1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 48 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 50 CXXThisValue(0), CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs 196 && ReturnBlock.getBlock()->use_empty(); 197 // Usually the return expression is evaluated before the cleanup 198 // code. If the function contains only a simple return statement, 199 // such as a constant, the location before the cleanup code becomes 200 // the last useful breakpoint in the function, because the simple 201 // return expression will be evaluated after the cleanup code. To be 202 // safe, set the debug location for cleanup code to the location of 203 // the return statement. Otherwise the cleanup code should be at the 204 // end of the function's lexical scope. 205 // 206 // If there are multiple branches to the return block, the branch 207 // instructions will get the location of the return statements and 208 // all will be fine. 209 if (CGDebugInfo *DI = getDebugInfo()) { 210 if (OnlySimpleReturnStmts) 211 DI->EmitLocation(Builder, LastStopPoint); 212 else 213 DI->EmitLocation(Builder, EndLoc); 214 } 215 216 // Pop any cleanups that might have been associated with the 217 // parameters. Do this in whatever block we're currently in; it's 218 // important to do this before we enter the return block or return 219 // edges will be *really* confused. 220 bool EmitRetDbgLoc = true; 221 if (EHStack.stable_begin() != PrologueCleanupDepth) { 222 PopCleanupBlocks(PrologueCleanupDepth); 223 224 // Make sure the line table doesn't jump back into the body for 225 // the ret after it's been at EndLoc. 226 EmitRetDbgLoc = false; 227 228 if (CGDebugInfo *DI = getDebugInfo()) 229 if (OnlySimpleReturnStmts) 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Emit function epilog (to return). 234 EmitReturnBlock(); 235 236 if (ShouldInstrumentFunction()) 237 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 238 239 // Emit debug descriptor for function end. 240 if (CGDebugInfo *DI = getDebugInfo()) { 241 DI->EmitFunctionEnd(Builder); 242 } 243 244 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 245 EmitEndEHSpec(CurCodeDecl); 246 247 assert(EHStack.empty() && 248 "did not remove all scopes from cleanup stack!"); 249 250 // If someone did an indirect goto, emit the indirect goto block at the end of 251 // the function. 252 if (IndirectBranch) { 253 EmitBlock(IndirectBranch->getParent()); 254 Builder.ClearInsertionPoint(); 255 } 256 257 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 258 llvm::Instruction *Ptr = AllocaInsertPt; 259 AllocaInsertPt = 0; 260 Ptr->eraseFromParent(); 261 262 // If someone took the address of a label but never did an indirect goto, we 263 // made a zero entry PHI node, which is illegal, zap it now. 264 if (IndirectBranch) { 265 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 266 if (PN->getNumIncomingValues() == 0) { 267 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 268 PN->eraseFromParent(); 269 } 270 } 271 272 EmitIfUsed(*this, EHResumeBlock); 273 EmitIfUsed(*this, TerminateLandingPad); 274 EmitIfUsed(*this, TerminateHandler); 275 EmitIfUsed(*this, UnreachableBlock); 276 277 if (CGM.getCodeGenOpts().EmitDeclMetadata) 278 EmitDeclMetadata(); 279 280 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 281 I = DeferredReplacements.begin(), 282 E = DeferredReplacements.end(); 283 I != E; ++I) { 284 I->first->replaceAllUsesWith(I->second); 285 I->first->eraseFromParent(); 286 } 287 } 288 289 /// ShouldInstrumentFunction - Return true if the current function should be 290 /// instrumented with __cyg_profile_func_* calls 291 bool CodeGenFunction::ShouldInstrumentFunction() { 292 if (!CGM.getCodeGenOpts().InstrumentFunctions) 293 return false; 294 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 295 return false; 296 return true; 297 } 298 299 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 300 /// instrumentation function with the current function and the call site, if 301 /// function instrumentation is enabled. 302 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 303 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 304 llvm::PointerType *PointerTy = Int8PtrTy; 305 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 306 llvm::FunctionType *FunctionTy = 307 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 308 309 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 310 llvm::CallInst *CallSite = Builder.CreateCall( 311 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 312 llvm::ConstantInt::get(Int32Ty, 0), 313 "callsite"); 314 315 llvm::Value *args[] = { 316 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 317 CallSite 318 }; 319 320 EmitNounwindRuntimeCall(F, args); 321 } 322 323 void CodeGenFunction::EmitMCountInstrumentation() { 324 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 325 326 llvm::Constant *MCountFn = 327 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 328 EmitNounwindRuntimeCall(MCountFn); 329 } 330 331 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 332 // information in the program executable. The argument information stored 333 // includes the argument name, its type, the address and access qualifiers used. 334 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 335 CodeGenModule &CGM,llvm::LLVMContext &Context, 336 SmallVector <llvm::Value*, 5> &kernelMDArgs, 337 CGBuilderTy& Builder, ASTContext &ASTCtx) { 338 // Create MDNodes that represent the kernel arg metadata. 339 // Each MDNode is a list in the form of "key", N number of values which is 340 // the same number of values as their are kernel arguments. 341 342 // MDNode for the kernel argument address space qualifiers. 343 SmallVector<llvm::Value*, 8> addressQuals; 344 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 345 346 // MDNode for the kernel argument access qualifiers (images only). 347 SmallVector<llvm::Value*, 8> accessQuals; 348 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 349 350 // MDNode for the kernel argument type names. 351 SmallVector<llvm::Value*, 8> argTypeNames; 352 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 353 354 // MDNode for the kernel argument type qualifiers. 355 SmallVector<llvm::Value*, 8> argTypeQuals; 356 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 357 358 // MDNode for the kernel argument names. 359 SmallVector<llvm::Value*, 8> argNames; 360 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 361 362 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 363 const ParmVarDecl *parm = FD->getParamDecl(i); 364 QualType ty = parm->getType(); 365 std::string typeQuals; 366 367 if (ty->isPointerType()) { 368 QualType pointeeTy = ty->getPointeeType(); 369 370 // Get address qualifier. 371 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 372 pointeeTy.getAddressSpace()))); 373 374 // Get argument type name. 375 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 376 377 // Turn "unsigned type" to "utype" 378 std::string::size_type pos = typeName.find("unsigned"); 379 if (pos != std::string::npos) 380 typeName.erase(pos+1, 8); 381 382 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 383 384 // Get argument type qualifiers: 385 if (ty.isRestrictQualified()) 386 typeQuals = "restrict"; 387 if (pointeeTy.isConstQualified() || 388 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 389 typeQuals += typeQuals.empty() ? "const" : " const"; 390 if (pointeeTy.isVolatileQualified()) 391 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 392 } else { 393 uint32_t AddrSpc = 0; 394 if (ty->isImageType()) 395 AddrSpc = 396 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 397 398 addressQuals.push_back(Builder.getInt32(AddrSpc)); 399 400 // Get argument type name. 401 std::string typeName = ty.getUnqualifiedType().getAsString(); 402 403 // Turn "unsigned type" to "utype" 404 std::string::size_type pos = typeName.find("unsigned"); 405 if (pos != std::string::npos) 406 typeName.erase(pos+1, 8); 407 408 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 409 410 // Get argument type qualifiers: 411 if (ty.isConstQualified()) 412 typeQuals = "const"; 413 if (ty.isVolatileQualified()) 414 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 415 } 416 417 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 418 419 // Get image access qualifier: 420 if (ty->isImageType()) { 421 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 422 if (A && A->isWriteOnly()) 423 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 424 else 425 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 426 // FIXME: what about read_write? 427 } else 428 accessQuals.push_back(llvm::MDString::get(Context, "none")); 429 430 // Get argument name. 431 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 432 } 433 434 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 435 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 436 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 437 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 438 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 439 } 440 441 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 442 llvm::Function *Fn) 443 { 444 if (!FD->hasAttr<OpenCLKernelAttr>()) 445 return; 446 447 llvm::LLVMContext &Context = getLLVMContext(); 448 449 SmallVector <llvm::Value*, 5> kernelMDArgs; 450 kernelMDArgs.push_back(Fn); 451 452 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 453 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 454 Builder, getContext()); 455 456 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 457 QualType hintQTy = A->getTypeHint(); 458 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 459 bool isSignedInteger = 460 hintQTy->isSignedIntegerType() || 461 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 462 llvm::Value *attrMDArgs[] = { 463 llvm::MDString::get(Context, "vec_type_hint"), 464 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 465 llvm::ConstantInt::get( 466 llvm::IntegerType::get(Context, 32), 467 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 468 }; 469 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 470 } 471 472 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 473 llvm::Value *attrMDArgs[] = { 474 llvm::MDString::get(Context, "work_group_size_hint"), 475 Builder.getInt32(A->getXDim()), 476 Builder.getInt32(A->getYDim()), 477 Builder.getInt32(A->getZDim()) 478 }; 479 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 480 } 481 482 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 483 llvm::Value *attrMDArgs[] = { 484 llvm::MDString::get(Context, "reqd_work_group_size"), 485 Builder.getInt32(A->getXDim()), 486 Builder.getInt32(A->getYDim()), 487 Builder.getInt32(A->getZDim()) 488 }; 489 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 490 } 491 492 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 493 llvm::NamedMDNode *OpenCLKernelMetadata = 494 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 495 OpenCLKernelMetadata->addOperand(kernelMDNode); 496 } 497 498 void CodeGenFunction::StartFunction(GlobalDecl GD, 499 QualType RetTy, 500 llvm::Function *Fn, 501 const CGFunctionInfo &FnInfo, 502 const FunctionArgList &Args, 503 SourceLocation StartLoc) { 504 const Decl *D = GD.getDecl(); 505 506 DidCallStackSave = false; 507 CurCodeDecl = D; 508 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 509 FnRetTy = RetTy; 510 CurFn = Fn; 511 CurFnInfo = &FnInfo; 512 assert(CurFn->isDeclaration() && "Function already has body?"); 513 514 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 515 SanOpts = &SanitizerOptions::Disabled; 516 SanitizePerformTypeCheck = false; 517 } 518 519 // Pass inline keyword to optimizer if it appears explicitly on any 520 // declaration. Also, in the case of -fno-inline attach NoInline 521 // attribute to all function that are not marked AlwaysInline or ForceInline. 522 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 523 if (!CGM.getCodeGenOpts().NoInline) { 524 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 525 RE = FD->redecls_end(); RI != RE; ++RI) 526 if (RI->isInlineSpecified()) { 527 Fn->addFnAttr(llvm::Attribute::InlineHint); 528 break; 529 } 530 } else if (!FD->hasAttr<AlwaysInlineAttr>() && 531 !FD->hasAttr<ForceInlineAttr>()) 532 Fn->addFnAttr(llvm::Attribute::NoInline); 533 } 534 535 if (getLangOpts().OpenCL) { 536 // Add metadata for a kernel function. 537 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 538 EmitOpenCLKernelMetadata(FD, Fn); 539 } 540 541 // If we are checking function types, emit a function type signature as 542 // prefix data. 543 if (getLangOpts().CPlusPlus && SanOpts->Function) { 544 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 545 if (llvm::Constant *PrefixSig = 546 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 547 llvm::Constant *FTRTTIConst = 548 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 549 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 550 llvm::Constant *PrefixStructConst = 551 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 552 Fn->setPrefixData(PrefixStructConst); 553 } 554 } 555 } 556 557 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 558 559 // Create a marker to make it easy to insert allocas into the entryblock 560 // later. Don't create this with the builder, because we don't want it 561 // folded. 562 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 563 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 564 if (Builder.isNamePreserving()) 565 AllocaInsertPt->setName("allocapt"); 566 567 ReturnBlock = getJumpDestInCurrentScope("return"); 568 569 Builder.SetInsertPoint(EntryBB); 570 571 // Emit subprogram debug descriptor. 572 if (CGDebugInfo *DI = getDebugInfo()) { 573 SmallVector<QualType, 16> ArgTypes; 574 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 575 i != e; ++i) { 576 ArgTypes.push_back((*i)->getType()); 577 } 578 579 QualType FnType = 580 getContext().getFunctionType(RetTy, ArgTypes, 581 FunctionProtoType::ExtProtoInfo()); 582 583 DI->setLocation(StartLoc); 584 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 585 } 586 587 if (ShouldInstrumentFunction()) 588 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 589 590 if (CGM.getCodeGenOpts().InstrumentForProfiling) 591 EmitMCountInstrumentation(); 592 593 PGO.assignRegionCounters(GD); 594 595 if (RetTy->isVoidType()) { 596 // Void type; nothing to return. 597 ReturnValue = 0; 598 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 599 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 600 // Indirect aggregate return; emit returned value directly into sret slot. 601 // This reduces code size, and affects correctness in C++. 602 ReturnValue = CurFn->arg_begin(); 603 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 604 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 605 // Load the sret pointer from the argument struct and return into that. 606 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 607 llvm::Function::arg_iterator EI = CurFn->arg_end(); 608 --EI; 609 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 610 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 611 } else { 612 ReturnValue = CreateIRTemp(RetTy, "retval"); 613 614 // Tell the epilog emitter to autorelease the result. We do this 615 // now so that various specialized functions can suppress it 616 // during their IR-generation. 617 if (getLangOpts().ObjCAutoRefCount && 618 !CurFnInfo->isReturnsRetained() && 619 RetTy->isObjCRetainableType()) 620 AutoreleaseResult = true; 621 } 622 623 EmitStartEHSpec(CurCodeDecl); 624 625 PrologueCleanupDepth = EHStack.stable_begin(); 626 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 627 628 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 629 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 630 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 631 if (MD->getParent()->isLambda() && 632 MD->getOverloadedOperator() == OO_Call) { 633 // We're in a lambda; figure out the captures. 634 MD->getParent()->getCaptureFields(LambdaCaptureFields, 635 LambdaThisCaptureField); 636 if (LambdaThisCaptureField) { 637 // If this lambda captures this, load it. 638 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 639 CXXThisValue = EmitLoadOfLValue(ThisLValue, 640 SourceLocation()).getScalarVal(); 641 } 642 } else { 643 // Not in a lambda; just use 'this' from the method. 644 // FIXME: Should we generate a new load for each use of 'this'? The 645 // fast register allocator would be happier... 646 CXXThisValue = CXXABIThisValue; 647 } 648 } 649 650 // If any of the arguments have a variably modified type, make sure to 651 // emit the type size. 652 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 653 i != e; ++i) { 654 const VarDecl *VD = *i; 655 656 // Dig out the type as written from ParmVarDecls; it's unclear whether 657 // the standard (C99 6.9.1p10) requires this, but we're following the 658 // precedent set by gcc. 659 QualType Ty; 660 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 661 Ty = PVD->getOriginalType(); 662 else 663 Ty = VD->getType(); 664 665 if (Ty->isVariablyModifiedType()) 666 EmitVariablyModifiedType(Ty); 667 } 668 // Emit a location at the end of the prologue. 669 if (CGDebugInfo *DI = getDebugInfo()) 670 DI->EmitLocation(Builder, StartLoc); 671 } 672 673 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 674 const Stmt *Body) { 675 RegionCounter Cnt = getPGORegionCounter(Body); 676 Cnt.beginRegion(Builder); 677 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 678 EmitCompoundStmtWithoutScope(*S); 679 else 680 EmitStmt(Body); 681 } 682 683 /// Tries to mark the given function nounwind based on the 684 /// non-existence of any throwing calls within it. We believe this is 685 /// lightweight enough to do at -O0. 686 static void TryMarkNoThrow(llvm::Function *F) { 687 // LLVM treats 'nounwind' on a function as part of the type, so we 688 // can't do this on functions that can be overwritten. 689 if (F->mayBeOverridden()) return; 690 691 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 692 for (llvm::BasicBlock::iterator 693 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 694 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 695 if (!Call->doesNotThrow()) 696 return; 697 } else if (isa<llvm::ResumeInst>(&*BI)) { 698 return; 699 } 700 F->setDoesNotThrow(); 701 } 702 703 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 704 const FunctionDecl *UnsizedDealloc) { 705 // This is a weak discardable definition of the sized deallocation function. 706 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 707 708 // Call the unsized deallocation function and forward the first argument 709 // unchanged. 710 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 711 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 712 } 713 714 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 715 const CGFunctionInfo &FnInfo) { 716 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 717 718 // Check if we should generate debug info for this function. 719 if (FD->hasAttr<NoDebugAttr>()) 720 DebugInfo = NULL; // disable debug info indefinitely for this function 721 722 FunctionArgList Args; 723 QualType ResTy = FD->getReturnType(); 724 725 CurGD = GD; 726 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 727 if (MD && MD->isInstance()) { 728 if (CGM.getCXXABI().HasThisReturn(GD)) 729 ResTy = MD->getThisType(getContext()); 730 CGM.getCXXABI().buildThisParam(*this, Args); 731 } 732 733 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 734 Args.push_back(FD->getParamDecl(i)); 735 736 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 737 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 738 739 SourceRange BodyRange; 740 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 741 CurEHLocation = BodyRange.getEnd(); 742 743 // Emit the standard function prologue. 744 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 745 746 // Generate the body of the function. 747 if (isa<CXXDestructorDecl>(FD)) 748 EmitDestructorBody(Args); 749 else if (isa<CXXConstructorDecl>(FD)) 750 EmitConstructorBody(Args); 751 else if (getLangOpts().CUDA && 752 !CGM.getCodeGenOpts().CUDAIsDevice && 753 FD->hasAttr<CUDAGlobalAttr>()) 754 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 755 else if (isa<CXXConversionDecl>(FD) && 756 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 757 // The lambda conversion to block pointer is special; the semantics can't be 758 // expressed in the AST, so IRGen needs to special-case it. 759 EmitLambdaToBlockPointerBody(Args); 760 } else if (isa<CXXMethodDecl>(FD) && 761 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 762 // The lambda static invoker function is special, because it forwards or 763 // clones the body of the function call operator (but is actually static). 764 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 765 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 766 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 767 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 768 // Implicit copy-assignment gets the same special treatment as implicit 769 // copy-constructors. 770 emitImplicitAssignmentOperatorBody(Args); 771 } else if (Stmt *Body = FD->getBody()) { 772 EmitFunctionBody(Args, Body); 773 } else if (FunctionDecl *UnsizedDealloc = 774 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 775 // Global sized deallocation functions get an implicit weak definition if 776 // they don't have an explicit definition. 777 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 778 } else 779 llvm_unreachable("no definition for emitted function"); 780 781 // C++11 [stmt.return]p2: 782 // Flowing off the end of a function [...] results in undefined behavior in 783 // a value-returning function. 784 // C11 6.9.1p12: 785 // If the '}' that terminates a function is reached, and the value of the 786 // function call is used by the caller, the behavior is undefined. 787 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 788 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 789 if (SanOpts->Return) 790 EmitCheck(Builder.getFalse(), "missing_return", 791 EmitCheckSourceLocation(FD->getLocation()), 792 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 793 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 794 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 795 Builder.CreateUnreachable(); 796 Builder.ClearInsertionPoint(); 797 } 798 799 // Emit the standard function epilogue. 800 FinishFunction(BodyRange.getEnd()); 801 802 // If we haven't marked the function nothrow through other means, do 803 // a quick pass now to see if we can. 804 if (!CurFn->doesNotThrow()) 805 TryMarkNoThrow(CurFn); 806 807 PGO.emitWriteoutFunction(CurGD); 808 PGO.destroyRegionCounters(); 809 } 810 811 /// ContainsLabel - Return true if the statement contains a label in it. If 812 /// this statement is not executed normally, it not containing a label means 813 /// that we can just remove the code. 814 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 815 // Null statement, not a label! 816 if (S == 0) return false; 817 818 // If this is a label, we have to emit the code, consider something like: 819 // if (0) { ... foo: bar(); } goto foo; 820 // 821 // TODO: If anyone cared, we could track __label__'s, since we know that you 822 // can't jump to one from outside their declared region. 823 if (isa<LabelStmt>(S)) 824 return true; 825 826 // If this is a case/default statement, and we haven't seen a switch, we have 827 // to emit the code. 828 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 829 return true; 830 831 // If this is a switch statement, we want to ignore cases below it. 832 if (isa<SwitchStmt>(S)) 833 IgnoreCaseStmts = true; 834 835 // Scan subexpressions for verboten labels. 836 for (Stmt::const_child_range I = S->children(); I; ++I) 837 if (ContainsLabel(*I, IgnoreCaseStmts)) 838 return true; 839 840 return false; 841 } 842 843 /// containsBreak - Return true if the statement contains a break out of it. 844 /// If the statement (recursively) contains a switch or loop with a break 845 /// inside of it, this is fine. 846 bool CodeGenFunction::containsBreak(const Stmt *S) { 847 // Null statement, not a label! 848 if (S == 0) return false; 849 850 // If this is a switch or loop that defines its own break scope, then we can 851 // include it and anything inside of it. 852 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 853 isa<ForStmt>(S)) 854 return false; 855 856 if (isa<BreakStmt>(S)) 857 return true; 858 859 // Scan subexpressions for verboten breaks. 860 for (Stmt::const_child_range I = S->children(); I; ++I) 861 if (containsBreak(*I)) 862 return true; 863 864 return false; 865 } 866 867 868 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 869 /// to a constant, or if it does but contains a label, return false. If it 870 /// constant folds return true and set the boolean result in Result. 871 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 872 bool &ResultBool) { 873 llvm::APSInt ResultInt; 874 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 875 return false; 876 877 ResultBool = ResultInt.getBoolValue(); 878 return true; 879 } 880 881 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 882 /// to a constant, or if it does but contains a label, return false. If it 883 /// constant folds return true and set the folded value. 884 bool CodeGenFunction:: 885 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 886 // FIXME: Rename and handle conversion of other evaluatable things 887 // to bool. 888 llvm::APSInt Int; 889 if (!Cond->EvaluateAsInt(Int, getContext())) 890 return false; // Not foldable, not integer or not fully evaluatable. 891 892 if (CodeGenFunction::ContainsLabel(Cond)) 893 return false; // Contains a label. 894 895 ResultInt = Int; 896 return true; 897 } 898 899 900 901 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 902 /// statement) to the specified blocks. Based on the condition, this might try 903 /// to simplify the codegen of the conditional based on the branch. 904 /// 905 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 906 llvm::BasicBlock *TrueBlock, 907 llvm::BasicBlock *FalseBlock, 908 uint64_t TrueCount) { 909 Cond = Cond->IgnoreParens(); 910 911 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 912 RegionCounter Cnt = getPGORegionCounter(CondBOp); 913 914 // Handle X && Y in a condition. 915 if (CondBOp->getOpcode() == BO_LAnd) { 916 // If we have "1 && X", simplify the code. "0 && X" would have constant 917 // folded if the case was simple enough. 918 bool ConstantBool = false; 919 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 920 ConstantBool) { 921 // br(1 && X) -> br(X). 922 Cnt.beginRegion(Builder); 923 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 924 TrueCount); 925 } 926 927 // If we have "X && 1", simplify the code to use an uncond branch. 928 // "X && 0" would have been constant folded to 0. 929 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 930 ConstantBool) { 931 // br(X && 1) -> br(X). 932 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 933 TrueCount); 934 } 935 936 // Emit the LHS as a conditional. If the LHS conditional is false, we 937 // want to jump to the FalseBlock. 938 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 939 // The counter tells us how often we evaluate RHS, and all of TrueCount 940 // can be propagated to that branch. 941 uint64_t RHSCount = Cnt.getCount(); 942 943 ConditionalEvaluation eval(*this); 944 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 945 EmitBlock(LHSTrue); 946 947 // Any temporaries created here are conditional. 948 Cnt.beginRegion(Builder); 949 eval.begin(*this); 950 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 951 eval.end(*this); 952 Cnt.adjustForControlFlow(); 953 Cnt.applyAdjustmentsToRegion(); 954 955 return; 956 } 957 958 if (CondBOp->getOpcode() == BO_LOr) { 959 // If we have "0 || X", simplify the code. "1 || X" would have constant 960 // folded if the case was simple enough. 961 bool ConstantBool = false; 962 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 963 !ConstantBool) { 964 // br(0 || X) -> br(X). 965 Cnt.beginRegion(Builder); 966 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 967 TrueCount); 968 } 969 970 // If we have "X || 0", simplify the code to use an uncond branch. 971 // "X || 1" would have been constant folded to 1. 972 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 973 !ConstantBool) { 974 // br(X || 0) -> br(X). 975 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 976 TrueCount); 977 } 978 979 // Emit the LHS as a conditional. If the LHS conditional is true, we 980 // want to jump to the TrueBlock. 981 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 982 // We have the count for entry to the RHS and for the whole expression 983 // being true, so we can divy up True count between the short circuit and 984 // the RHS. 985 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 986 uint64_t RHSCount = TrueCount - LHSCount; 987 988 ConditionalEvaluation eval(*this); 989 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 990 EmitBlock(LHSFalse); 991 992 // Any temporaries created here are conditional. 993 Cnt.beginRegion(Builder); 994 eval.begin(*this); 995 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 996 997 eval.end(*this); 998 Cnt.adjustForControlFlow(); 999 Cnt.applyAdjustmentsToRegion(); 1000 1001 return; 1002 } 1003 } 1004 1005 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1006 // br(!x, t, f) -> br(x, f, t) 1007 if (CondUOp->getOpcode() == UO_LNot) { 1008 // Negate the count. 1009 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1010 // Negate the condition and swap the destination blocks. 1011 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1012 FalseCount); 1013 } 1014 } 1015 1016 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1017 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1018 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1019 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1020 1021 RegionCounter Cnt = getPGORegionCounter(CondOp); 1022 ConditionalEvaluation cond(*this); 1023 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1024 1025 // When computing PGO branch weights, we only know the overall count for 1026 // the true block. This code is essentially doing tail duplication of the 1027 // naive code-gen, introducing new edges for which counts are not 1028 // available. Divide the counts proportionally between the LHS and RHS of 1029 // the conditional operator. 1030 uint64_t LHSScaledTrueCount = 0; 1031 if (TrueCount) { 1032 double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount(); 1033 LHSScaledTrueCount = TrueCount * LHSRatio; 1034 } 1035 1036 cond.begin(*this); 1037 EmitBlock(LHSBlock); 1038 Cnt.beginRegion(Builder); 1039 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1040 LHSScaledTrueCount); 1041 cond.end(*this); 1042 1043 cond.begin(*this); 1044 EmitBlock(RHSBlock); 1045 Cnt.beginElseRegion(); 1046 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1047 TrueCount - LHSScaledTrueCount); 1048 cond.end(*this); 1049 1050 return; 1051 } 1052 1053 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1054 // Conditional operator handling can give us a throw expression as a 1055 // condition for a case like: 1056 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1057 // Fold this to: 1058 // br(c, throw x, br(y, t, f)) 1059 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1060 return; 1061 } 1062 1063 // Create branch weights based on the number of times we get here and the 1064 // number of times the condition should be true. 1065 uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount); 1066 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1067 CurrentCount - TrueCount); 1068 1069 // Emit the code with the fully general case. 1070 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1071 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1072 } 1073 1074 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1075 /// specified stmt yet. 1076 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1077 CGM.ErrorUnsupported(S, Type); 1078 } 1079 1080 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1081 /// variable-length array whose elements have a non-zero bit-pattern. 1082 /// 1083 /// \param baseType the inner-most element type of the array 1084 /// \param src - a char* pointing to the bit-pattern for a single 1085 /// base element of the array 1086 /// \param sizeInChars - the total size of the VLA, in chars 1087 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1088 llvm::Value *dest, llvm::Value *src, 1089 llvm::Value *sizeInChars) { 1090 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1091 = CGF.getContext().getTypeInfoInChars(baseType); 1092 1093 CGBuilderTy &Builder = CGF.Builder; 1094 1095 llvm::Value *baseSizeInChars 1096 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1097 1098 llvm::Type *i8p = Builder.getInt8PtrTy(); 1099 1100 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1101 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1102 1103 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1104 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1105 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1106 1107 // Make a loop over the VLA. C99 guarantees that the VLA element 1108 // count must be nonzero. 1109 CGF.EmitBlock(loopBB); 1110 1111 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1112 cur->addIncoming(begin, originBB); 1113 1114 // memcpy the individual element bit-pattern. 1115 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1116 baseSizeAndAlign.second.getQuantity(), 1117 /*volatile*/ false); 1118 1119 // Go to the next element. 1120 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1121 1122 // Leave if that's the end of the VLA. 1123 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1124 Builder.CreateCondBr(done, contBB, loopBB); 1125 cur->addIncoming(next, loopBB); 1126 1127 CGF.EmitBlock(contBB); 1128 } 1129 1130 void 1131 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1132 // Ignore empty classes in C++. 1133 if (getLangOpts().CPlusPlus) { 1134 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1135 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1136 return; 1137 } 1138 } 1139 1140 // Cast the dest ptr to the appropriate i8 pointer type. 1141 unsigned DestAS = 1142 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1143 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1144 if (DestPtr->getType() != BP) 1145 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1146 1147 // Get size and alignment info for this aggregate. 1148 std::pair<CharUnits, CharUnits> TypeInfo = 1149 getContext().getTypeInfoInChars(Ty); 1150 CharUnits Size = TypeInfo.first; 1151 CharUnits Align = TypeInfo.second; 1152 1153 llvm::Value *SizeVal; 1154 const VariableArrayType *vla; 1155 1156 // Don't bother emitting a zero-byte memset. 1157 if (Size.isZero()) { 1158 // But note that getTypeInfo returns 0 for a VLA. 1159 if (const VariableArrayType *vlaType = 1160 dyn_cast_or_null<VariableArrayType>( 1161 getContext().getAsArrayType(Ty))) { 1162 QualType eltType; 1163 llvm::Value *numElts; 1164 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1165 1166 SizeVal = numElts; 1167 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1168 if (!eltSize.isOne()) 1169 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1170 vla = vlaType; 1171 } else { 1172 return; 1173 } 1174 } else { 1175 SizeVal = CGM.getSize(Size); 1176 vla = 0; 1177 } 1178 1179 // If the type contains a pointer to data member we can't memset it to zero. 1180 // Instead, create a null constant and copy it to the destination. 1181 // TODO: there are other patterns besides zero that we can usefully memset, 1182 // like -1, which happens to be the pattern used by member-pointers. 1183 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1184 // For a VLA, emit a single element, then splat that over the VLA. 1185 if (vla) Ty = getContext().getBaseElementType(vla); 1186 1187 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1188 1189 llvm::GlobalVariable *NullVariable = 1190 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1191 /*isConstant=*/true, 1192 llvm::GlobalVariable::PrivateLinkage, 1193 NullConstant, Twine()); 1194 llvm::Value *SrcPtr = 1195 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1196 1197 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1198 1199 // Get and call the appropriate llvm.memcpy overload. 1200 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1201 return; 1202 } 1203 1204 // Otherwise, just memset the whole thing to zero. This is legal 1205 // because in LLVM, all default initializers (other than the ones we just 1206 // handled above) are guaranteed to have a bit pattern of all zeros. 1207 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1208 Align.getQuantity(), false); 1209 } 1210 1211 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1212 // Make sure that there is a block for the indirect goto. 1213 if (IndirectBranch == 0) 1214 GetIndirectGotoBlock(); 1215 1216 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1217 1218 // Make sure the indirect branch includes all of the address-taken blocks. 1219 IndirectBranch->addDestination(BB); 1220 return llvm::BlockAddress::get(CurFn, BB); 1221 } 1222 1223 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1224 // If we already made the indirect branch for indirect goto, return its block. 1225 if (IndirectBranch) return IndirectBranch->getParent(); 1226 1227 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1228 1229 // Create the PHI node that indirect gotos will add entries to. 1230 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1231 "indirect.goto.dest"); 1232 1233 // Create the indirect branch instruction. 1234 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1235 return IndirectBranch->getParent(); 1236 } 1237 1238 /// Computes the length of an array in elements, as well as the base 1239 /// element type and a properly-typed first element pointer. 1240 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1241 QualType &baseType, 1242 llvm::Value *&addr) { 1243 const ArrayType *arrayType = origArrayType; 1244 1245 // If it's a VLA, we have to load the stored size. Note that 1246 // this is the size of the VLA in bytes, not its size in elements. 1247 llvm::Value *numVLAElements = 0; 1248 if (isa<VariableArrayType>(arrayType)) { 1249 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1250 1251 // Walk into all VLAs. This doesn't require changes to addr, 1252 // which has type T* where T is the first non-VLA element type. 1253 do { 1254 QualType elementType = arrayType->getElementType(); 1255 arrayType = getContext().getAsArrayType(elementType); 1256 1257 // If we only have VLA components, 'addr' requires no adjustment. 1258 if (!arrayType) { 1259 baseType = elementType; 1260 return numVLAElements; 1261 } 1262 } while (isa<VariableArrayType>(arrayType)); 1263 1264 // We get out here only if we find a constant array type 1265 // inside the VLA. 1266 } 1267 1268 // We have some number of constant-length arrays, so addr should 1269 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1270 // down to the first element of addr. 1271 SmallVector<llvm::Value*, 8> gepIndices; 1272 1273 // GEP down to the array type. 1274 llvm::ConstantInt *zero = Builder.getInt32(0); 1275 gepIndices.push_back(zero); 1276 1277 uint64_t countFromCLAs = 1; 1278 QualType eltType; 1279 1280 llvm::ArrayType *llvmArrayType = 1281 dyn_cast<llvm::ArrayType>( 1282 cast<llvm::PointerType>(addr->getType())->getElementType()); 1283 while (llvmArrayType) { 1284 assert(isa<ConstantArrayType>(arrayType)); 1285 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1286 == llvmArrayType->getNumElements()); 1287 1288 gepIndices.push_back(zero); 1289 countFromCLAs *= llvmArrayType->getNumElements(); 1290 eltType = arrayType->getElementType(); 1291 1292 llvmArrayType = 1293 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1294 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1295 assert((!llvmArrayType || arrayType) && 1296 "LLVM and Clang types are out-of-synch"); 1297 } 1298 1299 if (arrayType) { 1300 // From this point onwards, the Clang array type has been emitted 1301 // as some other type (probably a packed struct). Compute the array 1302 // size, and just emit the 'begin' expression as a bitcast. 1303 while (arrayType) { 1304 countFromCLAs *= 1305 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1306 eltType = arrayType->getElementType(); 1307 arrayType = getContext().getAsArrayType(eltType); 1308 } 1309 1310 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1311 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1312 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1313 } else { 1314 // Create the actual GEP. 1315 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1316 } 1317 1318 baseType = eltType; 1319 1320 llvm::Value *numElements 1321 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1322 1323 // If we had any VLA dimensions, factor them in. 1324 if (numVLAElements) 1325 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1326 1327 return numElements; 1328 } 1329 1330 std::pair<llvm::Value*, QualType> 1331 CodeGenFunction::getVLASize(QualType type) { 1332 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1333 assert(vla && "type was not a variable array type!"); 1334 return getVLASize(vla); 1335 } 1336 1337 std::pair<llvm::Value*, QualType> 1338 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1339 // The number of elements so far; always size_t. 1340 llvm::Value *numElements = 0; 1341 1342 QualType elementType; 1343 do { 1344 elementType = type->getElementType(); 1345 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1346 assert(vlaSize && "no size for VLA!"); 1347 assert(vlaSize->getType() == SizeTy); 1348 1349 if (!numElements) { 1350 numElements = vlaSize; 1351 } else { 1352 // It's undefined behavior if this wraps around, so mark it that way. 1353 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1354 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1355 } 1356 } while ((type = getContext().getAsVariableArrayType(elementType))); 1357 1358 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1359 } 1360 1361 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1362 assert(type->isVariablyModifiedType() && 1363 "Must pass variably modified type to EmitVLASizes!"); 1364 1365 EnsureInsertPoint(); 1366 1367 // We're going to walk down into the type and look for VLA 1368 // expressions. 1369 do { 1370 assert(type->isVariablyModifiedType()); 1371 1372 const Type *ty = type.getTypePtr(); 1373 switch (ty->getTypeClass()) { 1374 1375 #define TYPE(Class, Base) 1376 #define ABSTRACT_TYPE(Class, Base) 1377 #define NON_CANONICAL_TYPE(Class, Base) 1378 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1379 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1380 #include "clang/AST/TypeNodes.def" 1381 llvm_unreachable("unexpected dependent type!"); 1382 1383 // These types are never variably-modified. 1384 case Type::Builtin: 1385 case Type::Complex: 1386 case Type::Vector: 1387 case Type::ExtVector: 1388 case Type::Record: 1389 case Type::Enum: 1390 case Type::Elaborated: 1391 case Type::TemplateSpecialization: 1392 case Type::ObjCObject: 1393 case Type::ObjCInterface: 1394 case Type::ObjCObjectPointer: 1395 llvm_unreachable("type class is never variably-modified!"); 1396 1397 case Type::Adjusted: 1398 type = cast<AdjustedType>(ty)->getAdjustedType(); 1399 break; 1400 1401 case Type::Decayed: 1402 type = cast<DecayedType>(ty)->getPointeeType(); 1403 break; 1404 1405 case Type::Pointer: 1406 type = cast<PointerType>(ty)->getPointeeType(); 1407 break; 1408 1409 case Type::BlockPointer: 1410 type = cast<BlockPointerType>(ty)->getPointeeType(); 1411 break; 1412 1413 case Type::LValueReference: 1414 case Type::RValueReference: 1415 type = cast<ReferenceType>(ty)->getPointeeType(); 1416 break; 1417 1418 case Type::MemberPointer: 1419 type = cast<MemberPointerType>(ty)->getPointeeType(); 1420 break; 1421 1422 case Type::ConstantArray: 1423 case Type::IncompleteArray: 1424 // Losing element qualification here is fine. 1425 type = cast<ArrayType>(ty)->getElementType(); 1426 break; 1427 1428 case Type::VariableArray: { 1429 // Losing element qualification here is fine. 1430 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1431 1432 // Unknown size indication requires no size computation. 1433 // Otherwise, evaluate and record it. 1434 if (const Expr *size = vat->getSizeExpr()) { 1435 // It's possible that we might have emitted this already, 1436 // e.g. with a typedef and a pointer to it. 1437 llvm::Value *&entry = VLASizeMap[size]; 1438 if (!entry) { 1439 llvm::Value *Size = EmitScalarExpr(size); 1440 1441 // C11 6.7.6.2p5: 1442 // If the size is an expression that is not an integer constant 1443 // expression [...] each time it is evaluated it shall have a value 1444 // greater than zero. 1445 if (SanOpts->VLABound && 1446 size->getType()->isSignedIntegerType()) { 1447 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1448 llvm::Constant *StaticArgs[] = { 1449 EmitCheckSourceLocation(size->getLocStart()), 1450 EmitCheckTypeDescriptor(size->getType()) 1451 }; 1452 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1453 "vla_bound_not_positive", StaticArgs, Size, 1454 CRK_Recoverable); 1455 } 1456 1457 // Always zexting here would be wrong if it weren't 1458 // undefined behavior to have a negative bound. 1459 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1460 } 1461 } 1462 type = vat->getElementType(); 1463 break; 1464 } 1465 1466 case Type::FunctionProto: 1467 case Type::FunctionNoProto: 1468 type = cast<FunctionType>(ty)->getReturnType(); 1469 break; 1470 1471 case Type::Paren: 1472 case Type::TypeOf: 1473 case Type::UnaryTransform: 1474 case Type::Attributed: 1475 case Type::SubstTemplateTypeParm: 1476 case Type::PackExpansion: 1477 // Keep walking after single level desugaring. 1478 type = type.getSingleStepDesugaredType(getContext()); 1479 break; 1480 1481 case Type::Typedef: 1482 case Type::Decltype: 1483 case Type::Auto: 1484 // Stop walking: nothing to do. 1485 return; 1486 1487 case Type::TypeOfExpr: 1488 // Stop walking: emit typeof expression. 1489 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1490 return; 1491 1492 case Type::Atomic: 1493 type = cast<AtomicType>(ty)->getValueType(); 1494 break; 1495 } 1496 } while (type->isVariablyModifiedType()); 1497 } 1498 1499 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1500 if (getContext().getBuiltinVaListType()->isArrayType()) 1501 return EmitScalarExpr(E); 1502 return EmitLValue(E).getAddress(); 1503 } 1504 1505 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1506 llvm::Constant *Init) { 1507 assert (Init && "Invalid DeclRefExpr initializer!"); 1508 if (CGDebugInfo *Dbg = getDebugInfo()) 1509 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1510 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1511 } 1512 1513 CodeGenFunction::PeepholeProtection 1514 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1515 // At the moment, the only aggressive peephole we do in IR gen 1516 // is trunc(zext) folding, but if we add more, we can easily 1517 // extend this protection. 1518 1519 if (!rvalue.isScalar()) return PeepholeProtection(); 1520 llvm::Value *value = rvalue.getScalarVal(); 1521 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1522 1523 // Just make an extra bitcast. 1524 assert(HaveInsertPoint()); 1525 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1526 Builder.GetInsertBlock()); 1527 1528 PeepholeProtection protection; 1529 protection.Inst = inst; 1530 return protection; 1531 } 1532 1533 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1534 if (!protection.Inst) return; 1535 1536 // In theory, we could try to duplicate the peepholes now, but whatever. 1537 protection.Inst->eraseFromParent(); 1538 } 1539 1540 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1541 llvm::Value *AnnotatedVal, 1542 StringRef AnnotationStr, 1543 SourceLocation Location) { 1544 llvm::Value *Args[4] = { 1545 AnnotatedVal, 1546 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1547 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1548 CGM.EmitAnnotationLineNo(Location) 1549 }; 1550 return Builder.CreateCall(AnnotationFn, Args); 1551 } 1552 1553 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1554 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1555 // FIXME We create a new bitcast for every annotation because that's what 1556 // llvm-gcc was doing. 1557 for (specific_attr_iterator<AnnotateAttr> 1558 ai = D->specific_attr_begin<AnnotateAttr>(), 1559 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1560 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1561 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1562 (*ai)->getAnnotation(), D->getLocation()); 1563 } 1564 1565 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1566 llvm::Value *V) { 1567 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1568 llvm::Type *VTy = V->getType(); 1569 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1570 CGM.Int8PtrTy); 1571 1572 for (specific_attr_iterator<AnnotateAttr> 1573 ai = D->specific_attr_begin<AnnotateAttr>(), 1574 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1575 // FIXME Always emit the cast inst so we can differentiate between 1576 // annotation on the first field of a struct and annotation on the struct 1577 // itself. 1578 if (VTy != CGM.Int8PtrTy) 1579 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1580 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1581 V = Builder.CreateBitCast(V, VTy); 1582 } 1583 1584 return V; 1585 } 1586 1587 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1588