1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44 /// markers.
45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                       const LangOptions &LangOpts) {
47   if (CGOpts.DisableLifetimeMarkers)
48     return false;
49 
50   // Disable lifetime markers in msan builds.
51   // FIXME: Remove this when msan works with lifetime markers.
52   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
53     return false;
54 
55   // Asan uses markers for use-after-scope checks.
56   if (CGOpts.SanitizeAddressUseAfterScope)
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93 }
94 
95 CodeGenFunction::~CodeGenFunction() {
96   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97 
98   // If there are any unclaimed block infos, go ahead and destroy them
99   // now.  This can happen if IR-gen gets clever and skips evaluating
100   // something.
101   if (FirstBlockInfo)
102     destroyBlockInfos(FirstBlockInfo);
103 
104   if (getLangOpts().OpenMP && CurFn)
105     CGM.getOpenMPRuntime().functionFinished(*this);
106 }
107 
108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
109                                                     LValueBaseInfo *BaseInfo,
110                                                     TBAAAccessInfo *TBAAInfo) {
111   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
112                                  /* forPointeeType= */ true);
113 }
114 
115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
116                                                    LValueBaseInfo *BaseInfo,
117                                                    TBAAAccessInfo *TBAAInfo,
118                                                    bool forPointeeType) {
119   if (TBAAInfo)
120     *TBAAInfo = CGM.getTBAAAccessInfo(T);
121 
122   // Honor alignment typedef attributes even on incomplete types.
123   // We also honor them straight for C++ class types, even as pointees;
124   // there's an expressivity gap here.
125   if (auto TT = T->getAs<TypedefType>()) {
126     if (auto Align = TT->getDecl()->getMaxAlignment()) {
127       if (BaseInfo)
128         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
129       return getContext().toCharUnitsFromBits(Align);
130     }
131   }
132 
133   if (BaseInfo)
134     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
135 
136   CharUnits Alignment;
137   if (T->isIncompleteType()) {
138     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
139   } else {
140     // For C++ class pointees, we don't know whether we're pointing at a
141     // base or a complete object, so we generally need to use the
142     // non-virtual alignment.
143     const CXXRecordDecl *RD;
144     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
145       Alignment = CGM.getClassPointerAlignment(RD);
146     } else {
147       Alignment = getContext().getTypeAlignInChars(T);
148       if (T.getQualifiers().hasUnaligned())
149         Alignment = CharUnits::One();
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   LValueBaseInfo BaseInfo;
165   TBAAAccessInfo TBAAInfo;
166   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
167   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
168                           TBAAInfo);
169 }
170 
171 /// Given a value of type T* that may not be to a complete object,
172 /// construct an l-value with the natural pointee alignment of T.
173 LValue
174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
175   LValueBaseInfo BaseInfo;
176   TBAAAccessInfo TBAAInfo;
177   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
178                                             /* forPointeeType= */ true);
179   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
180 }
181 
182 
183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
184   return CGM.getTypes().ConvertTypeForMem(T);
185 }
186 
187 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
188   return CGM.getTypes().ConvertType(T);
189 }
190 
191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
192   type = type.getCanonicalType();
193   while (true) {
194     switch (type->getTypeClass()) {
195 #define TYPE(name, parent)
196 #define ABSTRACT_TYPE(name, parent)
197 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
198 #define DEPENDENT_TYPE(name, parent) case Type::name:
199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
200 #include "clang/AST/TypeNodes.def"
201       llvm_unreachable("non-canonical or dependent type in IR-generation");
202 
203     case Type::Auto:
204     case Type::DeducedTemplateSpecialization:
205       llvm_unreachable("undeduced type in IR-generation");
206 
207     // Various scalar types.
208     case Type::Builtin:
209     case Type::Pointer:
210     case Type::BlockPointer:
211     case Type::LValueReference:
212     case Type::RValueReference:
213     case Type::MemberPointer:
214     case Type::Vector:
215     case Type::ExtVector:
216     case Type::FunctionProto:
217     case Type::FunctionNoProto:
218     case Type::Enum:
219     case Type::ObjCObjectPointer:
220     case Type::Pipe:
221       return TEK_Scalar;
222 
223     // Complexes.
224     case Type::Complex:
225       return TEK_Complex;
226 
227     // Arrays, records, and Objective-C objects.
228     case Type::ConstantArray:
229     case Type::IncompleteArray:
230     case Type::VariableArray:
231     case Type::Record:
232     case Type::ObjCObject:
233     case Type::ObjCInterface:
234       return TEK_Aggregate;
235 
236     // We operate on atomic values according to their underlying type.
237     case Type::Atomic:
238       type = cast<AtomicType>(type)->getValueType();
239       continue;
240     }
241     llvm_unreachable("unknown type kind!");
242   }
243 }
244 
245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
246   // For cleanliness, we try to avoid emitting the return block for
247   // simple cases.
248   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249 
250   if (CurBB) {
251     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
252 
253     // We have a valid insert point, reuse it if it is empty or there are no
254     // explicit jumps to the return block.
255     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
256       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
257       delete ReturnBlock.getBlock();
258       ReturnBlock = JumpDest();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       ReturnBlock = JumpDest();
279       return Loc;
280     }
281   }
282 
283   // FIXME: We are at an unreachable point, there is no reason to emit the block
284   // unless it has uses. However, we still need a place to put the debug
285   // region.end for now.
286 
287   EmitBlock(ReturnBlock.getBlock());
288   return llvm::DebugLoc();
289 }
290 
291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
292   if (!BB) return;
293   if (!BB->use_empty())
294     return CGF.CurFn->getBasicBlockList().push_back(BB);
295   delete BB;
296 }
297 
298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
299   assert(BreakContinueStack.empty() &&
300          "mismatched push/pop in break/continue stack!");
301 
302   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
303     && NumSimpleReturnExprs == NumReturnExprs
304     && ReturnBlock.getBlock()->use_empty();
305   // Usually the return expression is evaluated before the cleanup
306   // code.  If the function contains only a simple return statement,
307   // such as a constant, the location before the cleanup code becomes
308   // the last useful breakpoint in the function, because the simple
309   // return expression will be evaluated after the cleanup code. To be
310   // safe, set the debug location for cleanup code to the location of
311   // the return statement.  Otherwise the cleanup code should be at the
312   // end of the function's lexical scope.
313   //
314   // If there are multiple branches to the return block, the branch
315   // instructions will get the location of the return statements and
316   // all will be fine.
317   if (CGDebugInfo *DI = getDebugInfo()) {
318     if (OnlySimpleReturnStmts)
319       DI->EmitLocation(Builder, LastStopPoint);
320     else
321       DI->EmitLocation(Builder, EndLoc);
322   }
323 
324   // Pop any cleanups that might have been associated with the
325   // parameters.  Do this in whatever block we're currently in; it's
326   // important to do this before we enter the return block or return
327   // edges will be *really* confused.
328   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
329   bool HasOnlyLifetimeMarkers =
330       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
331   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
332   if (HasCleanups) {
333     // Make sure the line table doesn't jump back into the body for
334     // the ret after it's been at EndLoc.
335     if (CGDebugInfo *DI = getDebugInfo())
336       if (OnlySimpleReturnStmts)
337         DI->EmitLocation(Builder, EndLoc);
338 
339     PopCleanupBlocks(PrologueCleanupDepth);
340   }
341 
342   // Emit function epilog (to return).
343   llvm::DebugLoc Loc = EmitReturnBlock();
344 
345   if (ShouldInstrumentFunction()) {
346     if (CGM.getCodeGenOpts().InstrumentFunctions)
347       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
348     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
349       CurFn->addFnAttr("instrument-function-exit-inlined",
350                        "__cyg_profile_func_exit");
351   }
352 
353   // Emit debug descriptor for function end.
354   if (CGDebugInfo *DI = getDebugInfo())
355     DI->EmitFunctionEnd(Builder, CurFn);
356 
357   // Reset the debug location to that of the simple 'return' expression, if any
358   // rather than that of the end of the function's scope '}'.
359   ApplyDebugLocation AL(*this, Loc);
360   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
361   EmitEndEHSpec(CurCodeDecl);
362 
363   assert(EHStack.empty() &&
364          "did not remove all scopes from cleanup stack!");
365 
366   // If someone did an indirect goto, emit the indirect goto block at the end of
367   // the function.
368   if (IndirectBranch) {
369     EmitBlock(IndirectBranch->getParent());
370     Builder.ClearInsertionPoint();
371   }
372 
373   // If some of our locals escaped, insert a call to llvm.localescape in the
374   // entry block.
375   if (!EscapedLocals.empty()) {
376     // Invert the map from local to index into a simple vector. There should be
377     // no holes.
378     SmallVector<llvm::Value *, 4> EscapeArgs;
379     EscapeArgs.resize(EscapedLocals.size());
380     for (auto &Pair : EscapedLocals)
381       EscapeArgs[Pair.second] = Pair.first;
382     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
383         &CGM.getModule(), llvm::Intrinsic::localescape);
384     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
385   }
386 
387   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
388   llvm::Instruction *Ptr = AllocaInsertPt;
389   AllocaInsertPt = nullptr;
390   Ptr->eraseFromParent();
391 
392   // If someone took the address of a label but never did an indirect goto, we
393   // made a zero entry PHI node, which is illegal, zap it now.
394   if (IndirectBranch) {
395     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
396     if (PN->getNumIncomingValues() == 0) {
397       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
398       PN->eraseFromParent();
399     }
400   }
401 
402   EmitIfUsed(*this, EHResumeBlock);
403   EmitIfUsed(*this, TerminateLandingPad);
404   EmitIfUsed(*this, TerminateHandler);
405   EmitIfUsed(*this, UnreachableBlock);
406 
407   for (const auto &FuncletAndParent : TerminateFunclets)
408     EmitIfUsed(*this, FuncletAndParent.second);
409 
410   if (CGM.getCodeGenOpts().EmitDeclMetadata)
411     EmitDeclMetadata();
412 
413   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
414            I = DeferredReplacements.begin(),
415            E = DeferredReplacements.end();
416        I != E; ++I) {
417     I->first->replaceAllUsesWith(I->second);
418     I->first->eraseFromParent();
419   }
420 
421   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
422   // PHIs if the current function is a coroutine. We don't do it for all
423   // functions as it may result in slight increase in numbers of instructions
424   // if compiled with no optimizations. We do it for coroutine as the lifetime
425   // of CleanupDestSlot alloca make correct coroutine frame building very
426   // difficult.
427   if (NormalCleanupDest.isValid() && isCoroutine()) {
428     llvm::DominatorTree DT(*CurFn);
429     llvm::PromoteMemToReg(
430         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
431     NormalCleanupDest = Address::invalid();
432   }
433 
434   // Scan function arguments for vector width.
435   for (llvm::Argument &A : CurFn->args())
436     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
437       LargestVectorWidth = std::max(LargestVectorWidth,
438                                     VT->getPrimitiveSizeInBits());
439 
440   // Update vector width based on return type.
441   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
442     LargestVectorWidth = std::max(LargestVectorWidth,
443                                   VT->getPrimitiveSizeInBits());
444 
445   // Add the required-vector-width attribute. This contains the max width from:
446   // 1. min-vector-width attribute used in the source program.
447   // 2. Any builtins used that have a vector width specified.
448   // 3. Values passed in and out of inline assembly.
449   // 4. Width of vector arguments and return types for this function.
450   // 5. Width of vector aguments and return types for functions called by this
451   //    function.
452   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
453 
454   // If we generated an unreachable return block, delete it now.
455   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
456     Builder.ClearInsertionPoint();
457     ReturnBlock.getBlock()->eraseFromParent();
458   }
459   if (ReturnValue.isValid()) {
460     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
461     if (RetAlloca && RetAlloca->use_empty()) {
462       RetAlloca->eraseFromParent();
463       ReturnValue = Address::invalid();
464     }
465   }
466 }
467 
468 /// ShouldInstrumentFunction - Return true if the current function should be
469 /// instrumented with __cyg_profile_func_* calls
470 bool CodeGenFunction::ShouldInstrumentFunction() {
471   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
472       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
473       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
474     return false;
475   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
476     return false;
477   return true;
478 }
479 
480 /// ShouldXRayInstrument - Return true if the current function should be
481 /// instrumented with XRay nop sleds.
482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
483   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
484 }
485 
486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
489   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
490          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
491           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
492               XRayInstrKind::Custom);
493 }
494 
495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
496   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
497          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
498           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
499               XRayInstrKind::Typed);
500 }
501 
502 llvm::Constant *
503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
504                                             llvm::Constant *Addr) {
505   // Addresses stored in prologue data can't require run-time fixups and must
506   // be PC-relative. Run-time fixups are undesirable because they necessitate
507   // writable text segments, which are unsafe. And absolute addresses are
508   // undesirable because they break PIE mode.
509 
510   // Add a layer of indirection through a private global. Taking its address
511   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
512   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
513                                       /*isConstant=*/true,
514                                       llvm::GlobalValue::PrivateLinkage, Addr);
515 
516   // Create a PC-relative address.
517   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
518   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
519   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
520   return (IntPtrTy == Int32Ty)
521              ? PCRelAsInt
522              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
523 }
524 
525 llvm::Value *
526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
527                                           llvm::Value *EncodedAddr) {
528   // Reconstruct the address of the global.
529   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
530   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
531   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
532   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
533 
534   // Load the original pointer through the global.
535   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
536                             "decoded_addr");
537 }
538 
539 static void removeImageAccessQualifier(std::string& TyName) {
540   std::string ReadOnlyQual("__read_only");
541   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
542   if (ReadOnlyPos != std::string::npos)
543     // "+ 1" for the space after access qualifier.
544     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
545   else {
546     std::string WriteOnlyQual("__write_only");
547     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
548     if (WriteOnlyPos != std::string::npos)
549       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
550     else {
551       std::string ReadWriteQual("__read_write");
552       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
553       if (ReadWritePos != std::string::npos)
554         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
555     }
556   }
557 }
558 
559 // Returns the address space id that should be produced to the
560 // kernel_arg_addr_space metadata. This is always fixed to the ids
561 // as specified in the SPIR 2.0 specification in order to differentiate
562 // for example in clGetKernelArgInfo() implementation between the address
563 // spaces with targets without unique mapping to the OpenCL address spaces
564 // (basically all single AS CPUs).
565 static unsigned ArgInfoAddressSpace(LangAS AS) {
566   switch (AS) {
567   case LangAS::opencl_global:   return 1;
568   case LangAS::opencl_constant: return 2;
569   case LangAS::opencl_local:    return 3;
570   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
571   default:
572     return 0; // Assume private.
573   }
574 }
575 
576 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
577 // information in the program executable. The argument information stored
578 // includes the argument name, its type, the address and access qualifiers used.
579 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
580                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
581                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
582   // Create MDNodes that represent the kernel arg metadata.
583   // Each MDNode is a list in the form of "key", N number of values which is
584   // the same number of values as their are kernel arguments.
585 
586   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
587 
588   // MDNode for the kernel argument address space qualifiers.
589   SmallVector<llvm::Metadata *, 8> addressQuals;
590 
591   // MDNode for the kernel argument access qualifiers (images only).
592   SmallVector<llvm::Metadata *, 8> accessQuals;
593 
594   // MDNode for the kernel argument type names.
595   SmallVector<llvm::Metadata *, 8> argTypeNames;
596 
597   // MDNode for the kernel argument base type names.
598   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
599 
600   // MDNode for the kernel argument type qualifiers.
601   SmallVector<llvm::Metadata *, 8> argTypeQuals;
602 
603   // MDNode for the kernel argument names.
604   SmallVector<llvm::Metadata *, 8> argNames;
605 
606   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
607     const ParmVarDecl *parm = FD->getParamDecl(i);
608     QualType ty = parm->getType();
609     std::string typeQuals;
610 
611     if (ty->isPointerType()) {
612       QualType pointeeTy = ty->getPointeeType();
613 
614       // Get address qualifier.
615       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
616         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
617 
618       // Get argument type name.
619       std::string typeName =
620           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
621 
622       // Turn "unsigned type" to "utype"
623       std::string::size_type pos = typeName.find("unsigned");
624       if (pointeeTy.isCanonical() && pos != std::string::npos)
625         typeName.erase(pos+1, 8);
626 
627       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
628 
629       std::string baseTypeName =
630           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
631               Policy) +
632           "*";
633 
634       // Turn "unsigned type" to "utype"
635       pos = baseTypeName.find("unsigned");
636       if (pos != std::string::npos)
637         baseTypeName.erase(pos+1, 8);
638 
639       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
640 
641       // Get argument type qualifiers:
642       if (ty.isRestrictQualified())
643         typeQuals = "restrict";
644       if (pointeeTy.isConstQualified() ||
645           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
646         typeQuals += typeQuals.empty() ? "const" : " const";
647       if (pointeeTy.isVolatileQualified())
648         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
649     } else {
650       uint32_t AddrSpc = 0;
651       bool isPipe = ty->isPipeType();
652       if (ty->isImageType() || isPipe)
653         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
654 
655       addressQuals.push_back(
656           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
657 
658       // Get argument type name.
659       std::string typeName;
660       if (isPipe)
661         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
662                      .getAsString(Policy);
663       else
664         typeName = ty.getUnqualifiedType().getAsString(Policy);
665 
666       // Turn "unsigned type" to "utype"
667       std::string::size_type pos = typeName.find("unsigned");
668       if (ty.isCanonical() && pos != std::string::npos)
669         typeName.erase(pos+1, 8);
670 
671       std::string baseTypeName;
672       if (isPipe)
673         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
674                           ->getElementType().getCanonicalType()
675                           .getAsString(Policy);
676       else
677         baseTypeName =
678           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
679 
680       // Remove access qualifiers on images
681       // (as they are inseparable from type in clang implementation,
682       // but OpenCL spec provides a special query to get access qualifier
683       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
684       if (ty->isImageType()) {
685         removeImageAccessQualifier(typeName);
686         removeImageAccessQualifier(baseTypeName);
687       }
688 
689       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
690 
691       // Turn "unsigned type" to "utype"
692       pos = baseTypeName.find("unsigned");
693       if (pos != std::string::npos)
694         baseTypeName.erase(pos+1, 8);
695 
696       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
697 
698       if (isPipe)
699         typeQuals = "pipe";
700     }
701 
702     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
703 
704     // Get image and pipe access qualifier:
705     if (ty->isImageType()|| ty->isPipeType()) {
706       const Decl *PDecl = parm;
707       if (auto *TD = dyn_cast<TypedefType>(ty))
708         PDecl = TD->getDecl();
709       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
710       if (A && A->isWriteOnly())
711         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
712       else if (A && A->isReadWrite())
713         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
714       else
715         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
716     } else
717       accessQuals.push_back(llvm::MDString::get(Context, "none"));
718 
719     // Get argument name.
720     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
721   }
722 
723   Fn->setMetadata("kernel_arg_addr_space",
724                   llvm::MDNode::get(Context, addressQuals));
725   Fn->setMetadata("kernel_arg_access_qual",
726                   llvm::MDNode::get(Context, accessQuals));
727   Fn->setMetadata("kernel_arg_type",
728                   llvm::MDNode::get(Context, argTypeNames));
729   Fn->setMetadata("kernel_arg_base_type",
730                   llvm::MDNode::get(Context, argBaseTypeNames));
731   Fn->setMetadata("kernel_arg_type_qual",
732                   llvm::MDNode::get(Context, argTypeQuals));
733   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
734     Fn->setMetadata("kernel_arg_name",
735                     llvm::MDNode::get(Context, argNames));
736 }
737 
738 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
739                                                llvm::Function *Fn)
740 {
741   if (!FD->hasAttr<OpenCLKernelAttr>())
742     return;
743 
744   llvm::LLVMContext &Context = getLLVMContext();
745 
746   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
747 
748   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
749     QualType HintQTy = A->getTypeHint();
750     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
751     bool IsSignedInteger =
752         HintQTy->isSignedIntegerType() ||
753         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
754     llvm::Metadata *AttrMDArgs[] = {
755         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
756             CGM.getTypes().ConvertType(A->getTypeHint()))),
757         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
758             llvm::IntegerType::get(Context, 32),
759             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
760     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
761   }
762 
763   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
764     llvm::Metadata *AttrMDArgs[] = {
765         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
766         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
767         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
768     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
769   }
770 
771   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
772     llvm::Metadata *AttrMDArgs[] = {
773         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
774         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
775         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
776     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
777   }
778 
779   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
780           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
781     llvm::Metadata *AttrMDArgs[] = {
782         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
783     Fn->setMetadata("intel_reqd_sub_group_size",
784                     llvm::MDNode::get(Context, AttrMDArgs));
785   }
786 }
787 
788 /// Determine whether the function F ends with a return stmt.
789 static bool endsWithReturn(const Decl* F) {
790   const Stmt *Body = nullptr;
791   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
792     Body = FD->getBody();
793   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
794     Body = OMD->getBody();
795 
796   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
797     auto LastStmt = CS->body_rbegin();
798     if (LastStmt != CS->body_rend())
799       return isa<ReturnStmt>(*LastStmt);
800   }
801   return false;
802 }
803 
804 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
805   if (SanOpts.has(SanitizerKind::Thread)) {
806     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
807     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
808   }
809 }
810 
811 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
812   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
813   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
814       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
815       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
816     return false;
817 
818   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
819     return false;
820 
821   if (MD->getNumParams() == 2) {
822     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
823     if (!PT || !PT->isVoidPointerType() ||
824         !PT->getPointeeType().isConstQualified())
825       return false;
826   }
827 
828   return true;
829 }
830 
831 /// Return the UBSan prologue signature for \p FD if one is available.
832 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
833                                             const FunctionDecl *FD) {
834   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
835     if (!MD->isStatic())
836       return nullptr;
837   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
838 }
839 
840 void CodeGenFunction::StartFunction(GlobalDecl GD,
841                                     QualType RetTy,
842                                     llvm::Function *Fn,
843                                     const CGFunctionInfo &FnInfo,
844                                     const FunctionArgList &Args,
845                                     SourceLocation Loc,
846                                     SourceLocation StartLoc) {
847   assert(!CurFn &&
848          "Do not use a CodeGenFunction object for more than one function");
849 
850   const Decl *D = GD.getDecl();
851 
852   DidCallStackSave = false;
853   CurCodeDecl = D;
854   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
855     if (FD->usesSEHTry())
856       CurSEHParent = FD;
857   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
858   FnRetTy = RetTy;
859   CurFn = Fn;
860   CurFnInfo = &FnInfo;
861   assert(CurFn->isDeclaration() && "Function already has body?");
862 
863   // If this function has been blacklisted for any of the enabled sanitizers,
864   // disable the sanitizer for the function.
865   do {
866 #define SANITIZER(NAME, ID)                                                    \
867   if (SanOpts.empty())                                                         \
868     break;                                                                     \
869   if (SanOpts.has(SanitizerKind::ID))                                          \
870     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
871       SanOpts.set(SanitizerKind::ID, false);
872 
873 #include "clang/Basic/Sanitizers.def"
874 #undef SANITIZER
875   } while (0);
876 
877   if (D) {
878     // Apply the no_sanitize* attributes to SanOpts.
879     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
880       SanitizerMask mask = Attr->getMask();
881       SanOpts.Mask &= ~mask;
882       if (mask & SanitizerKind::Address)
883         SanOpts.set(SanitizerKind::KernelAddress, false);
884       if (mask & SanitizerKind::KernelAddress)
885         SanOpts.set(SanitizerKind::Address, false);
886       if (mask & SanitizerKind::HWAddress)
887         SanOpts.set(SanitizerKind::KernelHWAddress, false);
888       if (mask & SanitizerKind::KernelHWAddress)
889         SanOpts.set(SanitizerKind::HWAddress, false);
890     }
891   }
892 
893   // Apply sanitizer attributes to the function.
894   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
895     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
896   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
897     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
898   if (SanOpts.has(SanitizerKind::Thread))
899     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
900   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
901     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
902   if (SanOpts.has(SanitizerKind::SafeStack))
903     Fn->addFnAttr(llvm::Attribute::SafeStack);
904   if (SanOpts.has(SanitizerKind::ShadowCallStack))
905     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
906 
907   // Apply fuzzing attribute to the function.
908   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
909     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
910 
911   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
912   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
913   if (SanOpts.has(SanitizerKind::Thread)) {
914     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
915       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
916       if (OMD->getMethodFamily() == OMF_dealloc ||
917           OMD->getMethodFamily() == OMF_initialize ||
918           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
919         markAsIgnoreThreadCheckingAtRuntime(Fn);
920       }
921     }
922   }
923 
924   // Ignore unrelated casts in STL allocate() since the allocator must cast
925   // from void* to T* before object initialization completes. Don't match on the
926   // namespace because not all allocators are in std::
927   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
928     if (matchesStlAllocatorFn(D, getContext()))
929       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
930   }
931 
932   // Apply xray attributes to the function (as a string, for now)
933   if (D) {
934     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
935       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
936               XRayInstrKind::Function)) {
937         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
938           Fn->addFnAttr("function-instrument", "xray-always");
939         if (XRayAttr->neverXRayInstrument())
940           Fn->addFnAttr("function-instrument", "xray-never");
941         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
942           if (ShouldXRayInstrumentFunction())
943             Fn->addFnAttr("xray-log-args",
944                           llvm::utostr(LogArgs->getArgumentCount()));
945       }
946     } else {
947       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
948         Fn->addFnAttr(
949             "xray-instruction-threshold",
950             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
951     }
952   }
953 
954   // Add no-jump-tables value.
955   Fn->addFnAttr("no-jump-tables",
956                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
957 
958   // Add profile-sample-accurate value.
959   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
960     Fn->addFnAttr("profile-sample-accurate");
961 
962   if (getLangOpts().OpenCL) {
963     // Add metadata for a kernel function.
964     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
965       EmitOpenCLKernelMetadata(FD, Fn);
966   }
967 
968   // If we are checking function types, emit a function type signature as
969   // prologue data.
970   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
971     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
972       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
973         // Remove any (C++17) exception specifications, to allow calling e.g. a
974         // noexcept function through a non-noexcept pointer.
975         auto ProtoTy =
976           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
977                                                         EST_None);
978         llvm::Constant *FTRTTIConst =
979             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
980         llvm::Constant *FTRTTIConstEncoded =
981             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
982         llvm::Constant *PrologueStructElems[] = {PrologueSig,
983                                                  FTRTTIConstEncoded};
984         llvm::Constant *PrologueStructConst =
985             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
986         Fn->setPrologueData(PrologueStructConst);
987       }
988     }
989   }
990 
991   // If we're checking nullability, we need to know whether we can check the
992   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
993   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
994     auto Nullability = FnRetTy->getNullability(getContext());
995     if (Nullability && *Nullability == NullabilityKind::NonNull) {
996       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
997             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
998         RetValNullabilityPrecondition =
999             llvm::ConstantInt::getTrue(getLLVMContext());
1000     }
1001   }
1002 
1003   // If we're in C++ mode and the function name is "main", it is guaranteed
1004   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1005   // used within a program").
1006   if (getLangOpts().CPlusPlus)
1007     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
1008       if (FD->isMain())
1009         Fn->addFnAttr(llvm::Attribute::NoRecurse);
1010 
1011   // If a custom alignment is used, force realigning to this alignment on
1012   // any main function which certainly will need it.
1013   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
1014     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1015         CGM.getCodeGenOpts().StackAlignment)
1016       Fn->addFnAttr("stackrealign");
1017 
1018   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1019 
1020   // Create a marker to make it easy to insert allocas into the entryblock
1021   // later.  Don't create this with the builder, because we don't want it
1022   // folded.
1023   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1024   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1025 
1026   ReturnBlock = getJumpDestInCurrentScope("return");
1027 
1028   Builder.SetInsertPoint(EntryBB);
1029 
1030   // If we're checking the return value, allocate space for a pointer to a
1031   // precise source location of the checked return statement.
1032   if (requiresReturnValueCheck()) {
1033     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1034     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1035   }
1036 
1037   // Emit subprogram debug descriptor.
1038   if (CGDebugInfo *DI = getDebugInfo()) {
1039     // Reconstruct the type from the argument list so that implicit parameters,
1040     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1041     // convention.
1042     CallingConv CC = CallingConv::CC_C;
1043     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1044       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1045         CC = SrcFnTy->getCallConv();
1046     SmallVector<QualType, 16> ArgTypes;
1047     for (const VarDecl *VD : Args)
1048       ArgTypes.push_back(VD->getType());
1049     QualType FnType = getContext().getFunctionType(
1050         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1051     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1052                           Builder);
1053   }
1054 
1055   if (ShouldInstrumentFunction()) {
1056     if (CGM.getCodeGenOpts().InstrumentFunctions)
1057       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1058     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1059       CurFn->addFnAttr("instrument-function-entry-inlined",
1060                        "__cyg_profile_func_enter");
1061     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1062       CurFn->addFnAttr("instrument-function-entry-inlined",
1063                        "__cyg_profile_func_enter_bare");
1064   }
1065 
1066   // Since emitting the mcount call here impacts optimizations such as function
1067   // inlining, we just add an attribute to insert a mcount call in backend.
1068   // The attribute "counting-function" is set to mcount function name which is
1069   // architecture dependent.
1070   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1071     // Calls to fentry/mcount should not be generated if function has
1072     // the no_instrument_function attribute.
1073     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1074       if (CGM.getCodeGenOpts().CallFEntry)
1075         Fn->addFnAttr("fentry-call", "true");
1076       else {
1077         Fn->addFnAttr("instrument-function-entry-inlined",
1078                       getTarget().getMCountName());
1079       }
1080     }
1081   }
1082 
1083   if (RetTy->isVoidType()) {
1084     // Void type; nothing to return.
1085     ReturnValue = Address::invalid();
1086 
1087     // Count the implicit return.
1088     if (!endsWithReturn(D))
1089       ++NumReturnExprs;
1090   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1091     // Indirect return; emit returned value directly into sret slot.
1092     // This reduces code size, and affects correctness in C++.
1093     auto AI = CurFn->arg_begin();
1094     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1095       ++AI;
1096     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1097   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1098              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1099     // Load the sret pointer from the argument struct and return into that.
1100     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1101     llvm::Function::arg_iterator EI = CurFn->arg_end();
1102     --EI;
1103     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1104     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1105     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1106   } else {
1107     ReturnValue = CreateIRTemp(RetTy, "retval");
1108 
1109     // Tell the epilog emitter to autorelease the result.  We do this
1110     // now so that various specialized functions can suppress it
1111     // during their IR-generation.
1112     if (getLangOpts().ObjCAutoRefCount &&
1113         !CurFnInfo->isReturnsRetained() &&
1114         RetTy->isObjCRetainableType())
1115       AutoreleaseResult = true;
1116   }
1117 
1118   EmitStartEHSpec(CurCodeDecl);
1119 
1120   PrologueCleanupDepth = EHStack.stable_begin();
1121 
1122   // Emit OpenMP specific initialization of the device functions.
1123   if (getLangOpts().OpenMP && CurCodeDecl)
1124     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1125 
1126   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1127 
1128   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1129     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1130     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1131     if (MD->getParent()->isLambda() &&
1132         MD->getOverloadedOperator() == OO_Call) {
1133       // We're in a lambda; figure out the captures.
1134       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1135                                         LambdaThisCaptureField);
1136       if (LambdaThisCaptureField) {
1137         // If the lambda captures the object referred to by '*this' - either by
1138         // value or by reference, make sure CXXThisValue points to the correct
1139         // object.
1140 
1141         // Get the lvalue for the field (which is a copy of the enclosing object
1142         // or contains the address of the enclosing object).
1143         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1144         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1145           // If the enclosing object was captured by value, just use its address.
1146           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1147         } else {
1148           // Load the lvalue pointed to by the field, since '*this' was captured
1149           // by reference.
1150           CXXThisValue =
1151               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1152         }
1153       }
1154       for (auto *FD : MD->getParent()->fields()) {
1155         if (FD->hasCapturedVLAType()) {
1156           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1157                                            SourceLocation()).getScalarVal();
1158           auto VAT = FD->getCapturedVLAType();
1159           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1160         }
1161       }
1162     } else {
1163       // Not in a lambda; just use 'this' from the method.
1164       // FIXME: Should we generate a new load for each use of 'this'?  The
1165       // fast register allocator would be happier...
1166       CXXThisValue = CXXABIThisValue;
1167     }
1168 
1169     // Check the 'this' pointer once per function, if it's available.
1170     if (CXXABIThisValue) {
1171       SanitizerSet SkippedChecks;
1172       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1173       QualType ThisTy = MD->getThisType();
1174 
1175       // If this is the call operator of a lambda with no capture-default, it
1176       // may have a static invoker function, which may call this operator with
1177       // a null 'this' pointer.
1178       if (isLambdaCallOperator(MD) &&
1179           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1180         SkippedChecks.set(SanitizerKind::Null, true);
1181 
1182       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1183                                                 : TCK_MemberCall,
1184                     Loc, CXXABIThisValue, ThisTy,
1185                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1186                     SkippedChecks);
1187     }
1188   }
1189 
1190   // If any of the arguments have a variably modified type, make sure to
1191   // emit the type size.
1192   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1193        i != e; ++i) {
1194     const VarDecl *VD = *i;
1195 
1196     // Dig out the type as written from ParmVarDecls; it's unclear whether
1197     // the standard (C99 6.9.1p10) requires this, but we're following the
1198     // precedent set by gcc.
1199     QualType Ty;
1200     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1201       Ty = PVD->getOriginalType();
1202     else
1203       Ty = VD->getType();
1204 
1205     if (Ty->isVariablyModifiedType())
1206       EmitVariablyModifiedType(Ty);
1207   }
1208   // Emit a location at the end of the prologue.
1209   if (CGDebugInfo *DI = getDebugInfo())
1210     DI->EmitLocation(Builder, StartLoc);
1211 
1212   // TODO: Do we need to handle this in two places like we do with
1213   // target-features/target-cpu?
1214   if (CurFuncDecl)
1215     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1216       LargestVectorWidth = VecWidth->getVectorWidth();
1217 }
1218 
1219 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1220   incrementProfileCounter(Body);
1221   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1222     EmitCompoundStmtWithoutScope(*S);
1223   else
1224     EmitStmt(Body);
1225 }
1226 
1227 /// When instrumenting to collect profile data, the counts for some blocks
1228 /// such as switch cases need to not include the fall-through counts, so
1229 /// emit a branch around the instrumentation code. When not instrumenting,
1230 /// this just calls EmitBlock().
1231 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1232                                                const Stmt *S) {
1233   llvm::BasicBlock *SkipCountBB = nullptr;
1234   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1235     // When instrumenting for profiling, the fallthrough to certain
1236     // statements needs to skip over the instrumentation code so that we
1237     // get an accurate count.
1238     SkipCountBB = createBasicBlock("skipcount");
1239     EmitBranch(SkipCountBB);
1240   }
1241   EmitBlock(BB);
1242   uint64_t CurrentCount = getCurrentProfileCount();
1243   incrementProfileCounter(S);
1244   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1245   if (SkipCountBB)
1246     EmitBlock(SkipCountBB);
1247 }
1248 
1249 /// Tries to mark the given function nounwind based on the
1250 /// non-existence of any throwing calls within it.  We believe this is
1251 /// lightweight enough to do at -O0.
1252 static void TryMarkNoThrow(llvm::Function *F) {
1253   // LLVM treats 'nounwind' on a function as part of the type, so we
1254   // can't do this on functions that can be overwritten.
1255   if (F->isInterposable()) return;
1256 
1257   for (llvm::BasicBlock &BB : *F)
1258     for (llvm::Instruction &I : BB)
1259       if (I.mayThrow())
1260         return;
1261 
1262   F->setDoesNotThrow();
1263 }
1264 
1265 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1266                                                FunctionArgList &Args) {
1267   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1268   QualType ResTy = FD->getReturnType();
1269 
1270   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1271   if (MD && MD->isInstance()) {
1272     if (CGM.getCXXABI().HasThisReturn(GD))
1273       ResTy = MD->getThisType();
1274     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1275       ResTy = CGM.getContext().VoidPtrTy;
1276     CGM.getCXXABI().buildThisParam(*this, Args);
1277   }
1278 
1279   // The base version of an inheriting constructor whose constructed base is a
1280   // virtual base is not passed any arguments (because it doesn't actually call
1281   // the inherited constructor).
1282   bool PassedParams = true;
1283   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1284     if (auto Inherited = CD->getInheritedConstructor())
1285       PassedParams =
1286           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1287 
1288   if (PassedParams) {
1289     for (auto *Param : FD->parameters()) {
1290       Args.push_back(Param);
1291       if (!Param->hasAttr<PassObjectSizeAttr>())
1292         continue;
1293 
1294       auto *Implicit = ImplicitParamDecl::Create(
1295           getContext(), Param->getDeclContext(), Param->getLocation(),
1296           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1297       SizeArguments[Param] = Implicit;
1298       Args.push_back(Implicit);
1299     }
1300   }
1301 
1302   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1303     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1304 
1305   return ResTy;
1306 }
1307 
1308 static bool
1309 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1310                                              const ASTContext &Context) {
1311   QualType T = FD->getReturnType();
1312   // Avoid the optimization for functions that return a record type with a
1313   // trivial destructor or another trivially copyable type.
1314   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1315     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1316       return !ClassDecl->hasTrivialDestructor();
1317   }
1318   return !T.isTriviallyCopyableType(Context);
1319 }
1320 
1321 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1322                                    const CGFunctionInfo &FnInfo) {
1323   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1324   CurGD = GD;
1325 
1326   FunctionArgList Args;
1327   QualType ResTy = BuildFunctionArgList(GD, Args);
1328 
1329   // Check if we should generate debug info for this function.
1330   if (FD->hasAttr<NoDebugAttr>())
1331     DebugInfo = nullptr; // disable debug info indefinitely for this function
1332 
1333   // The function might not have a body if we're generating thunks for a
1334   // function declaration.
1335   SourceRange BodyRange;
1336   if (Stmt *Body = FD->getBody())
1337     BodyRange = Body->getSourceRange();
1338   else
1339     BodyRange = FD->getLocation();
1340   CurEHLocation = BodyRange.getEnd();
1341 
1342   // Use the location of the start of the function to determine where
1343   // the function definition is located. By default use the location
1344   // of the declaration as the location for the subprogram. A function
1345   // may lack a declaration in the source code if it is created by code
1346   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1347   SourceLocation Loc = FD->getLocation();
1348 
1349   // If this is a function specialization then use the pattern body
1350   // as the location for the function.
1351   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1352     if (SpecDecl->hasBody(SpecDecl))
1353       Loc = SpecDecl->getLocation();
1354 
1355   Stmt *Body = FD->getBody();
1356 
1357   // Initialize helper which will detect jumps which can cause invalid lifetime
1358   // markers.
1359   if (Body && ShouldEmitLifetimeMarkers)
1360     Bypasses.Init(Body);
1361 
1362   // Emit the standard function prologue.
1363   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1364 
1365   // Generate the body of the function.
1366   PGO.assignRegionCounters(GD, CurFn);
1367   if (isa<CXXDestructorDecl>(FD))
1368     EmitDestructorBody(Args);
1369   else if (isa<CXXConstructorDecl>(FD))
1370     EmitConstructorBody(Args);
1371   else if (getLangOpts().CUDA &&
1372            !getLangOpts().CUDAIsDevice &&
1373            FD->hasAttr<CUDAGlobalAttr>())
1374     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1375   else if (isa<CXXMethodDecl>(FD) &&
1376            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1377     // The lambda static invoker function is special, because it forwards or
1378     // clones the body of the function call operator (but is actually static).
1379     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1380   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1381              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1382               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1383     // Implicit copy-assignment gets the same special treatment as implicit
1384     // copy-constructors.
1385     emitImplicitAssignmentOperatorBody(Args);
1386   } else if (Body) {
1387     EmitFunctionBody(Body);
1388   } else
1389     llvm_unreachable("no definition for emitted function");
1390 
1391   // C++11 [stmt.return]p2:
1392   //   Flowing off the end of a function [...] results in undefined behavior in
1393   //   a value-returning function.
1394   // C11 6.9.1p12:
1395   //   If the '}' that terminates a function is reached, and the value of the
1396   //   function call is used by the caller, the behavior is undefined.
1397   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1398       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1399     bool ShouldEmitUnreachable =
1400         CGM.getCodeGenOpts().StrictReturn ||
1401         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1402     if (SanOpts.has(SanitizerKind::Return)) {
1403       SanitizerScope SanScope(this);
1404       llvm::Value *IsFalse = Builder.getFalse();
1405       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1406                 SanitizerHandler::MissingReturn,
1407                 EmitCheckSourceLocation(FD->getLocation()), None);
1408     } else if (ShouldEmitUnreachable) {
1409       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1410         EmitTrapCall(llvm::Intrinsic::trap);
1411     }
1412     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1413       Builder.CreateUnreachable();
1414       Builder.ClearInsertionPoint();
1415     }
1416   }
1417 
1418   // Emit the standard function epilogue.
1419   FinishFunction(BodyRange.getEnd());
1420 
1421   // If we haven't marked the function nothrow through other means, do
1422   // a quick pass now to see if we can.
1423   if (!CurFn->doesNotThrow())
1424     TryMarkNoThrow(CurFn);
1425 }
1426 
1427 /// ContainsLabel - Return true if the statement contains a label in it.  If
1428 /// this statement is not executed normally, it not containing a label means
1429 /// that we can just remove the code.
1430 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1431   // Null statement, not a label!
1432   if (!S) return false;
1433 
1434   // If this is a label, we have to emit the code, consider something like:
1435   // if (0) {  ...  foo:  bar(); }  goto foo;
1436   //
1437   // TODO: If anyone cared, we could track __label__'s, since we know that you
1438   // can't jump to one from outside their declared region.
1439   if (isa<LabelStmt>(S))
1440     return true;
1441 
1442   // If this is a case/default statement, and we haven't seen a switch, we have
1443   // to emit the code.
1444   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1445     return true;
1446 
1447   // If this is a switch statement, we want to ignore cases below it.
1448   if (isa<SwitchStmt>(S))
1449     IgnoreCaseStmts = true;
1450 
1451   // Scan subexpressions for verboten labels.
1452   for (const Stmt *SubStmt : S->children())
1453     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1454       return true;
1455 
1456   return false;
1457 }
1458 
1459 /// containsBreak - Return true if the statement contains a break out of it.
1460 /// If the statement (recursively) contains a switch or loop with a break
1461 /// inside of it, this is fine.
1462 bool CodeGenFunction::containsBreak(const Stmt *S) {
1463   // Null statement, not a label!
1464   if (!S) return false;
1465 
1466   // If this is a switch or loop that defines its own break scope, then we can
1467   // include it and anything inside of it.
1468   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1469       isa<ForStmt>(S))
1470     return false;
1471 
1472   if (isa<BreakStmt>(S))
1473     return true;
1474 
1475   // Scan subexpressions for verboten breaks.
1476   for (const Stmt *SubStmt : S->children())
1477     if (containsBreak(SubStmt))
1478       return true;
1479 
1480   return false;
1481 }
1482 
1483 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1484   if (!S) return false;
1485 
1486   // Some statement kinds add a scope and thus never add a decl to the current
1487   // scope. Note, this list is longer than the list of statements that might
1488   // have an unscoped decl nested within them, but this way is conservatively
1489   // correct even if more statement kinds are added.
1490   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1491       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1492       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1493       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1494     return false;
1495 
1496   if (isa<DeclStmt>(S))
1497     return true;
1498 
1499   for (const Stmt *SubStmt : S->children())
1500     if (mightAddDeclToScope(SubStmt))
1501       return true;
1502 
1503   return false;
1504 }
1505 
1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1507 /// to a constant, or if it does but contains a label, return false.  If it
1508 /// constant folds return true and set the boolean result in Result.
1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1510                                                    bool &ResultBool,
1511                                                    bool AllowLabels) {
1512   llvm::APSInt ResultInt;
1513   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1514     return false;
1515 
1516   ResultBool = ResultInt.getBoolValue();
1517   return true;
1518 }
1519 
1520 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1521 /// to a constant, or if it does but contains a label, return false.  If it
1522 /// constant folds return true and set the folded value.
1523 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1524                                                    llvm::APSInt &ResultInt,
1525                                                    bool AllowLabels) {
1526   // FIXME: Rename and handle conversion of other evaluatable things
1527   // to bool.
1528   Expr::EvalResult Result;
1529   if (!Cond->EvaluateAsInt(Result, getContext()))
1530     return false;  // Not foldable, not integer or not fully evaluatable.
1531 
1532   llvm::APSInt Int = Result.Val.getInt();
1533   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1534     return false;  // Contains a label.
1535 
1536   ResultInt = Int;
1537   return true;
1538 }
1539 
1540 
1541 
1542 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1543 /// statement) to the specified blocks.  Based on the condition, this might try
1544 /// to simplify the codegen of the conditional based on the branch.
1545 ///
1546 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1547                                            llvm::BasicBlock *TrueBlock,
1548                                            llvm::BasicBlock *FalseBlock,
1549                                            uint64_t TrueCount) {
1550   Cond = Cond->IgnoreParens();
1551 
1552   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1553 
1554     // Handle X && Y in a condition.
1555     if (CondBOp->getOpcode() == BO_LAnd) {
1556       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1557       // folded if the case was simple enough.
1558       bool ConstantBool = false;
1559       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1560           ConstantBool) {
1561         // br(1 && X) -> br(X).
1562         incrementProfileCounter(CondBOp);
1563         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1564                                     TrueCount);
1565       }
1566 
1567       // If we have "X && 1", simplify the code to use an uncond branch.
1568       // "X && 0" would have been constant folded to 0.
1569       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1570           ConstantBool) {
1571         // br(X && 1) -> br(X).
1572         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1573                                     TrueCount);
1574       }
1575 
1576       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1577       // want to jump to the FalseBlock.
1578       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1579       // The counter tells us how often we evaluate RHS, and all of TrueCount
1580       // can be propagated to that branch.
1581       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1582 
1583       ConditionalEvaluation eval(*this);
1584       {
1585         ApplyDebugLocation DL(*this, Cond);
1586         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1587         EmitBlock(LHSTrue);
1588       }
1589 
1590       incrementProfileCounter(CondBOp);
1591       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1592 
1593       // Any temporaries created here are conditional.
1594       eval.begin(*this);
1595       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1596       eval.end(*this);
1597 
1598       return;
1599     }
1600 
1601     if (CondBOp->getOpcode() == BO_LOr) {
1602       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1603       // folded if the case was simple enough.
1604       bool ConstantBool = false;
1605       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1606           !ConstantBool) {
1607         // br(0 || X) -> br(X).
1608         incrementProfileCounter(CondBOp);
1609         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1610                                     TrueCount);
1611       }
1612 
1613       // If we have "X || 0", simplify the code to use an uncond branch.
1614       // "X || 1" would have been constant folded to 1.
1615       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1616           !ConstantBool) {
1617         // br(X || 0) -> br(X).
1618         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1619                                     TrueCount);
1620       }
1621 
1622       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1623       // want to jump to the TrueBlock.
1624       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1625       // We have the count for entry to the RHS and for the whole expression
1626       // being true, so we can divy up True count between the short circuit and
1627       // the RHS.
1628       uint64_t LHSCount =
1629           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1630       uint64_t RHSCount = TrueCount - LHSCount;
1631 
1632       ConditionalEvaluation eval(*this);
1633       {
1634         ApplyDebugLocation DL(*this, Cond);
1635         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1636         EmitBlock(LHSFalse);
1637       }
1638 
1639       incrementProfileCounter(CondBOp);
1640       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1641 
1642       // Any temporaries created here are conditional.
1643       eval.begin(*this);
1644       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1645 
1646       eval.end(*this);
1647 
1648       return;
1649     }
1650   }
1651 
1652   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1653     // br(!x, t, f) -> br(x, f, t)
1654     if (CondUOp->getOpcode() == UO_LNot) {
1655       // Negate the count.
1656       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1657       // Negate the condition and swap the destination blocks.
1658       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1659                                   FalseCount);
1660     }
1661   }
1662 
1663   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1664     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1665     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1666     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1667 
1668     ConditionalEvaluation cond(*this);
1669     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1670                          getProfileCount(CondOp));
1671 
1672     // When computing PGO branch weights, we only know the overall count for
1673     // the true block. This code is essentially doing tail duplication of the
1674     // naive code-gen, introducing new edges for which counts are not
1675     // available. Divide the counts proportionally between the LHS and RHS of
1676     // the conditional operator.
1677     uint64_t LHSScaledTrueCount = 0;
1678     if (TrueCount) {
1679       double LHSRatio =
1680           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1681       LHSScaledTrueCount = TrueCount * LHSRatio;
1682     }
1683 
1684     cond.begin(*this);
1685     EmitBlock(LHSBlock);
1686     incrementProfileCounter(CondOp);
1687     {
1688       ApplyDebugLocation DL(*this, Cond);
1689       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1690                            LHSScaledTrueCount);
1691     }
1692     cond.end(*this);
1693 
1694     cond.begin(*this);
1695     EmitBlock(RHSBlock);
1696     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1697                          TrueCount - LHSScaledTrueCount);
1698     cond.end(*this);
1699 
1700     return;
1701   }
1702 
1703   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1704     // Conditional operator handling can give us a throw expression as a
1705     // condition for a case like:
1706     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1707     // Fold this to:
1708     //   br(c, throw x, br(y, t, f))
1709     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1710     return;
1711   }
1712 
1713   // If the branch has a condition wrapped by __builtin_unpredictable,
1714   // create metadata that specifies that the branch is unpredictable.
1715   // Don't bother if not optimizing because that metadata would not be used.
1716   llvm::MDNode *Unpredictable = nullptr;
1717   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1718   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1719     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1720     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1721       llvm::MDBuilder MDHelper(getLLVMContext());
1722       Unpredictable = MDHelper.createUnpredictable();
1723     }
1724   }
1725 
1726   // Create branch weights based on the number of times we get here and the
1727   // number of times the condition should be true.
1728   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1729   llvm::MDNode *Weights =
1730       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1731 
1732   // Emit the code with the fully general case.
1733   llvm::Value *CondV;
1734   {
1735     ApplyDebugLocation DL(*this, Cond);
1736     CondV = EvaluateExprAsBool(Cond);
1737   }
1738   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1739 }
1740 
1741 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1742 /// specified stmt yet.
1743 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1744   CGM.ErrorUnsupported(S, Type);
1745 }
1746 
1747 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1748 /// variable-length array whose elements have a non-zero bit-pattern.
1749 ///
1750 /// \param baseType the inner-most element type of the array
1751 /// \param src - a char* pointing to the bit-pattern for a single
1752 /// base element of the array
1753 /// \param sizeInChars - the total size of the VLA, in chars
1754 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1755                                Address dest, Address src,
1756                                llvm::Value *sizeInChars) {
1757   CGBuilderTy &Builder = CGF.Builder;
1758 
1759   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1760   llvm::Value *baseSizeInChars
1761     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1762 
1763   Address begin =
1764     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1765   llvm::Value *end =
1766     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1767 
1768   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1769   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1770   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1771 
1772   // Make a loop over the VLA.  C99 guarantees that the VLA element
1773   // count must be nonzero.
1774   CGF.EmitBlock(loopBB);
1775 
1776   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1777   cur->addIncoming(begin.getPointer(), originBB);
1778 
1779   CharUnits curAlign =
1780     dest.getAlignment().alignmentOfArrayElement(baseSize);
1781 
1782   // memcpy the individual element bit-pattern.
1783   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1784                        /*volatile*/ false);
1785 
1786   // Go to the next element.
1787   llvm::Value *next =
1788     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1789 
1790   // Leave if that's the end of the VLA.
1791   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1792   Builder.CreateCondBr(done, contBB, loopBB);
1793   cur->addIncoming(next, loopBB);
1794 
1795   CGF.EmitBlock(contBB);
1796 }
1797 
1798 void
1799 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1800   // Ignore empty classes in C++.
1801   if (getLangOpts().CPlusPlus) {
1802     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1803       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1804         return;
1805     }
1806   }
1807 
1808   // Cast the dest ptr to the appropriate i8 pointer type.
1809   if (DestPtr.getElementType() != Int8Ty)
1810     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1811 
1812   // Get size and alignment info for this aggregate.
1813   CharUnits size = getContext().getTypeSizeInChars(Ty);
1814 
1815   llvm::Value *SizeVal;
1816   const VariableArrayType *vla;
1817 
1818   // Don't bother emitting a zero-byte memset.
1819   if (size.isZero()) {
1820     // But note that getTypeInfo returns 0 for a VLA.
1821     if (const VariableArrayType *vlaType =
1822           dyn_cast_or_null<VariableArrayType>(
1823                                           getContext().getAsArrayType(Ty))) {
1824       auto VlaSize = getVLASize(vlaType);
1825       SizeVal = VlaSize.NumElts;
1826       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1827       if (!eltSize.isOne())
1828         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1829       vla = vlaType;
1830     } else {
1831       return;
1832     }
1833   } else {
1834     SizeVal = CGM.getSize(size);
1835     vla = nullptr;
1836   }
1837 
1838   // If the type contains a pointer to data member we can't memset it to zero.
1839   // Instead, create a null constant and copy it to the destination.
1840   // TODO: there are other patterns besides zero that we can usefully memset,
1841   // like -1, which happens to be the pattern used by member-pointers.
1842   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1843     // For a VLA, emit a single element, then splat that over the VLA.
1844     if (vla) Ty = getContext().getBaseElementType(vla);
1845 
1846     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1847 
1848     llvm::GlobalVariable *NullVariable =
1849       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1850                                /*isConstant=*/true,
1851                                llvm::GlobalVariable::PrivateLinkage,
1852                                NullConstant, Twine());
1853     CharUnits NullAlign = DestPtr.getAlignment();
1854     NullVariable->setAlignment(NullAlign.getQuantity());
1855     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1856                    NullAlign);
1857 
1858     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1859 
1860     // Get and call the appropriate llvm.memcpy overload.
1861     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1862     return;
1863   }
1864 
1865   // Otherwise, just memset the whole thing to zero.  This is legal
1866   // because in LLVM, all default initializers (other than the ones we just
1867   // handled above) are guaranteed to have a bit pattern of all zeros.
1868   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1869 }
1870 
1871 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1872   // Make sure that there is a block for the indirect goto.
1873   if (!IndirectBranch)
1874     GetIndirectGotoBlock();
1875 
1876   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1877 
1878   // Make sure the indirect branch includes all of the address-taken blocks.
1879   IndirectBranch->addDestination(BB);
1880   return llvm::BlockAddress::get(CurFn, BB);
1881 }
1882 
1883 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1884   // If we already made the indirect branch for indirect goto, return its block.
1885   if (IndirectBranch) return IndirectBranch->getParent();
1886 
1887   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1888 
1889   // Create the PHI node that indirect gotos will add entries to.
1890   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1891                                               "indirect.goto.dest");
1892 
1893   // Create the indirect branch instruction.
1894   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1895   return IndirectBranch->getParent();
1896 }
1897 
1898 /// Computes the length of an array in elements, as well as the base
1899 /// element type and a properly-typed first element pointer.
1900 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1901                                               QualType &baseType,
1902                                               Address &addr) {
1903   const ArrayType *arrayType = origArrayType;
1904 
1905   // If it's a VLA, we have to load the stored size.  Note that
1906   // this is the size of the VLA in bytes, not its size in elements.
1907   llvm::Value *numVLAElements = nullptr;
1908   if (isa<VariableArrayType>(arrayType)) {
1909     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1910 
1911     // Walk into all VLAs.  This doesn't require changes to addr,
1912     // which has type T* where T is the first non-VLA element type.
1913     do {
1914       QualType elementType = arrayType->getElementType();
1915       arrayType = getContext().getAsArrayType(elementType);
1916 
1917       // If we only have VLA components, 'addr' requires no adjustment.
1918       if (!arrayType) {
1919         baseType = elementType;
1920         return numVLAElements;
1921       }
1922     } while (isa<VariableArrayType>(arrayType));
1923 
1924     // We get out here only if we find a constant array type
1925     // inside the VLA.
1926   }
1927 
1928   // We have some number of constant-length arrays, so addr should
1929   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1930   // down to the first element of addr.
1931   SmallVector<llvm::Value*, 8> gepIndices;
1932 
1933   // GEP down to the array type.
1934   llvm::ConstantInt *zero = Builder.getInt32(0);
1935   gepIndices.push_back(zero);
1936 
1937   uint64_t countFromCLAs = 1;
1938   QualType eltType;
1939 
1940   llvm::ArrayType *llvmArrayType =
1941     dyn_cast<llvm::ArrayType>(addr.getElementType());
1942   while (llvmArrayType) {
1943     assert(isa<ConstantArrayType>(arrayType));
1944     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1945              == llvmArrayType->getNumElements());
1946 
1947     gepIndices.push_back(zero);
1948     countFromCLAs *= llvmArrayType->getNumElements();
1949     eltType = arrayType->getElementType();
1950 
1951     llvmArrayType =
1952       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1953     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1954     assert((!llvmArrayType || arrayType) &&
1955            "LLVM and Clang types are out-of-synch");
1956   }
1957 
1958   if (arrayType) {
1959     // From this point onwards, the Clang array type has been emitted
1960     // as some other type (probably a packed struct). Compute the array
1961     // size, and just emit the 'begin' expression as a bitcast.
1962     while (arrayType) {
1963       countFromCLAs *=
1964           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1965       eltType = arrayType->getElementType();
1966       arrayType = getContext().getAsArrayType(eltType);
1967     }
1968 
1969     llvm::Type *baseType = ConvertType(eltType);
1970     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1971   } else {
1972     // Create the actual GEP.
1973     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1974                                              gepIndices, "array.begin"),
1975                    addr.getAlignment());
1976   }
1977 
1978   baseType = eltType;
1979 
1980   llvm::Value *numElements
1981     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1982 
1983   // If we had any VLA dimensions, factor them in.
1984   if (numVLAElements)
1985     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1986 
1987   return numElements;
1988 }
1989 
1990 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1991   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1992   assert(vla && "type was not a variable array type!");
1993   return getVLASize(vla);
1994 }
1995 
1996 CodeGenFunction::VlaSizePair
1997 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1998   // The number of elements so far; always size_t.
1999   llvm::Value *numElements = nullptr;
2000 
2001   QualType elementType;
2002   do {
2003     elementType = type->getElementType();
2004     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2005     assert(vlaSize && "no size for VLA!");
2006     assert(vlaSize->getType() == SizeTy);
2007 
2008     if (!numElements) {
2009       numElements = vlaSize;
2010     } else {
2011       // It's undefined behavior if this wraps around, so mark it that way.
2012       // FIXME: Teach -fsanitize=undefined to trap this.
2013       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2014     }
2015   } while ((type = getContext().getAsVariableArrayType(elementType)));
2016 
2017   return { numElements, elementType };
2018 }
2019 
2020 CodeGenFunction::VlaSizePair
2021 CodeGenFunction::getVLAElements1D(QualType type) {
2022   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2023   assert(vla && "type was not a variable array type!");
2024   return getVLAElements1D(vla);
2025 }
2026 
2027 CodeGenFunction::VlaSizePair
2028 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2029   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2030   assert(VlaSize && "no size for VLA!");
2031   assert(VlaSize->getType() == SizeTy);
2032   return { VlaSize, Vla->getElementType() };
2033 }
2034 
2035 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2036   assert(type->isVariablyModifiedType() &&
2037          "Must pass variably modified type to EmitVLASizes!");
2038 
2039   EnsureInsertPoint();
2040 
2041   // We're going to walk down into the type and look for VLA
2042   // expressions.
2043   do {
2044     assert(type->isVariablyModifiedType());
2045 
2046     const Type *ty = type.getTypePtr();
2047     switch (ty->getTypeClass()) {
2048 
2049 #define TYPE(Class, Base)
2050 #define ABSTRACT_TYPE(Class, Base)
2051 #define NON_CANONICAL_TYPE(Class, Base)
2052 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2053 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2054 #include "clang/AST/TypeNodes.def"
2055       llvm_unreachable("unexpected dependent type!");
2056 
2057     // These types are never variably-modified.
2058     case Type::Builtin:
2059     case Type::Complex:
2060     case Type::Vector:
2061     case Type::ExtVector:
2062     case Type::Record:
2063     case Type::Enum:
2064     case Type::Elaborated:
2065     case Type::TemplateSpecialization:
2066     case Type::ObjCTypeParam:
2067     case Type::ObjCObject:
2068     case Type::ObjCInterface:
2069     case Type::ObjCObjectPointer:
2070       llvm_unreachable("type class is never variably-modified!");
2071 
2072     case Type::Adjusted:
2073       type = cast<AdjustedType>(ty)->getAdjustedType();
2074       break;
2075 
2076     case Type::Decayed:
2077       type = cast<DecayedType>(ty)->getPointeeType();
2078       break;
2079 
2080     case Type::Pointer:
2081       type = cast<PointerType>(ty)->getPointeeType();
2082       break;
2083 
2084     case Type::BlockPointer:
2085       type = cast<BlockPointerType>(ty)->getPointeeType();
2086       break;
2087 
2088     case Type::LValueReference:
2089     case Type::RValueReference:
2090       type = cast<ReferenceType>(ty)->getPointeeType();
2091       break;
2092 
2093     case Type::MemberPointer:
2094       type = cast<MemberPointerType>(ty)->getPointeeType();
2095       break;
2096 
2097     case Type::ConstantArray:
2098     case Type::IncompleteArray:
2099       // Losing element qualification here is fine.
2100       type = cast<ArrayType>(ty)->getElementType();
2101       break;
2102 
2103     case Type::VariableArray: {
2104       // Losing element qualification here is fine.
2105       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2106 
2107       // Unknown size indication requires no size computation.
2108       // Otherwise, evaluate and record it.
2109       if (const Expr *size = vat->getSizeExpr()) {
2110         // It's possible that we might have emitted this already,
2111         // e.g. with a typedef and a pointer to it.
2112         llvm::Value *&entry = VLASizeMap[size];
2113         if (!entry) {
2114           llvm::Value *Size = EmitScalarExpr(size);
2115 
2116           // C11 6.7.6.2p5:
2117           //   If the size is an expression that is not an integer constant
2118           //   expression [...] each time it is evaluated it shall have a value
2119           //   greater than zero.
2120           if (SanOpts.has(SanitizerKind::VLABound) &&
2121               size->getType()->isSignedIntegerType()) {
2122             SanitizerScope SanScope(this);
2123             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2124             llvm::Constant *StaticArgs[] = {
2125                 EmitCheckSourceLocation(size->getBeginLoc()),
2126                 EmitCheckTypeDescriptor(size->getType())};
2127             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2128                                      SanitizerKind::VLABound),
2129                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2130           }
2131 
2132           // Always zexting here would be wrong if it weren't
2133           // undefined behavior to have a negative bound.
2134           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2135         }
2136       }
2137       type = vat->getElementType();
2138       break;
2139     }
2140 
2141     case Type::FunctionProto:
2142     case Type::FunctionNoProto:
2143       type = cast<FunctionType>(ty)->getReturnType();
2144       break;
2145 
2146     case Type::Paren:
2147     case Type::TypeOf:
2148     case Type::UnaryTransform:
2149     case Type::Attributed:
2150     case Type::SubstTemplateTypeParm:
2151     case Type::PackExpansion:
2152       // Keep walking after single level desugaring.
2153       type = type.getSingleStepDesugaredType(getContext());
2154       break;
2155 
2156     case Type::Typedef:
2157     case Type::Decltype:
2158     case Type::Auto:
2159     case Type::DeducedTemplateSpecialization:
2160       // Stop walking: nothing to do.
2161       return;
2162 
2163     case Type::TypeOfExpr:
2164       // Stop walking: emit typeof expression.
2165       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2166       return;
2167 
2168     case Type::Atomic:
2169       type = cast<AtomicType>(ty)->getValueType();
2170       break;
2171 
2172     case Type::Pipe:
2173       type = cast<PipeType>(ty)->getElementType();
2174       break;
2175     }
2176   } while (type->isVariablyModifiedType());
2177 }
2178 
2179 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2180   if (getContext().getBuiltinVaListType()->isArrayType())
2181     return EmitPointerWithAlignment(E);
2182   return EmitLValue(E).getAddress();
2183 }
2184 
2185 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2186   return EmitLValue(E).getAddress();
2187 }
2188 
2189 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2190                                               const APValue &Init) {
2191   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2192   if (CGDebugInfo *Dbg = getDebugInfo())
2193     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2194       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2195 }
2196 
2197 CodeGenFunction::PeepholeProtection
2198 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2199   // At the moment, the only aggressive peephole we do in IR gen
2200   // is trunc(zext) folding, but if we add more, we can easily
2201   // extend this protection.
2202 
2203   if (!rvalue.isScalar()) return PeepholeProtection();
2204   llvm::Value *value = rvalue.getScalarVal();
2205   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2206 
2207   // Just make an extra bitcast.
2208   assert(HaveInsertPoint());
2209   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2210                                                   Builder.GetInsertBlock());
2211 
2212   PeepholeProtection protection;
2213   protection.Inst = inst;
2214   return protection;
2215 }
2216 
2217 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2218   if (!protection.Inst) return;
2219 
2220   // In theory, we could try to duplicate the peepholes now, but whatever.
2221   protection.Inst->eraseFromParent();
2222 }
2223 
2224 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2225                                               QualType Ty, SourceLocation Loc,
2226                                               SourceLocation AssumptionLoc,
2227                                               llvm::Value *Alignment,
2228                                               llvm::Value *OffsetValue) {
2229   llvm::Value *TheCheck;
2230   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2231       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2232   if (SanOpts.has(SanitizerKind::Alignment)) {
2233     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2234                                  OffsetValue, TheCheck, Assumption);
2235   }
2236 }
2237 
2238 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2239                                               QualType Ty, SourceLocation Loc,
2240                                               SourceLocation AssumptionLoc,
2241                                               unsigned Alignment,
2242                                               llvm::Value *OffsetValue) {
2243   llvm::Value *TheCheck;
2244   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2245       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2246   if (SanOpts.has(SanitizerKind::Alignment)) {
2247     llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2248     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal,
2249                                  OffsetValue, TheCheck, Assumption);
2250   }
2251 }
2252 
2253 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2254                                               const Expr *E,
2255                                               SourceLocation AssumptionLoc,
2256                                               unsigned Alignment,
2257                                               llvm::Value *OffsetValue) {
2258   if (auto *CE = dyn_cast<CastExpr>(E))
2259     E = CE->getSubExprAsWritten();
2260   QualType Ty = E->getType();
2261   SourceLocation Loc = E->getExprLoc();
2262 
2263   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2264                           OffsetValue);
2265 }
2266 
2267 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2268                                                  llvm::Value *AnnotatedVal,
2269                                                  StringRef AnnotationStr,
2270                                                  SourceLocation Location) {
2271   llvm::Value *Args[4] = {
2272     AnnotatedVal,
2273     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2274     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2275     CGM.EmitAnnotationLineNo(Location)
2276   };
2277   return Builder.CreateCall(AnnotationFn, Args);
2278 }
2279 
2280 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2281   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2282   // FIXME We create a new bitcast for every annotation because that's what
2283   // llvm-gcc was doing.
2284   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2285     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2286                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2287                        I->getAnnotation(), D->getLocation());
2288 }
2289 
2290 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2291                                               Address Addr) {
2292   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2293   llvm::Value *V = Addr.getPointer();
2294   llvm::Type *VTy = V->getType();
2295   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2296                                     CGM.Int8PtrTy);
2297 
2298   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2299     // FIXME Always emit the cast inst so we can differentiate between
2300     // annotation on the first field of a struct and annotation on the struct
2301     // itself.
2302     if (VTy != CGM.Int8PtrTy)
2303       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2304     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2305     V = Builder.CreateBitCast(V, VTy);
2306   }
2307 
2308   return Address(V, Addr.getAlignment());
2309 }
2310 
2311 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2312 
2313 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2314     : CGF(CGF) {
2315   assert(!CGF->IsSanitizerScope);
2316   CGF->IsSanitizerScope = true;
2317 }
2318 
2319 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2320   CGF->IsSanitizerScope = false;
2321 }
2322 
2323 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2324                                    const llvm::Twine &Name,
2325                                    llvm::BasicBlock *BB,
2326                                    llvm::BasicBlock::iterator InsertPt) const {
2327   LoopStack.InsertHelper(I);
2328   if (IsSanitizerScope)
2329     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2330 }
2331 
2332 void CGBuilderInserter::InsertHelper(
2333     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2334     llvm::BasicBlock::iterator InsertPt) const {
2335   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2336   if (CGF)
2337     CGF->InsertHelper(I, Name, BB, InsertPt);
2338 }
2339 
2340 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2341                                 CodeGenModule &CGM, const FunctionDecl *FD,
2342                                 std::string &FirstMissing) {
2343   // If there aren't any required features listed then go ahead and return.
2344   if (ReqFeatures.empty())
2345     return false;
2346 
2347   // Now build up the set of caller features and verify that all the required
2348   // features are there.
2349   llvm::StringMap<bool> CallerFeatureMap;
2350   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2351 
2352   // If we have at least one of the features in the feature list return
2353   // true, otherwise return false.
2354   return std::all_of(
2355       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2356         SmallVector<StringRef, 1> OrFeatures;
2357         Feature.split(OrFeatures, '|');
2358         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2359           if (!CallerFeatureMap.lookup(Feature)) {
2360             FirstMissing = Feature.str();
2361             return false;
2362           }
2363           return true;
2364         });
2365       });
2366 }
2367 
2368 // Emits an error if we don't have a valid set of target features for the
2369 // called function.
2370 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2371                                           const FunctionDecl *TargetDecl) {
2372   // Early exit if this is an indirect call.
2373   if (!TargetDecl)
2374     return;
2375 
2376   // Get the current enclosing function if it exists. If it doesn't
2377   // we can't check the target features anyhow.
2378   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2379   if (!FD)
2380     return;
2381 
2382   // Grab the required features for the call. For a builtin this is listed in
2383   // the td file with the default cpu, for an always_inline function this is any
2384   // listed cpu and any listed features.
2385   unsigned BuiltinID = TargetDecl->getBuiltinID();
2386   std::string MissingFeature;
2387   if (BuiltinID) {
2388     SmallVector<StringRef, 1> ReqFeatures;
2389     const char *FeatureList =
2390         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2391     // Return if the builtin doesn't have any required features.
2392     if (!FeatureList || StringRef(FeatureList) == "")
2393       return;
2394     StringRef(FeatureList).split(ReqFeatures, ',');
2395     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2396       CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2397           << TargetDecl->getDeclName()
2398           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2399 
2400   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2401              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2402     // Get the required features for the callee.
2403 
2404     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2405     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2406 
2407     SmallVector<StringRef, 1> ReqFeatures;
2408     llvm::StringMap<bool> CalleeFeatureMap;
2409     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2410 
2411     for (const auto &F : ParsedAttr.Features) {
2412       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2413         ReqFeatures.push_back(StringRef(F).substr(1));
2414     }
2415 
2416     for (const auto &F : CalleeFeatureMap) {
2417       // Only positive features are "required".
2418       if (F.getValue())
2419         ReqFeatures.push_back(F.getKey());
2420     }
2421     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2422       CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2423           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2424   }
2425 }
2426 
2427 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2428   if (!CGM.getCodeGenOpts().SanitizeStats)
2429     return;
2430 
2431   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2432   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2433   CGM.getSanStats().create(IRB, SSK);
2434 }
2435 
2436 llvm::Value *
2437 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2438   llvm::Value *Condition = nullptr;
2439 
2440   if (!RO.Conditions.Architecture.empty())
2441     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2442 
2443   if (!RO.Conditions.Features.empty()) {
2444     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2445     Condition =
2446         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2447   }
2448   return Condition;
2449 }
2450 
2451 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2452                                              llvm::Function *Resolver,
2453                                              CGBuilderTy &Builder,
2454                                              llvm::Function *FuncToReturn,
2455                                              bool SupportsIFunc) {
2456   if (SupportsIFunc) {
2457     Builder.CreateRet(FuncToReturn);
2458     return;
2459   }
2460 
2461   llvm::SmallVector<llvm::Value *, 10> Args;
2462   llvm::for_each(Resolver->args(),
2463                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2464 
2465   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2466   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2467 
2468   if (Resolver->getReturnType()->isVoidTy())
2469     Builder.CreateRetVoid();
2470   else
2471     Builder.CreateRet(Result);
2472 }
2473 
2474 void CodeGenFunction::EmitMultiVersionResolver(
2475     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2476   assert((getContext().getTargetInfo().getTriple().getArch() ==
2477               llvm::Triple::x86 ||
2478           getContext().getTargetInfo().getTriple().getArch() ==
2479               llvm::Triple::x86_64) &&
2480          "Only implemented for x86 targets");
2481 
2482   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2483 
2484   // Main function's basic block.
2485   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2486   Builder.SetInsertPoint(CurBlock);
2487   EmitX86CpuInit();
2488 
2489   for (const MultiVersionResolverOption &RO : Options) {
2490     Builder.SetInsertPoint(CurBlock);
2491     llvm::Value *Condition = FormResolverCondition(RO);
2492 
2493     // The 'default' or 'generic' case.
2494     if (!Condition) {
2495       assert(&RO == Options.end() - 1 &&
2496              "Default or Generic case must be last");
2497       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2498                                        SupportsIFunc);
2499       return;
2500     }
2501 
2502     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2503     CGBuilderTy RetBuilder(*this, RetBlock);
2504     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2505                                      SupportsIFunc);
2506     CurBlock = createBasicBlock("resolver_else", Resolver);
2507     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2508   }
2509 
2510   // If no generic/default, emit an unreachable.
2511   Builder.SetInsertPoint(CurBlock);
2512   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2513   TrapCall->setDoesNotReturn();
2514   TrapCall->setDoesNotThrow();
2515   Builder.CreateUnreachable();
2516   Builder.ClearInsertionPoint();
2517 }
2518 
2519 // Loc - where the diagnostic will point, where in the source code this
2520 //  alignment has failed.
2521 // SecondaryLoc - if present (will be present if sufficiently different from
2522 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2523 //  It should be the location where the __attribute__((assume_aligned))
2524 //  was written e.g.
2525 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2526     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2527     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2528     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2529     llvm::Instruction *Assumption) {
2530   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2531          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2532              llvm::Intrinsic::getDeclaration(
2533                  Builder.GetInsertBlock()->getParent()->getParent(),
2534                  llvm::Intrinsic::assume) &&
2535          "Assumption should be a call to llvm.assume().");
2536   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2537          "Assumption should be the last instruction of the basic block, "
2538          "since the basic block is still being generated.");
2539 
2540   if (!SanOpts.has(SanitizerKind::Alignment))
2541     return;
2542 
2543   // Don't check pointers to volatile data. The behavior here is implementation-
2544   // defined.
2545   if (Ty->getPointeeType().isVolatileQualified())
2546     return;
2547 
2548   // We need to temorairly remove the assumption so we can insert the
2549   // sanitizer check before it, else the check will be dropped by optimizations.
2550   Assumption->removeFromParent();
2551 
2552   {
2553     SanitizerScope SanScope(this);
2554 
2555     if (!OffsetValue)
2556       OffsetValue = Builder.getInt1(0); // no offset.
2557 
2558     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2559                                     EmitCheckSourceLocation(SecondaryLoc),
2560                                     EmitCheckTypeDescriptor(Ty)};
2561     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2562                                   EmitCheckValue(Alignment),
2563                                   EmitCheckValue(OffsetValue)};
2564     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2565               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2566   }
2567 
2568   // We are now in the (new, empty) "cont" basic block.
2569   // Reintroduce the assumption.
2570   Builder.Insert(Assumption);
2571   // FIXME: Assumption still has it's original basic block as it's Parent.
2572 }
2573 
2574 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2575   if (CGDebugInfo *DI = getDebugInfo())
2576     return DI->SourceLocToDebugLoc(Location);
2577 
2578   return llvm::DebugLoc();
2579 }
2580