1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   // Asan uses markers for use-after-scope checks.
46   if (CGOpts.SanitizeAddressUseAfterScope)
47     return true;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // For now, only in optimized builds.
55   return CGOpts.OptimizationLevel != 0;
56 }
57 
58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
59     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
60       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
61               CGBuilderInserterTy(this)),
62       CurFn(nullptr), ReturnValue(Address::invalid()),
63       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
64       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
65       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
66       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
67       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
68       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
69       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
70       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
71       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
72       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
73       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
74       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
75       CXXStructorImplicitParamDecl(nullptr),
76       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
77       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
78       TerminateHandler(nullptr), TrapBB(nullptr),
79       ShouldEmitLifetimeMarkers(
80           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
81   if (!suppressNewContext)
82     CGM.getCXXABI().getMangleContext().startNewFunction();
83 
84   llvm::FastMathFlags FMF;
85   if (CGM.getLangOpts().FastMath)
86     FMF.setUnsafeAlgebra();
87   if (CGM.getLangOpts().FiniteMathOnly) {
88     FMF.setNoNaNs();
89     FMF.setNoInfs();
90   }
91   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
92     FMF.setNoNaNs();
93   }
94   if (CGM.getCodeGenOpts().NoSignedZeros) {
95     FMF.setNoSignedZeros();
96   }
97   if (CGM.getCodeGenOpts().ReciprocalMath) {
98     FMF.setAllowReciprocal();
99   }
100   Builder.setFastMathFlags(FMF);
101 }
102 
103 CodeGenFunction::~CodeGenFunction() {
104   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
105 
106   // If there are any unclaimed block infos, go ahead and destroy them
107   // now.  This can happen if IR-gen gets clever and skips evaluating
108   // something.
109   if (FirstBlockInfo)
110     destroyBlockInfos(FirstBlockInfo);
111 
112   if (getLangOpts().OpenMP) {
113     CGM.getOpenMPRuntime().functionFinished(*this);
114   }
115 }
116 
117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
118                                                      AlignmentSource *Source) {
119   return getNaturalTypeAlignment(T->getPointeeType(), Source,
120                                  /*forPointee*/ true);
121 }
122 
123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
124                                                    AlignmentSource *Source,
125                                                    bool forPointeeType) {
126   // Honor alignment typedef attributes even on incomplete types.
127   // We also honor them straight for C++ class types, even as pointees;
128   // there's an expressivity gap here.
129   if (auto TT = T->getAs<TypedefType>()) {
130     if (auto Align = TT->getDecl()->getMaxAlignment()) {
131       if (Source) *Source = AlignmentSource::AttributedType;
132       return getContext().toCharUnitsFromBits(Align);
133     }
134   }
135 
136   if (Source) *Source = AlignmentSource::Type;
137 
138   CharUnits Alignment;
139   if (T->isIncompleteType()) {
140     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
141   } else {
142     // For C++ class pointees, we don't know whether we're pointing at a
143     // base or a complete object, so we generally need to use the
144     // non-virtual alignment.
145     const CXXRecordDecl *RD;
146     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
147       Alignment = CGM.getClassPointerAlignment(RD);
148     } else {
149       Alignment = getContext().getTypeAlignInChars(T);
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   AlignmentSource AlignSource;
165   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
166   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
167                           CGM.getTBAAInfo(T));
168 }
169 
170 /// Given a value of type T* that may not be to a complete object,
171 /// construct an l-value with the natural pointee alignment of T.
172 LValue
173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
174   AlignmentSource AlignSource;
175   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
176   return MakeAddrLValue(Address(V, Align), T, AlignSource);
177 }
178 
179 
180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
181   return CGM.getTypes().ConvertTypeForMem(T);
182 }
183 
184 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
185   return CGM.getTypes().ConvertType(T);
186 }
187 
188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
189   type = type.getCanonicalType();
190   while (true) {
191     switch (type->getTypeClass()) {
192 #define TYPE(name, parent)
193 #define ABSTRACT_TYPE(name, parent)
194 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
195 #define DEPENDENT_TYPE(name, parent) case Type::name:
196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
197 #include "clang/AST/TypeNodes.def"
198       llvm_unreachable("non-canonical or dependent type in IR-generation");
199 
200     case Type::Auto:
201       llvm_unreachable("undeduced auto type in IR-generation");
202 
203     // Various scalar types.
204     case Type::Builtin:
205     case Type::Pointer:
206     case Type::BlockPointer:
207     case Type::LValueReference:
208     case Type::RValueReference:
209     case Type::MemberPointer:
210     case Type::Vector:
211     case Type::ExtVector:
212     case Type::FunctionProto:
213     case Type::FunctionNoProto:
214     case Type::Enum:
215     case Type::ObjCObjectPointer:
216     case Type::Pipe:
217       return TEK_Scalar;
218 
219     // Complexes.
220     case Type::Complex:
221       return TEK_Complex;
222 
223     // Arrays, records, and Objective-C objects.
224     case Type::ConstantArray:
225     case Type::IncompleteArray:
226     case Type::VariableArray:
227     case Type::Record:
228     case Type::ObjCObject:
229     case Type::ObjCInterface:
230       return TEK_Aggregate;
231 
232     // We operate on atomic values according to their underlying type.
233     case Type::Atomic:
234       type = cast<AtomicType>(type)->getValueType();
235       continue;
236     }
237     llvm_unreachable("unknown type kind!");
238   }
239 }
240 
241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
242   // For cleanliness, we try to avoid emitting the return block for
243   // simple cases.
244   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
245 
246   if (CurBB) {
247     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
248 
249     // We have a valid insert point, reuse it if it is empty or there are no
250     // explicit jumps to the return block.
251     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
252       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
253       delete ReturnBlock.getBlock();
254     } else
255       EmitBlock(ReturnBlock.getBlock());
256     return llvm::DebugLoc();
257   }
258 
259   // Otherwise, if the return block is the target of a single direct
260   // branch then we can just put the code in that block instead. This
261   // cleans up functions which started with a unified return block.
262   if (ReturnBlock.getBlock()->hasOneUse()) {
263     llvm::BranchInst *BI =
264       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
265     if (BI && BI->isUnconditional() &&
266         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
267       // Record/return the DebugLoc of the simple 'return' expression to be used
268       // later by the actual 'ret' instruction.
269       llvm::DebugLoc Loc = BI->getDebugLoc();
270       Builder.SetInsertPoint(BI->getParent());
271       BI->eraseFromParent();
272       delete ReturnBlock.getBlock();
273       return Loc;
274     }
275   }
276 
277   // FIXME: We are at an unreachable point, there is no reason to emit the block
278   // unless it has uses. However, we still need a place to put the debug
279   // region.end for now.
280 
281   EmitBlock(ReturnBlock.getBlock());
282   return llvm::DebugLoc();
283 }
284 
285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
286   if (!BB) return;
287   if (!BB->use_empty())
288     return CGF.CurFn->getBasicBlockList().push_back(BB);
289   delete BB;
290 }
291 
292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
293   assert(BreakContinueStack.empty() &&
294          "mismatched push/pop in break/continue stack!");
295 
296   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
297     && NumSimpleReturnExprs == NumReturnExprs
298     && ReturnBlock.getBlock()->use_empty();
299   // Usually the return expression is evaluated before the cleanup
300   // code.  If the function contains only a simple return statement,
301   // such as a constant, the location before the cleanup code becomes
302   // the last useful breakpoint in the function, because the simple
303   // return expression will be evaluated after the cleanup code. To be
304   // safe, set the debug location for cleanup code to the location of
305   // the return statement.  Otherwise the cleanup code should be at the
306   // end of the function's lexical scope.
307   //
308   // If there are multiple branches to the return block, the branch
309   // instructions will get the location of the return statements and
310   // all will be fine.
311   if (CGDebugInfo *DI = getDebugInfo()) {
312     if (OnlySimpleReturnStmts)
313       DI->EmitLocation(Builder, LastStopPoint);
314     else
315       DI->EmitLocation(Builder, EndLoc);
316   }
317 
318   // Pop any cleanups that might have been associated with the
319   // parameters.  Do this in whatever block we're currently in; it's
320   // important to do this before we enter the return block or return
321   // edges will be *really* confused.
322   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
323   bool HasOnlyLifetimeMarkers =
324       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
325   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
326   if (HasCleanups) {
327     // Make sure the line table doesn't jump back into the body for
328     // the ret after it's been at EndLoc.
329     if (CGDebugInfo *DI = getDebugInfo())
330       if (OnlySimpleReturnStmts)
331         DI->EmitLocation(Builder, EndLoc);
332 
333     PopCleanupBlocks(PrologueCleanupDepth);
334   }
335 
336   // Emit function epilog (to return).
337   llvm::DebugLoc Loc = EmitReturnBlock();
338 
339   if (ShouldInstrumentFunction())
340     EmitFunctionInstrumentation("__cyg_profile_func_exit");
341 
342   // Emit debug descriptor for function end.
343   if (CGDebugInfo *DI = getDebugInfo())
344     DI->EmitFunctionEnd(Builder);
345 
346   // Reset the debug location to that of the simple 'return' expression, if any
347   // rather than that of the end of the function's scope '}'.
348   ApplyDebugLocation AL(*this, Loc);
349   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
350   EmitEndEHSpec(CurCodeDecl);
351 
352   assert(EHStack.empty() &&
353          "did not remove all scopes from cleanup stack!");
354 
355   // If someone did an indirect goto, emit the indirect goto block at the end of
356   // the function.
357   if (IndirectBranch) {
358     EmitBlock(IndirectBranch->getParent());
359     Builder.ClearInsertionPoint();
360   }
361 
362   // If some of our locals escaped, insert a call to llvm.localescape in the
363   // entry block.
364   if (!EscapedLocals.empty()) {
365     // Invert the map from local to index into a simple vector. There should be
366     // no holes.
367     SmallVector<llvm::Value *, 4> EscapeArgs;
368     EscapeArgs.resize(EscapedLocals.size());
369     for (auto &Pair : EscapedLocals)
370       EscapeArgs[Pair.second] = Pair.first;
371     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
372         &CGM.getModule(), llvm::Intrinsic::localescape);
373     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
374   }
375 
376   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
377   llvm::Instruction *Ptr = AllocaInsertPt;
378   AllocaInsertPt = nullptr;
379   Ptr->eraseFromParent();
380 
381   // If someone took the address of a label but never did an indirect goto, we
382   // made a zero entry PHI node, which is illegal, zap it now.
383   if (IndirectBranch) {
384     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
385     if (PN->getNumIncomingValues() == 0) {
386       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
387       PN->eraseFromParent();
388     }
389   }
390 
391   EmitIfUsed(*this, EHResumeBlock);
392   EmitIfUsed(*this, TerminateLandingPad);
393   EmitIfUsed(*this, TerminateHandler);
394   EmitIfUsed(*this, UnreachableBlock);
395 
396   if (CGM.getCodeGenOpts().EmitDeclMetadata)
397     EmitDeclMetadata();
398 
399   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
400            I = DeferredReplacements.begin(),
401            E = DeferredReplacements.end();
402        I != E; ++I) {
403     I->first->replaceAllUsesWith(I->second);
404     I->first->eraseFromParent();
405   }
406 }
407 
408 /// ShouldInstrumentFunction - Return true if the current function should be
409 /// instrumented with __cyg_profile_func_* calls
410 bool CodeGenFunction::ShouldInstrumentFunction() {
411   if (!CGM.getCodeGenOpts().InstrumentFunctions)
412     return false;
413   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
414     return false;
415   return true;
416 }
417 
418 /// ShouldXRayInstrument - Return true if the current function should be
419 /// instrumented with XRay nop sleds.
420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
421   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
422 }
423 
424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
425 /// instrumentation function with the current function and the call site, if
426 /// function instrumentation is enabled.
427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
428   auto NL = ApplyDebugLocation::CreateArtificial(*this);
429   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
430   llvm::PointerType *PointerTy = Int8PtrTy;
431   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
432   llvm::FunctionType *FunctionTy =
433     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
434 
435   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
436   llvm::CallInst *CallSite = Builder.CreateCall(
437     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
438     llvm::ConstantInt::get(Int32Ty, 0),
439     "callsite");
440 
441   llvm::Value *args[] = {
442     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
443     CallSite
444   };
445 
446   EmitNounwindRuntimeCall(F, args);
447 }
448 
449 static void removeImageAccessQualifier(std::string& TyName) {
450   std::string ReadOnlyQual("__read_only");
451   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
452   if (ReadOnlyPos != std::string::npos)
453     // "+ 1" for the space after access qualifier.
454     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
455   else {
456     std::string WriteOnlyQual("__write_only");
457     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
458     if (WriteOnlyPos != std::string::npos)
459       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
460     else {
461       std::string ReadWriteQual("__read_write");
462       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
463       if (ReadWritePos != std::string::npos)
464         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
465     }
466   }
467 }
468 
469 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
470 // information in the program executable. The argument information stored
471 // includes the argument name, its type, the address and access qualifiers used.
472 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
473                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
474                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
475   // Create MDNodes that represent the kernel arg metadata.
476   // Each MDNode is a list in the form of "key", N number of values which is
477   // the same number of values as their are kernel arguments.
478 
479   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
480 
481   // MDNode for the kernel argument address space qualifiers.
482   SmallVector<llvm::Metadata *, 8> addressQuals;
483 
484   // MDNode for the kernel argument access qualifiers (images only).
485   SmallVector<llvm::Metadata *, 8> accessQuals;
486 
487   // MDNode for the kernel argument type names.
488   SmallVector<llvm::Metadata *, 8> argTypeNames;
489 
490   // MDNode for the kernel argument base type names.
491   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
492 
493   // MDNode for the kernel argument type qualifiers.
494   SmallVector<llvm::Metadata *, 8> argTypeQuals;
495 
496   // MDNode for the kernel argument names.
497   SmallVector<llvm::Metadata *, 8> argNames;
498 
499   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
500     const ParmVarDecl *parm = FD->getParamDecl(i);
501     QualType ty = parm->getType();
502     std::string typeQuals;
503 
504     if (ty->isPointerType()) {
505       QualType pointeeTy = ty->getPointeeType();
506 
507       // Get address qualifier.
508       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
509           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
510 
511       // Get argument type name.
512       std::string typeName =
513           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
514 
515       // Turn "unsigned type" to "utype"
516       std::string::size_type pos = typeName.find("unsigned");
517       if (pointeeTy.isCanonical() && pos != std::string::npos)
518         typeName.erase(pos+1, 8);
519 
520       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
521 
522       std::string baseTypeName =
523           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
524               Policy) +
525           "*";
526 
527       // Turn "unsigned type" to "utype"
528       pos = baseTypeName.find("unsigned");
529       if (pos != std::string::npos)
530         baseTypeName.erase(pos+1, 8);
531 
532       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
533 
534       // Get argument type qualifiers:
535       if (ty.isRestrictQualified())
536         typeQuals = "restrict";
537       if (pointeeTy.isConstQualified() ||
538           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
539         typeQuals += typeQuals.empty() ? "const" : " const";
540       if (pointeeTy.isVolatileQualified())
541         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
542     } else {
543       uint32_t AddrSpc = 0;
544       bool isPipe = ty->isPipeType();
545       if (ty->isImageType() || isPipe)
546         AddrSpc =
547           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
548 
549       addressQuals.push_back(
550           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
551 
552       // Get argument type name.
553       std::string typeName;
554       if (isPipe)
555         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
556                      .getAsString(Policy);
557       else
558         typeName = ty.getUnqualifiedType().getAsString(Policy);
559 
560       // Turn "unsigned type" to "utype"
561       std::string::size_type pos = typeName.find("unsigned");
562       if (ty.isCanonical() && pos != std::string::npos)
563         typeName.erase(pos+1, 8);
564 
565       std::string baseTypeName;
566       if (isPipe)
567         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
568                           ->getElementType().getCanonicalType()
569                           .getAsString(Policy);
570       else
571         baseTypeName =
572           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
573 
574       // Remove access qualifiers on images
575       // (as they are inseparable from type in clang implementation,
576       // but OpenCL spec provides a special query to get access qualifier
577       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
578       if (ty->isImageType()) {
579         removeImageAccessQualifier(typeName);
580         removeImageAccessQualifier(baseTypeName);
581       }
582 
583       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
584 
585       // Turn "unsigned type" to "utype"
586       pos = baseTypeName.find("unsigned");
587       if (pos != std::string::npos)
588         baseTypeName.erase(pos+1, 8);
589 
590       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
591 
592       // Get argument type qualifiers:
593       if (ty.isConstQualified())
594         typeQuals = "const";
595       if (ty.isVolatileQualified())
596         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
597       if (isPipe)
598         typeQuals = "pipe";
599     }
600 
601     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
602 
603     // Get image and pipe access qualifier:
604     if (ty->isImageType()|| ty->isPipeType()) {
605       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
606       if (A && A->isWriteOnly())
607         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
608       else if (A && A->isReadWrite())
609         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
610       else
611         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
612     } else
613       accessQuals.push_back(llvm::MDString::get(Context, "none"));
614 
615     // Get argument name.
616     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
617   }
618 
619   Fn->setMetadata("kernel_arg_addr_space",
620                   llvm::MDNode::get(Context, addressQuals));
621   Fn->setMetadata("kernel_arg_access_qual",
622                   llvm::MDNode::get(Context, accessQuals));
623   Fn->setMetadata("kernel_arg_type",
624                   llvm::MDNode::get(Context, argTypeNames));
625   Fn->setMetadata("kernel_arg_base_type",
626                   llvm::MDNode::get(Context, argBaseTypeNames));
627   Fn->setMetadata("kernel_arg_type_qual",
628                   llvm::MDNode::get(Context, argTypeQuals));
629   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
630     Fn->setMetadata("kernel_arg_name",
631                     llvm::MDNode::get(Context, argNames));
632 }
633 
634 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
635                                                llvm::Function *Fn)
636 {
637   if (!FD->hasAttr<OpenCLKernelAttr>())
638     return;
639 
640   llvm::LLVMContext &Context = getLLVMContext();
641 
642   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
643 
644   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
645     QualType hintQTy = A->getTypeHint();
646     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
647     bool isSignedInteger =
648         hintQTy->isSignedIntegerType() ||
649         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
650     llvm::Metadata *attrMDArgs[] = {
651         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
652             CGM.getTypes().ConvertType(A->getTypeHint()))),
653         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
654             llvm::IntegerType::get(Context, 32),
655             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
656     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
657   }
658 
659   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
660     llvm::Metadata *attrMDArgs[] = {
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
663         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
664     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
665   }
666 
667   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
668     llvm::Metadata *attrMDArgs[] = {
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
671         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
672     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
673   }
674 }
675 
676 /// Determine whether the function F ends with a return stmt.
677 static bool endsWithReturn(const Decl* F) {
678   const Stmt *Body = nullptr;
679   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
680     Body = FD->getBody();
681   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
682     Body = OMD->getBody();
683 
684   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
685     auto LastStmt = CS->body_rbegin();
686     if (LastStmt != CS->body_rend())
687       return isa<ReturnStmt>(*LastStmt);
688   }
689   return false;
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD,
693                                     QualType RetTy,
694                                     llvm::Function *Fn,
695                                     const CGFunctionInfo &FnInfo,
696                                     const FunctionArgList &Args,
697                                     SourceLocation Loc,
698                                     SourceLocation StartLoc) {
699   assert(!CurFn &&
700          "Do not use a CodeGenFunction object for more than one function");
701 
702   const Decl *D = GD.getDecl();
703 
704   DidCallStackSave = false;
705   CurCodeDecl = D;
706   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
707     if (FD->usesSEHTry())
708       CurSEHParent = FD;
709   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
710   FnRetTy = RetTy;
711   CurFn = Fn;
712   CurFnInfo = &FnInfo;
713   assert(CurFn->isDeclaration() && "Function already has body?");
714 
715   if (CGM.isInSanitizerBlacklist(Fn, Loc))
716     SanOpts.clear();
717 
718   if (D) {
719     // Apply the no_sanitize* attributes to SanOpts.
720     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
721       SanOpts.Mask &= ~Attr->getMask();
722   }
723 
724   // Apply sanitizer attributes to the function.
725   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
726     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
727   if (SanOpts.has(SanitizerKind::Thread))
728     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
729   if (SanOpts.has(SanitizerKind::Memory))
730     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
731   if (SanOpts.has(SanitizerKind::SafeStack))
732     Fn->addFnAttr(llvm::Attribute::SafeStack);
733 
734   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
735   // .cxx_destruct and all of their calees at run time.
736   if (SanOpts.has(SanitizerKind::Thread)) {
737     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
738       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
739       if (OMD->getMethodFamily() == OMF_dealloc ||
740           OMD->getMethodFamily() == OMF_initialize ||
741           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
742         Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
743         Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
744       }
745     }
746   }
747 
748   // Apply xray attributes to the function (as a string, for now)
749   if (D && ShouldXRayInstrumentFunction()) {
750     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
751       if (XRayAttr->alwaysXRayInstrument())
752         Fn->addFnAttr("function-instrument", "xray-always");
753       if (XRayAttr->neverXRayInstrument())
754         Fn->addFnAttr("function-instrument", "xray-never");
755     } else {
756       Fn->addFnAttr(
757           "xray-instruction-threshold",
758           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
759     }
760   }
761 
762   // Pass inline keyword to optimizer if it appears explicitly on any
763   // declaration. Also, in the case of -fno-inline attach NoInline
764   // attribute to all functions that are not marked AlwaysInline, or
765   // to all functions that are not marked inline or implicitly inline
766   // in the case of -finline-hint-functions.
767   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
768     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
769     if (!CodeGenOpts.NoInline) {
770       for (auto RI : FD->redecls())
771         if (RI->isInlineSpecified()) {
772           Fn->addFnAttr(llvm::Attribute::InlineHint);
773           break;
774         }
775       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
776           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
777         Fn->addFnAttr(llvm::Attribute::NoInline);
778     } else if (!FD->hasAttr<AlwaysInlineAttr>())
779       Fn->addFnAttr(llvm::Attribute::NoInline);
780     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
781       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
782   }
783 
784   // Add no-jump-tables value.
785   Fn->addFnAttr("no-jump-tables",
786                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
787 
788   if (getLangOpts().OpenCL) {
789     // Add metadata for a kernel function.
790     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
791       EmitOpenCLKernelMetadata(FD, Fn);
792   }
793 
794   // If we are checking function types, emit a function type signature as
795   // prologue data.
796   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
797     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
798       if (llvm::Constant *PrologueSig =
799               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
800         llvm::Constant *FTRTTIConst =
801             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
802         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
803         llvm::Constant *PrologueStructConst =
804             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
805         Fn->setPrologueData(PrologueStructConst);
806       }
807     }
808   }
809 
810   // If we're in C++ mode and the function name is "main", it is guaranteed
811   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
812   // used within a program").
813   if (getLangOpts().CPlusPlus)
814     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
815       if (FD->isMain())
816         Fn->addFnAttr(llvm::Attribute::NoRecurse);
817 
818   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
819 
820   // Create a marker to make it easy to insert allocas into the entryblock
821   // later.  Don't create this with the builder, because we don't want it
822   // folded.
823   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
824   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
825 
826   ReturnBlock = getJumpDestInCurrentScope("return");
827 
828   Builder.SetInsertPoint(EntryBB);
829 
830   // Emit subprogram debug descriptor.
831   if (CGDebugInfo *DI = getDebugInfo()) {
832     // Reconstruct the type from the argument list so that implicit parameters,
833     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
834     // convention.
835     CallingConv CC = CallingConv::CC_C;
836     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
837       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
838         CC = SrcFnTy->getCallConv();
839     SmallVector<QualType, 16> ArgTypes;
840     for (const VarDecl *VD : Args)
841       ArgTypes.push_back(VD->getType());
842     QualType FnType = getContext().getFunctionType(
843         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
844     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
845   }
846 
847   if (ShouldInstrumentFunction())
848     EmitFunctionInstrumentation("__cyg_profile_func_enter");
849 
850   // Since emitting the mcount call here impacts optimizations such as function
851   // inlining, we just add an attribute to insert a mcount call in backend.
852   // The attribute "counting-function" is set to mcount function name which is
853   // architecture dependent.
854   if (CGM.getCodeGenOpts().InstrumentForProfiling)
855     Fn->addFnAttr("counting-function", getTarget().getMCountName());
856 
857   if (RetTy->isVoidType()) {
858     // Void type; nothing to return.
859     ReturnValue = Address::invalid();
860 
861     // Count the implicit return.
862     if (!endsWithReturn(D))
863       ++NumReturnExprs;
864   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
865              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
866     // Indirect aggregate return; emit returned value directly into sret slot.
867     // This reduces code size, and affects correctness in C++.
868     auto AI = CurFn->arg_begin();
869     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
870       ++AI;
871     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
872   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
873              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
874     // Load the sret pointer from the argument struct and return into that.
875     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
876     llvm::Function::arg_iterator EI = CurFn->arg_end();
877     --EI;
878     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
879     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
880     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
881   } else {
882     ReturnValue = CreateIRTemp(RetTy, "retval");
883 
884     // Tell the epilog emitter to autorelease the result.  We do this
885     // now so that various specialized functions can suppress it
886     // during their IR-generation.
887     if (getLangOpts().ObjCAutoRefCount &&
888         !CurFnInfo->isReturnsRetained() &&
889         RetTy->isObjCRetainableType())
890       AutoreleaseResult = true;
891   }
892 
893   EmitStartEHSpec(CurCodeDecl);
894 
895   PrologueCleanupDepth = EHStack.stable_begin();
896   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
897 
898   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
899     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
900     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
901     if (MD->getParent()->isLambda() &&
902         MD->getOverloadedOperator() == OO_Call) {
903       // We're in a lambda; figure out the captures.
904       MD->getParent()->getCaptureFields(LambdaCaptureFields,
905                                         LambdaThisCaptureField);
906       if (LambdaThisCaptureField) {
907         // If the lambda captures the object referred to by '*this' - either by
908         // value or by reference, make sure CXXThisValue points to the correct
909         // object.
910 
911         // Get the lvalue for the field (which is a copy of the enclosing object
912         // or contains the address of the enclosing object).
913         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
914         if (!LambdaThisCaptureField->getType()->isPointerType()) {
915           // If the enclosing object was captured by value, just use its address.
916           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
917         } else {
918           // Load the lvalue pointed to by the field, since '*this' was captured
919           // by reference.
920           CXXThisValue =
921               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
922         }
923       }
924       for (auto *FD : MD->getParent()->fields()) {
925         if (FD->hasCapturedVLAType()) {
926           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
927                                            SourceLocation()).getScalarVal();
928           auto VAT = FD->getCapturedVLAType();
929           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
930         }
931       }
932     } else {
933       // Not in a lambda; just use 'this' from the method.
934       // FIXME: Should we generate a new load for each use of 'this'?  The
935       // fast register allocator would be happier...
936       CXXThisValue = CXXABIThisValue;
937     }
938   }
939 
940   // If any of the arguments have a variably modified type, make sure to
941   // emit the type size.
942   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
943        i != e; ++i) {
944     const VarDecl *VD = *i;
945 
946     // Dig out the type as written from ParmVarDecls; it's unclear whether
947     // the standard (C99 6.9.1p10) requires this, but we're following the
948     // precedent set by gcc.
949     QualType Ty;
950     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
951       Ty = PVD->getOriginalType();
952     else
953       Ty = VD->getType();
954 
955     if (Ty->isVariablyModifiedType())
956       EmitVariablyModifiedType(Ty);
957   }
958   // Emit a location at the end of the prologue.
959   if (CGDebugInfo *DI = getDebugInfo())
960     DI->EmitLocation(Builder, StartLoc);
961 }
962 
963 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
964                                        const Stmt *Body) {
965   incrementProfileCounter(Body);
966   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
967     EmitCompoundStmtWithoutScope(*S);
968   else
969     EmitStmt(Body);
970 }
971 
972 /// When instrumenting to collect profile data, the counts for some blocks
973 /// such as switch cases need to not include the fall-through counts, so
974 /// emit a branch around the instrumentation code. When not instrumenting,
975 /// this just calls EmitBlock().
976 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
977                                                const Stmt *S) {
978   llvm::BasicBlock *SkipCountBB = nullptr;
979   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
980     // When instrumenting for profiling, the fallthrough to certain
981     // statements needs to skip over the instrumentation code so that we
982     // get an accurate count.
983     SkipCountBB = createBasicBlock("skipcount");
984     EmitBranch(SkipCountBB);
985   }
986   EmitBlock(BB);
987   uint64_t CurrentCount = getCurrentProfileCount();
988   incrementProfileCounter(S);
989   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
990   if (SkipCountBB)
991     EmitBlock(SkipCountBB);
992 }
993 
994 /// Tries to mark the given function nounwind based on the
995 /// non-existence of any throwing calls within it.  We believe this is
996 /// lightweight enough to do at -O0.
997 static void TryMarkNoThrow(llvm::Function *F) {
998   // LLVM treats 'nounwind' on a function as part of the type, so we
999   // can't do this on functions that can be overwritten.
1000   if (F->isInterposable()) return;
1001 
1002   for (llvm::BasicBlock &BB : *F)
1003     for (llvm::Instruction &I : BB)
1004       if (I.mayThrow())
1005         return;
1006 
1007   F->setDoesNotThrow();
1008 }
1009 
1010 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1011                                                FunctionArgList &Args) {
1012   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1013   QualType ResTy = FD->getReturnType();
1014 
1015   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1016   if (MD && MD->isInstance()) {
1017     if (CGM.getCXXABI().HasThisReturn(GD))
1018       ResTy = MD->getThisType(getContext());
1019     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1020       ResTy = CGM.getContext().VoidPtrTy;
1021     CGM.getCXXABI().buildThisParam(*this, Args);
1022   }
1023 
1024   // The base version of an inheriting constructor whose constructed base is a
1025   // virtual base is not passed any arguments (because it doesn't actually call
1026   // the inherited constructor).
1027   bool PassedParams = true;
1028   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1029     if (auto Inherited = CD->getInheritedConstructor())
1030       PassedParams =
1031           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1032 
1033   if (PassedParams) {
1034     for (auto *Param : FD->parameters()) {
1035       Args.push_back(Param);
1036       if (!Param->hasAttr<PassObjectSizeAttr>())
1037         continue;
1038 
1039       IdentifierInfo *NoID = nullptr;
1040       auto *Implicit = ImplicitParamDecl::Create(
1041           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1042           getContext().getSizeType());
1043       SizeArguments[Param] = Implicit;
1044       Args.push_back(Implicit);
1045     }
1046   }
1047 
1048   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1049     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1050 
1051   return ResTy;
1052 }
1053 
1054 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1055                                    const CGFunctionInfo &FnInfo) {
1056   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1057   CurGD = GD;
1058 
1059   FunctionArgList Args;
1060   QualType ResTy = BuildFunctionArgList(GD, Args);
1061 
1062   // Check if we should generate debug info for this function.
1063   if (FD->hasAttr<NoDebugAttr>())
1064     DebugInfo = nullptr; // disable debug info indefinitely for this function
1065 
1066   SourceRange BodyRange;
1067   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1068   CurEHLocation = BodyRange.getEnd();
1069 
1070   // Use the location of the start of the function to determine where
1071   // the function definition is located. By default use the location
1072   // of the declaration as the location for the subprogram. A function
1073   // may lack a declaration in the source code if it is created by code
1074   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1075   SourceLocation Loc = FD->getLocation();
1076 
1077   // If this is a function specialization then use the pattern body
1078   // as the location for the function.
1079   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1080     if (SpecDecl->hasBody(SpecDecl))
1081       Loc = SpecDecl->getLocation();
1082 
1083   Stmt *Body = FD->getBody();
1084 
1085   // Initialize helper which will detect jumps which can cause invalid lifetime
1086   // markers.
1087   if (Body && ShouldEmitLifetimeMarkers)
1088     Bypasses.Init(Body);
1089 
1090   // Emit the standard function prologue.
1091   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1092 
1093   // Generate the body of the function.
1094   PGO.assignRegionCounters(GD, CurFn);
1095   if (isa<CXXDestructorDecl>(FD))
1096     EmitDestructorBody(Args);
1097   else if (isa<CXXConstructorDecl>(FD))
1098     EmitConstructorBody(Args);
1099   else if (getLangOpts().CUDA &&
1100            !getLangOpts().CUDAIsDevice &&
1101            FD->hasAttr<CUDAGlobalAttr>())
1102     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1103   else if (isa<CXXConversionDecl>(FD) &&
1104            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1105     // The lambda conversion to block pointer is special; the semantics can't be
1106     // expressed in the AST, so IRGen needs to special-case it.
1107     EmitLambdaToBlockPointerBody(Args);
1108   } else if (isa<CXXMethodDecl>(FD) &&
1109              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1110     // The lambda static invoker function is special, because it forwards or
1111     // clones the body of the function call operator (but is actually static).
1112     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1113   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1114              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1115               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1116     // Implicit copy-assignment gets the same special treatment as implicit
1117     // copy-constructors.
1118     emitImplicitAssignmentOperatorBody(Args);
1119   } else if (Body) {
1120     EmitFunctionBody(Args, Body);
1121   } else
1122     llvm_unreachable("no definition for emitted function");
1123 
1124   // C++11 [stmt.return]p2:
1125   //   Flowing off the end of a function [...] results in undefined behavior in
1126   //   a value-returning function.
1127   // C11 6.9.1p12:
1128   //   If the '}' that terminates a function is reached, and the value of the
1129   //   function call is used by the caller, the behavior is undefined.
1130   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1131       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1132     if (SanOpts.has(SanitizerKind::Return)) {
1133       SanitizerScope SanScope(this);
1134       llvm::Value *IsFalse = Builder.getFalse();
1135       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1136                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1137                 None);
1138     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1139       EmitTrapCall(llvm::Intrinsic::trap);
1140     }
1141     Builder.CreateUnreachable();
1142     Builder.ClearInsertionPoint();
1143   }
1144 
1145   // Emit the standard function epilogue.
1146   FinishFunction(BodyRange.getEnd());
1147 
1148   // If we haven't marked the function nothrow through other means, do
1149   // a quick pass now to see if we can.
1150   if (!CurFn->doesNotThrow())
1151     TryMarkNoThrow(CurFn);
1152 }
1153 
1154 /// ContainsLabel - Return true if the statement contains a label in it.  If
1155 /// this statement is not executed normally, it not containing a label means
1156 /// that we can just remove the code.
1157 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1158   // Null statement, not a label!
1159   if (!S) return false;
1160 
1161   // If this is a label, we have to emit the code, consider something like:
1162   // if (0) {  ...  foo:  bar(); }  goto foo;
1163   //
1164   // TODO: If anyone cared, we could track __label__'s, since we know that you
1165   // can't jump to one from outside their declared region.
1166   if (isa<LabelStmt>(S))
1167     return true;
1168 
1169   // If this is a case/default statement, and we haven't seen a switch, we have
1170   // to emit the code.
1171   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1172     return true;
1173 
1174   // If this is a switch statement, we want to ignore cases below it.
1175   if (isa<SwitchStmt>(S))
1176     IgnoreCaseStmts = true;
1177 
1178   // Scan subexpressions for verboten labels.
1179   for (const Stmt *SubStmt : S->children())
1180     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1181       return true;
1182 
1183   return false;
1184 }
1185 
1186 /// containsBreak - Return true if the statement contains a break out of it.
1187 /// If the statement (recursively) contains a switch or loop with a break
1188 /// inside of it, this is fine.
1189 bool CodeGenFunction::containsBreak(const Stmt *S) {
1190   // Null statement, not a label!
1191   if (!S) return false;
1192 
1193   // If this is a switch or loop that defines its own break scope, then we can
1194   // include it and anything inside of it.
1195   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1196       isa<ForStmt>(S))
1197     return false;
1198 
1199   if (isa<BreakStmt>(S))
1200     return true;
1201 
1202   // Scan subexpressions for verboten breaks.
1203   for (const Stmt *SubStmt : S->children())
1204     if (containsBreak(SubStmt))
1205       return true;
1206 
1207   return false;
1208 }
1209 
1210 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1211   if (!S) return false;
1212 
1213   // Some statement kinds add a scope and thus never add a decl to the current
1214   // scope. Note, this list is longer than the list of statements that might
1215   // have an unscoped decl nested within them, but this way is conservatively
1216   // correct even if more statement kinds are added.
1217   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1218       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1219       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1220       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1221     return false;
1222 
1223   if (isa<DeclStmt>(S))
1224     return true;
1225 
1226   for (const Stmt *SubStmt : S->children())
1227     if (mightAddDeclToScope(SubStmt))
1228       return true;
1229 
1230   return false;
1231 }
1232 
1233 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1234 /// to a constant, or if it does but contains a label, return false.  If it
1235 /// constant folds return true and set the boolean result in Result.
1236 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1237                                                    bool &ResultBool,
1238                                                    bool AllowLabels) {
1239   llvm::APSInt ResultInt;
1240   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1241     return false;
1242 
1243   ResultBool = ResultInt.getBoolValue();
1244   return true;
1245 }
1246 
1247 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1248 /// to a constant, or if it does but contains a label, return false.  If it
1249 /// constant folds return true and set the folded value.
1250 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1251                                                    llvm::APSInt &ResultInt,
1252                                                    bool AllowLabels) {
1253   // FIXME: Rename and handle conversion of other evaluatable things
1254   // to bool.
1255   llvm::APSInt Int;
1256   if (!Cond->EvaluateAsInt(Int, getContext()))
1257     return false;  // Not foldable, not integer or not fully evaluatable.
1258 
1259   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1260     return false;  // Contains a label.
1261 
1262   ResultInt = Int;
1263   return true;
1264 }
1265 
1266 
1267 
1268 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1269 /// statement) to the specified blocks.  Based on the condition, this might try
1270 /// to simplify the codegen of the conditional based on the branch.
1271 ///
1272 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1273                                            llvm::BasicBlock *TrueBlock,
1274                                            llvm::BasicBlock *FalseBlock,
1275                                            uint64_t TrueCount) {
1276   Cond = Cond->IgnoreParens();
1277 
1278   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1279 
1280     // Handle X && Y in a condition.
1281     if (CondBOp->getOpcode() == BO_LAnd) {
1282       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1283       // folded if the case was simple enough.
1284       bool ConstantBool = false;
1285       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1286           ConstantBool) {
1287         // br(1 && X) -> br(X).
1288         incrementProfileCounter(CondBOp);
1289         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1290                                     TrueCount);
1291       }
1292 
1293       // If we have "X && 1", simplify the code to use an uncond branch.
1294       // "X && 0" would have been constant folded to 0.
1295       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1296           ConstantBool) {
1297         // br(X && 1) -> br(X).
1298         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1299                                     TrueCount);
1300       }
1301 
1302       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1303       // want to jump to the FalseBlock.
1304       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1305       // The counter tells us how often we evaluate RHS, and all of TrueCount
1306       // can be propagated to that branch.
1307       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1308 
1309       ConditionalEvaluation eval(*this);
1310       {
1311         ApplyDebugLocation DL(*this, Cond);
1312         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1313         EmitBlock(LHSTrue);
1314       }
1315 
1316       incrementProfileCounter(CondBOp);
1317       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1318 
1319       // Any temporaries created here are conditional.
1320       eval.begin(*this);
1321       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1322       eval.end(*this);
1323 
1324       return;
1325     }
1326 
1327     if (CondBOp->getOpcode() == BO_LOr) {
1328       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1329       // folded if the case was simple enough.
1330       bool ConstantBool = false;
1331       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1332           !ConstantBool) {
1333         // br(0 || X) -> br(X).
1334         incrementProfileCounter(CondBOp);
1335         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1336                                     TrueCount);
1337       }
1338 
1339       // If we have "X || 0", simplify the code to use an uncond branch.
1340       // "X || 1" would have been constant folded to 1.
1341       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1342           !ConstantBool) {
1343         // br(X || 0) -> br(X).
1344         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1345                                     TrueCount);
1346       }
1347 
1348       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1349       // want to jump to the TrueBlock.
1350       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1351       // We have the count for entry to the RHS and for the whole expression
1352       // being true, so we can divy up True count between the short circuit and
1353       // the RHS.
1354       uint64_t LHSCount =
1355           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1356       uint64_t RHSCount = TrueCount - LHSCount;
1357 
1358       ConditionalEvaluation eval(*this);
1359       {
1360         ApplyDebugLocation DL(*this, Cond);
1361         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1362         EmitBlock(LHSFalse);
1363       }
1364 
1365       incrementProfileCounter(CondBOp);
1366       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1367 
1368       // Any temporaries created here are conditional.
1369       eval.begin(*this);
1370       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1371 
1372       eval.end(*this);
1373 
1374       return;
1375     }
1376   }
1377 
1378   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1379     // br(!x, t, f) -> br(x, f, t)
1380     if (CondUOp->getOpcode() == UO_LNot) {
1381       // Negate the count.
1382       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1383       // Negate the condition and swap the destination blocks.
1384       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1385                                   FalseCount);
1386     }
1387   }
1388 
1389   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1390     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1391     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1392     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1393 
1394     ConditionalEvaluation cond(*this);
1395     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1396                          getProfileCount(CondOp));
1397 
1398     // When computing PGO branch weights, we only know the overall count for
1399     // the true block. This code is essentially doing tail duplication of the
1400     // naive code-gen, introducing new edges for which counts are not
1401     // available. Divide the counts proportionally between the LHS and RHS of
1402     // the conditional operator.
1403     uint64_t LHSScaledTrueCount = 0;
1404     if (TrueCount) {
1405       double LHSRatio =
1406           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1407       LHSScaledTrueCount = TrueCount * LHSRatio;
1408     }
1409 
1410     cond.begin(*this);
1411     EmitBlock(LHSBlock);
1412     incrementProfileCounter(CondOp);
1413     {
1414       ApplyDebugLocation DL(*this, Cond);
1415       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1416                            LHSScaledTrueCount);
1417     }
1418     cond.end(*this);
1419 
1420     cond.begin(*this);
1421     EmitBlock(RHSBlock);
1422     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1423                          TrueCount - LHSScaledTrueCount);
1424     cond.end(*this);
1425 
1426     return;
1427   }
1428 
1429   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1430     // Conditional operator handling can give us a throw expression as a
1431     // condition for a case like:
1432     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1433     // Fold this to:
1434     //   br(c, throw x, br(y, t, f))
1435     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1436     return;
1437   }
1438 
1439   // If the branch has a condition wrapped by __builtin_unpredictable,
1440   // create metadata that specifies that the branch is unpredictable.
1441   // Don't bother if not optimizing because that metadata would not be used.
1442   llvm::MDNode *Unpredictable = nullptr;
1443   auto *Call = dyn_cast<CallExpr>(Cond);
1444   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1445     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1446     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1447       llvm::MDBuilder MDHelper(getLLVMContext());
1448       Unpredictable = MDHelper.createUnpredictable();
1449     }
1450   }
1451 
1452   // Create branch weights based on the number of times we get here and the
1453   // number of times the condition should be true.
1454   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1455   llvm::MDNode *Weights =
1456       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1457 
1458   // Emit the code with the fully general case.
1459   llvm::Value *CondV;
1460   {
1461     ApplyDebugLocation DL(*this, Cond);
1462     CondV = EvaluateExprAsBool(Cond);
1463   }
1464   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1465 }
1466 
1467 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1468 /// specified stmt yet.
1469 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1470   CGM.ErrorUnsupported(S, Type);
1471 }
1472 
1473 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1474 /// variable-length array whose elements have a non-zero bit-pattern.
1475 ///
1476 /// \param baseType the inner-most element type of the array
1477 /// \param src - a char* pointing to the bit-pattern for a single
1478 /// base element of the array
1479 /// \param sizeInChars - the total size of the VLA, in chars
1480 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1481                                Address dest, Address src,
1482                                llvm::Value *sizeInChars) {
1483   CGBuilderTy &Builder = CGF.Builder;
1484 
1485   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1486   llvm::Value *baseSizeInChars
1487     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1488 
1489   Address begin =
1490     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1491   llvm::Value *end =
1492     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1493 
1494   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1495   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1496   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1497 
1498   // Make a loop over the VLA.  C99 guarantees that the VLA element
1499   // count must be nonzero.
1500   CGF.EmitBlock(loopBB);
1501 
1502   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1503   cur->addIncoming(begin.getPointer(), originBB);
1504 
1505   CharUnits curAlign =
1506     dest.getAlignment().alignmentOfArrayElement(baseSize);
1507 
1508   // memcpy the individual element bit-pattern.
1509   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1510                        /*volatile*/ false);
1511 
1512   // Go to the next element.
1513   llvm::Value *next =
1514     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1515 
1516   // Leave if that's the end of the VLA.
1517   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1518   Builder.CreateCondBr(done, contBB, loopBB);
1519   cur->addIncoming(next, loopBB);
1520 
1521   CGF.EmitBlock(contBB);
1522 }
1523 
1524 void
1525 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1526   // Ignore empty classes in C++.
1527   if (getLangOpts().CPlusPlus) {
1528     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1529       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1530         return;
1531     }
1532   }
1533 
1534   // Cast the dest ptr to the appropriate i8 pointer type.
1535   if (DestPtr.getElementType() != Int8Ty)
1536     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1537 
1538   // Get size and alignment info for this aggregate.
1539   CharUnits size = getContext().getTypeSizeInChars(Ty);
1540 
1541   llvm::Value *SizeVal;
1542   const VariableArrayType *vla;
1543 
1544   // Don't bother emitting a zero-byte memset.
1545   if (size.isZero()) {
1546     // But note that getTypeInfo returns 0 for a VLA.
1547     if (const VariableArrayType *vlaType =
1548           dyn_cast_or_null<VariableArrayType>(
1549                                           getContext().getAsArrayType(Ty))) {
1550       QualType eltType;
1551       llvm::Value *numElts;
1552       std::tie(numElts, eltType) = getVLASize(vlaType);
1553 
1554       SizeVal = numElts;
1555       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1556       if (!eltSize.isOne())
1557         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1558       vla = vlaType;
1559     } else {
1560       return;
1561     }
1562   } else {
1563     SizeVal = CGM.getSize(size);
1564     vla = nullptr;
1565   }
1566 
1567   // If the type contains a pointer to data member we can't memset it to zero.
1568   // Instead, create a null constant and copy it to the destination.
1569   // TODO: there are other patterns besides zero that we can usefully memset,
1570   // like -1, which happens to be the pattern used by member-pointers.
1571   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1572     // For a VLA, emit a single element, then splat that over the VLA.
1573     if (vla) Ty = getContext().getBaseElementType(vla);
1574 
1575     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1576 
1577     llvm::GlobalVariable *NullVariable =
1578       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1579                                /*isConstant=*/true,
1580                                llvm::GlobalVariable::PrivateLinkage,
1581                                NullConstant, Twine());
1582     CharUnits NullAlign = DestPtr.getAlignment();
1583     NullVariable->setAlignment(NullAlign.getQuantity());
1584     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1585                    NullAlign);
1586 
1587     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1588 
1589     // Get and call the appropriate llvm.memcpy overload.
1590     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1591     return;
1592   }
1593 
1594   // Otherwise, just memset the whole thing to zero.  This is legal
1595   // because in LLVM, all default initializers (other than the ones we just
1596   // handled above) are guaranteed to have a bit pattern of all zeros.
1597   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1598 }
1599 
1600 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1601   // Make sure that there is a block for the indirect goto.
1602   if (!IndirectBranch)
1603     GetIndirectGotoBlock();
1604 
1605   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1606 
1607   // Make sure the indirect branch includes all of the address-taken blocks.
1608   IndirectBranch->addDestination(BB);
1609   return llvm::BlockAddress::get(CurFn, BB);
1610 }
1611 
1612 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1613   // If we already made the indirect branch for indirect goto, return its block.
1614   if (IndirectBranch) return IndirectBranch->getParent();
1615 
1616   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1617 
1618   // Create the PHI node that indirect gotos will add entries to.
1619   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1620                                               "indirect.goto.dest");
1621 
1622   // Create the indirect branch instruction.
1623   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1624   return IndirectBranch->getParent();
1625 }
1626 
1627 /// Computes the length of an array in elements, as well as the base
1628 /// element type and a properly-typed first element pointer.
1629 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1630                                               QualType &baseType,
1631                                               Address &addr) {
1632   const ArrayType *arrayType = origArrayType;
1633 
1634   // If it's a VLA, we have to load the stored size.  Note that
1635   // this is the size of the VLA in bytes, not its size in elements.
1636   llvm::Value *numVLAElements = nullptr;
1637   if (isa<VariableArrayType>(arrayType)) {
1638     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1639 
1640     // Walk into all VLAs.  This doesn't require changes to addr,
1641     // which has type T* where T is the first non-VLA element type.
1642     do {
1643       QualType elementType = arrayType->getElementType();
1644       arrayType = getContext().getAsArrayType(elementType);
1645 
1646       // If we only have VLA components, 'addr' requires no adjustment.
1647       if (!arrayType) {
1648         baseType = elementType;
1649         return numVLAElements;
1650       }
1651     } while (isa<VariableArrayType>(arrayType));
1652 
1653     // We get out here only if we find a constant array type
1654     // inside the VLA.
1655   }
1656 
1657   // We have some number of constant-length arrays, so addr should
1658   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1659   // down to the first element of addr.
1660   SmallVector<llvm::Value*, 8> gepIndices;
1661 
1662   // GEP down to the array type.
1663   llvm::ConstantInt *zero = Builder.getInt32(0);
1664   gepIndices.push_back(zero);
1665 
1666   uint64_t countFromCLAs = 1;
1667   QualType eltType;
1668 
1669   llvm::ArrayType *llvmArrayType =
1670     dyn_cast<llvm::ArrayType>(addr.getElementType());
1671   while (llvmArrayType) {
1672     assert(isa<ConstantArrayType>(arrayType));
1673     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1674              == llvmArrayType->getNumElements());
1675 
1676     gepIndices.push_back(zero);
1677     countFromCLAs *= llvmArrayType->getNumElements();
1678     eltType = arrayType->getElementType();
1679 
1680     llvmArrayType =
1681       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1682     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1683     assert((!llvmArrayType || arrayType) &&
1684            "LLVM and Clang types are out-of-synch");
1685   }
1686 
1687   if (arrayType) {
1688     // From this point onwards, the Clang array type has been emitted
1689     // as some other type (probably a packed struct). Compute the array
1690     // size, and just emit the 'begin' expression as a bitcast.
1691     while (arrayType) {
1692       countFromCLAs *=
1693           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1694       eltType = arrayType->getElementType();
1695       arrayType = getContext().getAsArrayType(eltType);
1696     }
1697 
1698     llvm::Type *baseType = ConvertType(eltType);
1699     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1700   } else {
1701     // Create the actual GEP.
1702     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1703                                              gepIndices, "array.begin"),
1704                    addr.getAlignment());
1705   }
1706 
1707   baseType = eltType;
1708 
1709   llvm::Value *numElements
1710     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1711 
1712   // If we had any VLA dimensions, factor them in.
1713   if (numVLAElements)
1714     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1715 
1716   return numElements;
1717 }
1718 
1719 std::pair<llvm::Value*, QualType>
1720 CodeGenFunction::getVLASize(QualType type) {
1721   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1722   assert(vla && "type was not a variable array type!");
1723   return getVLASize(vla);
1724 }
1725 
1726 std::pair<llvm::Value*, QualType>
1727 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1728   // The number of elements so far; always size_t.
1729   llvm::Value *numElements = nullptr;
1730 
1731   QualType elementType;
1732   do {
1733     elementType = type->getElementType();
1734     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1735     assert(vlaSize && "no size for VLA!");
1736     assert(vlaSize->getType() == SizeTy);
1737 
1738     if (!numElements) {
1739       numElements = vlaSize;
1740     } else {
1741       // It's undefined behavior if this wraps around, so mark it that way.
1742       // FIXME: Teach -fsanitize=undefined to trap this.
1743       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1744     }
1745   } while ((type = getContext().getAsVariableArrayType(elementType)));
1746 
1747   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1748 }
1749 
1750 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1751   assert(type->isVariablyModifiedType() &&
1752          "Must pass variably modified type to EmitVLASizes!");
1753 
1754   EnsureInsertPoint();
1755 
1756   // We're going to walk down into the type and look for VLA
1757   // expressions.
1758   do {
1759     assert(type->isVariablyModifiedType());
1760 
1761     const Type *ty = type.getTypePtr();
1762     switch (ty->getTypeClass()) {
1763 
1764 #define TYPE(Class, Base)
1765 #define ABSTRACT_TYPE(Class, Base)
1766 #define NON_CANONICAL_TYPE(Class, Base)
1767 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1768 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1769 #include "clang/AST/TypeNodes.def"
1770       llvm_unreachable("unexpected dependent type!");
1771 
1772     // These types are never variably-modified.
1773     case Type::Builtin:
1774     case Type::Complex:
1775     case Type::Vector:
1776     case Type::ExtVector:
1777     case Type::Record:
1778     case Type::Enum:
1779     case Type::Elaborated:
1780     case Type::TemplateSpecialization:
1781     case Type::ObjCTypeParam:
1782     case Type::ObjCObject:
1783     case Type::ObjCInterface:
1784     case Type::ObjCObjectPointer:
1785       llvm_unreachable("type class is never variably-modified!");
1786 
1787     case Type::Adjusted:
1788       type = cast<AdjustedType>(ty)->getAdjustedType();
1789       break;
1790 
1791     case Type::Decayed:
1792       type = cast<DecayedType>(ty)->getPointeeType();
1793       break;
1794 
1795     case Type::Pointer:
1796       type = cast<PointerType>(ty)->getPointeeType();
1797       break;
1798 
1799     case Type::BlockPointer:
1800       type = cast<BlockPointerType>(ty)->getPointeeType();
1801       break;
1802 
1803     case Type::LValueReference:
1804     case Type::RValueReference:
1805       type = cast<ReferenceType>(ty)->getPointeeType();
1806       break;
1807 
1808     case Type::MemberPointer:
1809       type = cast<MemberPointerType>(ty)->getPointeeType();
1810       break;
1811 
1812     case Type::ConstantArray:
1813     case Type::IncompleteArray:
1814       // Losing element qualification here is fine.
1815       type = cast<ArrayType>(ty)->getElementType();
1816       break;
1817 
1818     case Type::VariableArray: {
1819       // Losing element qualification here is fine.
1820       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1821 
1822       // Unknown size indication requires no size computation.
1823       // Otherwise, evaluate and record it.
1824       if (const Expr *size = vat->getSizeExpr()) {
1825         // It's possible that we might have emitted this already,
1826         // e.g. with a typedef and a pointer to it.
1827         llvm::Value *&entry = VLASizeMap[size];
1828         if (!entry) {
1829           llvm::Value *Size = EmitScalarExpr(size);
1830 
1831           // C11 6.7.6.2p5:
1832           //   If the size is an expression that is not an integer constant
1833           //   expression [...] each time it is evaluated it shall have a value
1834           //   greater than zero.
1835           if (SanOpts.has(SanitizerKind::VLABound) &&
1836               size->getType()->isSignedIntegerType()) {
1837             SanitizerScope SanScope(this);
1838             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1839             llvm::Constant *StaticArgs[] = {
1840               EmitCheckSourceLocation(size->getLocStart()),
1841               EmitCheckTypeDescriptor(size->getType())
1842             };
1843             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1844                                      SanitizerKind::VLABound),
1845                       "vla_bound_not_positive", StaticArgs, Size);
1846           }
1847 
1848           // Always zexting here would be wrong if it weren't
1849           // undefined behavior to have a negative bound.
1850           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1851         }
1852       }
1853       type = vat->getElementType();
1854       break;
1855     }
1856 
1857     case Type::FunctionProto:
1858     case Type::FunctionNoProto:
1859       type = cast<FunctionType>(ty)->getReturnType();
1860       break;
1861 
1862     case Type::Paren:
1863     case Type::TypeOf:
1864     case Type::UnaryTransform:
1865     case Type::Attributed:
1866     case Type::SubstTemplateTypeParm:
1867     case Type::PackExpansion:
1868       // Keep walking after single level desugaring.
1869       type = type.getSingleStepDesugaredType(getContext());
1870       break;
1871 
1872     case Type::Typedef:
1873     case Type::Decltype:
1874     case Type::Auto:
1875       // Stop walking: nothing to do.
1876       return;
1877 
1878     case Type::TypeOfExpr:
1879       // Stop walking: emit typeof expression.
1880       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1881       return;
1882 
1883     case Type::Atomic:
1884       type = cast<AtomicType>(ty)->getValueType();
1885       break;
1886 
1887     case Type::Pipe:
1888       type = cast<PipeType>(ty)->getElementType();
1889       break;
1890     }
1891   } while (type->isVariablyModifiedType());
1892 }
1893 
1894 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1895   if (getContext().getBuiltinVaListType()->isArrayType())
1896     return EmitPointerWithAlignment(E);
1897   return EmitLValue(E).getAddress();
1898 }
1899 
1900 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1901   return EmitLValue(E).getAddress();
1902 }
1903 
1904 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1905                                               const APValue &Init) {
1906   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1907   if (CGDebugInfo *Dbg = getDebugInfo())
1908     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1909       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1910 }
1911 
1912 CodeGenFunction::PeepholeProtection
1913 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1914   // At the moment, the only aggressive peephole we do in IR gen
1915   // is trunc(zext) folding, but if we add more, we can easily
1916   // extend this protection.
1917 
1918   if (!rvalue.isScalar()) return PeepholeProtection();
1919   llvm::Value *value = rvalue.getScalarVal();
1920   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1921 
1922   // Just make an extra bitcast.
1923   assert(HaveInsertPoint());
1924   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1925                                                   Builder.GetInsertBlock());
1926 
1927   PeepholeProtection protection;
1928   protection.Inst = inst;
1929   return protection;
1930 }
1931 
1932 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1933   if (!protection.Inst) return;
1934 
1935   // In theory, we could try to duplicate the peepholes now, but whatever.
1936   protection.Inst->eraseFromParent();
1937 }
1938 
1939 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1940                                                  llvm::Value *AnnotatedVal,
1941                                                  StringRef AnnotationStr,
1942                                                  SourceLocation Location) {
1943   llvm::Value *Args[4] = {
1944     AnnotatedVal,
1945     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1946     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1947     CGM.EmitAnnotationLineNo(Location)
1948   };
1949   return Builder.CreateCall(AnnotationFn, Args);
1950 }
1951 
1952 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1953   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1954   // FIXME We create a new bitcast for every annotation because that's what
1955   // llvm-gcc was doing.
1956   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1957     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1958                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1959                        I->getAnnotation(), D->getLocation());
1960 }
1961 
1962 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1963                                               Address Addr) {
1964   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1965   llvm::Value *V = Addr.getPointer();
1966   llvm::Type *VTy = V->getType();
1967   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1968                                     CGM.Int8PtrTy);
1969 
1970   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1971     // FIXME Always emit the cast inst so we can differentiate between
1972     // annotation on the first field of a struct and annotation on the struct
1973     // itself.
1974     if (VTy != CGM.Int8PtrTy)
1975       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1976     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1977     V = Builder.CreateBitCast(V, VTy);
1978   }
1979 
1980   return Address(V, Addr.getAlignment());
1981 }
1982 
1983 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1984 
1985 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1986     : CGF(CGF) {
1987   assert(!CGF->IsSanitizerScope);
1988   CGF->IsSanitizerScope = true;
1989 }
1990 
1991 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1992   CGF->IsSanitizerScope = false;
1993 }
1994 
1995 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1996                                    const llvm::Twine &Name,
1997                                    llvm::BasicBlock *BB,
1998                                    llvm::BasicBlock::iterator InsertPt) const {
1999   LoopStack.InsertHelper(I);
2000   if (IsSanitizerScope)
2001     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2002 }
2003 
2004 void CGBuilderInserter::InsertHelper(
2005     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2006     llvm::BasicBlock::iterator InsertPt) const {
2007   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2008   if (CGF)
2009     CGF->InsertHelper(I, Name, BB, InsertPt);
2010 }
2011 
2012 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2013                                 CodeGenModule &CGM, const FunctionDecl *FD,
2014                                 std::string &FirstMissing) {
2015   // If there aren't any required features listed then go ahead and return.
2016   if (ReqFeatures.empty())
2017     return false;
2018 
2019   // Now build up the set of caller features and verify that all the required
2020   // features are there.
2021   llvm::StringMap<bool> CallerFeatureMap;
2022   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2023 
2024   // If we have at least one of the features in the feature list return
2025   // true, otherwise return false.
2026   return std::all_of(
2027       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2028         SmallVector<StringRef, 1> OrFeatures;
2029         Feature.split(OrFeatures, "|");
2030         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2031                            [&](StringRef Feature) {
2032                              if (!CallerFeatureMap.lookup(Feature)) {
2033                                FirstMissing = Feature.str();
2034                                return false;
2035                              }
2036                              return true;
2037                            });
2038       });
2039 }
2040 
2041 // Emits an error if we don't have a valid set of target features for the
2042 // called function.
2043 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2044                                           const FunctionDecl *TargetDecl) {
2045   // Early exit if this is an indirect call.
2046   if (!TargetDecl)
2047     return;
2048 
2049   // Get the current enclosing function if it exists. If it doesn't
2050   // we can't check the target features anyhow.
2051   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2052   if (!FD)
2053     return;
2054 
2055   // Grab the required features for the call. For a builtin this is listed in
2056   // the td file with the default cpu, for an always_inline function this is any
2057   // listed cpu and any listed features.
2058   unsigned BuiltinID = TargetDecl->getBuiltinID();
2059   std::string MissingFeature;
2060   if (BuiltinID) {
2061     SmallVector<StringRef, 1> ReqFeatures;
2062     const char *FeatureList =
2063         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2064     // Return if the builtin doesn't have any required features.
2065     if (!FeatureList || StringRef(FeatureList) == "")
2066       return;
2067     StringRef(FeatureList).split(ReqFeatures, ",");
2068     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2069       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2070           << TargetDecl->getDeclName()
2071           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2072 
2073   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2074     // Get the required features for the callee.
2075     SmallVector<StringRef, 1> ReqFeatures;
2076     llvm::StringMap<bool> CalleeFeatureMap;
2077     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2078     for (const auto &F : CalleeFeatureMap) {
2079       // Only positive features are "required".
2080       if (F.getValue())
2081         ReqFeatures.push_back(F.getKey());
2082     }
2083     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2084       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2085           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2086   }
2087 }
2088 
2089 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2090   if (!CGM.getCodeGenOpts().SanitizeStats)
2091     return;
2092 
2093   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2094   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2095   CGM.getSanStats().create(IRB, SSK);
2096 }
2097 
2098 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2099   if (CGDebugInfo *DI = getDebugInfo())
2100     return DI->SourceLocToDebugLoc(Location);
2101 
2102   return llvm::DebugLoc();
2103 }
2104