1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Disable lifetime markers in msan builds. 51 // FIXME: Remove this when msan works with lifetime markers. 52 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 53 return false; 54 55 // Asan uses markers for use-after-scope checks. 56 if (CGOpts.SanitizeAddressUseAfterScope) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 } 94 95 CodeGenFunction::~CodeGenFunction() { 96 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 97 98 // If there are any unclaimed block infos, go ahead and destroy them 99 // now. This can happen if IR-gen gets clever and skips evaluating 100 // something. 101 if (FirstBlockInfo) 102 destroyBlockInfos(FirstBlockInfo); 103 104 if (getLangOpts().OpenMP && CurFn) 105 CGM.getOpenMPRuntime().functionFinished(*this); 106 } 107 108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 109 LValueBaseInfo *BaseInfo, 110 TBAAAccessInfo *TBAAInfo) { 111 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 112 /* forPointeeType= */ true); 113 } 114 115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 116 LValueBaseInfo *BaseInfo, 117 TBAAAccessInfo *TBAAInfo, 118 bool forPointeeType) { 119 if (TBAAInfo) 120 *TBAAInfo = CGM.getTBAAAccessInfo(T); 121 122 // Honor alignment typedef attributes even on incomplete types. 123 // We also honor them straight for C++ class types, even as pointees; 124 // there's an expressivity gap here. 125 if (auto TT = T->getAs<TypedefType>()) { 126 if (auto Align = TT->getDecl()->getMaxAlignment()) { 127 if (BaseInfo) 128 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 129 return getContext().toCharUnitsFromBits(Align); 130 } 131 } 132 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 135 136 CharUnits Alignment; 137 if (T->isIncompleteType()) { 138 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 139 } else { 140 // For C++ class pointees, we don't know whether we're pointing at a 141 // base or a complete object, so we generally need to use the 142 // non-virtual alignment. 143 const CXXRecordDecl *RD; 144 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 145 Alignment = CGM.getClassPointerAlignment(RD); 146 } else { 147 Alignment = getContext().getTypeAlignInChars(T); 148 if (T.getQualifiers().hasUnaligned()) 149 Alignment = CharUnits::One(); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 LValueBaseInfo BaseInfo; 165 TBAAAccessInfo TBAAInfo; 166 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 167 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 168 TBAAInfo); 169 } 170 171 /// Given a value of type T* that may not be to a complete object, 172 /// construct an l-value with the natural pointee alignment of T. 173 LValue 174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 175 LValueBaseInfo BaseInfo; 176 TBAAAccessInfo TBAAInfo; 177 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 178 /* forPointeeType= */ true); 179 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 case Type::DeducedTemplateSpecialization: 205 llvm_unreachable("undeduced type in IR-generation"); 206 207 // Various scalar types. 208 case Type::Builtin: 209 case Type::Pointer: 210 case Type::BlockPointer: 211 case Type::LValueReference: 212 case Type::RValueReference: 213 case Type::MemberPointer: 214 case Type::Vector: 215 case Type::ExtVector: 216 case Type::FunctionProto: 217 case Type::FunctionNoProto: 218 case Type::Enum: 219 case Type::ObjCObjectPointer: 220 case Type::Pipe: 221 return TEK_Scalar; 222 223 // Complexes. 224 case Type::Complex: 225 return TEK_Complex; 226 227 // Arrays, records, and Objective-C objects. 228 case Type::ConstantArray: 229 case Type::IncompleteArray: 230 case Type::VariableArray: 231 case Type::Record: 232 case Type::ObjCObject: 233 case Type::ObjCInterface: 234 return TEK_Aggregate; 235 236 // We operate on atomic values according to their underlying type. 237 case Type::Atomic: 238 type = cast<AtomicType>(type)->getValueType(); 239 continue; 240 } 241 llvm_unreachable("unknown type kind!"); 242 } 243 } 244 245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 246 // For cleanliness, we try to avoid emitting the return block for 247 // simple cases. 248 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 249 250 if (CurBB) { 251 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 252 253 // We have a valid insert point, reuse it if it is empty or there are no 254 // explicit jumps to the return block. 255 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 256 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 257 delete ReturnBlock.getBlock(); 258 ReturnBlock = JumpDest(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 ReturnBlock = JumpDest(); 279 return Loc; 280 } 281 } 282 283 // FIXME: We are at an unreachable point, there is no reason to emit the block 284 // unless it has uses. However, we still need a place to put the debug 285 // region.end for now. 286 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 292 if (!BB) return; 293 if (!BB->use_empty()) 294 return CGF.CurFn->getBasicBlockList().push_back(BB); 295 delete BB; 296 } 297 298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 299 assert(BreakContinueStack.empty() && 300 "mismatched push/pop in break/continue stack!"); 301 302 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 303 && NumSimpleReturnExprs == NumReturnExprs 304 && ReturnBlock.getBlock()->use_empty(); 305 // Usually the return expression is evaluated before the cleanup 306 // code. If the function contains only a simple return statement, 307 // such as a constant, the location before the cleanup code becomes 308 // the last useful breakpoint in the function, because the simple 309 // return expression will be evaluated after the cleanup code. To be 310 // safe, set the debug location for cleanup code to the location of 311 // the return statement. Otherwise the cleanup code should be at the 312 // end of the function's lexical scope. 313 // 314 // If there are multiple branches to the return block, the branch 315 // instructions will get the location of the return statements and 316 // all will be fine. 317 if (CGDebugInfo *DI = getDebugInfo()) { 318 if (OnlySimpleReturnStmts) 319 DI->EmitLocation(Builder, LastStopPoint); 320 else 321 DI->EmitLocation(Builder, EndLoc); 322 } 323 324 // Pop any cleanups that might have been associated with the 325 // parameters. Do this in whatever block we're currently in; it's 326 // important to do this before we enter the return block or return 327 // edges will be *really* confused. 328 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 329 bool HasOnlyLifetimeMarkers = 330 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 331 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 332 if (HasCleanups) { 333 // Make sure the line table doesn't jump back into the body for 334 // the ret after it's been at EndLoc. 335 if (CGDebugInfo *DI = getDebugInfo()) 336 if (OnlySimpleReturnStmts) 337 DI->EmitLocation(Builder, EndLoc); 338 339 PopCleanupBlocks(PrologueCleanupDepth); 340 } 341 342 // Emit function epilog (to return). 343 llvm::DebugLoc Loc = EmitReturnBlock(); 344 345 if (ShouldInstrumentFunction()) { 346 if (CGM.getCodeGenOpts().InstrumentFunctions) 347 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 348 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 349 CurFn->addFnAttr("instrument-function-exit-inlined", 350 "__cyg_profile_func_exit"); 351 } 352 353 // Emit debug descriptor for function end. 354 if (CGDebugInfo *DI = getDebugInfo()) 355 DI->EmitFunctionEnd(Builder, CurFn); 356 357 // Reset the debug location to that of the simple 'return' expression, if any 358 // rather than that of the end of the function's scope '}'. 359 ApplyDebugLocation AL(*this, Loc); 360 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 361 EmitEndEHSpec(CurCodeDecl); 362 363 assert(EHStack.empty() && 364 "did not remove all scopes from cleanup stack!"); 365 366 // If someone did an indirect goto, emit the indirect goto block at the end of 367 // the function. 368 if (IndirectBranch) { 369 EmitBlock(IndirectBranch->getParent()); 370 Builder.ClearInsertionPoint(); 371 } 372 373 // If some of our locals escaped, insert a call to llvm.localescape in the 374 // entry block. 375 if (!EscapedLocals.empty()) { 376 // Invert the map from local to index into a simple vector. There should be 377 // no holes. 378 SmallVector<llvm::Value *, 4> EscapeArgs; 379 EscapeArgs.resize(EscapedLocals.size()); 380 for (auto &Pair : EscapedLocals) 381 EscapeArgs[Pair.second] = Pair.first; 382 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 383 &CGM.getModule(), llvm::Intrinsic::localescape); 384 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 385 } 386 387 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 388 llvm::Instruction *Ptr = AllocaInsertPt; 389 AllocaInsertPt = nullptr; 390 Ptr->eraseFromParent(); 391 392 // If someone took the address of a label but never did an indirect goto, we 393 // made a zero entry PHI node, which is illegal, zap it now. 394 if (IndirectBranch) { 395 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 396 if (PN->getNumIncomingValues() == 0) { 397 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 398 PN->eraseFromParent(); 399 } 400 } 401 402 EmitIfUsed(*this, EHResumeBlock); 403 EmitIfUsed(*this, TerminateLandingPad); 404 EmitIfUsed(*this, TerminateHandler); 405 EmitIfUsed(*this, UnreachableBlock); 406 407 for (const auto &FuncletAndParent : TerminateFunclets) 408 EmitIfUsed(*this, FuncletAndParent.second); 409 410 if (CGM.getCodeGenOpts().EmitDeclMetadata) 411 EmitDeclMetadata(); 412 413 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 414 I = DeferredReplacements.begin(), 415 E = DeferredReplacements.end(); 416 I != E; ++I) { 417 I->first->replaceAllUsesWith(I->second); 418 I->first->eraseFromParent(); 419 } 420 421 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 422 // PHIs if the current function is a coroutine. We don't do it for all 423 // functions as it may result in slight increase in numbers of instructions 424 // if compiled with no optimizations. We do it for coroutine as the lifetime 425 // of CleanupDestSlot alloca make correct coroutine frame building very 426 // difficult. 427 if (NormalCleanupDest.isValid() && isCoroutine()) { 428 llvm::DominatorTree DT(*CurFn); 429 llvm::PromoteMemToReg( 430 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 431 NormalCleanupDest = Address::invalid(); 432 } 433 434 // Scan function arguments for vector width. 435 for (llvm::Argument &A : CurFn->args()) 436 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 437 LargestVectorWidth = std::max(LargestVectorWidth, 438 VT->getPrimitiveSizeInBits()); 439 440 // Update vector width based on return type. 441 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 442 LargestVectorWidth = std::max(LargestVectorWidth, 443 VT->getPrimitiveSizeInBits()); 444 445 // Add the required-vector-width attribute. This contains the max width from: 446 // 1. min-vector-width attribute used in the source program. 447 // 2. Any builtins used that have a vector width specified. 448 // 3. Values passed in and out of inline assembly. 449 // 4. Width of vector arguments and return types for this function. 450 // 5. Width of vector aguments and return types for functions called by this 451 // function. 452 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 453 454 // If we generated an unreachable return block, delete it now. 455 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 456 Builder.ClearInsertionPoint(); 457 ReturnBlock.getBlock()->eraseFromParent(); 458 } 459 if (ReturnValue.isValid()) { 460 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 461 if (RetAlloca && RetAlloca->use_empty()) { 462 RetAlloca->eraseFromParent(); 463 ReturnValue = Address::invalid(); 464 } 465 } 466 } 467 468 /// ShouldInstrumentFunction - Return true if the current function should be 469 /// instrumented with __cyg_profile_func_* calls 470 bool CodeGenFunction::ShouldInstrumentFunction() { 471 if (!CGM.getCodeGenOpts().InstrumentFunctions && 472 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 473 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 474 return false; 475 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 476 return false; 477 return true; 478 } 479 480 /// ShouldXRayInstrument - Return true if the current function should be 481 /// instrumented with XRay nop sleds. 482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 483 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 484 } 485 486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 489 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 490 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 491 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 492 XRayInstrKind::Custom); 493 } 494 495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 496 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 497 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 498 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 499 XRayInstrKind::Typed); 500 } 501 502 llvm::Constant * 503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 504 llvm::Constant *Addr) { 505 // Addresses stored in prologue data can't require run-time fixups and must 506 // be PC-relative. Run-time fixups are undesirable because they necessitate 507 // writable text segments, which are unsafe. And absolute addresses are 508 // undesirable because they break PIE mode. 509 510 // Add a layer of indirection through a private global. Taking its address 511 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 512 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 513 /*isConstant=*/true, 514 llvm::GlobalValue::PrivateLinkage, Addr); 515 516 // Create a PC-relative address. 517 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 518 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 519 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 520 return (IntPtrTy == Int32Ty) 521 ? PCRelAsInt 522 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 523 } 524 525 llvm::Value * 526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 527 llvm::Value *EncodedAddr) { 528 // Reconstruct the address of the global. 529 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 530 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 531 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 532 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 533 534 // Load the original pointer through the global. 535 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 536 "decoded_addr"); 537 } 538 539 static void removeImageAccessQualifier(std::string& TyName) { 540 std::string ReadOnlyQual("__read_only"); 541 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 542 if (ReadOnlyPos != std::string::npos) 543 // "+ 1" for the space after access qualifier. 544 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 545 else { 546 std::string WriteOnlyQual("__write_only"); 547 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 548 if (WriteOnlyPos != std::string::npos) 549 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 550 else { 551 std::string ReadWriteQual("__read_write"); 552 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 553 if (ReadWritePos != std::string::npos) 554 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 555 } 556 } 557 } 558 559 // Returns the address space id that should be produced to the 560 // kernel_arg_addr_space metadata. This is always fixed to the ids 561 // as specified in the SPIR 2.0 specification in order to differentiate 562 // for example in clGetKernelArgInfo() implementation between the address 563 // spaces with targets without unique mapping to the OpenCL address spaces 564 // (basically all single AS CPUs). 565 static unsigned ArgInfoAddressSpace(LangAS AS) { 566 switch (AS) { 567 case LangAS::opencl_global: return 1; 568 case LangAS::opencl_constant: return 2; 569 case LangAS::opencl_local: return 3; 570 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 571 default: 572 return 0; // Assume private. 573 } 574 } 575 576 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 577 // information in the program executable. The argument information stored 578 // includes the argument name, its type, the address and access qualifiers used. 579 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 580 CodeGenModule &CGM, llvm::LLVMContext &Context, 581 CGBuilderTy &Builder, ASTContext &ASTCtx) { 582 // Create MDNodes that represent the kernel arg metadata. 583 // Each MDNode is a list in the form of "key", N number of values which is 584 // the same number of values as their are kernel arguments. 585 586 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 587 588 // MDNode for the kernel argument address space qualifiers. 589 SmallVector<llvm::Metadata *, 8> addressQuals; 590 591 // MDNode for the kernel argument access qualifiers (images only). 592 SmallVector<llvm::Metadata *, 8> accessQuals; 593 594 // MDNode for the kernel argument type names. 595 SmallVector<llvm::Metadata *, 8> argTypeNames; 596 597 // MDNode for the kernel argument base type names. 598 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 599 600 // MDNode for the kernel argument type qualifiers. 601 SmallVector<llvm::Metadata *, 8> argTypeQuals; 602 603 // MDNode for the kernel argument names. 604 SmallVector<llvm::Metadata *, 8> argNames; 605 606 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 607 const ParmVarDecl *parm = FD->getParamDecl(i); 608 QualType ty = parm->getType(); 609 std::string typeQuals; 610 611 if (ty->isPointerType()) { 612 QualType pointeeTy = ty->getPointeeType(); 613 614 // Get address qualifier. 615 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 616 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 617 618 // Get argument type name. 619 std::string typeName = 620 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 621 622 // Turn "unsigned type" to "utype" 623 std::string::size_type pos = typeName.find("unsigned"); 624 if (pointeeTy.isCanonical() && pos != std::string::npos) 625 typeName.erase(pos+1, 8); 626 627 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 628 629 std::string baseTypeName = 630 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 631 Policy) + 632 "*"; 633 634 // Turn "unsigned type" to "utype" 635 pos = baseTypeName.find("unsigned"); 636 if (pos != std::string::npos) 637 baseTypeName.erase(pos+1, 8); 638 639 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 640 641 // Get argument type qualifiers: 642 if (ty.isRestrictQualified()) 643 typeQuals = "restrict"; 644 if (pointeeTy.isConstQualified() || 645 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 646 typeQuals += typeQuals.empty() ? "const" : " const"; 647 if (pointeeTy.isVolatileQualified()) 648 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 649 } else { 650 uint32_t AddrSpc = 0; 651 bool isPipe = ty->isPipeType(); 652 if (ty->isImageType() || isPipe) 653 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 654 655 addressQuals.push_back( 656 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 657 658 // Get argument type name. 659 std::string typeName; 660 if (isPipe) 661 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 662 .getAsString(Policy); 663 else 664 typeName = ty.getUnqualifiedType().getAsString(Policy); 665 666 // Turn "unsigned type" to "utype" 667 std::string::size_type pos = typeName.find("unsigned"); 668 if (ty.isCanonical() && pos != std::string::npos) 669 typeName.erase(pos+1, 8); 670 671 std::string baseTypeName; 672 if (isPipe) 673 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 674 ->getElementType().getCanonicalType() 675 .getAsString(Policy); 676 else 677 baseTypeName = 678 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 679 680 // Remove access qualifiers on images 681 // (as they are inseparable from type in clang implementation, 682 // but OpenCL spec provides a special query to get access qualifier 683 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 684 if (ty->isImageType()) { 685 removeImageAccessQualifier(typeName); 686 removeImageAccessQualifier(baseTypeName); 687 } 688 689 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 690 691 // Turn "unsigned type" to "utype" 692 pos = baseTypeName.find("unsigned"); 693 if (pos != std::string::npos) 694 baseTypeName.erase(pos+1, 8); 695 696 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 697 698 if (isPipe) 699 typeQuals = "pipe"; 700 } 701 702 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 703 704 // Get image and pipe access qualifier: 705 if (ty->isImageType()|| ty->isPipeType()) { 706 const Decl *PDecl = parm; 707 if (auto *TD = dyn_cast<TypedefType>(ty)) 708 PDecl = TD->getDecl(); 709 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 710 if (A && A->isWriteOnly()) 711 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 712 else if (A && A->isReadWrite()) 713 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 714 else 715 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 716 } else 717 accessQuals.push_back(llvm::MDString::get(Context, "none")); 718 719 // Get argument name. 720 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 721 } 722 723 Fn->setMetadata("kernel_arg_addr_space", 724 llvm::MDNode::get(Context, addressQuals)); 725 Fn->setMetadata("kernel_arg_access_qual", 726 llvm::MDNode::get(Context, accessQuals)); 727 Fn->setMetadata("kernel_arg_type", 728 llvm::MDNode::get(Context, argTypeNames)); 729 Fn->setMetadata("kernel_arg_base_type", 730 llvm::MDNode::get(Context, argBaseTypeNames)); 731 Fn->setMetadata("kernel_arg_type_qual", 732 llvm::MDNode::get(Context, argTypeQuals)); 733 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 734 Fn->setMetadata("kernel_arg_name", 735 llvm::MDNode::get(Context, argNames)); 736 } 737 738 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 739 llvm::Function *Fn) 740 { 741 if (!FD->hasAttr<OpenCLKernelAttr>()) 742 return; 743 744 llvm::LLVMContext &Context = getLLVMContext(); 745 746 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 747 748 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 749 QualType HintQTy = A->getTypeHint(); 750 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 751 bool IsSignedInteger = 752 HintQTy->isSignedIntegerType() || 753 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 754 llvm::Metadata *AttrMDArgs[] = { 755 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 756 CGM.getTypes().ConvertType(A->getTypeHint()))), 757 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 758 llvm::IntegerType::get(Context, 32), 759 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 760 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 761 } 762 763 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 764 llvm::Metadata *AttrMDArgs[] = { 765 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 766 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 767 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 768 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 769 } 770 771 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 772 llvm::Metadata *AttrMDArgs[] = { 773 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 774 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 775 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 776 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 777 } 778 779 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 780 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 781 llvm::Metadata *AttrMDArgs[] = { 782 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 783 Fn->setMetadata("intel_reqd_sub_group_size", 784 llvm::MDNode::get(Context, AttrMDArgs)); 785 } 786 } 787 788 /// Determine whether the function F ends with a return stmt. 789 static bool endsWithReturn(const Decl* F) { 790 const Stmt *Body = nullptr; 791 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 792 Body = FD->getBody(); 793 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 794 Body = OMD->getBody(); 795 796 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 797 auto LastStmt = CS->body_rbegin(); 798 if (LastStmt != CS->body_rend()) 799 return isa<ReturnStmt>(*LastStmt); 800 } 801 return false; 802 } 803 804 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 805 if (SanOpts.has(SanitizerKind::Thread)) { 806 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 807 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 808 } 809 } 810 811 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 812 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 813 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 814 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 815 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 816 return false; 817 818 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 819 return false; 820 821 if (MD->getNumParams() == 2) { 822 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 823 if (!PT || !PT->isVoidPointerType() || 824 !PT->getPointeeType().isConstQualified()) 825 return false; 826 } 827 828 return true; 829 } 830 831 /// Return the UBSan prologue signature for \p FD if one is available. 832 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 833 const FunctionDecl *FD) { 834 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 835 if (!MD->isStatic()) 836 return nullptr; 837 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 838 } 839 840 void CodeGenFunction::StartFunction(GlobalDecl GD, 841 QualType RetTy, 842 llvm::Function *Fn, 843 const CGFunctionInfo &FnInfo, 844 const FunctionArgList &Args, 845 SourceLocation Loc, 846 SourceLocation StartLoc) { 847 assert(!CurFn && 848 "Do not use a CodeGenFunction object for more than one function"); 849 850 const Decl *D = GD.getDecl(); 851 852 DidCallStackSave = false; 853 CurCodeDecl = D; 854 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 855 if (FD->usesSEHTry()) 856 CurSEHParent = FD; 857 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 858 FnRetTy = RetTy; 859 CurFn = Fn; 860 CurFnInfo = &FnInfo; 861 assert(CurFn->isDeclaration() && "Function already has body?"); 862 863 // If this function has been blacklisted for any of the enabled sanitizers, 864 // disable the sanitizer for the function. 865 do { 866 #define SANITIZER(NAME, ID) \ 867 if (SanOpts.empty()) \ 868 break; \ 869 if (SanOpts.has(SanitizerKind::ID)) \ 870 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 871 SanOpts.set(SanitizerKind::ID, false); 872 873 #include "clang/Basic/Sanitizers.def" 874 #undef SANITIZER 875 } while (0); 876 877 if (D) { 878 // Apply the no_sanitize* attributes to SanOpts. 879 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 880 SanitizerMask mask = Attr->getMask(); 881 SanOpts.Mask &= ~mask; 882 if (mask & SanitizerKind::Address) 883 SanOpts.set(SanitizerKind::KernelAddress, false); 884 if (mask & SanitizerKind::KernelAddress) 885 SanOpts.set(SanitizerKind::Address, false); 886 if (mask & SanitizerKind::HWAddress) 887 SanOpts.set(SanitizerKind::KernelHWAddress, false); 888 if (mask & SanitizerKind::KernelHWAddress) 889 SanOpts.set(SanitizerKind::HWAddress, false); 890 } 891 } 892 893 // Apply sanitizer attributes to the function. 894 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 895 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 896 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 897 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 898 if (SanOpts.has(SanitizerKind::Thread)) 899 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 900 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 901 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 902 if (SanOpts.has(SanitizerKind::SafeStack)) 903 Fn->addFnAttr(llvm::Attribute::SafeStack); 904 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 905 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 906 907 // Apply fuzzing attribute to the function. 908 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 909 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 910 911 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 912 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 913 if (SanOpts.has(SanitizerKind::Thread)) { 914 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 915 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 916 if (OMD->getMethodFamily() == OMF_dealloc || 917 OMD->getMethodFamily() == OMF_initialize || 918 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 919 markAsIgnoreThreadCheckingAtRuntime(Fn); 920 } 921 } 922 } 923 924 // Ignore unrelated casts in STL allocate() since the allocator must cast 925 // from void* to T* before object initialization completes. Don't match on the 926 // namespace because not all allocators are in std:: 927 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 928 if (matchesStlAllocatorFn(D, getContext())) 929 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 930 } 931 932 // Apply xray attributes to the function (as a string, for now) 933 if (D) { 934 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 935 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 936 XRayInstrKind::Function)) { 937 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 938 Fn->addFnAttr("function-instrument", "xray-always"); 939 if (XRayAttr->neverXRayInstrument()) 940 Fn->addFnAttr("function-instrument", "xray-never"); 941 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 942 if (ShouldXRayInstrumentFunction()) 943 Fn->addFnAttr("xray-log-args", 944 llvm::utostr(LogArgs->getArgumentCount())); 945 } 946 } else { 947 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 948 Fn->addFnAttr( 949 "xray-instruction-threshold", 950 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 951 } 952 } 953 954 // Add no-jump-tables value. 955 Fn->addFnAttr("no-jump-tables", 956 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 957 958 // Add profile-sample-accurate value. 959 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 960 Fn->addFnAttr("profile-sample-accurate"); 961 962 if (getLangOpts().OpenCL) { 963 // Add metadata for a kernel function. 964 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 965 EmitOpenCLKernelMetadata(FD, Fn); 966 } 967 968 // If we are checking function types, emit a function type signature as 969 // prologue data. 970 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 971 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 972 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 973 // Remove any (C++17) exception specifications, to allow calling e.g. a 974 // noexcept function through a non-noexcept pointer. 975 auto ProtoTy = 976 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 977 EST_None); 978 llvm::Constant *FTRTTIConst = 979 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 980 llvm::Constant *FTRTTIConstEncoded = 981 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 982 llvm::Constant *PrologueStructElems[] = {PrologueSig, 983 FTRTTIConstEncoded}; 984 llvm::Constant *PrologueStructConst = 985 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 986 Fn->setPrologueData(PrologueStructConst); 987 } 988 } 989 } 990 991 // If we're checking nullability, we need to know whether we can check the 992 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 993 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 994 auto Nullability = FnRetTy->getNullability(getContext()); 995 if (Nullability && *Nullability == NullabilityKind::NonNull) { 996 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 997 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 998 RetValNullabilityPrecondition = 999 llvm::ConstantInt::getTrue(getLLVMContext()); 1000 } 1001 } 1002 1003 // If we're in C++ mode and the function name is "main", it is guaranteed 1004 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1005 // used within a program"). 1006 if (getLangOpts().CPlusPlus) 1007 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 1008 if (FD->isMain()) 1009 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1010 1011 // If a custom alignment is used, force realigning to this alignment on 1012 // any main function which certainly will need it. 1013 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 1014 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1015 CGM.getCodeGenOpts().StackAlignment) 1016 Fn->addFnAttr("stackrealign"); 1017 1018 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1019 1020 // Create a marker to make it easy to insert allocas into the entryblock 1021 // later. Don't create this with the builder, because we don't want it 1022 // folded. 1023 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1024 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1025 1026 ReturnBlock = getJumpDestInCurrentScope("return"); 1027 1028 Builder.SetInsertPoint(EntryBB); 1029 1030 // If we're checking the return value, allocate space for a pointer to a 1031 // precise source location of the checked return statement. 1032 if (requiresReturnValueCheck()) { 1033 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1034 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1035 } 1036 1037 // Emit subprogram debug descriptor. 1038 if (CGDebugInfo *DI = getDebugInfo()) { 1039 // Reconstruct the type from the argument list so that implicit parameters, 1040 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1041 // convention. 1042 CallingConv CC = CallingConv::CC_C; 1043 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1044 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1045 CC = SrcFnTy->getCallConv(); 1046 SmallVector<QualType, 16> ArgTypes; 1047 for (const VarDecl *VD : Args) 1048 ArgTypes.push_back(VD->getType()); 1049 QualType FnType = getContext().getFunctionType( 1050 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1051 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1052 Builder); 1053 } 1054 1055 if (ShouldInstrumentFunction()) { 1056 if (CGM.getCodeGenOpts().InstrumentFunctions) 1057 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1058 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1059 CurFn->addFnAttr("instrument-function-entry-inlined", 1060 "__cyg_profile_func_enter"); 1061 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1062 CurFn->addFnAttr("instrument-function-entry-inlined", 1063 "__cyg_profile_func_enter_bare"); 1064 } 1065 1066 // Since emitting the mcount call here impacts optimizations such as function 1067 // inlining, we just add an attribute to insert a mcount call in backend. 1068 // The attribute "counting-function" is set to mcount function name which is 1069 // architecture dependent. 1070 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1071 // Calls to fentry/mcount should not be generated if function has 1072 // the no_instrument_function attribute. 1073 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1074 if (CGM.getCodeGenOpts().CallFEntry) 1075 Fn->addFnAttr("fentry-call", "true"); 1076 else { 1077 Fn->addFnAttr("instrument-function-entry-inlined", 1078 getTarget().getMCountName()); 1079 } 1080 } 1081 } 1082 1083 if (RetTy->isVoidType()) { 1084 // Void type; nothing to return. 1085 ReturnValue = Address::invalid(); 1086 1087 // Count the implicit return. 1088 if (!endsWithReturn(D)) 1089 ++NumReturnExprs; 1090 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1091 // Indirect return; emit returned value directly into sret slot. 1092 // This reduces code size, and affects correctness in C++. 1093 auto AI = CurFn->arg_begin(); 1094 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1095 ++AI; 1096 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1097 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1098 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1099 // Load the sret pointer from the argument struct and return into that. 1100 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1101 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1102 --EI; 1103 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1104 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1105 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1106 } else { 1107 ReturnValue = CreateIRTemp(RetTy, "retval"); 1108 1109 // Tell the epilog emitter to autorelease the result. We do this 1110 // now so that various specialized functions can suppress it 1111 // during their IR-generation. 1112 if (getLangOpts().ObjCAutoRefCount && 1113 !CurFnInfo->isReturnsRetained() && 1114 RetTy->isObjCRetainableType()) 1115 AutoreleaseResult = true; 1116 } 1117 1118 EmitStartEHSpec(CurCodeDecl); 1119 1120 PrologueCleanupDepth = EHStack.stable_begin(); 1121 1122 // Emit OpenMP specific initialization of the device functions. 1123 if (getLangOpts().OpenMP && CurCodeDecl) 1124 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1125 1126 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1127 1128 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1129 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1130 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1131 if (MD->getParent()->isLambda() && 1132 MD->getOverloadedOperator() == OO_Call) { 1133 // We're in a lambda; figure out the captures. 1134 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1135 LambdaThisCaptureField); 1136 if (LambdaThisCaptureField) { 1137 // If the lambda captures the object referred to by '*this' - either by 1138 // value or by reference, make sure CXXThisValue points to the correct 1139 // object. 1140 1141 // Get the lvalue for the field (which is a copy of the enclosing object 1142 // or contains the address of the enclosing object). 1143 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1144 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1145 // If the enclosing object was captured by value, just use its address. 1146 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1147 } else { 1148 // Load the lvalue pointed to by the field, since '*this' was captured 1149 // by reference. 1150 CXXThisValue = 1151 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1152 } 1153 } 1154 for (auto *FD : MD->getParent()->fields()) { 1155 if (FD->hasCapturedVLAType()) { 1156 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1157 SourceLocation()).getScalarVal(); 1158 auto VAT = FD->getCapturedVLAType(); 1159 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1160 } 1161 } 1162 } else { 1163 // Not in a lambda; just use 'this' from the method. 1164 // FIXME: Should we generate a new load for each use of 'this'? The 1165 // fast register allocator would be happier... 1166 CXXThisValue = CXXABIThisValue; 1167 } 1168 1169 // Check the 'this' pointer once per function, if it's available. 1170 if (CXXABIThisValue) { 1171 SanitizerSet SkippedChecks; 1172 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1173 QualType ThisTy = MD->getThisType(); 1174 1175 // If this is the call operator of a lambda with no capture-default, it 1176 // may have a static invoker function, which may call this operator with 1177 // a null 'this' pointer. 1178 if (isLambdaCallOperator(MD) && 1179 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1180 SkippedChecks.set(SanitizerKind::Null, true); 1181 1182 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1183 : TCK_MemberCall, 1184 Loc, CXXABIThisValue, ThisTy, 1185 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1186 SkippedChecks); 1187 } 1188 } 1189 1190 // If any of the arguments have a variably modified type, make sure to 1191 // emit the type size. 1192 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1193 i != e; ++i) { 1194 const VarDecl *VD = *i; 1195 1196 // Dig out the type as written from ParmVarDecls; it's unclear whether 1197 // the standard (C99 6.9.1p10) requires this, but we're following the 1198 // precedent set by gcc. 1199 QualType Ty; 1200 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1201 Ty = PVD->getOriginalType(); 1202 else 1203 Ty = VD->getType(); 1204 1205 if (Ty->isVariablyModifiedType()) 1206 EmitVariablyModifiedType(Ty); 1207 } 1208 // Emit a location at the end of the prologue. 1209 if (CGDebugInfo *DI = getDebugInfo()) 1210 DI->EmitLocation(Builder, StartLoc); 1211 1212 // TODO: Do we need to handle this in two places like we do with 1213 // target-features/target-cpu? 1214 if (CurFuncDecl) 1215 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1216 LargestVectorWidth = VecWidth->getVectorWidth(); 1217 } 1218 1219 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1220 incrementProfileCounter(Body); 1221 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1222 EmitCompoundStmtWithoutScope(*S); 1223 else 1224 EmitStmt(Body); 1225 } 1226 1227 /// When instrumenting to collect profile data, the counts for some blocks 1228 /// such as switch cases need to not include the fall-through counts, so 1229 /// emit a branch around the instrumentation code. When not instrumenting, 1230 /// this just calls EmitBlock(). 1231 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1232 const Stmt *S) { 1233 llvm::BasicBlock *SkipCountBB = nullptr; 1234 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1235 // When instrumenting for profiling, the fallthrough to certain 1236 // statements needs to skip over the instrumentation code so that we 1237 // get an accurate count. 1238 SkipCountBB = createBasicBlock("skipcount"); 1239 EmitBranch(SkipCountBB); 1240 } 1241 EmitBlock(BB); 1242 uint64_t CurrentCount = getCurrentProfileCount(); 1243 incrementProfileCounter(S); 1244 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1245 if (SkipCountBB) 1246 EmitBlock(SkipCountBB); 1247 } 1248 1249 /// Tries to mark the given function nounwind based on the 1250 /// non-existence of any throwing calls within it. We believe this is 1251 /// lightweight enough to do at -O0. 1252 static void TryMarkNoThrow(llvm::Function *F) { 1253 // LLVM treats 'nounwind' on a function as part of the type, so we 1254 // can't do this on functions that can be overwritten. 1255 if (F->isInterposable()) return; 1256 1257 for (llvm::BasicBlock &BB : *F) 1258 for (llvm::Instruction &I : BB) 1259 if (I.mayThrow()) 1260 return; 1261 1262 F->setDoesNotThrow(); 1263 } 1264 1265 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1266 FunctionArgList &Args) { 1267 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1268 QualType ResTy = FD->getReturnType(); 1269 1270 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1271 if (MD && MD->isInstance()) { 1272 if (CGM.getCXXABI().HasThisReturn(GD)) 1273 ResTy = MD->getThisType(); 1274 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1275 ResTy = CGM.getContext().VoidPtrTy; 1276 CGM.getCXXABI().buildThisParam(*this, Args); 1277 } 1278 1279 // The base version of an inheriting constructor whose constructed base is a 1280 // virtual base is not passed any arguments (because it doesn't actually call 1281 // the inherited constructor). 1282 bool PassedParams = true; 1283 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1284 if (auto Inherited = CD->getInheritedConstructor()) 1285 PassedParams = 1286 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1287 1288 if (PassedParams) { 1289 for (auto *Param : FD->parameters()) { 1290 Args.push_back(Param); 1291 if (!Param->hasAttr<PassObjectSizeAttr>()) 1292 continue; 1293 1294 auto *Implicit = ImplicitParamDecl::Create( 1295 getContext(), Param->getDeclContext(), Param->getLocation(), 1296 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1297 SizeArguments[Param] = Implicit; 1298 Args.push_back(Implicit); 1299 } 1300 } 1301 1302 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1303 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1304 1305 return ResTy; 1306 } 1307 1308 static bool 1309 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1310 const ASTContext &Context) { 1311 QualType T = FD->getReturnType(); 1312 // Avoid the optimization for functions that return a record type with a 1313 // trivial destructor or another trivially copyable type. 1314 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1315 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1316 return !ClassDecl->hasTrivialDestructor(); 1317 } 1318 return !T.isTriviallyCopyableType(Context); 1319 } 1320 1321 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1322 const CGFunctionInfo &FnInfo) { 1323 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1324 CurGD = GD; 1325 1326 FunctionArgList Args; 1327 QualType ResTy = BuildFunctionArgList(GD, Args); 1328 1329 // Check if we should generate debug info for this function. 1330 if (FD->hasAttr<NoDebugAttr>()) 1331 DebugInfo = nullptr; // disable debug info indefinitely for this function 1332 1333 // The function might not have a body if we're generating thunks for a 1334 // function declaration. 1335 SourceRange BodyRange; 1336 if (Stmt *Body = FD->getBody()) 1337 BodyRange = Body->getSourceRange(); 1338 else 1339 BodyRange = FD->getLocation(); 1340 CurEHLocation = BodyRange.getEnd(); 1341 1342 // Use the location of the start of the function to determine where 1343 // the function definition is located. By default use the location 1344 // of the declaration as the location for the subprogram. A function 1345 // may lack a declaration in the source code if it is created by code 1346 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1347 SourceLocation Loc = FD->getLocation(); 1348 1349 // If this is a function specialization then use the pattern body 1350 // as the location for the function. 1351 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1352 if (SpecDecl->hasBody(SpecDecl)) 1353 Loc = SpecDecl->getLocation(); 1354 1355 Stmt *Body = FD->getBody(); 1356 1357 // Initialize helper which will detect jumps which can cause invalid lifetime 1358 // markers. 1359 if (Body && ShouldEmitLifetimeMarkers) 1360 Bypasses.Init(Body); 1361 1362 // Emit the standard function prologue. 1363 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1364 1365 // Generate the body of the function. 1366 PGO.assignRegionCounters(GD, CurFn); 1367 if (isa<CXXDestructorDecl>(FD)) 1368 EmitDestructorBody(Args); 1369 else if (isa<CXXConstructorDecl>(FD)) 1370 EmitConstructorBody(Args); 1371 else if (getLangOpts().CUDA && 1372 !getLangOpts().CUDAIsDevice && 1373 FD->hasAttr<CUDAGlobalAttr>()) 1374 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1375 else if (isa<CXXMethodDecl>(FD) && 1376 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1377 // The lambda static invoker function is special, because it forwards or 1378 // clones the body of the function call operator (but is actually static). 1379 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1380 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1381 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1382 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1383 // Implicit copy-assignment gets the same special treatment as implicit 1384 // copy-constructors. 1385 emitImplicitAssignmentOperatorBody(Args); 1386 } else if (Body) { 1387 EmitFunctionBody(Body); 1388 } else 1389 llvm_unreachable("no definition for emitted function"); 1390 1391 // C++11 [stmt.return]p2: 1392 // Flowing off the end of a function [...] results in undefined behavior in 1393 // a value-returning function. 1394 // C11 6.9.1p12: 1395 // If the '}' that terminates a function is reached, and the value of the 1396 // function call is used by the caller, the behavior is undefined. 1397 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1398 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1399 bool ShouldEmitUnreachable = 1400 CGM.getCodeGenOpts().StrictReturn || 1401 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1402 if (SanOpts.has(SanitizerKind::Return)) { 1403 SanitizerScope SanScope(this); 1404 llvm::Value *IsFalse = Builder.getFalse(); 1405 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1406 SanitizerHandler::MissingReturn, 1407 EmitCheckSourceLocation(FD->getLocation()), None); 1408 } else if (ShouldEmitUnreachable) { 1409 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1410 EmitTrapCall(llvm::Intrinsic::trap); 1411 } 1412 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1413 Builder.CreateUnreachable(); 1414 Builder.ClearInsertionPoint(); 1415 } 1416 } 1417 1418 // Emit the standard function epilogue. 1419 FinishFunction(BodyRange.getEnd()); 1420 1421 // If we haven't marked the function nothrow through other means, do 1422 // a quick pass now to see if we can. 1423 if (!CurFn->doesNotThrow()) 1424 TryMarkNoThrow(CurFn); 1425 } 1426 1427 /// ContainsLabel - Return true if the statement contains a label in it. If 1428 /// this statement is not executed normally, it not containing a label means 1429 /// that we can just remove the code. 1430 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1431 // Null statement, not a label! 1432 if (!S) return false; 1433 1434 // If this is a label, we have to emit the code, consider something like: 1435 // if (0) { ... foo: bar(); } goto foo; 1436 // 1437 // TODO: If anyone cared, we could track __label__'s, since we know that you 1438 // can't jump to one from outside their declared region. 1439 if (isa<LabelStmt>(S)) 1440 return true; 1441 1442 // If this is a case/default statement, and we haven't seen a switch, we have 1443 // to emit the code. 1444 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1445 return true; 1446 1447 // If this is a switch statement, we want to ignore cases below it. 1448 if (isa<SwitchStmt>(S)) 1449 IgnoreCaseStmts = true; 1450 1451 // Scan subexpressions for verboten labels. 1452 for (const Stmt *SubStmt : S->children()) 1453 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1454 return true; 1455 1456 return false; 1457 } 1458 1459 /// containsBreak - Return true if the statement contains a break out of it. 1460 /// If the statement (recursively) contains a switch or loop with a break 1461 /// inside of it, this is fine. 1462 bool CodeGenFunction::containsBreak(const Stmt *S) { 1463 // Null statement, not a label! 1464 if (!S) return false; 1465 1466 // If this is a switch or loop that defines its own break scope, then we can 1467 // include it and anything inside of it. 1468 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1469 isa<ForStmt>(S)) 1470 return false; 1471 1472 if (isa<BreakStmt>(S)) 1473 return true; 1474 1475 // Scan subexpressions for verboten breaks. 1476 for (const Stmt *SubStmt : S->children()) 1477 if (containsBreak(SubStmt)) 1478 return true; 1479 1480 return false; 1481 } 1482 1483 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1484 if (!S) return false; 1485 1486 // Some statement kinds add a scope and thus never add a decl to the current 1487 // scope. Note, this list is longer than the list of statements that might 1488 // have an unscoped decl nested within them, but this way is conservatively 1489 // correct even if more statement kinds are added. 1490 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1491 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1492 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1493 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1494 return false; 1495 1496 if (isa<DeclStmt>(S)) 1497 return true; 1498 1499 for (const Stmt *SubStmt : S->children()) 1500 if (mightAddDeclToScope(SubStmt)) 1501 return true; 1502 1503 return false; 1504 } 1505 1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1507 /// to a constant, or if it does but contains a label, return false. If it 1508 /// constant folds return true and set the boolean result in Result. 1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1510 bool &ResultBool, 1511 bool AllowLabels) { 1512 llvm::APSInt ResultInt; 1513 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1514 return false; 1515 1516 ResultBool = ResultInt.getBoolValue(); 1517 return true; 1518 } 1519 1520 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1521 /// to a constant, or if it does but contains a label, return false. If it 1522 /// constant folds return true and set the folded value. 1523 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1524 llvm::APSInt &ResultInt, 1525 bool AllowLabels) { 1526 // FIXME: Rename and handle conversion of other evaluatable things 1527 // to bool. 1528 Expr::EvalResult Result; 1529 if (!Cond->EvaluateAsInt(Result, getContext())) 1530 return false; // Not foldable, not integer or not fully evaluatable. 1531 1532 llvm::APSInt Int = Result.Val.getInt(); 1533 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1534 return false; // Contains a label. 1535 1536 ResultInt = Int; 1537 return true; 1538 } 1539 1540 1541 1542 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1543 /// statement) to the specified blocks. Based on the condition, this might try 1544 /// to simplify the codegen of the conditional based on the branch. 1545 /// 1546 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1547 llvm::BasicBlock *TrueBlock, 1548 llvm::BasicBlock *FalseBlock, 1549 uint64_t TrueCount) { 1550 Cond = Cond->IgnoreParens(); 1551 1552 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1553 1554 // Handle X && Y in a condition. 1555 if (CondBOp->getOpcode() == BO_LAnd) { 1556 // If we have "1 && X", simplify the code. "0 && X" would have constant 1557 // folded if the case was simple enough. 1558 bool ConstantBool = false; 1559 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1560 ConstantBool) { 1561 // br(1 && X) -> br(X). 1562 incrementProfileCounter(CondBOp); 1563 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1564 TrueCount); 1565 } 1566 1567 // If we have "X && 1", simplify the code to use an uncond branch. 1568 // "X && 0" would have been constant folded to 0. 1569 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1570 ConstantBool) { 1571 // br(X && 1) -> br(X). 1572 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1573 TrueCount); 1574 } 1575 1576 // Emit the LHS as a conditional. If the LHS conditional is false, we 1577 // want to jump to the FalseBlock. 1578 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1579 // The counter tells us how often we evaluate RHS, and all of TrueCount 1580 // can be propagated to that branch. 1581 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1582 1583 ConditionalEvaluation eval(*this); 1584 { 1585 ApplyDebugLocation DL(*this, Cond); 1586 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1587 EmitBlock(LHSTrue); 1588 } 1589 1590 incrementProfileCounter(CondBOp); 1591 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1592 1593 // Any temporaries created here are conditional. 1594 eval.begin(*this); 1595 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1596 eval.end(*this); 1597 1598 return; 1599 } 1600 1601 if (CondBOp->getOpcode() == BO_LOr) { 1602 // If we have "0 || X", simplify the code. "1 || X" would have constant 1603 // folded if the case was simple enough. 1604 bool ConstantBool = false; 1605 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1606 !ConstantBool) { 1607 // br(0 || X) -> br(X). 1608 incrementProfileCounter(CondBOp); 1609 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1610 TrueCount); 1611 } 1612 1613 // If we have "X || 0", simplify the code to use an uncond branch. 1614 // "X || 1" would have been constant folded to 1. 1615 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1616 !ConstantBool) { 1617 // br(X || 0) -> br(X). 1618 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1619 TrueCount); 1620 } 1621 1622 // Emit the LHS as a conditional. If the LHS conditional is true, we 1623 // want to jump to the TrueBlock. 1624 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1625 // We have the count for entry to the RHS and for the whole expression 1626 // being true, so we can divy up True count between the short circuit and 1627 // the RHS. 1628 uint64_t LHSCount = 1629 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1630 uint64_t RHSCount = TrueCount - LHSCount; 1631 1632 ConditionalEvaluation eval(*this); 1633 { 1634 ApplyDebugLocation DL(*this, Cond); 1635 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1636 EmitBlock(LHSFalse); 1637 } 1638 1639 incrementProfileCounter(CondBOp); 1640 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1641 1642 // Any temporaries created here are conditional. 1643 eval.begin(*this); 1644 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1645 1646 eval.end(*this); 1647 1648 return; 1649 } 1650 } 1651 1652 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1653 // br(!x, t, f) -> br(x, f, t) 1654 if (CondUOp->getOpcode() == UO_LNot) { 1655 // Negate the count. 1656 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1657 // Negate the condition and swap the destination blocks. 1658 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1659 FalseCount); 1660 } 1661 } 1662 1663 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1664 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1665 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1666 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1667 1668 ConditionalEvaluation cond(*this); 1669 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1670 getProfileCount(CondOp)); 1671 1672 // When computing PGO branch weights, we only know the overall count for 1673 // the true block. This code is essentially doing tail duplication of the 1674 // naive code-gen, introducing new edges for which counts are not 1675 // available. Divide the counts proportionally between the LHS and RHS of 1676 // the conditional operator. 1677 uint64_t LHSScaledTrueCount = 0; 1678 if (TrueCount) { 1679 double LHSRatio = 1680 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1681 LHSScaledTrueCount = TrueCount * LHSRatio; 1682 } 1683 1684 cond.begin(*this); 1685 EmitBlock(LHSBlock); 1686 incrementProfileCounter(CondOp); 1687 { 1688 ApplyDebugLocation DL(*this, Cond); 1689 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1690 LHSScaledTrueCount); 1691 } 1692 cond.end(*this); 1693 1694 cond.begin(*this); 1695 EmitBlock(RHSBlock); 1696 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1697 TrueCount - LHSScaledTrueCount); 1698 cond.end(*this); 1699 1700 return; 1701 } 1702 1703 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1704 // Conditional operator handling can give us a throw expression as a 1705 // condition for a case like: 1706 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1707 // Fold this to: 1708 // br(c, throw x, br(y, t, f)) 1709 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1710 return; 1711 } 1712 1713 // If the branch has a condition wrapped by __builtin_unpredictable, 1714 // create metadata that specifies that the branch is unpredictable. 1715 // Don't bother if not optimizing because that metadata would not be used. 1716 llvm::MDNode *Unpredictable = nullptr; 1717 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1718 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1719 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1720 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1721 llvm::MDBuilder MDHelper(getLLVMContext()); 1722 Unpredictable = MDHelper.createUnpredictable(); 1723 } 1724 } 1725 1726 // Create branch weights based on the number of times we get here and the 1727 // number of times the condition should be true. 1728 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1729 llvm::MDNode *Weights = 1730 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1731 1732 // Emit the code with the fully general case. 1733 llvm::Value *CondV; 1734 { 1735 ApplyDebugLocation DL(*this, Cond); 1736 CondV = EvaluateExprAsBool(Cond); 1737 } 1738 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1739 } 1740 1741 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1742 /// specified stmt yet. 1743 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1744 CGM.ErrorUnsupported(S, Type); 1745 } 1746 1747 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1748 /// variable-length array whose elements have a non-zero bit-pattern. 1749 /// 1750 /// \param baseType the inner-most element type of the array 1751 /// \param src - a char* pointing to the bit-pattern for a single 1752 /// base element of the array 1753 /// \param sizeInChars - the total size of the VLA, in chars 1754 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1755 Address dest, Address src, 1756 llvm::Value *sizeInChars) { 1757 CGBuilderTy &Builder = CGF.Builder; 1758 1759 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1760 llvm::Value *baseSizeInChars 1761 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1762 1763 Address begin = 1764 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1765 llvm::Value *end = 1766 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1767 1768 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1769 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1770 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1771 1772 // Make a loop over the VLA. C99 guarantees that the VLA element 1773 // count must be nonzero. 1774 CGF.EmitBlock(loopBB); 1775 1776 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1777 cur->addIncoming(begin.getPointer(), originBB); 1778 1779 CharUnits curAlign = 1780 dest.getAlignment().alignmentOfArrayElement(baseSize); 1781 1782 // memcpy the individual element bit-pattern. 1783 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1784 /*volatile*/ false); 1785 1786 // Go to the next element. 1787 llvm::Value *next = 1788 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1789 1790 // Leave if that's the end of the VLA. 1791 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1792 Builder.CreateCondBr(done, contBB, loopBB); 1793 cur->addIncoming(next, loopBB); 1794 1795 CGF.EmitBlock(contBB); 1796 } 1797 1798 void 1799 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1800 // Ignore empty classes in C++. 1801 if (getLangOpts().CPlusPlus) { 1802 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1803 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1804 return; 1805 } 1806 } 1807 1808 // Cast the dest ptr to the appropriate i8 pointer type. 1809 if (DestPtr.getElementType() != Int8Ty) 1810 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1811 1812 // Get size and alignment info for this aggregate. 1813 CharUnits size = getContext().getTypeSizeInChars(Ty); 1814 1815 llvm::Value *SizeVal; 1816 const VariableArrayType *vla; 1817 1818 // Don't bother emitting a zero-byte memset. 1819 if (size.isZero()) { 1820 // But note that getTypeInfo returns 0 for a VLA. 1821 if (const VariableArrayType *vlaType = 1822 dyn_cast_or_null<VariableArrayType>( 1823 getContext().getAsArrayType(Ty))) { 1824 auto VlaSize = getVLASize(vlaType); 1825 SizeVal = VlaSize.NumElts; 1826 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1827 if (!eltSize.isOne()) 1828 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1829 vla = vlaType; 1830 } else { 1831 return; 1832 } 1833 } else { 1834 SizeVal = CGM.getSize(size); 1835 vla = nullptr; 1836 } 1837 1838 // If the type contains a pointer to data member we can't memset it to zero. 1839 // Instead, create a null constant and copy it to the destination. 1840 // TODO: there are other patterns besides zero that we can usefully memset, 1841 // like -1, which happens to be the pattern used by member-pointers. 1842 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1843 // For a VLA, emit a single element, then splat that over the VLA. 1844 if (vla) Ty = getContext().getBaseElementType(vla); 1845 1846 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1847 1848 llvm::GlobalVariable *NullVariable = 1849 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1850 /*isConstant=*/true, 1851 llvm::GlobalVariable::PrivateLinkage, 1852 NullConstant, Twine()); 1853 CharUnits NullAlign = DestPtr.getAlignment(); 1854 NullVariable->setAlignment(NullAlign.getQuantity()); 1855 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1856 NullAlign); 1857 1858 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1859 1860 // Get and call the appropriate llvm.memcpy overload. 1861 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1862 return; 1863 } 1864 1865 // Otherwise, just memset the whole thing to zero. This is legal 1866 // because in LLVM, all default initializers (other than the ones we just 1867 // handled above) are guaranteed to have a bit pattern of all zeros. 1868 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1869 } 1870 1871 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1872 // Make sure that there is a block for the indirect goto. 1873 if (!IndirectBranch) 1874 GetIndirectGotoBlock(); 1875 1876 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1877 1878 // Make sure the indirect branch includes all of the address-taken blocks. 1879 IndirectBranch->addDestination(BB); 1880 return llvm::BlockAddress::get(CurFn, BB); 1881 } 1882 1883 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1884 // If we already made the indirect branch for indirect goto, return its block. 1885 if (IndirectBranch) return IndirectBranch->getParent(); 1886 1887 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1888 1889 // Create the PHI node that indirect gotos will add entries to. 1890 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1891 "indirect.goto.dest"); 1892 1893 // Create the indirect branch instruction. 1894 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1895 return IndirectBranch->getParent(); 1896 } 1897 1898 /// Computes the length of an array in elements, as well as the base 1899 /// element type and a properly-typed first element pointer. 1900 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1901 QualType &baseType, 1902 Address &addr) { 1903 const ArrayType *arrayType = origArrayType; 1904 1905 // If it's a VLA, we have to load the stored size. Note that 1906 // this is the size of the VLA in bytes, not its size in elements. 1907 llvm::Value *numVLAElements = nullptr; 1908 if (isa<VariableArrayType>(arrayType)) { 1909 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1910 1911 // Walk into all VLAs. This doesn't require changes to addr, 1912 // which has type T* where T is the first non-VLA element type. 1913 do { 1914 QualType elementType = arrayType->getElementType(); 1915 arrayType = getContext().getAsArrayType(elementType); 1916 1917 // If we only have VLA components, 'addr' requires no adjustment. 1918 if (!arrayType) { 1919 baseType = elementType; 1920 return numVLAElements; 1921 } 1922 } while (isa<VariableArrayType>(arrayType)); 1923 1924 // We get out here only if we find a constant array type 1925 // inside the VLA. 1926 } 1927 1928 // We have some number of constant-length arrays, so addr should 1929 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1930 // down to the first element of addr. 1931 SmallVector<llvm::Value*, 8> gepIndices; 1932 1933 // GEP down to the array type. 1934 llvm::ConstantInt *zero = Builder.getInt32(0); 1935 gepIndices.push_back(zero); 1936 1937 uint64_t countFromCLAs = 1; 1938 QualType eltType; 1939 1940 llvm::ArrayType *llvmArrayType = 1941 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1942 while (llvmArrayType) { 1943 assert(isa<ConstantArrayType>(arrayType)); 1944 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1945 == llvmArrayType->getNumElements()); 1946 1947 gepIndices.push_back(zero); 1948 countFromCLAs *= llvmArrayType->getNumElements(); 1949 eltType = arrayType->getElementType(); 1950 1951 llvmArrayType = 1952 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1953 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1954 assert((!llvmArrayType || arrayType) && 1955 "LLVM and Clang types are out-of-synch"); 1956 } 1957 1958 if (arrayType) { 1959 // From this point onwards, the Clang array type has been emitted 1960 // as some other type (probably a packed struct). Compute the array 1961 // size, and just emit the 'begin' expression as a bitcast. 1962 while (arrayType) { 1963 countFromCLAs *= 1964 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1965 eltType = arrayType->getElementType(); 1966 arrayType = getContext().getAsArrayType(eltType); 1967 } 1968 1969 llvm::Type *baseType = ConvertType(eltType); 1970 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1971 } else { 1972 // Create the actual GEP. 1973 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1974 gepIndices, "array.begin"), 1975 addr.getAlignment()); 1976 } 1977 1978 baseType = eltType; 1979 1980 llvm::Value *numElements 1981 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1982 1983 // If we had any VLA dimensions, factor them in. 1984 if (numVLAElements) 1985 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1986 1987 return numElements; 1988 } 1989 1990 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1991 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1992 assert(vla && "type was not a variable array type!"); 1993 return getVLASize(vla); 1994 } 1995 1996 CodeGenFunction::VlaSizePair 1997 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1998 // The number of elements so far; always size_t. 1999 llvm::Value *numElements = nullptr; 2000 2001 QualType elementType; 2002 do { 2003 elementType = type->getElementType(); 2004 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2005 assert(vlaSize && "no size for VLA!"); 2006 assert(vlaSize->getType() == SizeTy); 2007 2008 if (!numElements) { 2009 numElements = vlaSize; 2010 } else { 2011 // It's undefined behavior if this wraps around, so mark it that way. 2012 // FIXME: Teach -fsanitize=undefined to trap this. 2013 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2014 } 2015 } while ((type = getContext().getAsVariableArrayType(elementType))); 2016 2017 return { numElements, elementType }; 2018 } 2019 2020 CodeGenFunction::VlaSizePair 2021 CodeGenFunction::getVLAElements1D(QualType type) { 2022 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2023 assert(vla && "type was not a variable array type!"); 2024 return getVLAElements1D(vla); 2025 } 2026 2027 CodeGenFunction::VlaSizePair 2028 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2029 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2030 assert(VlaSize && "no size for VLA!"); 2031 assert(VlaSize->getType() == SizeTy); 2032 return { VlaSize, Vla->getElementType() }; 2033 } 2034 2035 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2036 assert(type->isVariablyModifiedType() && 2037 "Must pass variably modified type to EmitVLASizes!"); 2038 2039 EnsureInsertPoint(); 2040 2041 // We're going to walk down into the type and look for VLA 2042 // expressions. 2043 do { 2044 assert(type->isVariablyModifiedType()); 2045 2046 const Type *ty = type.getTypePtr(); 2047 switch (ty->getTypeClass()) { 2048 2049 #define TYPE(Class, Base) 2050 #define ABSTRACT_TYPE(Class, Base) 2051 #define NON_CANONICAL_TYPE(Class, Base) 2052 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2053 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2054 #include "clang/AST/TypeNodes.def" 2055 llvm_unreachable("unexpected dependent type!"); 2056 2057 // These types are never variably-modified. 2058 case Type::Builtin: 2059 case Type::Complex: 2060 case Type::Vector: 2061 case Type::ExtVector: 2062 case Type::Record: 2063 case Type::Enum: 2064 case Type::Elaborated: 2065 case Type::TemplateSpecialization: 2066 case Type::ObjCTypeParam: 2067 case Type::ObjCObject: 2068 case Type::ObjCInterface: 2069 case Type::ObjCObjectPointer: 2070 llvm_unreachable("type class is never variably-modified!"); 2071 2072 case Type::Adjusted: 2073 type = cast<AdjustedType>(ty)->getAdjustedType(); 2074 break; 2075 2076 case Type::Decayed: 2077 type = cast<DecayedType>(ty)->getPointeeType(); 2078 break; 2079 2080 case Type::Pointer: 2081 type = cast<PointerType>(ty)->getPointeeType(); 2082 break; 2083 2084 case Type::BlockPointer: 2085 type = cast<BlockPointerType>(ty)->getPointeeType(); 2086 break; 2087 2088 case Type::LValueReference: 2089 case Type::RValueReference: 2090 type = cast<ReferenceType>(ty)->getPointeeType(); 2091 break; 2092 2093 case Type::MemberPointer: 2094 type = cast<MemberPointerType>(ty)->getPointeeType(); 2095 break; 2096 2097 case Type::ConstantArray: 2098 case Type::IncompleteArray: 2099 // Losing element qualification here is fine. 2100 type = cast<ArrayType>(ty)->getElementType(); 2101 break; 2102 2103 case Type::VariableArray: { 2104 // Losing element qualification here is fine. 2105 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2106 2107 // Unknown size indication requires no size computation. 2108 // Otherwise, evaluate and record it. 2109 if (const Expr *size = vat->getSizeExpr()) { 2110 // It's possible that we might have emitted this already, 2111 // e.g. with a typedef and a pointer to it. 2112 llvm::Value *&entry = VLASizeMap[size]; 2113 if (!entry) { 2114 llvm::Value *Size = EmitScalarExpr(size); 2115 2116 // C11 6.7.6.2p5: 2117 // If the size is an expression that is not an integer constant 2118 // expression [...] each time it is evaluated it shall have a value 2119 // greater than zero. 2120 if (SanOpts.has(SanitizerKind::VLABound) && 2121 size->getType()->isSignedIntegerType()) { 2122 SanitizerScope SanScope(this); 2123 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2124 llvm::Constant *StaticArgs[] = { 2125 EmitCheckSourceLocation(size->getBeginLoc()), 2126 EmitCheckTypeDescriptor(size->getType())}; 2127 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2128 SanitizerKind::VLABound), 2129 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2130 } 2131 2132 // Always zexting here would be wrong if it weren't 2133 // undefined behavior to have a negative bound. 2134 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2135 } 2136 } 2137 type = vat->getElementType(); 2138 break; 2139 } 2140 2141 case Type::FunctionProto: 2142 case Type::FunctionNoProto: 2143 type = cast<FunctionType>(ty)->getReturnType(); 2144 break; 2145 2146 case Type::Paren: 2147 case Type::TypeOf: 2148 case Type::UnaryTransform: 2149 case Type::Attributed: 2150 case Type::SubstTemplateTypeParm: 2151 case Type::PackExpansion: 2152 // Keep walking after single level desugaring. 2153 type = type.getSingleStepDesugaredType(getContext()); 2154 break; 2155 2156 case Type::Typedef: 2157 case Type::Decltype: 2158 case Type::Auto: 2159 case Type::DeducedTemplateSpecialization: 2160 // Stop walking: nothing to do. 2161 return; 2162 2163 case Type::TypeOfExpr: 2164 // Stop walking: emit typeof expression. 2165 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2166 return; 2167 2168 case Type::Atomic: 2169 type = cast<AtomicType>(ty)->getValueType(); 2170 break; 2171 2172 case Type::Pipe: 2173 type = cast<PipeType>(ty)->getElementType(); 2174 break; 2175 } 2176 } while (type->isVariablyModifiedType()); 2177 } 2178 2179 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2180 if (getContext().getBuiltinVaListType()->isArrayType()) 2181 return EmitPointerWithAlignment(E); 2182 return EmitLValue(E).getAddress(); 2183 } 2184 2185 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2186 return EmitLValue(E).getAddress(); 2187 } 2188 2189 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2190 const APValue &Init) { 2191 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2192 if (CGDebugInfo *Dbg = getDebugInfo()) 2193 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2194 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2195 } 2196 2197 CodeGenFunction::PeepholeProtection 2198 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2199 // At the moment, the only aggressive peephole we do in IR gen 2200 // is trunc(zext) folding, but if we add more, we can easily 2201 // extend this protection. 2202 2203 if (!rvalue.isScalar()) return PeepholeProtection(); 2204 llvm::Value *value = rvalue.getScalarVal(); 2205 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2206 2207 // Just make an extra bitcast. 2208 assert(HaveInsertPoint()); 2209 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2210 Builder.GetInsertBlock()); 2211 2212 PeepholeProtection protection; 2213 protection.Inst = inst; 2214 return protection; 2215 } 2216 2217 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2218 if (!protection.Inst) return; 2219 2220 // In theory, we could try to duplicate the peepholes now, but whatever. 2221 protection.Inst->eraseFromParent(); 2222 } 2223 2224 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2225 QualType Ty, SourceLocation Loc, 2226 SourceLocation AssumptionLoc, 2227 llvm::Value *Alignment, 2228 llvm::Value *OffsetValue) { 2229 llvm::Value *TheCheck; 2230 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2231 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2232 if (SanOpts.has(SanitizerKind::Alignment)) { 2233 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2234 OffsetValue, TheCheck, Assumption); 2235 } 2236 } 2237 2238 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2239 QualType Ty, SourceLocation Loc, 2240 SourceLocation AssumptionLoc, 2241 unsigned Alignment, 2242 llvm::Value *OffsetValue) { 2243 llvm::Value *TheCheck; 2244 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2245 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2246 if (SanOpts.has(SanitizerKind::Alignment)) { 2247 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2248 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2249 OffsetValue, TheCheck, Assumption); 2250 } 2251 } 2252 2253 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2254 const Expr *E, 2255 SourceLocation AssumptionLoc, 2256 unsigned Alignment, 2257 llvm::Value *OffsetValue) { 2258 if (auto *CE = dyn_cast<CastExpr>(E)) 2259 E = CE->getSubExprAsWritten(); 2260 QualType Ty = E->getType(); 2261 SourceLocation Loc = E->getExprLoc(); 2262 2263 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2264 OffsetValue); 2265 } 2266 2267 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2268 llvm::Value *AnnotatedVal, 2269 StringRef AnnotationStr, 2270 SourceLocation Location) { 2271 llvm::Value *Args[4] = { 2272 AnnotatedVal, 2273 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2274 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2275 CGM.EmitAnnotationLineNo(Location) 2276 }; 2277 return Builder.CreateCall(AnnotationFn, Args); 2278 } 2279 2280 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2281 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2282 // FIXME We create a new bitcast for every annotation because that's what 2283 // llvm-gcc was doing. 2284 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2285 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2286 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2287 I->getAnnotation(), D->getLocation()); 2288 } 2289 2290 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2291 Address Addr) { 2292 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2293 llvm::Value *V = Addr.getPointer(); 2294 llvm::Type *VTy = V->getType(); 2295 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2296 CGM.Int8PtrTy); 2297 2298 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2299 // FIXME Always emit the cast inst so we can differentiate between 2300 // annotation on the first field of a struct and annotation on the struct 2301 // itself. 2302 if (VTy != CGM.Int8PtrTy) 2303 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2304 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2305 V = Builder.CreateBitCast(V, VTy); 2306 } 2307 2308 return Address(V, Addr.getAlignment()); 2309 } 2310 2311 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2312 2313 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2314 : CGF(CGF) { 2315 assert(!CGF->IsSanitizerScope); 2316 CGF->IsSanitizerScope = true; 2317 } 2318 2319 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2320 CGF->IsSanitizerScope = false; 2321 } 2322 2323 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2324 const llvm::Twine &Name, 2325 llvm::BasicBlock *BB, 2326 llvm::BasicBlock::iterator InsertPt) const { 2327 LoopStack.InsertHelper(I); 2328 if (IsSanitizerScope) 2329 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2330 } 2331 2332 void CGBuilderInserter::InsertHelper( 2333 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2334 llvm::BasicBlock::iterator InsertPt) const { 2335 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2336 if (CGF) 2337 CGF->InsertHelper(I, Name, BB, InsertPt); 2338 } 2339 2340 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2341 CodeGenModule &CGM, const FunctionDecl *FD, 2342 std::string &FirstMissing) { 2343 // If there aren't any required features listed then go ahead and return. 2344 if (ReqFeatures.empty()) 2345 return false; 2346 2347 // Now build up the set of caller features and verify that all the required 2348 // features are there. 2349 llvm::StringMap<bool> CallerFeatureMap; 2350 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2351 2352 // If we have at least one of the features in the feature list return 2353 // true, otherwise return false. 2354 return std::all_of( 2355 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2356 SmallVector<StringRef, 1> OrFeatures; 2357 Feature.split(OrFeatures, '|'); 2358 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2359 if (!CallerFeatureMap.lookup(Feature)) { 2360 FirstMissing = Feature.str(); 2361 return false; 2362 } 2363 return true; 2364 }); 2365 }); 2366 } 2367 2368 // Emits an error if we don't have a valid set of target features for the 2369 // called function. 2370 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2371 const FunctionDecl *TargetDecl) { 2372 // Early exit if this is an indirect call. 2373 if (!TargetDecl) 2374 return; 2375 2376 // Get the current enclosing function if it exists. If it doesn't 2377 // we can't check the target features anyhow. 2378 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2379 if (!FD) 2380 return; 2381 2382 // Grab the required features for the call. For a builtin this is listed in 2383 // the td file with the default cpu, for an always_inline function this is any 2384 // listed cpu and any listed features. 2385 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2386 std::string MissingFeature; 2387 if (BuiltinID) { 2388 SmallVector<StringRef, 1> ReqFeatures; 2389 const char *FeatureList = 2390 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2391 // Return if the builtin doesn't have any required features. 2392 if (!FeatureList || StringRef(FeatureList) == "") 2393 return; 2394 StringRef(FeatureList).split(ReqFeatures, ','); 2395 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2396 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2397 << TargetDecl->getDeclName() 2398 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2399 2400 } else if (TargetDecl->hasAttr<TargetAttr>() || 2401 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2402 // Get the required features for the callee. 2403 2404 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2405 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2406 2407 SmallVector<StringRef, 1> ReqFeatures; 2408 llvm::StringMap<bool> CalleeFeatureMap; 2409 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2410 2411 for (const auto &F : ParsedAttr.Features) { 2412 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2413 ReqFeatures.push_back(StringRef(F).substr(1)); 2414 } 2415 2416 for (const auto &F : CalleeFeatureMap) { 2417 // Only positive features are "required". 2418 if (F.getValue()) 2419 ReqFeatures.push_back(F.getKey()); 2420 } 2421 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2422 CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature) 2423 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2424 } 2425 } 2426 2427 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2428 if (!CGM.getCodeGenOpts().SanitizeStats) 2429 return; 2430 2431 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2432 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2433 CGM.getSanStats().create(IRB, SSK); 2434 } 2435 2436 llvm::Value * 2437 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2438 llvm::Value *Condition = nullptr; 2439 2440 if (!RO.Conditions.Architecture.empty()) 2441 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2442 2443 if (!RO.Conditions.Features.empty()) { 2444 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2445 Condition = 2446 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2447 } 2448 return Condition; 2449 } 2450 2451 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2452 llvm::Function *Resolver, 2453 CGBuilderTy &Builder, 2454 llvm::Function *FuncToReturn, 2455 bool SupportsIFunc) { 2456 if (SupportsIFunc) { 2457 Builder.CreateRet(FuncToReturn); 2458 return; 2459 } 2460 2461 llvm::SmallVector<llvm::Value *, 10> Args; 2462 llvm::for_each(Resolver->args(), 2463 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2464 2465 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2466 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2467 2468 if (Resolver->getReturnType()->isVoidTy()) 2469 Builder.CreateRetVoid(); 2470 else 2471 Builder.CreateRet(Result); 2472 } 2473 2474 void CodeGenFunction::EmitMultiVersionResolver( 2475 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2476 assert((getContext().getTargetInfo().getTriple().getArch() == 2477 llvm::Triple::x86 || 2478 getContext().getTargetInfo().getTriple().getArch() == 2479 llvm::Triple::x86_64) && 2480 "Only implemented for x86 targets"); 2481 2482 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2483 2484 // Main function's basic block. 2485 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2486 Builder.SetInsertPoint(CurBlock); 2487 EmitX86CpuInit(); 2488 2489 for (const MultiVersionResolverOption &RO : Options) { 2490 Builder.SetInsertPoint(CurBlock); 2491 llvm::Value *Condition = FormResolverCondition(RO); 2492 2493 // The 'default' or 'generic' case. 2494 if (!Condition) { 2495 assert(&RO == Options.end() - 1 && 2496 "Default or Generic case must be last"); 2497 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2498 SupportsIFunc); 2499 return; 2500 } 2501 2502 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2503 CGBuilderTy RetBuilder(*this, RetBlock); 2504 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2505 SupportsIFunc); 2506 CurBlock = createBasicBlock("resolver_else", Resolver); 2507 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2508 } 2509 2510 // If no generic/default, emit an unreachable. 2511 Builder.SetInsertPoint(CurBlock); 2512 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2513 TrapCall->setDoesNotReturn(); 2514 TrapCall->setDoesNotThrow(); 2515 Builder.CreateUnreachable(); 2516 Builder.ClearInsertionPoint(); 2517 } 2518 2519 // Loc - where the diagnostic will point, where in the source code this 2520 // alignment has failed. 2521 // SecondaryLoc - if present (will be present if sufficiently different from 2522 // Loc), the diagnostic will additionally point a "Note:" to this location. 2523 // It should be the location where the __attribute__((assume_aligned)) 2524 // was written e.g. 2525 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2526 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2527 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2528 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2529 llvm::Instruction *Assumption) { 2530 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2531 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2532 llvm::Intrinsic::getDeclaration( 2533 Builder.GetInsertBlock()->getParent()->getParent(), 2534 llvm::Intrinsic::assume) && 2535 "Assumption should be a call to llvm.assume()."); 2536 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2537 "Assumption should be the last instruction of the basic block, " 2538 "since the basic block is still being generated."); 2539 2540 if (!SanOpts.has(SanitizerKind::Alignment)) 2541 return; 2542 2543 // Don't check pointers to volatile data. The behavior here is implementation- 2544 // defined. 2545 if (Ty->getPointeeType().isVolatileQualified()) 2546 return; 2547 2548 // We need to temorairly remove the assumption so we can insert the 2549 // sanitizer check before it, else the check will be dropped by optimizations. 2550 Assumption->removeFromParent(); 2551 2552 { 2553 SanitizerScope SanScope(this); 2554 2555 if (!OffsetValue) 2556 OffsetValue = Builder.getInt1(0); // no offset. 2557 2558 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2559 EmitCheckSourceLocation(SecondaryLoc), 2560 EmitCheckTypeDescriptor(Ty)}; 2561 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2562 EmitCheckValue(Alignment), 2563 EmitCheckValue(OffsetValue)}; 2564 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2565 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2566 } 2567 2568 // We are now in the (new, empty) "cont" basic block. 2569 // Reintroduce the assumption. 2570 Builder.Insert(Assumption); 2571 // FIXME: Assumption still has it's original basic block as it's Parent. 2572 } 2573 2574 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2575 if (CGDebugInfo *DI = getDebugInfo()) 2576 return DI->SourceLocToDebugLoc(Location); 2577 2578 return llvm::DebugLoc(); 2579 } 2580