1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Support/MDBuilder.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), 34 Builder(cgm.getModule().getContext()), 35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 36 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 37 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 40 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 41 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 42 TerminateHandler(0), TrapBB(0) { 43 44 CatchUndefined = getContext().getLangOpts().CatchUndefined; 45 if (!suppressNewContext) 46 CGM.getCXXABI().getMangleContext().startNewFunction(); 47 } 48 49 CodeGenFunction::~CodeGenFunction() { 50 // If there are any unclaimed block infos, go ahead and destroy them 51 // now. This can happen if IR-gen gets clever and skips evaluating 52 // something. 53 if (FirstBlockInfo) 54 destroyBlockInfos(FirstBlockInfo); 55 } 56 57 58 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 59 return CGM.getTypes().ConvertTypeForMem(T); 60 } 61 62 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 63 return CGM.getTypes().ConvertType(T); 64 } 65 66 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 67 switch (type.getCanonicalType()->getTypeClass()) { 68 #define TYPE(name, parent) 69 #define ABSTRACT_TYPE(name, parent) 70 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 71 #define DEPENDENT_TYPE(name, parent) case Type::name: 72 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 73 #include "clang/AST/TypeNodes.def" 74 llvm_unreachable("non-canonical or dependent type in IR-generation"); 75 76 case Type::Builtin: 77 case Type::Pointer: 78 case Type::BlockPointer: 79 case Type::LValueReference: 80 case Type::RValueReference: 81 case Type::MemberPointer: 82 case Type::Vector: 83 case Type::ExtVector: 84 case Type::FunctionProto: 85 case Type::FunctionNoProto: 86 case Type::Enum: 87 case Type::ObjCObjectPointer: 88 return false; 89 90 // Complexes, arrays, records, and Objective-C objects. 91 case Type::Complex: 92 case Type::ConstantArray: 93 case Type::IncompleteArray: 94 case Type::VariableArray: 95 case Type::Record: 96 case Type::ObjCObject: 97 case Type::ObjCInterface: 98 return true; 99 100 // In IRGen, atomic types are just the underlying type 101 case Type::Atomic: 102 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 103 } 104 llvm_unreachable("unknown type kind!"); 105 } 106 107 void CodeGenFunction::EmitReturnBlock() { 108 // For cleanliness, we try to avoid emitting the return block for 109 // simple cases. 110 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 111 112 if (CurBB) { 113 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 114 115 // We have a valid insert point, reuse it if it is empty or there are no 116 // explicit jumps to the return block. 117 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 118 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 119 delete ReturnBlock.getBlock(); 120 } else 121 EmitBlock(ReturnBlock.getBlock()); 122 return; 123 } 124 125 // Otherwise, if the return block is the target of a single direct 126 // branch then we can just put the code in that block instead. This 127 // cleans up functions which started with a unified return block. 128 if (ReturnBlock.getBlock()->hasOneUse()) { 129 llvm::BranchInst *BI = 130 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 131 if (BI && BI->isUnconditional() && 132 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 133 // Reset insertion point, including debug location, and delete the branch. 134 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 135 Builder.SetInsertPoint(BI->getParent()); 136 BI->eraseFromParent(); 137 delete ReturnBlock.getBlock(); 138 return; 139 } 140 } 141 142 // FIXME: We are at an unreachable point, there is no reason to emit the block 143 // unless it has uses. However, we still need a place to put the debug 144 // region.end for now. 145 146 EmitBlock(ReturnBlock.getBlock()); 147 } 148 149 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 150 if (!BB) return; 151 if (!BB->use_empty()) 152 return CGF.CurFn->getBasicBlockList().push_back(BB); 153 delete BB; 154 } 155 156 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 157 assert(BreakContinueStack.empty() && 158 "mismatched push/pop in break/continue stack!"); 159 160 // Pop any cleanups that might have been associated with the 161 // parameters. Do this in whatever block we're currently in; it's 162 // important to do this before we enter the return block or return 163 // edges will be *really* confused. 164 if (EHStack.stable_begin() != PrologueCleanupDepth) 165 PopCleanupBlocks(PrologueCleanupDepth); 166 167 // Emit function epilog (to return). 168 EmitReturnBlock(); 169 170 if (ShouldInstrumentFunction()) 171 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 172 173 // Emit debug descriptor for function end. 174 if (CGDebugInfo *DI = getDebugInfo()) { 175 DI->setLocation(EndLoc); 176 DI->EmitFunctionEnd(Builder); 177 } 178 179 EmitFunctionEpilog(*CurFnInfo); 180 EmitEndEHSpec(CurCodeDecl); 181 182 assert(EHStack.empty() && 183 "did not remove all scopes from cleanup stack!"); 184 185 // If someone did an indirect goto, emit the indirect goto block at the end of 186 // the function. 187 if (IndirectBranch) { 188 EmitBlock(IndirectBranch->getParent()); 189 Builder.ClearInsertionPoint(); 190 } 191 192 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 193 llvm::Instruction *Ptr = AllocaInsertPt; 194 AllocaInsertPt = 0; 195 Ptr->eraseFromParent(); 196 197 // If someone took the address of a label but never did an indirect goto, we 198 // made a zero entry PHI node, which is illegal, zap it now. 199 if (IndirectBranch) { 200 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 201 if (PN->getNumIncomingValues() == 0) { 202 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 203 PN->eraseFromParent(); 204 } 205 } 206 207 EmitIfUsed(*this, EHResumeBlock); 208 EmitIfUsed(*this, TerminateLandingPad); 209 EmitIfUsed(*this, TerminateHandler); 210 EmitIfUsed(*this, UnreachableBlock); 211 212 if (CGM.getCodeGenOpts().EmitDeclMetadata) 213 EmitDeclMetadata(); 214 } 215 216 /// ShouldInstrumentFunction - Return true if the current function should be 217 /// instrumented with __cyg_profile_func_* calls 218 bool CodeGenFunction::ShouldInstrumentFunction() { 219 if (!CGM.getCodeGenOpts().InstrumentFunctions) 220 return false; 221 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 222 return false; 223 return true; 224 } 225 226 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 227 /// instrumentation function with the current function and the call site, if 228 /// function instrumentation is enabled. 229 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 230 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 231 llvm::PointerType *PointerTy = Int8PtrTy; 232 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 233 llvm::FunctionType *FunctionTy = 234 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 235 236 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 237 llvm::CallInst *CallSite = Builder.CreateCall( 238 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 239 llvm::ConstantInt::get(Int32Ty, 0), 240 "callsite"); 241 242 Builder.CreateCall2(F, 243 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 244 CallSite); 245 } 246 247 void CodeGenFunction::EmitMCountInstrumentation() { 248 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 249 250 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 251 Target.getMCountName()); 252 Builder.CreateCall(MCountFn); 253 } 254 255 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 256 llvm::Function *Fn) 257 { 258 if (!FD->hasAttr<OpenCLKernelAttr>()) 259 return; 260 261 llvm::LLVMContext &Context = getLLVMContext(); 262 263 llvm::SmallVector <llvm::Value*, 5> kernelMDArgs; 264 kernelMDArgs.push_back(Fn); 265 266 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 267 llvm::SmallVector <llvm::Value*, 5> attrMDArgs; 268 attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint")); 269 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 270 llvm::Type *iTy = llvm::IntegerType::get(Context, 32); 271 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 272 llvm::APInt(32, (uint64_t)attr->getXDim()))); 273 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 274 llvm::APInt(32, (uint64_t)attr->getYDim()))); 275 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 276 llvm::APInt(32, (uint64_t)attr->getZDim()))); 277 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 278 } 279 280 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 281 llvm::SmallVector <llvm::Value*, 5> attrMDArgs; 282 attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size")); 283 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 284 llvm::Type *iTy = llvm::IntegerType::get(Context, 32); 285 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 286 llvm::APInt(32, (uint64_t)attr->getXDim()))); 287 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 288 llvm::APInt(32, (uint64_t)attr->getYDim()))); 289 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 290 llvm::APInt(32, (uint64_t)attr->getZDim()))); 291 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 292 } 293 294 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 295 llvm::NamedMDNode *OpenCLKernelMetadata = 296 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 297 OpenCLKernelMetadata->addOperand(kernelMDNode); 298 } 299 300 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 301 llvm::Function *Fn, 302 const CGFunctionInfo &FnInfo, 303 const FunctionArgList &Args, 304 SourceLocation StartLoc) { 305 const Decl *D = GD.getDecl(); 306 307 DidCallStackSave = false; 308 CurCodeDecl = CurFuncDecl = D; 309 FnRetTy = RetTy; 310 CurFn = Fn; 311 CurFnInfo = &FnInfo; 312 assert(CurFn->isDeclaration() && "Function already has body?"); 313 314 // Pass inline keyword to optimizer if it appears explicitly on any 315 // declaration. 316 if (!CGM.getCodeGenOpts().NoInline) 317 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 318 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 319 RE = FD->redecls_end(); RI != RE; ++RI) 320 if (RI->isInlineSpecified()) { 321 Fn->addFnAttr(llvm::Attribute::InlineHint); 322 break; 323 } 324 325 if (getContext().getLangOpts().OpenCL) { 326 // Add metadata for a kernel function. 327 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 328 EmitOpenCLKernelMetadata(FD, Fn); 329 } 330 331 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 332 333 // Create a marker to make it easy to insert allocas into the entryblock 334 // later. Don't create this with the builder, because we don't want it 335 // folded. 336 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 337 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 338 if (Builder.isNamePreserving()) 339 AllocaInsertPt->setName("allocapt"); 340 341 ReturnBlock = getJumpDestInCurrentScope("return"); 342 343 Builder.SetInsertPoint(EntryBB); 344 345 // Emit subprogram debug descriptor. 346 if (CGDebugInfo *DI = getDebugInfo()) { 347 unsigned NumArgs = 0; 348 QualType *ArgsArray = new QualType[Args.size()]; 349 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 350 i != e; ++i) { 351 ArgsArray[NumArgs++] = (*i)->getType(); 352 } 353 354 QualType FnType = 355 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 356 FunctionProtoType::ExtProtoInfo()); 357 358 delete[] ArgsArray; 359 360 DI->setLocation(StartLoc); 361 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 362 } 363 364 if (ShouldInstrumentFunction()) 365 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 366 367 if (CGM.getCodeGenOpts().InstrumentForProfiling) 368 EmitMCountInstrumentation(); 369 370 if (RetTy->isVoidType()) { 371 // Void type; nothing to return. 372 ReturnValue = 0; 373 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 374 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 375 // Indirect aggregate return; emit returned value directly into sret slot. 376 // This reduces code size, and affects correctness in C++. 377 ReturnValue = CurFn->arg_begin(); 378 } else { 379 ReturnValue = CreateIRTemp(RetTy, "retval"); 380 381 // Tell the epilog emitter to autorelease the result. We do this 382 // now so that various specialized functions can suppress it 383 // during their IR-generation. 384 if (getLangOpts().ObjCAutoRefCount && 385 !CurFnInfo->isReturnsRetained() && 386 RetTy->isObjCRetainableType()) 387 AutoreleaseResult = true; 388 } 389 390 EmitStartEHSpec(CurCodeDecl); 391 392 PrologueCleanupDepth = EHStack.stable_begin(); 393 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 394 395 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 396 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 397 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 398 if (MD->getParent()->isLambda() && 399 MD->getOverloadedOperator() == OO_Call) { 400 // We're in a lambda; figure out the captures. 401 MD->getParent()->getCaptureFields(LambdaCaptureFields, 402 LambdaThisCaptureField); 403 if (LambdaThisCaptureField) { 404 // If this lambda captures this, load it. 405 QualType LambdaTagType = 406 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 407 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 408 LambdaTagType); 409 LValue ThisLValue = EmitLValueForField(LambdaLV, 410 LambdaThisCaptureField); 411 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 412 } 413 } else { 414 // Not in a lambda; just use 'this' from the method. 415 // FIXME: Should we generate a new load for each use of 'this'? The 416 // fast register allocator would be happier... 417 CXXThisValue = CXXABIThisValue; 418 } 419 } 420 421 // If any of the arguments have a variably modified type, make sure to 422 // emit the type size. 423 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 424 i != e; ++i) { 425 QualType Ty = (*i)->getType(); 426 427 if (Ty->isVariablyModifiedType()) 428 EmitVariablyModifiedType(Ty); 429 } 430 // Emit a location at the end of the prologue. 431 if (CGDebugInfo *DI = getDebugInfo()) 432 DI->EmitLocation(Builder, StartLoc); 433 } 434 435 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 436 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 437 assert(FD->getBody()); 438 EmitStmt(FD->getBody()); 439 } 440 441 /// Tries to mark the given function nounwind based on the 442 /// non-existence of any throwing calls within it. We believe this is 443 /// lightweight enough to do at -O0. 444 static void TryMarkNoThrow(llvm::Function *F) { 445 // LLVM treats 'nounwind' on a function as part of the type, so we 446 // can't do this on functions that can be overwritten. 447 if (F->mayBeOverridden()) return; 448 449 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 450 for (llvm::BasicBlock::iterator 451 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 452 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 453 if (!Call->doesNotThrow()) 454 return; 455 } else if (isa<llvm::ResumeInst>(&*BI)) { 456 return; 457 } 458 F->setDoesNotThrow(true); 459 } 460 461 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 462 const CGFunctionInfo &FnInfo) { 463 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 464 465 // Check if we should generate debug info for this function. 466 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 467 DebugInfo = CGM.getModuleDebugInfo(); 468 469 FunctionArgList Args; 470 QualType ResTy = FD->getResultType(); 471 472 CurGD = GD; 473 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 474 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 475 476 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 477 Args.push_back(FD->getParamDecl(i)); 478 479 SourceRange BodyRange; 480 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 481 482 // Emit the standard function prologue. 483 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 484 485 // Generate the body of the function. 486 if (isa<CXXDestructorDecl>(FD)) 487 EmitDestructorBody(Args); 488 else if (isa<CXXConstructorDecl>(FD)) 489 EmitConstructorBody(Args); 490 else if (getContext().getLangOpts().CUDA && 491 !CGM.getCodeGenOpts().CUDAIsDevice && 492 FD->hasAttr<CUDAGlobalAttr>()) 493 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 494 else if (isa<CXXConversionDecl>(FD) && 495 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 496 // The lambda conversion to block pointer is special; the semantics can't be 497 // expressed in the AST, so IRGen needs to special-case it. 498 EmitLambdaToBlockPointerBody(Args); 499 } else if (isa<CXXMethodDecl>(FD) && 500 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 501 // The lambda "__invoke" function is special, because it forwards or 502 // clones the body of the function call operator (but is actually static). 503 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 504 } 505 else 506 EmitFunctionBody(Args); 507 508 // Emit the standard function epilogue. 509 FinishFunction(BodyRange.getEnd()); 510 511 // If we haven't marked the function nothrow through other means, do 512 // a quick pass now to see if we can. 513 if (!CurFn->doesNotThrow()) 514 TryMarkNoThrow(CurFn); 515 } 516 517 /// ContainsLabel - Return true if the statement contains a label in it. If 518 /// this statement is not executed normally, it not containing a label means 519 /// that we can just remove the code. 520 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 521 // Null statement, not a label! 522 if (S == 0) return false; 523 524 // If this is a label, we have to emit the code, consider something like: 525 // if (0) { ... foo: bar(); } goto foo; 526 // 527 // TODO: If anyone cared, we could track __label__'s, since we know that you 528 // can't jump to one from outside their declared region. 529 if (isa<LabelStmt>(S)) 530 return true; 531 532 // If this is a case/default statement, and we haven't seen a switch, we have 533 // to emit the code. 534 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 535 return true; 536 537 // If this is a switch statement, we want to ignore cases below it. 538 if (isa<SwitchStmt>(S)) 539 IgnoreCaseStmts = true; 540 541 // Scan subexpressions for verboten labels. 542 for (Stmt::const_child_range I = S->children(); I; ++I) 543 if (ContainsLabel(*I, IgnoreCaseStmts)) 544 return true; 545 546 return false; 547 } 548 549 /// containsBreak - Return true if the statement contains a break out of it. 550 /// If the statement (recursively) contains a switch or loop with a break 551 /// inside of it, this is fine. 552 bool CodeGenFunction::containsBreak(const Stmt *S) { 553 // Null statement, not a label! 554 if (S == 0) return false; 555 556 // If this is a switch or loop that defines its own break scope, then we can 557 // include it and anything inside of it. 558 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 559 isa<ForStmt>(S)) 560 return false; 561 562 if (isa<BreakStmt>(S)) 563 return true; 564 565 // Scan subexpressions for verboten breaks. 566 for (Stmt::const_child_range I = S->children(); I; ++I) 567 if (containsBreak(*I)) 568 return true; 569 570 return false; 571 } 572 573 574 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 575 /// to a constant, or if it does but contains a label, return false. If it 576 /// constant folds return true and set the boolean result in Result. 577 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 578 bool &ResultBool) { 579 llvm::APInt ResultInt; 580 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 581 return false; 582 583 ResultBool = ResultInt.getBoolValue(); 584 return true; 585 } 586 587 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 588 /// to a constant, or if it does but contains a label, return false. If it 589 /// constant folds return true and set the folded value. 590 bool CodeGenFunction:: 591 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 592 // FIXME: Rename and handle conversion of other evaluatable things 593 // to bool. 594 llvm::APSInt Int; 595 if (!Cond->EvaluateAsInt(Int, getContext())) 596 return false; // Not foldable, not integer or not fully evaluatable. 597 598 if (CodeGenFunction::ContainsLabel(Cond)) 599 return false; // Contains a label. 600 601 ResultInt = Int; 602 return true; 603 } 604 605 606 607 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 608 /// statement) to the specified blocks. Based on the condition, this might try 609 /// to simplify the codegen of the conditional based on the branch. 610 /// 611 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 612 llvm::BasicBlock *TrueBlock, 613 llvm::BasicBlock *FalseBlock) { 614 Cond = Cond->IgnoreParens(); 615 616 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 617 // Handle X && Y in a condition. 618 if (CondBOp->getOpcode() == BO_LAnd) { 619 // If we have "1 && X", simplify the code. "0 && X" would have constant 620 // folded if the case was simple enough. 621 bool ConstantBool = false; 622 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 623 ConstantBool) { 624 // br(1 && X) -> br(X). 625 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 626 } 627 628 // If we have "X && 1", simplify the code to use an uncond branch. 629 // "X && 0" would have been constant folded to 0. 630 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 631 ConstantBool) { 632 // br(X && 1) -> br(X). 633 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 634 } 635 636 // Emit the LHS as a conditional. If the LHS conditional is false, we 637 // want to jump to the FalseBlock. 638 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 639 640 ConditionalEvaluation eval(*this); 641 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 642 EmitBlock(LHSTrue); 643 644 // Any temporaries created here are conditional. 645 eval.begin(*this); 646 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 647 eval.end(*this); 648 649 return; 650 } 651 652 if (CondBOp->getOpcode() == BO_LOr) { 653 // If we have "0 || X", simplify the code. "1 || X" would have constant 654 // folded if the case was simple enough. 655 bool ConstantBool = false; 656 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 657 !ConstantBool) { 658 // br(0 || X) -> br(X). 659 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 660 } 661 662 // If we have "X || 0", simplify the code to use an uncond branch. 663 // "X || 1" would have been constant folded to 1. 664 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 665 !ConstantBool) { 666 // br(X || 0) -> br(X). 667 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 668 } 669 670 // Emit the LHS as a conditional. If the LHS conditional is true, we 671 // want to jump to the TrueBlock. 672 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 673 674 ConditionalEvaluation eval(*this); 675 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 676 EmitBlock(LHSFalse); 677 678 // Any temporaries created here are conditional. 679 eval.begin(*this); 680 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 681 eval.end(*this); 682 683 return; 684 } 685 } 686 687 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 688 // br(!x, t, f) -> br(x, f, t) 689 if (CondUOp->getOpcode() == UO_LNot) 690 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 691 } 692 693 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 694 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 695 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 696 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 697 698 ConditionalEvaluation cond(*this); 699 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 700 701 cond.begin(*this); 702 EmitBlock(LHSBlock); 703 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 704 cond.end(*this); 705 706 cond.begin(*this); 707 EmitBlock(RHSBlock); 708 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 709 cond.end(*this); 710 711 return; 712 } 713 714 // Emit the code with the fully general case. 715 llvm::Value *CondV = EvaluateExprAsBool(Cond); 716 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 717 } 718 719 /// ErrorUnsupported - Print out an error that codegen doesn't support the 720 /// specified stmt yet. 721 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 722 bool OmitOnError) { 723 CGM.ErrorUnsupported(S, Type, OmitOnError); 724 } 725 726 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 727 /// variable-length array whose elements have a non-zero bit-pattern. 728 /// 729 /// \param baseType the inner-most element type of the array 730 /// \param src - a char* pointing to the bit-pattern for a single 731 /// base element of the array 732 /// \param sizeInChars - the total size of the VLA, in chars 733 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 734 llvm::Value *dest, llvm::Value *src, 735 llvm::Value *sizeInChars) { 736 std::pair<CharUnits,CharUnits> baseSizeAndAlign 737 = CGF.getContext().getTypeInfoInChars(baseType); 738 739 CGBuilderTy &Builder = CGF.Builder; 740 741 llvm::Value *baseSizeInChars 742 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 743 744 llvm::Type *i8p = Builder.getInt8PtrTy(); 745 746 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 747 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 748 749 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 750 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 751 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 752 753 // Make a loop over the VLA. C99 guarantees that the VLA element 754 // count must be nonzero. 755 CGF.EmitBlock(loopBB); 756 757 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 758 cur->addIncoming(begin, originBB); 759 760 // memcpy the individual element bit-pattern. 761 Builder.CreateMemCpy(cur, src, baseSizeInChars, 762 baseSizeAndAlign.second.getQuantity(), 763 /*volatile*/ false); 764 765 // Go to the next element. 766 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 767 768 // Leave if that's the end of the VLA. 769 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 770 Builder.CreateCondBr(done, contBB, loopBB); 771 cur->addIncoming(next, loopBB); 772 773 CGF.EmitBlock(contBB); 774 } 775 776 void 777 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 778 // Ignore empty classes in C++. 779 if (getContext().getLangOpts().CPlusPlus) { 780 if (const RecordType *RT = Ty->getAs<RecordType>()) { 781 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 782 return; 783 } 784 } 785 786 // Cast the dest ptr to the appropriate i8 pointer type. 787 unsigned DestAS = 788 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 789 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 790 if (DestPtr->getType() != BP) 791 DestPtr = Builder.CreateBitCast(DestPtr, BP); 792 793 // Get size and alignment info for this aggregate. 794 std::pair<CharUnits, CharUnits> TypeInfo = 795 getContext().getTypeInfoInChars(Ty); 796 CharUnits Size = TypeInfo.first; 797 CharUnits Align = TypeInfo.second; 798 799 llvm::Value *SizeVal; 800 const VariableArrayType *vla; 801 802 // Don't bother emitting a zero-byte memset. 803 if (Size.isZero()) { 804 // But note that getTypeInfo returns 0 for a VLA. 805 if (const VariableArrayType *vlaType = 806 dyn_cast_or_null<VariableArrayType>( 807 getContext().getAsArrayType(Ty))) { 808 QualType eltType; 809 llvm::Value *numElts; 810 llvm::tie(numElts, eltType) = getVLASize(vlaType); 811 812 SizeVal = numElts; 813 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 814 if (!eltSize.isOne()) 815 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 816 vla = vlaType; 817 } else { 818 return; 819 } 820 } else { 821 SizeVal = CGM.getSize(Size); 822 vla = 0; 823 } 824 825 // If the type contains a pointer to data member we can't memset it to zero. 826 // Instead, create a null constant and copy it to the destination. 827 // TODO: there are other patterns besides zero that we can usefully memset, 828 // like -1, which happens to be the pattern used by member-pointers. 829 if (!CGM.getTypes().isZeroInitializable(Ty)) { 830 // For a VLA, emit a single element, then splat that over the VLA. 831 if (vla) Ty = getContext().getBaseElementType(vla); 832 833 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 834 835 llvm::GlobalVariable *NullVariable = 836 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 837 /*isConstant=*/true, 838 llvm::GlobalVariable::PrivateLinkage, 839 NullConstant, Twine()); 840 llvm::Value *SrcPtr = 841 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 842 843 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 844 845 // Get and call the appropriate llvm.memcpy overload. 846 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 847 return; 848 } 849 850 // Otherwise, just memset the whole thing to zero. This is legal 851 // because in LLVM, all default initializers (other than the ones we just 852 // handled above) are guaranteed to have a bit pattern of all zeros. 853 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 854 Align.getQuantity(), false); 855 } 856 857 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 858 // Make sure that there is a block for the indirect goto. 859 if (IndirectBranch == 0) 860 GetIndirectGotoBlock(); 861 862 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 863 864 // Make sure the indirect branch includes all of the address-taken blocks. 865 IndirectBranch->addDestination(BB); 866 return llvm::BlockAddress::get(CurFn, BB); 867 } 868 869 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 870 // If we already made the indirect branch for indirect goto, return its block. 871 if (IndirectBranch) return IndirectBranch->getParent(); 872 873 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 874 875 // Create the PHI node that indirect gotos will add entries to. 876 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 877 "indirect.goto.dest"); 878 879 // Create the indirect branch instruction. 880 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 881 return IndirectBranch->getParent(); 882 } 883 884 /// Computes the length of an array in elements, as well as the base 885 /// element type and a properly-typed first element pointer. 886 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 887 QualType &baseType, 888 llvm::Value *&addr) { 889 const ArrayType *arrayType = origArrayType; 890 891 // If it's a VLA, we have to load the stored size. Note that 892 // this is the size of the VLA in bytes, not its size in elements. 893 llvm::Value *numVLAElements = 0; 894 if (isa<VariableArrayType>(arrayType)) { 895 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 896 897 // Walk into all VLAs. This doesn't require changes to addr, 898 // which has type T* where T is the first non-VLA element type. 899 do { 900 QualType elementType = arrayType->getElementType(); 901 arrayType = getContext().getAsArrayType(elementType); 902 903 // If we only have VLA components, 'addr' requires no adjustment. 904 if (!arrayType) { 905 baseType = elementType; 906 return numVLAElements; 907 } 908 } while (isa<VariableArrayType>(arrayType)); 909 910 // We get out here only if we find a constant array type 911 // inside the VLA. 912 } 913 914 // We have some number of constant-length arrays, so addr should 915 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 916 // down to the first element of addr. 917 SmallVector<llvm::Value*, 8> gepIndices; 918 919 // GEP down to the array type. 920 llvm::ConstantInt *zero = Builder.getInt32(0); 921 gepIndices.push_back(zero); 922 923 uint64_t countFromCLAs = 1; 924 QualType eltType; 925 926 llvm::ArrayType *llvmArrayType = 927 dyn_cast<llvm::ArrayType>( 928 cast<llvm::PointerType>(addr->getType())->getElementType()); 929 while (llvmArrayType) { 930 assert(isa<ConstantArrayType>(arrayType)); 931 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 932 == llvmArrayType->getNumElements()); 933 934 gepIndices.push_back(zero); 935 countFromCLAs *= llvmArrayType->getNumElements(); 936 eltType = arrayType->getElementType(); 937 938 llvmArrayType = 939 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 940 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 941 assert((!llvmArrayType || arrayType) && 942 "LLVM and Clang types are out-of-synch"); 943 } 944 945 if (arrayType) { 946 // From this point onwards, the Clang array type has been emitted 947 // as some other type (probably a packed struct). Compute the array 948 // size, and just emit the 'begin' expression as a bitcast. 949 while (arrayType) { 950 countFromCLAs *= 951 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 952 eltType = arrayType->getElementType(); 953 arrayType = getContext().getAsArrayType(eltType); 954 } 955 956 unsigned AddressSpace = 957 cast<llvm::PointerType>(addr->getType())->getAddressSpace(); 958 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 959 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 960 } else { 961 // Create the actual GEP. 962 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 963 } 964 965 baseType = eltType; 966 967 llvm::Value *numElements 968 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 969 970 // If we had any VLA dimensions, factor them in. 971 if (numVLAElements) 972 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 973 974 return numElements; 975 } 976 977 std::pair<llvm::Value*, QualType> 978 CodeGenFunction::getVLASize(QualType type) { 979 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 980 assert(vla && "type was not a variable array type!"); 981 return getVLASize(vla); 982 } 983 984 std::pair<llvm::Value*, QualType> 985 CodeGenFunction::getVLASize(const VariableArrayType *type) { 986 // The number of elements so far; always size_t. 987 llvm::Value *numElements = 0; 988 989 QualType elementType; 990 do { 991 elementType = type->getElementType(); 992 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 993 assert(vlaSize && "no size for VLA!"); 994 assert(vlaSize->getType() == SizeTy); 995 996 if (!numElements) { 997 numElements = vlaSize; 998 } else { 999 // It's undefined behavior if this wraps around, so mark it that way. 1000 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1001 } 1002 } while ((type = getContext().getAsVariableArrayType(elementType))); 1003 1004 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1005 } 1006 1007 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1008 assert(type->isVariablyModifiedType() && 1009 "Must pass variably modified type to EmitVLASizes!"); 1010 1011 EnsureInsertPoint(); 1012 1013 // We're going to walk down into the type and look for VLA 1014 // expressions. 1015 do { 1016 assert(type->isVariablyModifiedType()); 1017 1018 const Type *ty = type.getTypePtr(); 1019 switch (ty->getTypeClass()) { 1020 1021 #define TYPE(Class, Base) 1022 #define ABSTRACT_TYPE(Class, Base) 1023 #define NON_CANONICAL_TYPE(Class, Base) 1024 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1025 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1026 #include "clang/AST/TypeNodes.def" 1027 llvm_unreachable("unexpected dependent type!"); 1028 1029 // These types are never variably-modified. 1030 case Type::Builtin: 1031 case Type::Complex: 1032 case Type::Vector: 1033 case Type::ExtVector: 1034 case Type::Record: 1035 case Type::Enum: 1036 case Type::Elaborated: 1037 case Type::TemplateSpecialization: 1038 case Type::ObjCObject: 1039 case Type::ObjCInterface: 1040 case Type::ObjCObjectPointer: 1041 llvm_unreachable("type class is never variably-modified!"); 1042 1043 case Type::Pointer: 1044 type = cast<PointerType>(ty)->getPointeeType(); 1045 break; 1046 1047 case Type::BlockPointer: 1048 type = cast<BlockPointerType>(ty)->getPointeeType(); 1049 break; 1050 1051 case Type::LValueReference: 1052 case Type::RValueReference: 1053 type = cast<ReferenceType>(ty)->getPointeeType(); 1054 break; 1055 1056 case Type::MemberPointer: 1057 type = cast<MemberPointerType>(ty)->getPointeeType(); 1058 break; 1059 1060 case Type::ConstantArray: 1061 case Type::IncompleteArray: 1062 // Losing element qualification here is fine. 1063 type = cast<ArrayType>(ty)->getElementType(); 1064 break; 1065 1066 case Type::VariableArray: { 1067 // Losing element qualification here is fine. 1068 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1069 1070 // Unknown size indication requires no size computation. 1071 // Otherwise, evaluate and record it. 1072 if (const Expr *size = vat->getSizeExpr()) { 1073 // It's possible that we might have emitted this already, 1074 // e.g. with a typedef and a pointer to it. 1075 llvm::Value *&entry = VLASizeMap[size]; 1076 if (!entry) { 1077 // Always zexting here would be wrong if it weren't 1078 // undefined behavior to have a negative bound. 1079 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 1080 /*signed*/ false); 1081 } 1082 } 1083 type = vat->getElementType(); 1084 break; 1085 } 1086 1087 case Type::FunctionProto: 1088 case Type::FunctionNoProto: 1089 type = cast<FunctionType>(ty)->getResultType(); 1090 break; 1091 1092 case Type::Paren: 1093 case Type::TypeOf: 1094 case Type::UnaryTransform: 1095 case Type::Attributed: 1096 case Type::SubstTemplateTypeParm: 1097 // Keep walking after single level desugaring. 1098 type = type.getSingleStepDesugaredType(getContext()); 1099 break; 1100 1101 case Type::Typedef: 1102 case Type::Decltype: 1103 case Type::Auto: 1104 // Stop walking: nothing to do. 1105 return; 1106 1107 case Type::TypeOfExpr: 1108 // Stop walking: emit typeof expression. 1109 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1110 return; 1111 1112 case Type::Atomic: 1113 type = cast<AtomicType>(ty)->getValueType(); 1114 break; 1115 } 1116 } while (type->isVariablyModifiedType()); 1117 } 1118 1119 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1120 if (getContext().getBuiltinVaListType()->isArrayType()) 1121 return EmitScalarExpr(E); 1122 return EmitLValue(E).getAddress(); 1123 } 1124 1125 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1126 llvm::Constant *Init) { 1127 assert (Init && "Invalid DeclRefExpr initializer!"); 1128 if (CGDebugInfo *Dbg = getDebugInfo()) 1129 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1130 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1131 } 1132 1133 CodeGenFunction::PeepholeProtection 1134 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1135 // At the moment, the only aggressive peephole we do in IR gen 1136 // is trunc(zext) folding, but if we add more, we can easily 1137 // extend this protection. 1138 1139 if (!rvalue.isScalar()) return PeepholeProtection(); 1140 llvm::Value *value = rvalue.getScalarVal(); 1141 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1142 1143 // Just make an extra bitcast. 1144 assert(HaveInsertPoint()); 1145 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1146 Builder.GetInsertBlock()); 1147 1148 PeepholeProtection protection; 1149 protection.Inst = inst; 1150 return protection; 1151 } 1152 1153 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1154 if (!protection.Inst) return; 1155 1156 // In theory, we could try to duplicate the peepholes now, but whatever. 1157 protection.Inst->eraseFromParent(); 1158 } 1159 1160 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1161 llvm::Value *AnnotatedVal, 1162 llvm::StringRef AnnotationStr, 1163 SourceLocation Location) { 1164 llvm::Value *Args[4] = { 1165 AnnotatedVal, 1166 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1167 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1168 CGM.EmitAnnotationLineNo(Location) 1169 }; 1170 return Builder.CreateCall(AnnotationFn, Args); 1171 } 1172 1173 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1174 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1175 // FIXME We create a new bitcast for every annotation because that's what 1176 // llvm-gcc was doing. 1177 for (specific_attr_iterator<AnnotateAttr> 1178 ai = D->specific_attr_begin<AnnotateAttr>(), 1179 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1180 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1181 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1182 (*ai)->getAnnotation(), D->getLocation()); 1183 } 1184 1185 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1186 llvm::Value *V) { 1187 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1188 llvm::Type *VTy = V->getType(); 1189 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1190 CGM.Int8PtrTy); 1191 1192 for (specific_attr_iterator<AnnotateAttr> 1193 ai = D->specific_attr_begin<AnnotateAttr>(), 1194 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1195 // FIXME Always emit the cast inst so we can differentiate between 1196 // annotation on the first field of a struct and annotation on the struct 1197 // itself. 1198 if (VTy != CGM.Int8PtrTy) 1199 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1200 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1201 V = Builder.CreateBitCast(V, VTy); 1202 } 1203 1204 return V; 1205 } 1206