1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 // Asan uses markers for use-after-scope checks. 46 if (CGOpts.SanitizeAddressUseAfterScope) 47 return true; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // For now, only in optimized builds. 55 return CGOpts.OptimizationLevel != 0; 56 } 57 58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 59 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 60 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 61 CGBuilderInserterTy(this)), 62 CurFn(nullptr), ReturnValue(Address::invalid()), 63 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 64 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 65 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 66 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 67 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 68 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 69 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 70 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 71 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 72 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 73 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 74 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 75 CXXStructorImplicitParamDecl(nullptr), 76 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 77 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 78 TerminateHandler(nullptr), TrapBB(nullptr), 79 ShouldEmitLifetimeMarkers( 80 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 81 if (!suppressNewContext) 82 CGM.getCXXABI().getMangleContext().startNewFunction(); 83 84 llvm::FastMathFlags FMF; 85 if (CGM.getLangOpts().FastMath) 86 FMF.setUnsafeAlgebra(); 87 if (CGM.getLangOpts().FiniteMathOnly) { 88 FMF.setNoNaNs(); 89 FMF.setNoInfs(); 90 } 91 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 92 FMF.setNoNaNs(); 93 } 94 if (CGM.getCodeGenOpts().NoSignedZeros) { 95 FMF.setNoSignedZeros(); 96 } 97 if (CGM.getCodeGenOpts().ReciprocalMath) { 98 FMF.setAllowReciprocal(); 99 } 100 Builder.setFastMathFlags(FMF); 101 } 102 103 CodeGenFunction::~CodeGenFunction() { 104 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 105 106 // If there are any unclaimed block infos, go ahead and destroy them 107 // now. This can happen if IR-gen gets clever and skips evaluating 108 // something. 109 if (FirstBlockInfo) 110 destroyBlockInfos(FirstBlockInfo); 111 112 if (getLangOpts().OpenMP) { 113 CGM.getOpenMPRuntime().functionFinished(*this); 114 } 115 } 116 117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 118 AlignmentSource *Source) { 119 return getNaturalTypeAlignment(T->getPointeeType(), Source, 120 /*forPointee*/ true); 121 } 122 123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 124 AlignmentSource *Source, 125 bool forPointeeType) { 126 // Honor alignment typedef attributes even on incomplete types. 127 // We also honor them straight for C++ class types, even as pointees; 128 // there's an expressivity gap here. 129 if (auto TT = T->getAs<TypedefType>()) { 130 if (auto Align = TT->getDecl()->getMaxAlignment()) { 131 if (Source) *Source = AlignmentSource::AttributedType; 132 return getContext().toCharUnitsFromBits(Align); 133 } 134 } 135 136 if (Source) *Source = AlignmentSource::Type; 137 138 CharUnits Alignment; 139 if (T->isIncompleteType()) { 140 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 141 } else { 142 // For C++ class pointees, we don't know whether we're pointing at a 143 // base or a complete object, so we generally need to use the 144 // non-virtual alignment. 145 const CXXRecordDecl *RD; 146 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 147 Alignment = CGM.getClassPointerAlignment(RD); 148 } else { 149 Alignment = getContext().getTypeAlignInChars(T); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 AlignmentSource AlignSource; 165 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 166 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 167 CGM.getTBAAInfo(T)); 168 } 169 170 /// Given a value of type T* that may not be to a complete object, 171 /// construct an l-value with the natural pointee alignment of T. 172 LValue 173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 174 AlignmentSource AlignSource; 175 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 176 return MakeAddrLValue(Address(V, Align), T, AlignSource); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.def" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 llvm_unreachable("undeduced auto type in IR-generation"); 202 203 // Various scalar types. 204 case Type::Builtin: 205 case Type::Pointer: 206 case Type::BlockPointer: 207 case Type::LValueReference: 208 case Type::RValueReference: 209 case Type::MemberPointer: 210 case Type::Vector: 211 case Type::ExtVector: 212 case Type::FunctionProto: 213 case Type::FunctionNoProto: 214 case Type::Enum: 215 case Type::ObjCObjectPointer: 216 case Type::Pipe: 217 return TEK_Scalar; 218 219 // Complexes. 220 case Type::Complex: 221 return TEK_Complex; 222 223 // Arrays, records, and Objective-C objects. 224 case Type::ConstantArray: 225 case Type::IncompleteArray: 226 case Type::VariableArray: 227 case Type::Record: 228 case Type::ObjCObject: 229 case Type::ObjCInterface: 230 return TEK_Aggregate; 231 232 // We operate on atomic values according to their underlying type. 233 case Type::Atomic: 234 type = cast<AtomicType>(type)->getValueType(); 235 continue; 236 } 237 llvm_unreachable("unknown type kind!"); 238 } 239 } 240 241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 242 // For cleanliness, we try to avoid emitting the return block for 243 // simple cases. 244 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 245 246 if (CurBB) { 247 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 248 249 // We have a valid insert point, reuse it if it is empty or there are no 250 // explicit jumps to the return block. 251 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 252 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 253 delete ReturnBlock.getBlock(); 254 } else 255 EmitBlock(ReturnBlock.getBlock()); 256 return llvm::DebugLoc(); 257 } 258 259 // Otherwise, if the return block is the target of a single direct 260 // branch then we can just put the code in that block instead. This 261 // cleans up functions which started with a unified return block. 262 if (ReturnBlock.getBlock()->hasOneUse()) { 263 llvm::BranchInst *BI = 264 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 265 if (BI && BI->isUnconditional() && 266 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 267 // Record/return the DebugLoc of the simple 'return' expression to be used 268 // later by the actual 'ret' instruction. 269 llvm::DebugLoc Loc = BI->getDebugLoc(); 270 Builder.SetInsertPoint(BI->getParent()); 271 BI->eraseFromParent(); 272 delete ReturnBlock.getBlock(); 273 return Loc; 274 } 275 } 276 277 // FIXME: We are at an unreachable point, there is no reason to emit the block 278 // unless it has uses. However, we still need a place to put the debug 279 // region.end for now. 280 281 EmitBlock(ReturnBlock.getBlock()); 282 return llvm::DebugLoc(); 283 } 284 285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 286 if (!BB) return; 287 if (!BB->use_empty()) 288 return CGF.CurFn->getBasicBlockList().push_back(BB); 289 delete BB; 290 } 291 292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 293 assert(BreakContinueStack.empty() && 294 "mismatched push/pop in break/continue stack!"); 295 296 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 297 && NumSimpleReturnExprs == NumReturnExprs 298 && ReturnBlock.getBlock()->use_empty(); 299 // Usually the return expression is evaluated before the cleanup 300 // code. If the function contains only a simple return statement, 301 // such as a constant, the location before the cleanup code becomes 302 // the last useful breakpoint in the function, because the simple 303 // return expression will be evaluated after the cleanup code. To be 304 // safe, set the debug location for cleanup code to the location of 305 // the return statement. Otherwise the cleanup code should be at the 306 // end of the function's lexical scope. 307 // 308 // If there are multiple branches to the return block, the branch 309 // instructions will get the location of the return statements and 310 // all will be fine. 311 if (CGDebugInfo *DI = getDebugInfo()) { 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, LastStopPoint); 314 else 315 DI->EmitLocation(Builder, EndLoc); 316 } 317 318 // Pop any cleanups that might have been associated with the 319 // parameters. Do this in whatever block we're currently in; it's 320 // important to do this before we enter the return block or return 321 // edges will be *really* confused. 322 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 323 bool HasOnlyLifetimeMarkers = 324 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 325 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 326 if (HasCleanups) { 327 // Make sure the line table doesn't jump back into the body for 328 // the ret after it's been at EndLoc. 329 if (CGDebugInfo *DI = getDebugInfo()) 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, EndLoc); 332 333 PopCleanupBlocks(PrologueCleanupDepth); 334 } 335 336 // Emit function epilog (to return). 337 llvm::DebugLoc Loc = EmitReturnBlock(); 338 339 if (ShouldInstrumentFunction()) 340 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 341 342 // Emit debug descriptor for function end. 343 if (CGDebugInfo *DI = getDebugInfo()) 344 DI->EmitFunctionEnd(Builder); 345 346 // Reset the debug location to that of the simple 'return' expression, if any 347 // rather than that of the end of the function's scope '}'. 348 ApplyDebugLocation AL(*this, Loc); 349 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 350 EmitEndEHSpec(CurCodeDecl); 351 352 assert(EHStack.empty() && 353 "did not remove all scopes from cleanup stack!"); 354 355 // If someone did an indirect goto, emit the indirect goto block at the end of 356 // the function. 357 if (IndirectBranch) { 358 EmitBlock(IndirectBranch->getParent()); 359 Builder.ClearInsertionPoint(); 360 } 361 362 // If some of our locals escaped, insert a call to llvm.localescape in the 363 // entry block. 364 if (!EscapedLocals.empty()) { 365 // Invert the map from local to index into a simple vector. There should be 366 // no holes. 367 SmallVector<llvm::Value *, 4> EscapeArgs; 368 EscapeArgs.resize(EscapedLocals.size()); 369 for (auto &Pair : EscapedLocals) 370 EscapeArgs[Pair.second] = Pair.first; 371 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 372 &CGM.getModule(), llvm::Intrinsic::localescape); 373 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 374 } 375 376 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 377 llvm::Instruction *Ptr = AllocaInsertPt; 378 AllocaInsertPt = nullptr; 379 Ptr->eraseFromParent(); 380 381 // If someone took the address of a label but never did an indirect goto, we 382 // made a zero entry PHI node, which is illegal, zap it now. 383 if (IndirectBranch) { 384 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 385 if (PN->getNumIncomingValues() == 0) { 386 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 387 PN->eraseFromParent(); 388 } 389 } 390 391 EmitIfUsed(*this, EHResumeBlock); 392 EmitIfUsed(*this, TerminateLandingPad); 393 EmitIfUsed(*this, TerminateHandler); 394 EmitIfUsed(*this, UnreachableBlock); 395 396 if (CGM.getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 400 I = DeferredReplacements.begin(), 401 E = DeferredReplacements.end(); 402 I != E; ++I) { 403 I->first->replaceAllUsesWith(I->second); 404 I->first->eraseFromParent(); 405 } 406 } 407 408 /// ShouldInstrumentFunction - Return true if the current function should be 409 /// instrumented with __cyg_profile_func_* calls 410 bool CodeGenFunction::ShouldInstrumentFunction() { 411 if (!CGM.getCodeGenOpts().InstrumentFunctions) 412 return false; 413 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 414 return false; 415 return true; 416 } 417 418 /// ShouldXRayInstrument - Return true if the current function should be 419 /// instrumented with XRay nop sleds. 420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 421 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 422 } 423 424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 425 /// instrumentation function with the current function and the call site, if 426 /// function instrumentation is enabled. 427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 428 auto NL = ApplyDebugLocation::CreateArtificial(*this); 429 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 430 llvm::PointerType *PointerTy = Int8PtrTy; 431 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 432 llvm::FunctionType *FunctionTy = 433 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 434 435 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 436 llvm::CallInst *CallSite = Builder.CreateCall( 437 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 438 llvm::ConstantInt::get(Int32Ty, 0), 439 "callsite"); 440 441 llvm::Value *args[] = { 442 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 443 CallSite 444 }; 445 446 EmitNounwindRuntimeCall(F, args); 447 } 448 449 static void removeImageAccessQualifier(std::string& TyName) { 450 std::string ReadOnlyQual("__read_only"); 451 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 452 if (ReadOnlyPos != std::string::npos) 453 // "+ 1" for the space after access qualifier. 454 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 455 else { 456 std::string WriteOnlyQual("__write_only"); 457 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 458 if (WriteOnlyPos != std::string::npos) 459 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 460 else { 461 std::string ReadWriteQual("__read_write"); 462 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 463 if (ReadWritePos != std::string::npos) 464 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 465 } 466 } 467 } 468 469 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 470 // information in the program executable. The argument information stored 471 // includes the argument name, its type, the address and access qualifiers used. 472 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 473 CodeGenModule &CGM, llvm::LLVMContext &Context, 474 CGBuilderTy &Builder, ASTContext &ASTCtx) { 475 // Create MDNodes that represent the kernel arg metadata. 476 // Each MDNode is a list in the form of "key", N number of values which is 477 // the same number of values as their are kernel arguments. 478 479 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 480 481 // MDNode for the kernel argument address space qualifiers. 482 SmallVector<llvm::Metadata *, 8> addressQuals; 483 484 // MDNode for the kernel argument access qualifiers (images only). 485 SmallVector<llvm::Metadata *, 8> accessQuals; 486 487 // MDNode for the kernel argument type names. 488 SmallVector<llvm::Metadata *, 8> argTypeNames; 489 490 // MDNode for the kernel argument base type names. 491 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 492 493 // MDNode for the kernel argument type qualifiers. 494 SmallVector<llvm::Metadata *, 8> argTypeQuals; 495 496 // MDNode for the kernel argument names. 497 SmallVector<llvm::Metadata *, 8> argNames; 498 499 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 500 const ParmVarDecl *parm = FD->getParamDecl(i); 501 QualType ty = parm->getType(); 502 std::string typeQuals; 503 504 if (ty->isPointerType()) { 505 QualType pointeeTy = ty->getPointeeType(); 506 507 // Get address qualifier. 508 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 509 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 510 511 // Get argument type name. 512 std::string typeName = 513 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 514 515 // Turn "unsigned type" to "utype" 516 std::string::size_type pos = typeName.find("unsigned"); 517 if (pointeeTy.isCanonical() && pos != std::string::npos) 518 typeName.erase(pos+1, 8); 519 520 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 521 522 std::string baseTypeName = 523 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 524 Policy) + 525 "*"; 526 527 // Turn "unsigned type" to "utype" 528 pos = baseTypeName.find("unsigned"); 529 if (pos != std::string::npos) 530 baseTypeName.erase(pos+1, 8); 531 532 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 533 534 // Get argument type qualifiers: 535 if (ty.isRestrictQualified()) 536 typeQuals = "restrict"; 537 if (pointeeTy.isConstQualified() || 538 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 539 typeQuals += typeQuals.empty() ? "const" : " const"; 540 if (pointeeTy.isVolatileQualified()) 541 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 542 } else { 543 uint32_t AddrSpc = 0; 544 bool isPipe = ty->isPipeType(); 545 if (ty->isImageType() || isPipe) 546 AddrSpc = 547 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 548 549 addressQuals.push_back( 550 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 551 552 // Get argument type name. 553 std::string typeName; 554 if (isPipe) 555 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 556 .getAsString(Policy); 557 else 558 typeName = ty.getUnqualifiedType().getAsString(Policy); 559 560 // Turn "unsigned type" to "utype" 561 std::string::size_type pos = typeName.find("unsigned"); 562 if (ty.isCanonical() && pos != std::string::npos) 563 typeName.erase(pos+1, 8); 564 565 std::string baseTypeName; 566 if (isPipe) 567 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 568 ->getElementType().getCanonicalType() 569 .getAsString(Policy); 570 else 571 baseTypeName = 572 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 573 574 // Remove access qualifiers on images 575 // (as they are inseparable from type in clang implementation, 576 // but OpenCL spec provides a special query to get access qualifier 577 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 578 if (ty->isImageType()) { 579 removeImageAccessQualifier(typeName); 580 removeImageAccessQualifier(baseTypeName); 581 } 582 583 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 584 585 // Turn "unsigned type" to "utype" 586 pos = baseTypeName.find("unsigned"); 587 if (pos != std::string::npos) 588 baseTypeName.erase(pos+1, 8); 589 590 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 591 592 // Get argument type qualifiers: 593 if (ty.isConstQualified()) 594 typeQuals = "const"; 595 if (ty.isVolatileQualified()) 596 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 597 if (isPipe) 598 typeQuals = "pipe"; 599 } 600 601 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 602 603 // Get image and pipe access qualifier: 604 if (ty->isImageType()|| ty->isPipeType()) { 605 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 606 if (A && A->isWriteOnly()) 607 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 608 else if (A && A->isReadWrite()) 609 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 610 else 611 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 612 } else 613 accessQuals.push_back(llvm::MDString::get(Context, "none")); 614 615 // Get argument name. 616 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 617 } 618 619 Fn->setMetadata("kernel_arg_addr_space", 620 llvm::MDNode::get(Context, addressQuals)); 621 Fn->setMetadata("kernel_arg_access_qual", 622 llvm::MDNode::get(Context, accessQuals)); 623 Fn->setMetadata("kernel_arg_type", 624 llvm::MDNode::get(Context, argTypeNames)); 625 Fn->setMetadata("kernel_arg_base_type", 626 llvm::MDNode::get(Context, argBaseTypeNames)); 627 Fn->setMetadata("kernel_arg_type_qual", 628 llvm::MDNode::get(Context, argTypeQuals)); 629 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 630 Fn->setMetadata("kernel_arg_name", 631 llvm::MDNode::get(Context, argNames)); 632 } 633 634 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 635 llvm::Function *Fn) 636 { 637 if (!FD->hasAttr<OpenCLKernelAttr>()) 638 return; 639 640 llvm::LLVMContext &Context = getLLVMContext(); 641 642 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 643 644 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 645 QualType hintQTy = A->getTypeHint(); 646 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 647 bool isSignedInteger = 648 hintQTy->isSignedIntegerType() || 649 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 650 llvm::Metadata *attrMDArgs[] = { 651 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 652 CGM.getTypes().ConvertType(A->getTypeHint()))), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::IntegerType::get(Context, 32), 655 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 656 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 657 } 658 659 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 660 llvm::Metadata *attrMDArgs[] = { 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 662 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 663 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 664 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 665 } 666 667 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 668 llvm::Metadata *attrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 670 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 671 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 672 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 673 } 674 } 675 676 /// Determine whether the function F ends with a return stmt. 677 static bool endsWithReturn(const Decl* F) { 678 const Stmt *Body = nullptr; 679 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 680 Body = FD->getBody(); 681 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 682 Body = OMD->getBody(); 683 684 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 685 auto LastStmt = CS->body_rbegin(); 686 if (LastStmt != CS->body_rend()) 687 return isa<ReturnStmt>(*LastStmt); 688 } 689 return false; 690 } 691 692 void CodeGenFunction::StartFunction(GlobalDecl GD, 693 QualType RetTy, 694 llvm::Function *Fn, 695 const CGFunctionInfo &FnInfo, 696 const FunctionArgList &Args, 697 SourceLocation Loc, 698 SourceLocation StartLoc) { 699 assert(!CurFn && 700 "Do not use a CodeGenFunction object for more than one function"); 701 702 const Decl *D = GD.getDecl(); 703 704 DidCallStackSave = false; 705 CurCodeDecl = D; 706 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 707 if (FD->usesSEHTry()) 708 CurSEHParent = FD; 709 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 710 FnRetTy = RetTy; 711 CurFn = Fn; 712 CurFnInfo = &FnInfo; 713 assert(CurFn->isDeclaration() && "Function already has body?"); 714 715 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 716 SanOpts.clear(); 717 718 if (D) { 719 // Apply the no_sanitize* attributes to SanOpts. 720 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 721 SanOpts.Mask &= ~Attr->getMask(); 722 } 723 724 // Apply sanitizer attributes to the function. 725 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 726 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 727 if (SanOpts.has(SanitizerKind::Thread)) 728 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 729 if (SanOpts.has(SanitizerKind::Memory)) 730 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 731 if (SanOpts.has(SanitizerKind::SafeStack)) 732 Fn->addFnAttr(llvm::Attribute::SafeStack); 733 734 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 735 // .cxx_destruct and all of their calees at run time. 736 if (SanOpts.has(SanitizerKind::Thread)) { 737 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 738 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 739 if (OMD->getMethodFamily() == OMF_dealloc || 740 OMD->getMethodFamily() == OMF_initialize || 741 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 742 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 743 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 744 } 745 } 746 } 747 748 // Apply xray attributes to the function (as a string, for now) 749 if (D && ShouldXRayInstrumentFunction()) { 750 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 751 if (XRayAttr->alwaysXRayInstrument()) 752 Fn->addFnAttr("function-instrument", "xray-always"); 753 if (XRayAttr->neverXRayInstrument()) 754 Fn->addFnAttr("function-instrument", "xray-never"); 755 } else { 756 Fn->addFnAttr( 757 "xray-instruction-threshold", 758 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 759 } 760 } 761 762 // Pass inline keyword to optimizer if it appears explicitly on any 763 // declaration. Also, in the case of -fno-inline attach NoInline 764 // attribute to all functions that are not marked AlwaysInline, or 765 // to all functions that are not marked inline or implicitly inline 766 // in the case of -finline-hint-functions. 767 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 768 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 769 if (!CodeGenOpts.NoInline) { 770 for (auto RI : FD->redecls()) 771 if (RI->isInlineSpecified()) { 772 Fn->addFnAttr(llvm::Attribute::InlineHint); 773 break; 774 } 775 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 776 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 777 Fn->addFnAttr(llvm::Attribute::NoInline); 778 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 779 Fn->addFnAttr(llvm::Attribute::NoInline); 780 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 781 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 782 } 783 784 // Add no-jump-tables value. 785 Fn->addFnAttr("no-jump-tables", 786 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 787 788 if (getLangOpts().OpenCL) { 789 // Add metadata for a kernel function. 790 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 791 EmitOpenCLKernelMetadata(FD, Fn); 792 } 793 794 // If we are checking function types, emit a function type signature as 795 // prologue data. 796 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 797 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 798 if (llvm::Constant *PrologueSig = 799 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 800 llvm::Constant *FTRTTIConst = 801 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 802 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 803 llvm::Constant *PrologueStructConst = 804 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 805 Fn->setPrologueData(PrologueStructConst); 806 } 807 } 808 } 809 810 // If we're in C++ mode and the function name is "main", it is guaranteed 811 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 812 // used within a program"). 813 if (getLangOpts().CPlusPlus) 814 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 815 if (FD->isMain()) 816 Fn->addFnAttr(llvm::Attribute::NoRecurse); 817 818 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 819 820 // Create a marker to make it easy to insert allocas into the entryblock 821 // later. Don't create this with the builder, because we don't want it 822 // folded. 823 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 824 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 825 826 ReturnBlock = getJumpDestInCurrentScope("return"); 827 828 Builder.SetInsertPoint(EntryBB); 829 830 // Emit subprogram debug descriptor. 831 if (CGDebugInfo *DI = getDebugInfo()) { 832 // Reconstruct the type from the argument list so that implicit parameters, 833 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 834 // convention. 835 CallingConv CC = CallingConv::CC_C; 836 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 837 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 838 CC = SrcFnTy->getCallConv(); 839 SmallVector<QualType, 16> ArgTypes; 840 for (const VarDecl *VD : Args) 841 ArgTypes.push_back(VD->getType()); 842 QualType FnType = getContext().getFunctionType( 843 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 844 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 845 } 846 847 if (ShouldInstrumentFunction()) 848 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 849 850 // Since emitting the mcount call here impacts optimizations such as function 851 // inlining, we just add an attribute to insert a mcount call in backend. 852 // The attribute "counting-function" is set to mcount function name which is 853 // architecture dependent. 854 if (CGM.getCodeGenOpts().InstrumentForProfiling) 855 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 856 857 if (RetTy->isVoidType()) { 858 // Void type; nothing to return. 859 ReturnValue = Address::invalid(); 860 861 // Count the implicit return. 862 if (!endsWithReturn(D)) 863 ++NumReturnExprs; 864 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 865 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 866 // Indirect aggregate return; emit returned value directly into sret slot. 867 // This reduces code size, and affects correctness in C++. 868 auto AI = CurFn->arg_begin(); 869 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 870 ++AI; 871 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 872 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 873 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 874 // Load the sret pointer from the argument struct and return into that. 875 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 876 llvm::Function::arg_iterator EI = CurFn->arg_end(); 877 --EI; 878 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 879 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 880 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 881 } else { 882 ReturnValue = CreateIRTemp(RetTy, "retval"); 883 884 // Tell the epilog emitter to autorelease the result. We do this 885 // now so that various specialized functions can suppress it 886 // during their IR-generation. 887 if (getLangOpts().ObjCAutoRefCount && 888 !CurFnInfo->isReturnsRetained() && 889 RetTy->isObjCRetainableType()) 890 AutoreleaseResult = true; 891 } 892 893 EmitStartEHSpec(CurCodeDecl); 894 895 PrologueCleanupDepth = EHStack.stable_begin(); 896 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 897 898 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 899 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 900 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 901 if (MD->getParent()->isLambda() && 902 MD->getOverloadedOperator() == OO_Call) { 903 // We're in a lambda; figure out the captures. 904 MD->getParent()->getCaptureFields(LambdaCaptureFields, 905 LambdaThisCaptureField); 906 if (LambdaThisCaptureField) { 907 // If the lambda captures the object referred to by '*this' - either by 908 // value or by reference, make sure CXXThisValue points to the correct 909 // object. 910 911 // Get the lvalue for the field (which is a copy of the enclosing object 912 // or contains the address of the enclosing object). 913 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 914 if (!LambdaThisCaptureField->getType()->isPointerType()) { 915 // If the enclosing object was captured by value, just use its address. 916 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 917 } else { 918 // Load the lvalue pointed to by the field, since '*this' was captured 919 // by reference. 920 CXXThisValue = 921 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 922 } 923 } 924 for (auto *FD : MD->getParent()->fields()) { 925 if (FD->hasCapturedVLAType()) { 926 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 927 SourceLocation()).getScalarVal(); 928 auto VAT = FD->getCapturedVLAType(); 929 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 930 } 931 } 932 } else { 933 // Not in a lambda; just use 'this' from the method. 934 // FIXME: Should we generate a new load for each use of 'this'? The 935 // fast register allocator would be happier... 936 CXXThisValue = CXXABIThisValue; 937 } 938 } 939 940 // If any of the arguments have a variably modified type, make sure to 941 // emit the type size. 942 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 943 i != e; ++i) { 944 const VarDecl *VD = *i; 945 946 // Dig out the type as written from ParmVarDecls; it's unclear whether 947 // the standard (C99 6.9.1p10) requires this, but we're following the 948 // precedent set by gcc. 949 QualType Ty; 950 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 951 Ty = PVD->getOriginalType(); 952 else 953 Ty = VD->getType(); 954 955 if (Ty->isVariablyModifiedType()) 956 EmitVariablyModifiedType(Ty); 957 } 958 // Emit a location at the end of the prologue. 959 if (CGDebugInfo *DI = getDebugInfo()) 960 DI->EmitLocation(Builder, StartLoc); 961 } 962 963 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 964 const Stmt *Body) { 965 incrementProfileCounter(Body); 966 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 967 EmitCompoundStmtWithoutScope(*S); 968 else 969 EmitStmt(Body); 970 } 971 972 /// When instrumenting to collect profile data, the counts for some blocks 973 /// such as switch cases need to not include the fall-through counts, so 974 /// emit a branch around the instrumentation code. When not instrumenting, 975 /// this just calls EmitBlock(). 976 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 977 const Stmt *S) { 978 llvm::BasicBlock *SkipCountBB = nullptr; 979 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 980 // When instrumenting for profiling, the fallthrough to certain 981 // statements needs to skip over the instrumentation code so that we 982 // get an accurate count. 983 SkipCountBB = createBasicBlock("skipcount"); 984 EmitBranch(SkipCountBB); 985 } 986 EmitBlock(BB); 987 uint64_t CurrentCount = getCurrentProfileCount(); 988 incrementProfileCounter(S); 989 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 990 if (SkipCountBB) 991 EmitBlock(SkipCountBB); 992 } 993 994 /// Tries to mark the given function nounwind based on the 995 /// non-existence of any throwing calls within it. We believe this is 996 /// lightweight enough to do at -O0. 997 static void TryMarkNoThrow(llvm::Function *F) { 998 // LLVM treats 'nounwind' on a function as part of the type, so we 999 // can't do this on functions that can be overwritten. 1000 if (F->isInterposable()) return; 1001 1002 for (llvm::BasicBlock &BB : *F) 1003 for (llvm::Instruction &I : BB) 1004 if (I.mayThrow()) 1005 return; 1006 1007 F->setDoesNotThrow(); 1008 } 1009 1010 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1011 FunctionArgList &Args) { 1012 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1013 QualType ResTy = FD->getReturnType(); 1014 1015 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1016 if (MD && MD->isInstance()) { 1017 if (CGM.getCXXABI().HasThisReturn(GD)) 1018 ResTy = MD->getThisType(getContext()); 1019 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1020 ResTy = CGM.getContext().VoidPtrTy; 1021 CGM.getCXXABI().buildThisParam(*this, Args); 1022 } 1023 1024 // The base version of an inheriting constructor whose constructed base is a 1025 // virtual base is not passed any arguments (because it doesn't actually call 1026 // the inherited constructor). 1027 bool PassedParams = true; 1028 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1029 if (auto Inherited = CD->getInheritedConstructor()) 1030 PassedParams = 1031 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1032 1033 if (PassedParams) { 1034 for (auto *Param : FD->parameters()) { 1035 Args.push_back(Param); 1036 if (!Param->hasAttr<PassObjectSizeAttr>()) 1037 continue; 1038 1039 IdentifierInfo *NoID = nullptr; 1040 auto *Implicit = ImplicitParamDecl::Create( 1041 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1042 getContext().getSizeType()); 1043 SizeArguments[Param] = Implicit; 1044 Args.push_back(Implicit); 1045 } 1046 } 1047 1048 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1049 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1050 1051 return ResTy; 1052 } 1053 1054 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1055 const CGFunctionInfo &FnInfo) { 1056 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1057 CurGD = GD; 1058 1059 FunctionArgList Args; 1060 QualType ResTy = BuildFunctionArgList(GD, Args); 1061 1062 // Check if we should generate debug info for this function. 1063 if (FD->hasAttr<NoDebugAttr>()) 1064 DebugInfo = nullptr; // disable debug info indefinitely for this function 1065 1066 SourceRange BodyRange; 1067 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1068 CurEHLocation = BodyRange.getEnd(); 1069 1070 // Use the location of the start of the function to determine where 1071 // the function definition is located. By default use the location 1072 // of the declaration as the location for the subprogram. A function 1073 // may lack a declaration in the source code if it is created by code 1074 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1075 SourceLocation Loc = FD->getLocation(); 1076 1077 // If this is a function specialization then use the pattern body 1078 // as the location for the function. 1079 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1080 if (SpecDecl->hasBody(SpecDecl)) 1081 Loc = SpecDecl->getLocation(); 1082 1083 Stmt *Body = FD->getBody(); 1084 1085 // Initialize helper which will detect jumps which can cause invalid lifetime 1086 // markers. 1087 if (Body && ShouldEmitLifetimeMarkers) 1088 Bypasses.Init(Body); 1089 1090 // Emit the standard function prologue. 1091 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1092 1093 // Generate the body of the function. 1094 PGO.assignRegionCounters(GD, CurFn); 1095 if (isa<CXXDestructorDecl>(FD)) 1096 EmitDestructorBody(Args); 1097 else if (isa<CXXConstructorDecl>(FD)) 1098 EmitConstructorBody(Args); 1099 else if (getLangOpts().CUDA && 1100 !getLangOpts().CUDAIsDevice && 1101 FD->hasAttr<CUDAGlobalAttr>()) 1102 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1103 else if (isa<CXXConversionDecl>(FD) && 1104 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1105 // The lambda conversion to block pointer is special; the semantics can't be 1106 // expressed in the AST, so IRGen needs to special-case it. 1107 EmitLambdaToBlockPointerBody(Args); 1108 } else if (isa<CXXMethodDecl>(FD) && 1109 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1110 // The lambda static invoker function is special, because it forwards or 1111 // clones the body of the function call operator (but is actually static). 1112 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1113 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1114 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1115 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1116 // Implicit copy-assignment gets the same special treatment as implicit 1117 // copy-constructors. 1118 emitImplicitAssignmentOperatorBody(Args); 1119 } else if (Body) { 1120 EmitFunctionBody(Args, Body); 1121 } else 1122 llvm_unreachable("no definition for emitted function"); 1123 1124 // C++11 [stmt.return]p2: 1125 // Flowing off the end of a function [...] results in undefined behavior in 1126 // a value-returning function. 1127 // C11 6.9.1p12: 1128 // If the '}' that terminates a function is reached, and the value of the 1129 // function call is used by the caller, the behavior is undefined. 1130 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1131 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1132 if (SanOpts.has(SanitizerKind::Return)) { 1133 SanitizerScope SanScope(this); 1134 llvm::Value *IsFalse = Builder.getFalse(); 1135 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1136 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1137 None); 1138 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1139 EmitTrapCall(llvm::Intrinsic::trap); 1140 } 1141 Builder.CreateUnreachable(); 1142 Builder.ClearInsertionPoint(); 1143 } 1144 1145 // Emit the standard function epilogue. 1146 FinishFunction(BodyRange.getEnd()); 1147 1148 // If we haven't marked the function nothrow through other means, do 1149 // a quick pass now to see if we can. 1150 if (!CurFn->doesNotThrow()) 1151 TryMarkNoThrow(CurFn); 1152 } 1153 1154 /// ContainsLabel - Return true if the statement contains a label in it. If 1155 /// this statement is not executed normally, it not containing a label means 1156 /// that we can just remove the code. 1157 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1158 // Null statement, not a label! 1159 if (!S) return false; 1160 1161 // If this is a label, we have to emit the code, consider something like: 1162 // if (0) { ... foo: bar(); } goto foo; 1163 // 1164 // TODO: If anyone cared, we could track __label__'s, since we know that you 1165 // can't jump to one from outside their declared region. 1166 if (isa<LabelStmt>(S)) 1167 return true; 1168 1169 // If this is a case/default statement, and we haven't seen a switch, we have 1170 // to emit the code. 1171 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1172 return true; 1173 1174 // If this is a switch statement, we want to ignore cases below it. 1175 if (isa<SwitchStmt>(S)) 1176 IgnoreCaseStmts = true; 1177 1178 // Scan subexpressions for verboten labels. 1179 for (const Stmt *SubStmt : S->children()) 1180 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1181 return true; 1182 1183 return false; 1184 } 1185 1186 /// containsBreak - Return true if the statement contains a break out of it. 1187 /// If the statement (recursively) contains a switch or loop with a break 1188 /// inside of it, this is fine. 1189 bool CodeGenFunction::containsBreak(const Stmt *S) { 1190 // Null statement, not a label! 1191 if (!S) return false; 1192 1193 // If this is a switch or loop that defines its own break scope, then we can 1194 // include it and anything inside of it. 1195 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1196 isa<ForStmt>(S)) 1197 return false; 1198 1199 if (isa<BreakStmt>(S)) 1200 return true; 1201 1202 // Scan subexpressions for verboten breaks. 1203 for (const Stmt *SubStmt : S->children()) 1204 if (containsBreak(SubStmt)) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1211 if (!S) return false; 1212 1213 // Some statement kinds add a scope and thus never add a decl to the current 1214 // scope. Note, this list is longer than the list of statements that might 1215 // have an unscoped decl nested within them, but this way is conservatively 1216 // correct even if more statement kinds are added. 1217 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1218 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1219 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1220 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1221 return false; 1222 1223 if (isa<DeclStmt>(S)) 1224 return true; 1225 1226 for (const Stmt *SubStmt : S->children()) 1227 if (mightAddDeclToScope(SubStmt)) 1228 return true; 1229 1230 return false; 1231 } 1232 1233 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1234 /// to a constant, or if it does but contains a label, return false. If it 1235 /// constant folds return true and set the boolean result in Result. 1236 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1237 bool &ResultBool, 1238 bool AllowLabels) { 1239 llvm::APSInt ResultInt; 1240 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1241 return false; 1242 1243 ResultBool = ResultInt.getBoolValue(); 1244 return true; 1245 } 1246 1247 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1248 /// to a constant, or if it does but contains a label, return false. If it 1249 /// constant folds return true and set the folded value. 1250 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1251 llvm::APSInt &ResultInt, 1252 bool AllowLabels) { 1253 // FIXME: Rename and handle conversion of other evaluatable things 1254 // to bool. 1255 llvm::APSInt Int; 1256 if (!Cond->EvaluateAsInt(Int, getContext())) 1257 return false; // Not foldable, not integer or not fully evaluatable. 1258 1259 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1260 return false; // Contains a label. 1261 1262 ResultInt = Int; 1263 return true; 1264 } 1265 1266 1267 1268 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1269 /// statement) to the specified blocks. Based on the condition, this might try 1270 /// to simplify the codegen of the conditional based on the branch. 1271 /// 1272 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1273 llvm::BasicBlock *TrueBlock, 1274 llvm::BasicBlock *FalseBlock, 1275 uint64_t TrueCount) { 1276 Cond = Cond->IgnoreParens(); 1277 1278 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1279 1280 // Handle X && Y in a condition. 1281 if (CondBOp->getOpcode() == BO_LAnd) { 1282 // If we have "1 && X", simplify the code. "0 && X" would have constant 1283 // folded if the case was simple enough. 1284 bool ConstantBool = false; 1285 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1286 ConstantBool) { 1287 // br(1 && X) -> br(X). 1288 incrementProfileCounter(CondBOp); 1289 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1290 TrueCount); 1291 } 1292 1293 // If we have "X && 1", simplify the code to use an uncond branch. 1294 // "X && 0" would have been constant folded to 0. 1295 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1296 ConstantBool) { 1297 // br(X && 1) -> br(X). 1298 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1299 TrueCount); 1300 } 1301 1302 // Emit the LHS as a conditional. If the LHS conditional is false, we 1303 // want to jump to the FalseBlock. 1304 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1305 // The counter tells us how often we evaluate RHS, and all of TrueCount 1306 // can be propagated to that branch. 1307 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1308 1309 ConditionalEvaluation eval(*this); 1310 { 1311 ApplyDebugLocation DL(*this, Cond); 1312 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1313 EmitBlock(LHSTrue); 1314 } 1315 1316 incrementProfileCounter(CondBOp); 1317 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1318 1319 // Any temporaries created here are conditional. 1320 eval.begin(*this); 1321 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1322 eval.end(*this); 1323 1324 return; 1325 } 1326 1327 if (CondBOp->getOpcode() == BO_LOr) { 1328 // If we have "0 || X", simplify the code. "1 || X" would have constant 1329 // folded if the case was simple enough. 1330 bool ConstantBool = false; 1331 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1332 !ConstantBool) { 1333 // br(0 || X) -> br(X). 1334 incrementProfileCounter(CondBOp); 1335 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1336 TrueCount); 1337 } 1338 1339 // If we have "X || 0", simplify the code to use an uncond branch. 1340 // "X || 1" would have been constant folded to 1. 1341 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1342 !ConstantBool) { 1343 // br(X || 0) -> br(X). 1344 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1345 TrueCount); 1346 } 1347 1348 // Emit the LHS as a conditional. If the LHS conditional is true, we 1349 // want to jump to the TrueBlock. 1350 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1351 // We have the count for entry to the RHS and for the whole expression 1352 // being true, so we can divy up True count between the short circuit and 1353 // the RHS. 1354 uint64_t LHSCount = 1355 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1356 uint64_t RHSCount = TrueCount - LHSCount; 1357 1358 ConditionalEvaluation eval(*this); 1359 { 1360 ApplyDebugLocation DL(*this, Cond); 1361 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1362 EmitBlock(LHSFalse); 1363 } 1364 1365 incrementProfileCounter(CondBOp); 1366 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1367 1368 // Any temporaries created here are conditional. 1369 eval.begin(*this); 1370 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1371 1372 eval.end(*this); 1373 1374 return; 1375 } 1376 } 1377 1378 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1379 // br(!x, t, f) -> br(x, f, t) 1380 if (CondUOp->getOpcode() == UO_LNot) { 1381 // Negate the count. 1382 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1383 // Negate the condition and swap the destination blocks. 1384 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1385 FalseCount); 1386 } 1387 } 1388 1389 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1390 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1391 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1392 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1393 1394 ConditionalEvaluation cond(*this); 1395 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1396 getProfileCount(CondOp)); 1397 1398 // When computing PGO branch weights, we only know the overall count for 1399 // the true block. This code is essentially doing tail duplication of the 1400 // naive code-gen, introducing new edges for which counts are not 1401 // available. Divide the counts proportionally between the LHS and RHS of 1402 // the conditional operator. 1403 uint64_t LHSScaledTrueCount = 0; 1404 if (TrueCount) { 1405 double LHSRatio = 1406 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1407 LHSScaledTrueCount = TrueCount * LHSRatio; 1408 } 1409 1410 cond.begin(*this); 1411 EmitBlock(LHSBlock); 1412 incrementProfileCounter(CondOp); 1413 { 1414 ApplyDebugLocation DL(*this, Cond); 1415 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1416 LHSScaledTrueCount); 1417 } 1418 cond.end(*this); 1419 1420 cond.begin(*this); 1421 EmitBlock(RHSBlock); 1422 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1423 TrueCount - LHSScaledTrueCount); 1424 cond.end(*this); 1425 1426 return; 1427 } 1428 1429 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1430 // Conditional operator handling can give us a throw expression as a 1431 // condition for a case like: 1432 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1433 // Fold this to: 1434 // br(c, throw x, br(y, t, f)) 1435 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1436 return; 1437 } 1438 1439 // If the branch has a condition wrapped by __builtin_unpredictable, 1440 // create metadata that specifies that the branch is unpredictable. 1441 // Don't bother if not optimizing because that metadata would not be used. 1442 llvm::MDNode *Unpredictable = nullptr; 1443 auto *Call = dyn_cast<CallExpr>(Cond); 1444 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1445 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1446 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1447 llvm::MDBuilder MDHelper(getLLVMContext()); 1448 Unpredictable = MDHelper.createUnpredictable(); 1449 } 1450 } 1451 1452 // Create branch weights based on the number of times we get here and the 1453 // number of times the condition should be true. 1454 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1455 llvm::MDNode *Weights = 1456 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1457 1458 // Emit the code with the fully general case. 1459 llvm::Value *CondV; 1460 { 1461 ApplyDebugLocation DL(*this, Cond); 1462 CondV = EvaluateExprAsBool(Cond); 1463 } 1464 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1465 } 1466 1467 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1468 /// specified stmt yet. 1469 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1470 CGM.ErrorUnsupported(S, Type); 1471 } 1472 1473 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1474 /// variable-length array whose elements have a non-zero bit-pattern. 1475 /// 1476 /// \param baseType the inner-most element type of the array 1477 /// \param src - a char* pointing to the bit-pattern for a single 1478 /// base element of the array 1479 /// \param sizeInChars - the total size of the VLA, in chars 1480 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1481 Address dest, Address src, 1482 llvm::Value *sizeInChars) { 1483 CGBuilderTy &Builder = CGF.Builder; 1484 1485 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1486 llvm::Value *baseSizeInChars 1487 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1488 1489 Address begin = 1490 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1491 llvm::Value *end = 1492 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1493 1494 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1495 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1496 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1497 1498 // Make a loop over the VLA. C99 guarantees that the VLA element 1499 // count must be nonzero. 1500 CGF.EmitBlock(loopBB); 1501 1502 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1503 cur->addIncoming(begin.getPointer(), originBB); 1504 1505 CharUnits curAlign = 1506 dest.getAlignment().alignmentOfArrayElement(baseSize); 1507 1508 // memcpy the individual element bit-pattern. 1509 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1510 /*volatile*/ false); 1511 1512 // Go to the next element. 1513 llvm::Value *next = 1514 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1515 1516 // Leave if that's the end of the VLA. 1517 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1518 Builder.CreateCondBr(done, contBB, loopBB); 1519 cur->addIncoming(next, loopBB); 1520 1521 CGF.EmitBlock(contBB); 1522 } 1523 1524 void 1525 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1526 // Ignore empty classes in C++. 1527 if (getLangOpts().CPlusPlus) { 1528 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1529 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1530 return; 1531 } 1532 } 1533 1534 // Cast the dest ptr to the appropriate i8 pointer type. 1535 if (DestPtr.getElementType() != Int8Ty) 1536 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1537 1538 // Get size and alignment info for this aggregate. 1539 CharUnits size = getContext().getTypeSizeInChars(Ty); 1540 1541 llvm::Value *SizeVal; 1542 const VariableArrayType *vla; 1543 1544 // Don't bother emitting a zero-byte memset. 1545 if (size.isZero()) { 1546 // But note that getTypeInfo returns 0 for a VLA. 1547 if (const VariableArrayType *vlaType = 1548 dyn_cast_or_null<VariableArrayType>( 1549 getContext().getAsArrayType(Ty))) { 1550 QualType eltType; 1551 llvm::Value *numElts; 1552 std::tie(numElts, eltType) = getVLASize(vlaType); 1553 1554 SizeVal = numElts; 1555 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1556 if (!eltSize.isOne()) 1557 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1558 vla = vlaType; 1559 } else { 1560 return; 1561 } 1562 } else { 1563 SizeVal = CGM.getSize(size); 1564 vla = nullptr; 1565 } 1566 1567 // If the type contains a pointer to data member we can't memset it to zero. 1568 // Instead, create a null constant and copy it to the destination. 1569 // TODO: there are other patterns besides zero that we can usefully memset, 1570 // like -1, which happens to be the pattern used by member-pointers. 1571 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1572 // For a VLA, emit a single element, then splat that over the VLA. 1573 if (vla) Ty = getContext().getBaseElementType(vla); 1574 1575 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1576 1577 llvm::GlobalVariable *NullVariable = 1578 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1579 /*isConstant=*/true, 1580 llvm::GlobalVariable::PrivateLinkage, 1581 NullConstant, Twine()); 1582 CharUnits NullAlign = DestPtr.getAlignment(); 1583 NullVariable->setAlignment(NullAlign.getQuantity()); 1584 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1585 NullAlign); 1586 1587 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1588 1589 // Get and call the appropriate llvm.memcpy overload. 1590 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1591 return; 1592 } 1593 1594 // Otherwise, just memset the whole thing to zero. This is legal 1595 // because in LLVM, all default initializers (other than the ones we just 1596 // handled above) are guaranteed to have a bit pattern of all zeros. 1597 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1598 } 1599 1600 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1601 // Make sure that there is a block for the indirect goto. 1602 if (!IndirectBranch) 1603 GetIndirectGotoBlock(); 1604 1605 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1606 1607 // Make sure the indirect branch includes all of the address-taken blocks. 1608 IndirectBranch->addDestination(BB); 1609 return llvm::BlockAddress::get(CurFn, BB); 1610 } 1611 1612 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1613 // If we already made the indirect branch for indirect goto, return its block. 1614 if (IndirectBranch) return IndirectBranch->getParent(); 1615 1616 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1617 1618 // Create the PHI node that indirect gotos will add entries to. 1619 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1620 "indirect.goto.dest"); 1621 1622 // Create the indirect branch instruction. 1623 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1624 return IndirectBranch->getParent(); 1625 } 1626 1627 /// Computes the length of an array in elements, as well as the base 1628 /// element type and a properly-typed first element pointer. 1629 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1630 QualType &baseType, 1631 Address &addr) { 1632 const ArrayType *arrayType = origArrayType; 1633 1634 // If it's a VLA, we have to load the stored size. Note that 1635 // this is the size of the VLA in bytes, not its size in elements. 1636 llvm::Value *numVLAElements = nullptr; 1637 if (isa<VariableArrayType>(arrayType)) { 1638 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1639 1640 // Walk into all VLAs. This doesn't require changes to addr, 1641 // which has type T* where T is the first non-VLA element type. 1642 do { 1643 QualType elementType = arrayType->getElementType(); 1644 arrayType = getContext().getAsArrayType(elementType); 1645 1646 // If we only have VLA components, 'addr' requires no adjustment. 1647 if (!arrayType) { 1648 baseType = elementType; 1649 return numVLAElements; 1650 } 1651 } while (isa<VariableArrayType>(arrayType)); 1652 1653 // We get out here only if we find a constant array type 1654 // inside the VLA. 1655 } 1656 1657 // We have some number of constant-length arrays, so addr should 1658 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1659 // down to the first element of addr. 1660 SmallVector<llvm::Value*, 8> gepIndices; 1661 1662 // GEP down to the array type. 1663 llvm::ConstantInt *zero = Builder.getInt32(0); 1664 gepIndices.push_back(zero); 1665 1666 uint64_t countFromCLAs = 1; 1667 QualType eltType; 1668 1669 llvm::ArrayType *llvmArrayType = 1670 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1671 while (llvmArrayType) { 1672 assert(isa<ConstantArrayType>(arrayType)); 1673 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1674 == llvmArrayType->getNumElements()); 1675 1676 gepIndices.push_back(zero); 1677 countFromCLAs *= llvmArrayType->getNumElements(); 1678 eltType = arrayType->getElementType(); 1679 1680 llvmArrayType = 1681 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1682 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1683 assert((!llvmArrayType || arrayType) && 1684 "LLVM and Clang types are out-of-synch"); 1685 } 1686 1687 if (arrayType) { 1688 // From this point onwards, the Clang array type has been emitted 1689 // as some other type (probably a packed struct). Compute the array 1690 // size, and just emit the 'begin' expression as a bitcast. 1691 while (arrayType) { 1692 countFromCLAs *= 1693 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1694 eltType = arrayType->getElementType(); 1695 arrayType = getContext().getAsArrayType(eltType); 1696 } 1697 1698 llvm::Type *baseType = ConvertType(eltType); 1699 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1700 } else { 1701 // Create the actual GEP. 1702 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1703 gepIndices, "array.begin"), 1704 addr.getAlignment()); 1705 } 1706 1707 baseType = eltType; 1708 1709 llvm::Value *numElements 1710 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1711 1712 // If we had any VLA dimensions, factor them in. 1713 if (numVLAElements) 1714 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1715 1716 return numElements; 1717 } 1718 1719 std::pair<llvm::Value*, QualType> 1720 CodeGenFunction::getVLASize(QualType type) { 1721 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1722 assert(vla && "type was not a variable array type!"); 1723 return getVLASize(vla); 1724 } 1725 1726 std::pair<llvm::Value*, QualType> 1727 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1728 // The number of elements so far; always size_t. 1729 llvm::Value *numElements = nullptr; 1730 1731 QualType elementType; 1732 do { 1733 elementType = type->getElementType(); 1734 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1735 assert(vlaSize && "no size for VLA!"); 1736 assert(vlaSize->getType() == SizeTy); 1737 1738 if (!numElements) { 1739 numElements = vlaSize; 1740 } else { 1741 // It's undefined behavior if this wraps around, so mark it that way. 1742 // FIXME: Teach -fsanitize=undefined to trap this. 1743 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1744 } 1745 } while ((type = getContext().getAsVariableArrayType(elementType))); 1746 1747 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1748 } 1749 1750 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1751 assert(type->isVariablyModifiedType() && 1752 "Must pass variably modified type to EmitVLASizes!"); 1753 1754 EnsureInsertPoint(); 1755 1756 // We're going to walk down into the type and look for VLA 1757 // expressions. 1758 do { 1759 assert(type->isVariablyModifiedType()); 1760 1761 const Type *ty = type.getTypePtr(); 1762 switch (ty->getTypeClass()) { 1763 1764 #define TYPE(Class, Base) 1765 #define ABSTRACT_TYPE(Class, Base) 1766 #define NON_CANONICAL_TYPE(Class, Base) 1767 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1768 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1769 #include "clang/AST/TypeNodes.def" 1770 llvm_unreachable("unexpected dependent type!"); 1771 1772 // These types are never variably-modified. 1773 case Type::Builtin: 1774 case Type::Complex: 1775 case Type::Vector: 1776 case Type::ExtVector: 1777 case Type::Record: 1778 case Type::Enum: 1779 case Type::Elaborated: 1780 case Type::TemplateSpecialization: 1781 case Type::ObjCTypeParam: 1782 case Type::ObjCObject: 1783 case Type::ObjCInterface: 1784 case Type::ObjCObjectPointer: 1785 llvm_unreachable("type class is never variably-modified!"); 1786 1787 case Type::Adjusted: 1788 type = cast<AdjustedType>(ty)->getAdjustedType(); 1789 break; 1790 1791 case Type::Decayed: 1792 type = cast<DecayedType>(ty)->getPointeeType(); 1793 break; 1794 1795 case Type::Pointer: 1796 type = cast<PointerType>(ty)->getPointeeType(); 1797 break; 1798 1799 case Type::BlockPointer: 1800 type = cast<BlockPointerType>(ty)->getPointeeType(); 1801 break; 1802 1803 case Type::LValueReference: 1804 case Type::RValueReference: 1805 type = cast<ReferenceType>(ty)->getPointeeType(); 1806 break; 1807 1808 case Type::MemberPointer: 1809 type = cast<MemberPointerType>(ty)->getPointeeType(); 1810 break; 1811 1812 case Type::ConstantArray: 1813 case Type::IncompleteArray: 1814 // Losing element qualification here is fine. 1815 type = cast<ArrayType>(ty)->getElementType(); 1816 break; 1817 1818 case Type::VariableArray: { 1819 // Losing element qualification here is fine. 1820 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1821 1822 // Unknown size indication requires no size computation. 1823 // Otherwise, evaluate and record it. 1824 if (const Expr *size = vat->getSizeExpr()) { 1825 // It's possible that we might have emitted this already, 1826 // e.g. with a typedef and a pointer to it. 1827 llvm::Value *&entry = VLASizeMap[size]; 1828 if (!entry) { 1829 llvm::Value *Size = EmitScalarExpr(size); 1830 1831 // C11 6.7.6.2p5: 1832 // If the size is an expression that is not an integer constant 1833 // expression [...] each time it is evaluated it shall have a value 1834 // greater than zero. 1835 if (SanOpts.has(SanitizerKind::VLABound) && 1836 size->getType()->isSignedIntegerType()) { 1837 SanitizerScope SanScope(this); 1838 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1839 llvm::Constant *StaticArgs[] = { 1840 EmitCheckSourceLocation(size->getLocStart()), 1841 EmitCheckTypeDescriptor(size->getType()) 1842 }; 1843 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1844 SanitizerKind::VLABound), 1845 "vla_bound_not_positive", StaticArgs, Size); 1846 } 1847 1848 // Always zexting here would be wrong if it weren't 1849 // undefined behavior to have a negative bound. 1850 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1851 } 1852 } 1853 type = vat->getElementType(); 1854 break; 1855 } 1856 1857 case Type::FunctionProto: 1858 case Type::FunctionNoProto: 1859 type = cast<FunctionType>(ty)->getReturnType(); 1860 break; 1861 1862 case Type::Paren: 1863 case Type::TypeOf: 1864 case Type::UnaryTransform: 1865 case Type::Attributed: 1866 case Type::SubstTemplateTypeParm: 1867 case Type::PackExpansion: 1868 // Keep walking after single level desugaring. 1869 type = type.getSingleStepDesugaredType(getContext()); 1870 break; 1871 1872 case Type::Typedef: 1873 case Type::Decltype: 1874 case Type::Auto: 1875 // Stop walking: nothing to do. 1876 return; 1877 1878 case Type::TypeOfExpr: 1879 // Stop walking: emit typeof expression. 1880 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1881 return; 1882 1883 case Type::Atomic: 1884 type = cast<AtomicType>(ty)->getValueType(); 1885 break; 1886 1887 case Type::Pipe: 1888 type = cast<PipeType>(ty)->getElementType(); 1889 break; 1890 } 1891 } while (type->isVariablyModifiedType()); 1892 } 1893 1894 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1895 if (getContext().getBuiltinVaListType()->isArrayType()) 1896 return EmitPointerWithAlignment(E); 1897 return EmitLValue(E).getAddress(); 1898 } 1899 1900 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1901 return EmitLValue(E).getAddress(); 1902 } 1903 1904 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1905 const APValue &Init) { 1906 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1907 if (CGDebugInfo *Dbg = getDebugInfo()) 1908 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1909 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1910 } 1911 1912 CodeGenFunction::PeepholeProtection 1913 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1914 // At the moment, the only aggressive peephole we do in IR gen 1915 // is trunc(zext) folding, but if we add more, we can easily 1916 // extend this protection. 1917 1918 if (!rvalue.isScalar()) return PeepholeProtection(); 1919 llvm::Value *value = rvalue.getScalarVal(); 1920 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1921 1922 // Just make an extra bitcast. 1923 assert(HaveInsertPoint()); 1924 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1925 Builder.GetInsertBlock()); 1926 1927 PeepholeProtection protection; 1928 protection.Inst = inst; 1929 return protection; 1930 } 1931 1932 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1933 if (!protection.Inst) return; 1934 1935 // In theory, we could try to duplicate the peepholes now, but whatever. 1936 protection.Inst->eraseFromParent(); 1937 } 1938 1939 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1940 llvm::Value *AnnotatedVal, 1941 StringRef AnnotationStr, 1942 SourceLocation Location) { 1943 llvm::Value *Args[4] = { 1944 AnnotatedVal, 1945 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1946 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1947 CGM.EmitAnnotationLineNo(Location) 1948 }; 1949 return Builder.CreateCall(AnnotationFn, Args); 1950 } 1951 1952 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1953 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1954 // FIXME We create a new bitcast for every annotation because that's what 1955 // llvm-gcc was doing. 1956 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1957 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1958 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1959 I->getAnnotation(), D->getLocation()); 1960 } 1961 1962 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1963 Address Addr) { 1964 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1965 llvm::Value *V = Addr.getPointer(); 1966 llvm::Type *VTy = V->getType(); 1967 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1968 CGM.Int8PtrTy); 1969 1970 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1971 // FIXME Always emit the cast inst so we can differentiate between 1972 // annotation on the first field of a struct and annotation on the struct 1973 // itself. 1974 if (VTy != CGM.Int8PtrTy) 1975 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1976 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1977 V = Builder.CreateBitCast(V, VTy); 1978 } 1979 1980 return Address(V, Addr.getAlignment()); 1981 } 1982 1983 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1984 1985 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1986 : CGF(CGF) { 1987 assert(!CGF->IsSanitizerScope); 1988 CGF->IsSanitizerScope = true; 1989 } 1990 1991 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1992 CGF->IsSanitizerScope = false; 1993 } 1994 1995 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1996 const llvm::Twine &Name, 1997 llvm::BasicBlock *BB, 1998 llvm::BasicBlock::iterator InsertPt) const { 1999 LoopStack.InsertHelper(I); 2000 if (IsSanitizerScope) 2001 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2002 } 2003 2004 void CGBuilderInserter::InsertHelper( 2005 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2006 llvm::BasicBlock::iterator InsertPt) const { 2007 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2008 if (CGF) 2009 CGF->InsertHelper(I, Name, BB, InsertPt); 2010 } 2011 2012 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2013 CodeGenModule &CGM, const FunctionDecl *FD, 2014 std::string &FirstMissing) { 2015 // If there aren't any required features listed then go ahead and return. 2016 if (ReqFeatures.empty()) 2017 return false; 2018 2019 // Now build up the set of caller features and verify that all the required 2020 // features are there. 2021 llvm::StringMap<bool> CallerFeatureMap; 2022 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2023 2024 // If we have at least one of the features in the feature list return 2025 // true, otherwise return false. 2026 return std::all_of( 2027 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2028 SmallVector<StringRef, 1> OrFeatures; 2029 Feature.split(OrFeatures, "|"); 2030 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2031 [&](StringRef Feature) { 2032 if (!CallerFeatureMap.lookup(Feature)) { 2033 FirstMissing = Feature.str(); 2034 return false; 2035 } 2036 return true; 2037 }); 2038 }); 2039 } 2040 2041 // Emits an error if we don't have a valid set of target features for the 2042 // called function. 2043 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2044 const FunctionDecl *TargetDecl) { 2045 // Early exit if this is an indirect call. 2046 if (!TargetDecl) 2047 return; 2048 2049 // Get the current enclosing function if it exists. If it doesn't 2050 // we can't check the target features anyhow. 2051 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2052 if (!FD) 2053 return; 2054 2055 // Grab the required features for the call. For a builtin this is listed in 2056 // the td file with the default cpu, for an always_inline function this is any 2057 // listed cpu and any listed features. 2058 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2059 std::string MissingFeature; 2060 if (BuiltinID) { 2061 SmallVector<StringRef, 1> ReqFeatures; 2062 const char *FeatureList = 2063 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2064 // Return if the builtin doesn't have any required features. 2065 if (!FeatureList || StringRef(FeatureList) == "") 2066 return; 2067 StringRef(FeatureList).split(ReqFeatures, ","); 2068 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2069 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2070 << TargetDecl->getDeclName() 2071 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2072 2073 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2074 // Get the required features for the callee. 2075 SmallVector<StringRef, 1> ReqFeatures; 2076 llvm::StringMap<bool> CalleeFeatureMap; 2077 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2078 for (const auto &F : CalleeFeatureMap) { 2079 // Only positive features are "required". 2080 if (F.getValue()) 2081 ReqFeatures.push_back(F.getKey()); 2082 } 2083 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2084 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2085 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2086 } 2087 } 2088 2089 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2090 if (!CGM.getCodeGenOpts().SanitizeStats) 2091 return; 2092 2093 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2094 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2095 CGM.getSanStats().create(IRB, SSK); 2096 } 2097 2098 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2099 if (CGDebugInfo *DI = getDebugInfo()) 2100 return DI->SourceLocToDebugLoc(Location); 2101 2102 return llvm::DebugLoc(); 2103 } 2104