case.
1613   llvm::Value *CondV;
1614   {
1615     ApplyDebugLocation DL(*this, Cond);
1616     CondV = EvaluateExprAsBool(Cond);
1617   }
1618   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1619 }
1620 
1621 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1622 /// specified stmt yet.
1623 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1624   CGM.ErrorUnsupported(S, Type);
1625 }
1626 
1627 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1628 /// variable-length array whose elements have a non-zero bit-pattern.
1629 ///
1630 /// \param baseType the inner-most element type of the array
1631 /// \param src - a char* pointing to the bit-pattern for a single
1632 /// base element of the array
1633 /// \param sizeInChars - the total size of the VLA, in chars
1634 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1635                                Address dest, Address src,
1636                                llvm::Value *sizeInChars) {
1637   CGBuilderTy &Builder = CGF.Builder;
1638 
1639   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1640   llvm::Value *baseSizeInChars
1641     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1642 
1643   Address begin =
1644     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1645   llvm::Value *end =
1646     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1647 
1648   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1649   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1650   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1651 
1652   // Make a loop over the VLA.  C99 guarantees that the VLA element
1653   // count must be nonzero.
1654   CGF.EmitBlock(loopBB);
1655 
1656   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1657   cur->addIncoming(begin.getPointer(), originBB);
1658 
1659   CharUnits curAlign =
1660     dest.getAlignment().alignmentOfArrayElement(baseSize);
1661 
1662   // memcpy the individual element bit-pattern.
1663   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1664                        /*volatile*/ false);
1665 
1666   // Go to the next element.
1667   llvm::Value *next =
1668     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1669 
1670   // Leave if that's the end of the VLA.
1671   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1672   Builder.CreateCondBr(done, contBB, loopBB);
1673   cur->addIncoming(next, loopBB);
1674 
1675   CGF.EmitBlock(contBB);
1676 }
1677 
1678 void
1679 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1680   // Ignore empty classes in C++.
1681   if (getLangOpts().CPlusPlus) {
1682     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1683       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1684         return;
1685     }
1686   }
1687 
1688   // Cast the dest ptr to the appropriate i8 pointer type.
1689   if (DestPtr.getElementType() != Int8Ty)
1690     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1691 
1692   // Get size and alignment info for this aggregate.
1693   CharUnits size = getContext().getTypeSizeInChars(Ty);
1694 
1695   llvm::Value *SizeVal;
1696   const VariableArrayType *vla;
1697 
1698   // Don't bother emitting a zero-byte memset.
1699   if (size.isZero()) {
1700     // But note that getTypeInfo returns 0 for a VLA.
1701     if (const VariableArrayType *vlaType =
1702           dyn_cast_or_null<VariableArrayType>(
1703                                           getContext().getAsArrayType(Ty))) {
1704       auto VlaSize = getVLASize(vlaType);
1705       SizeVal = VlaSize.NumElts;
1706       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1707       if (!eltSize.isOne())
1708         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1709       vla = vlaType;
1710     } else {
1711       return;
1712     }
1713   } else {
1714     SizeVal = CGM.getSize(size);
1715     vla = nullptr;
1716   }
1717 
1718   // If the type contains a pointer to data member we can't memset it to zero.
1719   // Instead, create a null constant and copy it to the destination.
1720   // TODO: there are other patterns besides zero that we can usefully memset,
1721   // like -1, which happens to be the pattern used by member-pointers.
1722   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1723     // For a VLA, emit a single element, then splat that over the VLA.
1724     if (vla) Ty = getContext().getBaseElementType(vla);
1725 
1726     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1727 
1728     llvm::GlobalVariable *NullVariable =
1729       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1730                                /*isConstant=*/true,
1731                                llvm::GlobalVariable::PrivateLinkage,
1732                                NullConstant, Twine());
1733     CharUnits NullAlign = DestPtr.getAlignment();
1734     NullVariable->setAlignment(NullAlign.getAsAlign());
1735     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1736                    NullAlign);
1737 
1738     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1739 
1740     // Get and call the appropriate llvm.memcpy overload.
1741     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1742     return;
1743   }
1744 
1745   // Otherwise, just memset the whole thing to zero.  This is legal
1746   // because in LLVM, all default initializers (other than the ones we just
1747   // handled above) are guaranteed to have a bit pattern of all zeros.
1748   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1749 }
1750 
1751 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1752   // Make sure that there is a block for the indirect goto.
1753   if (!IndirectBranch)
1754     GetIndirectGotoBlock();
1755 
1756   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1757 
1758   // Make sure the indirect branch includes all of the address-taken blocks.
1759   IndirectBranch->addDestination(BB);
1760   return llvm::BlockAddress::get(CurFn, BB);
1761 }
1762 
1763 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1764   // If we already made the indirect branch for indirect goto, return its block.
1765   if (IndirectBranch) return IndirectBranch->getParent();
1766 
1767   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1768 
1769   // Create the PHI node that indirect gotos will add entries to.
1770   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1771                                               "indirect.goto.dest");
1772 
1773   // Create the indirect branch instruction.
1774   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1775   return IndirectBranch->getParent();
1776 }
1777 
1778 /// Computes the length of an array in elements, as well as the base
1779 /// element type and a properly-typed first element pointer.
1780 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1781                                               QualType &baseType,
1782                                               Address &addr) {
1783   const ArrayType *arrayType = origArrayType;
1784 
1785   // If it's a VLA, we have to load the stored size.  Note that
1786   // this is the size of the VLA in bytes, not its size in elements.
1787   llvm::Value *numVLAElements = nullptr;
1788   if (isa<VariableArrayType>(arrayType)) {
1789     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1790 
1791     // Walk into all VLAs.  This doesn't require changes to addr,
1792     // which has type T* where T is the first non-VLA element type.
1793     do {
1794       QualType elementType = arrayType->getElementType();
1795       arrayType = getContext().getAsArrayType(elementType);
1796 
1797       // If we only have VLA components, 'addr' requires no adjustment.
1798       if (!arrayType) {
1799         baseType = elementType;
1800         return numVLAElements;
1801       }
1802     } while (isa<VariableArrayType>(arrayType));
1803 
1804     // We get out here only if we find a constant array type
1805     // inside the VLA.
1806   }
1807 
1808   // We have some number of constant-length arrays, so addr should
1809   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1810   // down to the first element of addr.
1811   SmallVector<llvm::Value*, 8> gepIndices;
1812 
1813   // GEP down to the array type.
1814   llvm::ConstantInt *zero = Builder.getInt32(0);
1815   gepIndices.push_back(zero);
1816 
1817   uint64_t countFromCLAs = 1;
1818   QualType eltType;
1819 
1820   llvm::ArrayType *llvmArrayType =
1821     dyn_cast<llvm::ArrayType>(addr.getElementType());
1822   while (llvmArrayType) {
1823     assert(isa<ConstantArrayType>(arrayType));
1824     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1825              == llvmArrayType->getNumElements());
1826 
1827     gepIndices.push_back(zero);
1828     countFromCLAs *= llvmArrayType->getNumElements();
1829     eltType = arrayType->getElementType();
1830 
1831     llvmArrayType =
1832       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1833     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1834     assert((!llvmArrayType || arrayType) &&
1835            "LLVM and Clang types are out-of-synch");
1836   }
1837 
1838   if (arrayType) {
1839     // From this point onwards, the Clang array type has been emitted
1840     // as some other type (probably a packed struct). Compute the array
1841     // size, and just emit the 'begin' expression as a bitcast.
1842     while (arrayType) {
1843       countFromCLAs *=
1844           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1845       eltType = arrayType->getElementType();
1846       arrayType = getContext().getAsArrayType(eltType);
1847     }
1848 
1849     llvm::Type *baseType = ConvertType(eltType);
1850     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1851   } else {
1852     // Create the actual GEP.
1853     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1854                                              gepIndices, "array.begin"),
1855                    addr.getAlignment());
1856   }
1857 
1858   baseType = eltType;
1859 
1860   llvm::Value *numElements
1861     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1862 
1863   // If we had any VLA dimensions, factor them in.
1864   if (numVLAElements)
1865     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1866 
1867   return numElements;
1868 }
1869 
1870 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1871   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1872   assert(vla && "type was not a variable array type!");
1873   return getVLASize(vla);
1874 }
1875 
1876 CodeGenFunction::VlaSizePair
1877 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1878   // The number of elements so far; always size_t.
1879   llvm::Value *numElements = nullptr;
1880 
1881   QualType elementType;
1882   do {
1883     elementType = type->getElementType();
1884     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1885     assert(vlaSize && "no size for VLA!");
1886     assert(vlaSize->getType() == SizeTy);
1887 
1888     if (!numElements) {
1889       numElements = vlaSize;
1890     } else {
1891       // It's undefined behavior if this wraps around, so mark it that way.
1892       // FIXME: Teach -fsanitize=undefined to trap this.
1893       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1894     }
1895   } while ((type = getContext().getAsVariableArrayType(elementType)));
1896 
1897   return { numElements, elementType };
1898 }
1899 
1900 CodeGenFunction::VlaSizePair
1901 CodeGenFunction::getVLAElements1D(QualType type) {
1902   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1903   assert(vla && "type was not a variable array type!");
1904   return getVLAElements1D(vla);
1905 }
1906 
1907 CodeGenFunction::VlaSizePair
1908 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1909   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1910   assert(VlaSize && "no size for VLA!");
1911   assert(VlaSize->getType() == SizeTy);
1912   return { VlaSize, Vla->getElementType() };
1913 }
1914 
1915 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1916   assert(type->isVariablyModifiedType() &&
1917          "Must pass variably modified type to EmitVLASizes!");
1918 
1919   EnsureInsertPoint();
1920 
1921   // We're going to walk down into the type and look for VLA
1922   // expressions.
1923   do {
1924     assert(type->isVariablyModifiedType());
1925 
1926     const Type *ty = type.getTypePtr();
1927     switch (ty->getTypeClass()) {
1928 
1929 #define TYPE(Class, Base)
1930 #define ABSTRACT_TYPE(Class, Base)
1931 #define NON_CANONICAL_TYPE(Class, Base)
1932 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1933 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1934 #include "clang/AST/TypeNodes.inc"
1935       llvm_unreachable("unexpected dependent type!");
1936 
1937     // These types are never variably-modified.
1938     case Type::Builtin:
1939     case Type::Complex:
1940     case Type::Vector:
1941     case Type::ExtVector:
1942     case Type::ConstantMatrix:
1943     case Type::Record:
1944     case Type::Enum:
1945     case Type::Elaborated:
1946     case Type::TemplateSpecialization:
1947     case Type::ObjCTypeParam:
1948     case Type::ObjCObject:
1949     case Type::ObjCInterface:
1950     case Type::ObjCObjectPointer:
1951     case Type::ExtInt:
1952       llvm_unreachable("type class is never variably-modified!");
1953 
1954     case Type::Adjusted:
1955       type = cast<AdjustedType>(ty)->getAdjustedType();
1956       break;
1957 
1958     case Type::Decayed:
1959       type = cast<DecayedType>(ty)->getPointeeType();
1960       break;
1961 
1962     case Type::Pointer:
1963       type = cast<PointerType>(ty)->getPointeeType();
1964       break;
1965 
1966     case Type::BlockPointer:
1967       type = cast<BlockPointerType>(ty)->getPointeeType();
1968       break;
1969 
1970     case Type::LValueReference:
1971     case Type::RValueReference:
1972       type = cast<ReferenceType>(ty)->getPointeeType();
1973       break;
1974 
1975     case Type::MemberPointer:
1976       type = cast<MemberPointerType>(ty)->getPointeeType();
1977       break;
1978 
1979     case Type::ConstantArray:
1980     case Type::IncompleteArray:
1981       // Losing element qualification here is fine.
1982       type = cast<ArrayType>(ty)->getElementType();
1983       break;
1984 
1985     case Type::VariableArray: {
1986       // Losing element qualification here is fine.
1987       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1988 
1989       // Unknown size indication requires no size computation.
1990       // Otherwise, evaluate and record it.
1991       if (const Expr *size = vat->getSizeExpr()) {
1992         // It's possible that we might have emitted this already,
1993         // e.g. with a typedef and a pointer to it.
1994         llvm::Value *&entry = VLASizeMap[size];
1995         if (!entry) {
1996           llvm::Value *Size = EmitScalarExpr(size);
1997 
1998           // C11 6.7.6.2p5:
1999           //   If the size is an expression that is not an integer constant
2000           //   expression [...] each time it is evaluated it shall have a value
2001           //   greater than zero.
2002           if (SanOpts.has(SanitizerKind::VLABound) &&
2003               size->getType()->isSignedIntegerType()) {
2004             SanitizerScope SanScope(this);
2005             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2006             llvm::Constant *StaticArgs[] = {
2007                 EmitCheckSourceLocation(size->getBeginLoc()),
2008                 EmitCheckTypeDescriptor(size->getType())};
2009             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2010                                      SanitizerKind::VLABound),
2011                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2012           }
2013 
2014           // Always zexting here would be wrong if it weren't
2015           // undefined behavior to have a negative bound.
2016           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2017         }
2018       }
2019       type = vat->getElementType();
2020       break;
2021     }
2022 
2023     case Type::FunctionProto:
2024     case Type::FunctionNoProto:
2025       type = cast<FunctionType>(ty)->getReturnType();
2026       break;
2027 
2028     case Type::Paren:
2029     case Type::TypeOf:
2030     case Type::UnaryTransform:
2031     case Type::Attributed:
2032     case Type::SubstTemplateTypeParm:
2033     case Type::PackExpansion:
2034     case Type::MacroQualified:
2035       // Keep walking after single level desugaring.
2036       type = type.getSingleStepDesugaredType(getContext());
2037       break;
2038 
2039     case Type::Typedef:
2040     case Type::Decltype:
2041     case Type::Auto:
2042     case Type::DeducedTemplateSpecialization:
2043       // Stop walking: nothing to do.
2044       return;
2045 
2046     case Type::TypeOfExpr:
2047       // Stop walking: emit typeof expression.
2048       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2049       return;
2050 
2051     case Type::Atomic:
2052       type = cast<AtomicType>(ty)->getValueType();
2053       break;
2054 
2055     case Type::Pipe:
2056       type = cast<PipeType>(ty)->getElementType();
2057       break;
2058     }
2059   } while (type->isVariablyModifiedType());
2060 }
2061 
2062 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2063   if (getContext().getBuiltinVaListType()->isArrayType())
2064     return EmitPointerWithAlignment(E);
2065   return EmitLValue(E).getAddress(*this);
2066 }
2067 
2068 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2069   return EmitLValue(E).getAddress(*this);
2070 }
2071 
2072 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2073                                               const APValue &Init) {
2074   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2075   if (CGDebugInfo *Dbg = getDebugInfo())
2076     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2077       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2078 }
2079 
2080 CodeGenFunction::PeepholeProtection
2081 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2082   // At the moment, the only aggressive peephole we do in IR gen
2083   // is trunc(zext) folding, but if we add more, we can easily
2084   // extend this protection.
2085 
2086   if (!rvalue.isScalar()) return PeepholeProtection();
2087   llvm::Value *value = rvalue.getScalarVal();
2088   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2089 
2090   // Just make an extra bitcast.
2091   assert(HaveInsertPoint());
2092   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2093                                                   Builder.GetInsertBlock());
2094 
2095   PeepholeProtection protection;
2096   protection.Inst = inst;
2097   return protection;
2098 }
2099 
2100 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2101   if (!protection.Inst) return;
2102 
2103   // In theory, we could try to duplicate the peepholes now, but whatever.
2104   protection.Inst->eraseFromParent();
2105 }
2106 
2107 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2108                                               QualType Ty, SourceLocation Loc,
2109                                               SourceLocation AssumptionLoc,
2110                                               llvm::Value *Alignment,
2111                                               llvm::Value *OffsetValue) {
2112   llvm::Value *TheCheck;
2113   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2114       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2115   if (SanOpts.has(SanitizerKind::Alignment)) {
2116     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2117                                  OffsetValue, TheCheck, Assumption);
2118   }
2119 }
2120 
2121 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2122                                               const Expr *E,
2123                                               SourceLocation AssumptionLoc,
2124                                               llvm::Value *Alignment,
2125                                               llvm::Value *OffsetValue) {
2126   if (auto *CE = dyn_cast<CastExpr>(E))
2127     E = CE->getSubExprAsWritten();
2128   QualType Ty = E->getType();
2129   SourceLocation Loc = E->getExprLoc();
2130 
2131   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2132                           OffsetValue);
2133 }
2134 
2135 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2136                                                  llvm::Value *AnnotatedVal,
2137                                                  StringRef AnnotationStr,
2138                                                  SourceLocation Location) {
2139   llvm::Value *Args[4] = {
2140     AnnotatedVal,
2141     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2142     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2143     CGM.EmitAnnotationLineNo(Location)
2144   };
2145   return Builder.CreateCall(AnnotationFn, Args);
2146 }
2147 
2148 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2149   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2150   // FIXME We create a new bitcast for every annotation because that's what
2151   // llvm-gcc was doing.
2152   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2153     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2154                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2155                        I->getAnnotation(), D->getLocation());
2156 }
2157 
2158 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2159                                               Address Addr) {
2160   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2161   llvm::Value *V = Addr.getPointer();
2162   llvm::Type *VTy = V->getType();
2163   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2164                                     CGM.Int8PtrTy);
2165 
2166   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2167     // FIXME Always emit the cast inst so we can differentiate between
2168     // annotation on the first field of a struct and annotation on the struct
2169     // itself.
2170     if (VTy != CGM.Int8PtrTy)
2171       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2172     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2173     V = Builder.CreateBitCast(V, VTy);
2174   }
2175 
2176   return Address(V, Addr.getAlignment());
2177 }
2178 
2179 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2180 
2181 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2182     : CGF(CGF) {
2183   assert(!CGF->IsSanitizerScope);
2184   CGF->IsSanitizerScope = true;
2185 }
2186 
2187 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2188   CGF->IsSanitizerScope = false;
2189 }
2190 
2191 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2192                                    const llvm::Twine &Name,
2193                                    llvm::BasicBlock *BB,
2194                                    llvm::BasicBlock::iterator InsertPt) const {
2195   LoopStack.InsertHelper(I);
2196   if (IsSanitizerScope)
2197     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2198 }
2199 
2200 void CGBuilderInserter::InsertHelper(
2201     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2202     llvm::BasicBlock::iterator InsertPt) const {
2203   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2204   if (CGF)
2205     CGF->InsertHelper(I, Name, BB, InsertPt);
2206 }
2207 
2208 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2209                                 CodeGenModule &CGM, const FunctionDecl *FD,
2210                                 std::string &FirstMissing) {
2211   // If there aren't any required features listed then go ahead and return.
2212   if (ReqFeatures.empty())
2213     return false;
2214 
2215   // Now build up the set of caller features and verify that all the required
2216   // features are there.
2217   llvm::StringMap<bool> CallerFeatureMap;
2218   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2219 
2220   // If we have at least one of the features in the feature list return
2221   // true, otherwise return false.
2222   return std::all_of(
2223       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2224         SmallVector<StringRef, 1> OrFeatures;
2225         Feature.split(OrFeatures, '|');
2226         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2227           if (!CallerFeatureMap.lookup(Feature)) {
2228             FirstMissing = Feature.str();
2229             return false;
2230           }
2231           return true;
2232         });
2233       });
2234 }
2235 
2236 // Emits an error if we don't have a valid set of target features for the
2237 // called function.
2238 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2239                                           const FunctionDecl *TargetDecl) {
2240   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2241 }
2242 
2243 // Emits an error if we don't have a valid set of target features for the
2244 // called function.
2245 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2246                                           const FunctionDecl *TargetDecl) {
2247   // Early exit if this is an indirect call.
2248   if (!TargetDecl)
2249     return;
2250 
2251   // Get the current enclosing function if it exists. If it doesn't
2252   // we can't check the target features anyhow.
2253   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2254   if (!FD)
2255     return;
2256 
2257   // Grab the required features for the call. For a builtin this is listed in
2258   // the td file with the default cpu, for an always_inline function this is any
2259   // listed cpu and any listed features.
2260   unsigned BuiltinID = TargetDecl->getBuiltinID();
2261   std::string MissingFeature;
2262   if (BuiltinID) {
2263     SmallVector<StringRef, 1> ReqFeatures;
2264     const char *FeatureList =
2265         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2266     // Return if the builtin doesn't have any required features.
2267     if (!FeatureList || StringRef(FeatureList) == "")
2268       return;
2269     StringRef(FeatureList).split(ReqFeatures, ',');
2270     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2271       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2272           << TargetDecl->getDeclName()
2273           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2274 
2275   } else if (!TargetDecl->isMultiVersion() &&
2276              TargetDecl->hasAttr<TargetAttr>()) {
2277     // Get the required features for the callee.
2278 
2279     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2280     ParsedTargetAttr ParsedAttr =
2281         CGM.getContext().filterFunctionTargetAttrs(TD);
2282 
2283     SmallVector<StringRef, 1> ReqFeatures;
2284     llvm::StringMap<bool> CalleeFeatureMap;
2285     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2286 
2287     for (const auto &F : ParsedAttr.Features) {
2288       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2289         ReqFeatures.push_back(StringRef(F).substr(1));
2290     }
2291 
2292     for (const auto &F : CalleeFeatureMap) {
2293       // Only positive features are "required".
2294       if (F.getValue())
2295         ReqFeatures.push_back(F.getKey());
2296     }
2297     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2298       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2299           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2300   }
2301 }
2302 
2303 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2304   if (!CGM.getCodeGenOpts().SanitizeStats)
2305     return;
2306 
2307   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2308   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2309   CGM.getSanStats().create(IRB, SSK);
2310 }
2311 
2312 llvm::Value *
2313 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2314   llvm::Value *Condition = nullptr;
2315 
2316   if (!RO.Conditions.Architecture.empty())
2317     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2318 
2319   if (!RO.Conditions.Features.empty()) {
2320     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2321     Condition =
2322         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2323   }
2324   return Condition;
2325 }
2326 
2327 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2328                                              llvm::Function *Resolver,
2329                                              CGBuilderTy &Builder,
2330                                              llvm::Function *FuncToReturn,
2331                                              bool SupportsIFunc) {
2332   if (SupportsIFunc) {
2333     Builder.CreateRet(FuncToReturn);
2334     return;
2335   }
2336 
2337   llvm::SmallVector<llvm::Value *, 10> Args;
2338   llvm::for_each(Resolver->args(),
2339                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2340 
2341   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2342   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2343 
2344   if (Resolver->getReturnType()->isVoidTy())
2345     Builder.CreateRetVoid();
2346   else
2347     Builder.CreateRet(Result);
2348 }
2349 
2350 void CodeGenFunction::EmitMultiVersionResolver(
2351     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2352   assert(getContext().getTargetInfo().getTriple().isX86() &&
2353          "Only implemented for x86 targets");
2354 
2355   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2356 
2357   // Main function's basic block.
2358   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2359   Builder.SetInsertPoint(CurBlock);
2360   EmitX86CpuInit();
2361 
2362   for (const MultiVersionResolverOption &RO : Options) {
2363     Builder.SetInsertPoint(CurBlock);
2364     llvm::Value *Condition = FormResolverCondition(RO);
2365 
2366     // The 'default' or 'generic' case.
2367     if (!Condition) {
2368       assert(&RO == Options.end() - 1 &&
2369              "Default or Generic case must be last");
2370       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2371                                        SupportsIFunc);
2372       return;
2373     }
2374 
2375     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2376     CGBuilderTy RetBuilder(*this, RetBlock);
2377     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2378                                      SupportsIFunc);
2379     CurBlock = createBasicBlock("resolver_else", Resolver);
2380     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2381   }
2382 
2383   // If no generic/default, emit an unreachable.
2384   Builder.SetInsertPoint(CurBlock);
2385   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2386   TrapCall->setDoesNotReturn();
2387   TrapCall->setDoesNotThrow();
2388   Builder.CreateUnreachable();
2389   Builder.ClearInsertionPoint();
2390 }
2391 
2392 // Loc - where the diagnostic will point, where in the source code this
2393 //  alignment has failed.
2394 // SecondaryLoc - if present (will be present if sufficiently different from
2395 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2396 //  It should be the location where the __attribute__((assume_aligned))
2397 //  was written e.g.
2398 void CodeGenFunction::emitAlignmentAssumptionCheck(
2399     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2400     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2401     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2402     llvm::Instruction *Assumption) {
2403   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2404          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2405              llvm::Intrinsic::getDeclaration(
2406                  Builder.GetInsertBlock()->getParent()->getParent(),
2407                  llvm::Intrinsic::assume) &&
2408          "Assumption should be a call to llvm.assume().");
2409   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2410          "Assumption should be the last instruction of the basic block, "
2411          "since the basic block is still being generated.");
2412 
2413   if (!SanOpts.has(SanitizerKind::Alignment))
2414     return;
2415 
2416   // Don't check pointers to volatile data. The behavior here is implementation-
2417   // defined.
2418   if (Ty->getPointeeType().isVolatileQualified())
2419     return;
2420 
2421   // We need to temorairly remove the assumption so we can insert the
2422   // sanitizer check before it, else the check will be dropped by optimizations.
2423   Assumption->removeFromParent();
2424 
2425   {
2426     SanitizerScope SanScope(this);
2427 
2428     if (!OffsetValue)
2429       OffsetValue = Builder.getInt1(0); // no offset.
2430 
2431     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2432                                     EmitCheckSourceLocation(SecondaryLoc),
2433                                     EmitCheckTypeDescriptor(Ty)};
2434     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2435                                   EmitCheckValue(Alignment),
2436                                   EmitCheckValue(OffsetValue)};
2437     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2438               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2439   }
2440 
2441   // We are now in the (new, empty) "cont" basic block.
2442   // Reintroduce the assumption.
2443   Builder.Insert(Assumption);
2444   // FIXME: Assumption still has it's original basic block as it's Parent.
2445 }
2446 
2447 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2448   if (CGDebugInfo *DI = getDebugInfo())
2449     return DI->SourceLocToDebugLoc(Location);
2450 
2451   return llvm::DebugLoc();
2452 }
2453