1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 LValueBaseInfo *BaseInfo, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 136 return getContext().toCharUnitsFromBits(Align); 137 } 138 } 139 140 if (BaseInfo) 141 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 142 143 CharUnits Alignment; 144 if (T->isIncompleteType()) { 145 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 146 } else { 147 // For C++ class pointees, we don't know whether we're pointing at a 148 // base or a complete object, so we generally need to use the 149 // non-virtual alignment. 150 const CXXRecordDecl *RD; 151 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 152 Alignment = CGM.getClassPointerAlignment(RD); 153 } else { 154 Alignment = getContext().getTypeAlignInChars(T); 155 if (T.getQualifiers().hasUnaligned()) 156 Alignment = CharUnits::One(); 157 } 158 159 // Cap to the global maximum type alignment unless the alignment 160 // was somehow explicit on the type. 161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 162 if (Alignment.getQuantity() > MaxAlign && 163 !getContext().isAlignmentRequired(T)) 164 Alignment = CharUnits::fromQuantity(MaxAlign); 165 } 166 } 167 return Alignment; 168 } 169 170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 173 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 174 CGM.getTBAAInfo(T)); 175 } 176 177 /// Given a value of type T* that may not be to a complete object, 178 /// construct an l-value with the natural pointee alignment of T. 179 LValue 180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 183 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 184 } 185 186 187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 188 return CGM.getTypes().ConvertTypeForMem(T); 189 } 190 191 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 192 return CGM.getTypes().ConvertType(T); 193 } 194 195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 196 type = type.getCanonicalType(); 197 while (true) { 198 switch (type->getTypeClass()) { 199 #define TYPE(name, parent) 200 #define ABSTRACT_TYPE(name, parent) 201 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 202 #define DEPENDENT_TYPE(name, parent) case Type::name: 203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 204 #include "clang/AST/TypeNodes.def" 205 llvm_unreachable("non-canonical or dependent type in IR-generation"); 206 207 case Type::Auto: 208 case Type::DeducedTemplateSpecialization: 209 llvm_unreachable("undeduced type in IR-generation"); 210 211 // Various scalar types. 212 case Type::Builtin: 213 case Type::Pointer: 214 case Type::BlockPointer: 215 case Type::LValueReference: 216 case Type::RValueReference: 217 case Type::MemberPointer: 218 case Type::Vector: 219 case Type::ExtVector: 220 case Type::FunctionProto: 221 case Type::FunctionNoProto: 222 case Type::Enum: 223 case Type::ObjCObjectPointer: 224 case Type::Pipe: 225 return TEK_Scalar; 226 227 // Complexes. 228 case Type::Complex: 229 return TEK_Complex; 230 231 // Arrays, records, and Objective-C objects. 232 case Type::ConstantArray: 233 case Type::IncompleteArray: 234 case Type::VariableArray: 235 case Type::Record: 236 case Type::ObjCObject: 237 case Type::ObjCInterface: 238 return TEK_Aggregate; 239 240 // We operate on atomic values according to their underlying type. 241 case Type::Atomic: 242 type = cast<AtomicType>(type)->getValueType(); 243 continue; 244 } 245 llvm_unreachable("unknown type kind!"); 246 } 247 } 248 249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 250 // For cleanliness, we try to avoid emitting the return block for 251 // simple cases. 252 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 253 254 if (CurBB) { 255 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 256 257 // We have a valid insert point, reuse it if it is empty or there are no 258 // explicit jumps to the return block. 259 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 260 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 261 delete ReturnBlock.getBlock(); 262 } else 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 // Otherwise, if the return block is the target of a single direct 268 // branch then we can just put the code in that block instead. This 269 // cleans up functions which started with a unified return block. 270 if (ReturnBlock.getBlock()->hasOneUse()) { 271 llvm::BranchInst *BI = 272 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 273 if (BI && BI->isUnconditional() && 274 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 275 // Record/return the DebugLoc of the simple 'return' expression to be used 276 // later by the actual 'ret' instruction. 277 llvm::DebugLoc Loc = BI->getDebugLoc(); 278 Builder.SetInsertPoint(BI->getParent()); 279 BI->eraseFromParent(); 280 delete ReturnBlock.getBlock(); 281 return Loc; 282 } 283 } 284 285 // FIXME: We are at an unreachable point, there is no reason to emit the block 286 // unless it has uses. However, we still need a place to put the debug 287 // region.end for now. 288 289 EmitBlock(ReturnBlock.getBlock()); 290 return llvm::DebugLoc(); 291 } 292 293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 294 if (!BB) return; 295 if (!BB->use_empty()) 296 return CGF.CurFn->getBasicBlockList().push_back(BB); 297 delete BB; 298 } 299 300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 301 assert(BreakContinueStack.empty() && 302 "mismatched push/pop in break/continue stack!"); 303 304 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 305 && NumSimpleReturnExprs == NumReturnExprs 306 && ReturnBlock.getBlock()->use_empty(); 307 // Usually the return expression is evaluated before the cleanup 308 // code. If the function contains only a simple return statement, 309 // such as a constant, the location before the cleanup code becomes 310 // the last useful breakpoint in the function, because the simple 311 // return expression will be evaluated after the cleanup code. To be 312 // safe, set the debug location for cleanup code to the location of 313 // the return statement. Otherwise the cleanup code should be at the 314 // end of the function's lexical scope. 315 // 316 // If there are multiple branches to the return block, the branch 317 // instructions will get the location of the return statements and 318 // all will be fine. 319 if (CGDebugInfo *DI = getDebugInfo()) { 320 if (OnlySimpleReturnStmts) 321 DI->EmitLocation(Builder, LastStopPoint); 322 else 323 DI->EmitLocation(Builder, EndLoc); 324 } 325 326 // Pop any cleanups that might have been associated with the 327 // parameters. Do this in whatever block we're currently in; it's 328 // important to do this before we enter the return block or return 329 // edges will be *really* confused. 330 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 331 bool HasOnlyLifetimeMarkers = 332 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 333 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 334 if (HasCleanups) { 335 // Make sure the line table doesn't jump back into the body for 336 // the ret after it's been at EndLoc. 337 if (CGDebugInfo *DI = getDebugInfo()) 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, EndLoc); 340 341 PopCleanupBlocks(PrologueCleanupDepth); 342 } 343 344 // Emit function epilog (to return). 345 llvm::DebugLoc Loc = EmitReturnBlock(); 346 347 if (ShouldInstrumentFunction()) 348 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 if (CGM.getCodeGenOpts().EmitDeclMetadata) 405 EmitDeclMetadata(); 406 407 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 408 I = DeferredReplacements.begin(), 409 E = DeferredReplacements.end(); 410 I != E; ++I) { 411 I->first->replaceAllUsesWith(I->second); 412 I->first->eraseFromParent(); 413 } 414 } 415 416 /// ShouldInstrumentFunction - Return true if the current function should be 417 /// instrumented with __cyg_profile_func_* calls 418 bool CodeGenFunction::ShouldInstrumentFunction() { 419 if (!CGM.getCodeGenOpts().InstrumentFunctions) 420 return false; 421 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 422 return false; 423 return true; 424 } 425 426 /// ShouldXRayInstrument - Return true if the current function should be 427 /// instrumented with XRay nop sleds. 428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 429 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 430 } 431 432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 433 /// instrumentation function with the current function and the call site, if 434 /// function instrumentation is enabled. 435 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 436 auto NL = ApplyDebugLocation::CreateArtificial(*this); 437 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 438 llvm::PointerType *PointerTy = Int8PtrTy; 439 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 440 llvm::FunctionType *FunctionTy = 441 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 442 443 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 444 llvm::CallInst *CallSite = Builder.CreateCall( 445 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 446 llvm::ConstantInt::get(Int32Ty, 0), 447 "callsite"); 448 449 llvm::Value *args[] = { 450 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 451 CallSite 452 }; 453 454 EmitNounwindRuntimeCall(F, args); 455 } 456 457 static void removeImageAccessQualifier(std::string& TyName) { 458 std::string ReadOnlyQual("__read_only"); 459 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 460 if (ReadOnlyPos != std::string::npos) 461 // "+ 1" for the space after access qualifier. 462 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 463 else { 464 std::string WriteOnlyQual("__write_only"); 465 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 466 if (WriteOnlyPos != std::string::npos) 467 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 468 else { 469 std::string ReadWriteQual("__read_write"); 470 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 471 if (ReadWritePos != std::string::npos) 472 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 473 } 474 } 475 } 476 477 // Returns the address space id that should be produced to the 478 // kernel_arg_addr_space metadata. This is always fixed to the ids 479 // as specified in the SPIR 2.0 specification in order to differentiate 480 // for example in clGetKernelArgInfo() implementation between the address 481 // spaces with targets without unique mapping to the OpenCL address spaces 482 // (basically all single AS CPUs). 483 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 484 switch (LangAS) { 485 case LangAS::opencl_global: return 1; 486 case LangAS::opencl_constant: return 2; 487 case LangAS::opencl_local: return 3; 488 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 489 default: 490 return 0; // Assume private. 491 } 492 } 493 494 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 495 // information in the program executable. The argument information stored 496 // includes the argument name, its type, the address and access qualifiers used. 497 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 498 CodeGenModule &CGM, llvm::LLVMContext &Context, 499 CGBuilderTy &Builder, ASTContext &ASTCtx) { 500 // Create MDNodes that represent the kernel arg metadata. 501 // Each MDNode is a list in the form of "key", N number of values which is 502 // the same number of values as their are kernel arguments. 503 504 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 505 506 // MDNode for the kernel argument address space qualifiers. 507 SmallVector<llvm::Metadata *, 8> addressQuals; 508 509 // MDNode for the kernel argument access qualifiers (images only). 510 SmallVector<llvm::Metadata *, 8> accessQuals; 511 512 // MDNode for the kernel argument type names. 513 SmallVector<llvm::Metadata *, 8> argTypeNames; 514 515 // MDNode for the kernel argument base type names. 516 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 517 518 // MDNode for the kernel argument type qualifiers. 519 SmallVector<llvm::Metadata *, 8> argTypeQuals; 520 521 // MDNode for the kernel argument names. 522 SmallVector<llvm::Metadata *, 8> argNames; 523 524 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 525 const ParmVarDecl *parm = FD->getParamDecl(i); 526 QualType ty = parm->getType(); 527 std::string typeQuals; 528 529 if (ty->isPointerType()) { 530 QualType pointeeTy = ty->getPointeeType(); 531 532 // Get address qualifier. 533 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 534 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 535 536 // Get argument type name. 537 std::string typeName = 538 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 539 540 // Turn "unsigned type" to "utype" 541 std::string::size_type pos = typeName.find("unsigned"); 542 if (pointeeTy.isCanonical() && pos != std::string::npos) 543 typeName.erase(pos+1, 8); 544 545 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 546 547 std::string baseTypeName = 548 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 549 Policy) + 550 "*"; 551 552 // Turn "unsigned type" to "utype" 553 pos = baseTypeName.find("unsigned"); 554 if (pos != std::string::npos) 555 baseTypeName.erase(pos+1, 8); 556 557 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 558 559 // Get argument type qualifiers: 560 if (ty.isRestrictQualified()) 561 typeQuals = "restrict"; 562 if (pointeeTy.isConstQualified() || 563 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 564 typeQuals += typeQuals.empty() ? "const" : " const"; 565 if (pointeeTy.isVolatileQualified()) 566 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 567 } else { 568 uint32_t AddrSpc = 0; 569 bool isPipe = ty->isPipeType(); 570 if (ty->isImageType() || isPipe) 571 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 572 573 addressQuals.push_back( 574 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 575 576 // Get argument type name. 577 std::string typeName; 578 if (isPipe) 579 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 580 .getAsString(Policy); 581 else 582 typeName = ty.getUnqualifiedType().getAsString(Policy); 583 584 // Turn "unsigned type" to "utype" 585 std::string::size_type pos = typeName.find("unsigned"); 586 if (ty.isCanonical() && pos != std::string::npos) 587 typeName.erase(pos+1, 8); 588 589 std::string baseTypeName; 590 if (isPipe) 591 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 592 ->getElementType().getCanonicalType() 593 .getAsString(Policy); 594 else 595 baseTypeName = 596 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 597 598 // Remove access qualifiers on images 599 // (as they are inseparable from type in clang implementation, 600 // but OpenCL spec provides a special query to get access qualifier 601 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 602 if (ty->isImageType()) { 603 removeImageAccessQualifier(typeName); 604 removeImageAccessQualifier(baseTypeName); 605 } 606 607 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 608 609 // Turn "unsigned type" to "utype" 610 pos = baseTypeName.find("unsigned"); 611 if (pos != std::string::npos) 612 baseTypeName.erase(pos+1, 8); 613 614 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 615 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const Decl *PDecl = parm; 625 if (auto *TD = dyn_cast<TypedefType>(ty)) 626 PDecl = TD->getDecl(); 627 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 628 if (A && A->isWriteOnly()) 629 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 630 else if (A && A->isReadWrite()) 631 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 632 else 633 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 634 } else 635 accessQuals.push_back(llvm::MDString::get(Context, "none")); 636 637 // Get argument name. 638 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 639 } 640 641 Fn->setMetadata("kernel_arg_addr_space", 642 llvm::MDNode::get(Context, addressQuals)); 643 Fn->setMetadata("kernel_arg_access_qual", 644 llvm::MDNode::get(Context, accessQuals)); 645 Fn->setMetadata("kernel_arg_type", 646 llvm::MDNode::get(Context, argTypeNames)); 647 Fn->setMetadata("kernel_arg_base_type", 648 llvm::MDNode::get(Context, argBaseTypeNames)); 649 Fn->setMetadata("kernel_arg_type_qual", 650 llvm::MDNode::get(Context, argTypeQuals)); 651 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 652 Fn->setMetadata("kernel_arg_name", 653 llvm::MDNode::get(Context, argNames)); 654 } 655 656 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 657 llvm::Function *Fn) 658 { 659 if (!FD->hasAttr<OpenCLKernelAttr>()) 660 return; 661 662 llvm::LLVMContext &Context = getLLVMContext(); 663 664 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 665 666 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 667 QualType HintQTy = A->getTypeHint(); 668 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 669 bool IsSignedInteger = 670 HintQTy->isSignedIntegerType() || 671 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 672 llvm::Metadata *AttrMDArgs[] = { 673 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 674 CGM.getTypes().ConvertType(A->getTypeHint()))), 675 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 676 llvm::IntegerType::get(Context, 32), 677 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 678 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 679 } 680 681 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 682 llvm::Metadata *AttrMDArgs[] = { 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 685 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 686 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 687 } 688 689 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 690 llvm::Metadata *AttrMDArgs[] = { 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 693 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 694 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 695 } 696 697 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 698 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 699 llvm::Metadata *AttrMDArgs[] = { 700 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 701 Fn->setMetadata("intel_reqd_sub_group_size", 702 llvm::MDNode::get(Context, AttrMDArgs)); 703 } 704 } 705 706 /// Determine whether the function F ends with a return stmt. 707 static bool endsWithReturn(const Decl* F) { 708 const Stmt *Body = nullptr; 709 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 710 Body = FD->getBody(); 711 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 712 Body = OMD->getBody(); 713 714 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 715 auto LastStmt = CS->body_rbegin(); 716 if (LastStmt != CS->body_rend()) 717 return isa<ReturnStmt>(*LastStmt); 718 } 719 return false; 720 } 721 722 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 723 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 724 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 725 } 726 727 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 728 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 729 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 730 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 731 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 732 return false; 733 734 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 735 return false; 736 737 if (MD->getNumParams() == 2) { 738 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 739 if (!PT || !PT->isVoidPointerType() || 740 !PT->getPointeeType().isConstQualified()) 741 return false; 742 } 743 744 return true; 745 } 746 747 void CodeGenFunction::StartFunction(GlobalDecl GD, 748 QualType RetTy, 749 llvm::Function *Fn, 750 const CGFunctionInfo &FnInfo, 751 const FunctionArgList &Args, 752 SourceLocation Loc, 753 SourceLocation StartLoc) { 754 assert(!CurFn && 755 "Do not use a CodeGenFunction object for more than one function"); 756 757 const Decl *D = GD.getDecl(); 758 759 DidCallStackSave = false; 760 CurCodeDecl = D; 761 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 762 if (FD->usesSEHTry()) 763 CurSEHParent = FD; 764 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 765 FnRetTy = RetTy; 766 CurFn = Fn; 767 CurFnInfo = &FnInfo; 768 assert(CurFn->isDeclaration() && "Function already has body?"); 769 770 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 771 SanOpts.clear(); 772 773 if (D) { 774 // Apply the no_sanitize* attributes to SanOpts. 775 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 776 SanOpts.Mask &= ~Attr->getMask(); 777 } 778 779 // Apply sanitizer attributes to the function. 780 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 782 if (SanOpts.has(SanitizerKind::Thread)) 783 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 784 if (SanOpts.has(SanitizerKind::Memory)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 786 if (SanOpts.has(SanitizerKind::SafeStack)) 787 Fn->addFnAttr(llvm::Attribute::SafeStack); 788 789 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 790 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 791 if (SanOpts.has(SanitizerKind::Thread)) { 792 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 793 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (OMD->getMethodFamily() == OMF_dealloc || 795 OMD->getMethodFamily() == OMF_initialize || 796 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 797 markAsIgnoreThreadCheckingAtRuntime(Fn); 798 } 799 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 800 IdentifierInfo *II = FD->getIdentifier(); 801 if (II && II->isStr("__destroy_helper_block_")) 802 markAsIgnoreThreadCheckingAtRuntime(Fn); 803 } 804 } 805 806 // Ignore unrelated casts in STL allocate() since the allocator must cast 807 // from void* to T* before object initialization completes. Don't match on the 808 // namespace because not all allocators are in std:: 809 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 810 if (matchesStlAllocatorFn(D, getContext())) 811 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 812 } 813 814 // Apply xray attributes to the function (as a string, for now) 815 if (D && ShouldXRayInstrumentFunction()) { 816 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 817 if (XRayAttr->alwaysXRayInstrument()) 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 if (XRayAttr->neverXRayInstrument()) 820 Fn->addFnAttr("function-instrument", "xray-never"); 821 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 822 Fn->addFnAttr("xray-log-args", 823 llvm::utostr(LogArgs->getArgumentCount())); 824 } 825 } else { 826 if (!CGM.imbueXRayAttrs(Fn, Loc)) 827 Fn->addFnAttr( 828 "xray-instruction-threshold", 829 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 830 } 831 } 832 833 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 834 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 835 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 836 837 // Add no-jump-tables value. 838 Fn->addFnAttr("no-jump-tables", 839 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 840 841 if (getLangOpts().OpenCL) { 842 // Add metadata for a kernel function. 843 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 844 EmitOpenCLKernelMetadata(FD, Fn); 845 } 846 847 // If we are checking function types, emit a function type signature as 848 // prologue data. 849 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 850 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 851 if (llvm::Constant *PrologueSig = 852 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 853 llvm::Constant *FTRTTIConst = 854 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 855 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 856 llvm::Constant *PrologueStructConst = 857 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 858 Fn->setPrologueData(PrologueStructConst); 859 } 860 } 861 } 862 863 // If we're checking nullability, we need to know whether we can check the 864 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 865 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 866 auto Nullability = FnRetTy->getNullability(getContext()); 867 if (Nullability && *Nullability == NullabilityKind::NonNull) { 868 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 869 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 870 RetValNullabilityPrecondition = 871 llvm::ConstantInt::getTrue(getLLVMContext()); 872 } 873 } 874 875 // If we're in C++ mode and the function name is "main", it is guaranteed 876 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 877 // used within a program"). 878 if (getLangOpts().CPlusPlus) 879 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 880 if (FD->isMain()) 881 Fn->addFnAttr(llvm::Attribute::NoRecurse); 882 883 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 884 885 // Create a marker to make it easy to insert allocas into the entryblock 886 // later. Don't create this with the builder, because we don't want it 887 // folded. 888 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 889 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 890 891 ReturnBlock = getJumpDestInCurrentScope("return"); 892 893 Builder.SetInsertPoint(EntryBB); 894 895 // If we're checking the return value, allocate space for a pointer to a 896 // precise source location of the checked return statement. 897 if (requiresReturnValueCheck()) { 898 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 899 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 900 } 901 902 // Emit subprogram debug descriptor. 903 if (CGDebugInfo *DI = getDebugInfo()) { 904 // Reconstruct the type from the argument list so that implicit parameters, 905 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 906 // convention. 907 CallingConv CC = CallingConv::CC_C; 908 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 909 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 910 CC = SrcFnTy->getCallConv(); 911 SmallVector<QualType, 16> ArgTypes; 912 for (const VarDecl *VD : Args) 913 ArgTypes.push_back(VD->getType()); 914 QualType FnType = getContext().getFunctionType( 915 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 916 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 917 } 918 919 if (ShouldInstrumentFunction()) 920 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 921 922 // Since emitting the mcount call here impacts optimizations such as function 923 // inlining, we just add an attribute to insert a mcount call in backend. 924 // The attribute "counting-function" is set to mcount function name which is 925 // architecture dependent. 926 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 927 if (CGM.getCodeGenOpts().CallFEntry) 928 Fn->addFnAttr("fentry-call", "true"); 929 else { 930 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 931 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 932 } 933 } 934 935 if (RetTy->isVoidType()) { 936 // Void type; nothing to return. 937 ReturnValue = Address::invalid(); 938 939 // Count the implicit return. 940 if (!endsWithReturn(D)) 941 ++NumReturnExprs; 942 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 943 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 944 // Indirect aggregate return; emit returned value directly into sret slot. 945 // This reduces code size, and affects correctness in C++. 946 auto AI = CurFn->arg_begin(); 947 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 948 ++AI; 949 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 950 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 951 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 952 // Load the sret pointer from the argument struct and return into that. 953 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 954 llvm::Function::arg_iterator EI = CurFn->arg_end(); 955 --EI; 956 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 957 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 958 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 959 } else { 960 ReturnValue = CreateIRTemp(RetTy, "retval"); 961 962 // Tell the epilog emitter to autorelease the result. We do this 963 // now so that various specialized functions can suppress it 964 // during their IR-generation. 965 if (getLangOpts().ObjCAutoRefCount && 966 !CurFnInfo->isReturnsRetained() && 967 RetTy->isObjCRetainableType()) 968 AutoreleaseResult = true; 969 } 970 971 EmitStartEHSpec(CurCodeDecl); 972 973 PrologueCleanupDepth = EHStack.stable_begin(); 974 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 975 976 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 977 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 978 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 979 if (MD->getParent()->isLambda() && 980 MD->getOverloadedOperator() == OO_Call) { 981 // We're in a lambda; figure out the captures. 982 MD->getParent()->getCaptureFields(LambdaCaptureFields, 983 LambdaThisCaptureField); 984 if (LambdaThisCaptureField) { 985 // If the lambda captures the object referred to by '*this' - either by 986 // value or by reference, make sure CXXThisValue points to the correct 987 // object. 988 989 // Get the lvalue for the field (which is a copy of the enclosing object 990 // or contains the address of the enclosing object). 991 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 992 if (!LambdaThisCaptureField->getType()->isPointerType()) { 993 // If the enclosing object was captured by value, just use its address. 994 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 995 } else { 996 // Load the lvalue pointed to by the field, since '*this' was captured 997 // by reference. 998 CXXThisValue = 999 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1000 } 1001 } 1002 for (auto *FD : MD->getParent()->fields()) { 1003 if (FD->hasCapturedVLAType()) { 1004 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1005 SourceLocation()).getScalarVal(); 1006 auto VAT = FD->getCapturedVLAType(); 1007 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1008 } 1009 } 1010 } else { 1011 // Not in a lambda; just use 'this' from the method. 1012 // FIXME: Should we generate a new load for each use of 'this'? The 1013 // fast register allocator would be happier... 1014 CXXThisValue = CXXABIThisValue; 1015 } 1016 1017 // Check the 'this' pointer once per function, if it's available. 1018 if (CXXABIThisValue) { 1019 SanitizerSet SkippedChecks; 1020 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1021 QualType ThisTy = MD->getThisType(getContext()); 1022 1023 // If this is the call operator of a lambda with no capture-default, it 1024 // may have a static invoker function, which may call this operator with 1025 // a null 'this' pointer. 1026 if (isLambdaCallOperator(MD) && 1027 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1028 LCD_None) 1029 SkippedChecks.set(SanitizerKind::Null, true); 1030 1031 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1032 : TCK_MemberCall, 1033 Loc, CXXABIThisValue, ThisTy, 1034 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1035 SkippedChecks); 1036 } 1037 } 1038 1039 // If any of the arguments have a variably modified type, make sure to 1040 // emit the type size. 1041 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1042 i != e; ++i) { 1043 const VarDecl *VD = *i; 1044 1045 // Dig out the type as written from ParmVarDecls; it's unclear whether 1046 // the standard (C99 6.9.1p10) requires this, but we're following the 1047 // precedent set by gcc. 1048 QualType Ty; 1049 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1050 Ty = PVD->getOriginalType(); 1051 else 1052 Ty = VD->getType(); 1053 1054 if (Ty->isVariablyModifiedType()) 1055 EmitVariablyModifiedType(Ty); 1056 } 1057 // Emit a location at the end of the prologue. 1058 if (CGDebugInfo *DI = getDebugInfo()) 1059 DI->EmitLocation(Builder, StartLoc); 1060 } 1061 1062 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1063 const Stmt *Body) { 1064 incrementProfileCounter(Body); 1065 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1066 EmitCompoundStmtWithoutScope(*S); 1067 else 1068 EmitStmt(Body); 1069 } 1070 1071 /// When instrumenting to collect profile data, the counts for some blocks 1072 /// such as switch cases need to not include the fall-through counts, so 1073 /// emit a branch around the instrumentation code. When not instrumenting, 1074 /// this just calls EmitBlock(). 1075 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1076 const Stmt *S) { 1077 llvm::BasicBlock *SkipCountBB = nullptr; 1078 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1079 // When instrumenting for profiling, the fallthrough to certain 1080 // statements needs to skip over the instrumentation code so that we 1081 // get an accurate count. 1082 SkipCountBB = createBasicBlock("skipcount"); 1083 EmitBranch(SkipCountBB); 1084 } 1085 EmitBlock(BB); 1086 uint64_t CurrentCount = getCurrentProfileCount(); 1087 incrementProfileCounter(S); 1088 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1089 if (SkipCountBB) 1090 EmitBlock(SkipCountBB); 1091 } 1092 1093 /// Tries to mark the given function nounwind based on the 1094 /// non-existence of any throwing calls within it. We believe this is 1095 /// lightweight enough to do at -O0. 1096 static void TryMarkNoThrow(llvm::Function *F) { 1097 // LLVM treats 'nounwind' on a function as part of the type, so we 1098 // can't do this on functions that can be overwritten. 1099 if (F->isInterposable()) return; 1100 1101 for (llvm::BasicBlock &BB : *F) 1102 for (llvm::Instruction &I : BB) 1103 if (I.mayThrow()) 1104 return; 1105 1106 F->setDoesNotThrow(); 1107 } 1108 1109 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1110 FunctionArgList &Args) { 1111 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1112 QualType ResTy = FD->getReturnType(); 1113 1114 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1115 if (MD && MD->isInstance()) { 1116 if (CGM.getCXXABI().HasThisReturn(GD)) 1117 ResTy = MD->getThisType(getContext()); 1118 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1119 ResTy = CGM.getContext().VoidPtrTy; 1120 CGM.getCXXABI().buildThisParam(*this, Args); 1121 } 1122 1123 // The base version of an inheriting constructor whose constructed base is a 1124 // virtual base is not passed any arguments (because it doesn't actually call 1125 // the inherited constructor). 1126 bool PassedParams = true; 1127 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1128 if (auto Inherited = CD->getInheritedConstructor()) 1129 PassedParams = 1130 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1131 1132 if (PassedParams) { 1133 for (auto *Param : FD->parameters()) { 1134 Args.push_back(Param); 1135 if (!Param->hasAttr<PassObjectSizeAttr>()) 1136 continue; 1137 1138 auto *Implicit = ImplicitParamDecl::Create( 1139 getContext(), Param->getDeclContext(), Param->getLocation(), 1140 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1141 SizeArguments[Param] = Implicit; 1142 Args.push_back(Implicit); 1143 } 1144 } 1145 1146 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1147 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1148 1149 return ResTy; 1150 } 1151 1152 static bool 1153 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1154 const ASTContext &Context) { 1155 QualType T = FD->getReturnType(); 1156 // Avoid the optimization for functions that return a record type with a 1157 // trivial destructor or another trivially copyable type. 1158 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1159 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1160 return !ClassDecl->hasTrivialDestructor(); 1161 } 1162 return !T.isTriviallyCopyableType(Context); 1163 } 1164 1165 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1166 const CGFunctionInfo &FnInfo) { 1167 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1168 CurGD = GD; 1169 1170 FunctionArgList Args; 1171 QualType ResTy = BuildFunctionArgList(GD, Args); 1172 1173 // Check if we should generate debug info for this function. 1174 if (FD->hasAttr<NoDebugAttr>()) 1175 DebugInfo = nullptr; // disable debug info indefinitely for this function 1176 1177 // The function might not have a body if we're generating thunks for a 1178 // function declaration. 1179 SourceRange BodyRange; 1180 if (Stmt *Body = FD->getBody()) 1181 BodyRange = Body->getSourceRange(); 1182 else 1183 BodyRange = FD->getLocation(); 1184 CurEHLocation = BodyRange.getEnd(); 1185 1186 // Use the location of the start of the function to determine where 1187 // the function definition is located. By default use the location 1188 // of the declaration as the location for the subprogram. A function 1189 // may lack a declaration in the source code if it is created by code 1190 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1191 SourceLocation Loc = FD->getLocation(); 1192 1193 // If this is a function specialization then use the pattern body 1194 // as the location for the function. 1195 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1196 if (SpecDecl->hasBody(SpecDecl)) 1197 Loc = SpecDecl->getLocation(); 1198 1199 Stmt *Body = FD->getBody(); 1200 1201 // Initialize helper which will detect jumps which can cause invalid lifetime 1202 // markers. 1203 if (Body && ShouldEmitLifetimeMarkers) 1204 Bypasses.Init(Body); 1205 1206 // Emit the standard function prologue. 1207 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1208 1209 // Generate the body of the function. 1210 PGO.assignRegionCounters(GD, CurFn); 1211 if (isa<CXXDestructorDecl>(FD)) 1212 EmitDestructorBody(Args); 1213 else if (isa<CXXConstructorDecl>(FD)) 1214 EmitConstructorBody(Args); 1215 else if (getLangOpts().CUDA && 1216 !getLangOpts().CUDAIsDevice && 1217 FD->hasAttr<CUDAGlobalAttr>()) 1218 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1219 else if (isa<CXXMethodDecl>(FD) && 1220 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1221 // The lambda static invoker function is special, because it forwards or 1222 // clones the body of the function call operator (but is actually static). 1223 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1224 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1225 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1226 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1227 // Implicit copy-assignment gets the same special treatment as implicit 1228 // copy-constructors. 1229 emitImplicitAssignmentOperatorBody(Args); 1230 } else if (Body) { 1231 EmitFunctionBody(Args, Body); 1232 } else 1233 llvm_unreachable("no definition for emitted function"); 1234 1235 // C++11 [stmt.return]p2: 1236 // Flowing off the end of a function [...] results in undefined behavior in 1237 // a value-returning function. 1238 // C11 6.9.1p12: 1239 // If the '}' that terminates a function is reached, and the value of the 1240 // function call is used by the caller, the behavior is undefined. 1241 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1242 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1243 bool ShouldEmitUnreachable = 1244 CGM.getCodeGenOpts().StrictReturn || 1245 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1246 if (SanOpts.has(SanitizerKind::Return)) { 1247 SanitizerScope SanScope(this); 1248 llvm::Value *IsFalse = Builder.getFalse(); 1249 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1250 SanitizerHandler::MissingReturn, 1251 EmitCheckSourceLocation(FD->getLocation()), None); 1252 } else if (ShouldEmitUnreachable) { 1253 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1254 EmitTrapCall(llvm::Intrinsic::trap); 1255 } 1256 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1257 Builder.CreateUnreachable(); 1258 Builder.ClearInsertionPoint(); 1259 } 1260 } 1261 1262 // Emit the standard function epilogue. 1263 FinishFunction(BodyRange.getEnd()); 1264 1265 // If we haven't marked the function nothrow through other means, do 1266 // a quick pass now to see if we can. 1267 if (!CurFn->doesNotThrow()) 1268 TryMarkNoThrow(CurFn); 1269 } 1270 1271 /// ContainsLabel - Return true if the statement contains a label in it. If 1272 /// this statement is not executed normally, it not containing a label means 1273 /// that we can just remove the code. 1274 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1275 // Null statement, not a label! 1276 if (!S) return false; 1277 1278 // If this is a label, we have to emit the code, consider something like: 1279 // if (0) { ... foo: bar(); } goto foo; 1280 // 1281 // TODO: If anyone cared, we could track __label__'s, since we know that you 1282 // can't jump to one from outside their declared region. 1283 if (isa<LabelStmt>(S)) 1284 return true; 1285 1286 // If this is a case/default statement, and we haven't seen a switch, we have 1287 // to emit the code. 1288 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1289 return true; 1290 1291 // If this is a switch statement, we want to ignore cases below it. 1292 if (isa<SwitchStmt>(S)) 1293 IgnoreCaseStmts = true; 1294 1295 // Scan subexpressions for verboten labels. 1296 for (const Stmt *SubStmt : S->children()) 1297 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1298 return true; 1299 1300 return false; 1301 } 1302 1303 /// containsBreak - Return true if the statement contains a break out of it. 1304 /// If the statement (recursively) contains a switch or loop with a break 1305 /// inside of it, this is fine. 1306 bool CodeGenFunction::containsBreak(const Stmt *S) { 1307 // Null statement, not a label! 1308 if (!S) return false; 1309 1310 // If this is a switch or loop that defines its own break scope, then we can 1311 // include it and anything inside of it. 1312 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1313 isa<ForStmt>(S)) 1314 return false; 1315 1316 if (isa<BreakStmt>(S)) 1317 return true; 1318 1319 // Scan subexpressions for verboten breaks. 1320 for (const Stmt *SubStmt : S->children()) 1321 if (containsBreak(SubStmt)) 1322 return true; 1323 1324 return false; 1325 } 1326 1327 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1328 if (!S) return false; 1329 1330 // Some statement kinds add a scope and thus never add a decl to the current 1331 // scope. Note, this list is longer than the list of statements that might 1332 // have an unscoped decl nested within them, but this way is conservatively 1333 // correct even if more statement kinds are added. 1334 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1335 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1336 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1337 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1338 return false; 1339 1340 if (isa<DeclStmt>(S)) 1341 return true; 1342 1343 for (const Stmt *SubStmt : S->children()) 1344 if (mightAddDeclToScope(SubStmt)) 1345 return true; 1346 1347 return false; 1348 } 1349 1350 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1351 /// to a constant, or if it does but contains a label, return false. If it 1352 /// constant folds return true and set the boolean result in Result. 1353 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1354 bool &ResultBool, 1355 bool AllowLabels) { 1356 llvm::APSInt ResultInt; 1357 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1358 return false; 1359 1360 ResultBool = ResultInt.getBoolValue(); 1361 return true; 1362 } 1363 1364 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1365 /// to a constant, or if it does but contains a label, return false. If it 1366 /// constant folds return true and set the folded value. 1367 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1368 llvm::APSInt &ResultInt, 1369 bool AllowLabels) { 1370 // FIXME: Rename and handle conversion of other evaluatable things 1371 // to bool. 1372 llvm::APSInt Int; 1373 if (!Cond->EvaluateAsInt(Int, getContext())) 1374 return false; // Not foldable, not integer or not fully evaluatable. 1375 1376 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1377 return false; // Contains a label. 1378 1379 ResultInt = Int; 1380 return true; 1381 } 1382 1383 1384 1385 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1386 /// statement) to the specified blocks. Based on the condition, this might try 1387 /// to simplify the codegen of the conditional based on the branch. 1388 /// 1389 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1390 llvm::BasicBlock *TrueBlock, 1391 llvm::BasicBlock *FalseBlock, 1392 uint64_t TrueCount) { 1393 Cond = Cond->IgnoreParens(); 1394 1395 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1396 1397 // Handle X && Y in a condition. 1398 if (CondBOp->getOpcode() == BO_LAnd) { 1399 // If we have "1 && X", simplify the code. "0 && X" would have constant 1400 // folded if the case was simple enough. 1401 bool ConstantBool = false; 1402 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1403 ConstantBool) { 1404 // br(1 && X) -> br(X). 1405 incrementProfileCounter(CondBOp); 1406 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1407 TrueCount); 1408 } 1409 1410 // If we have "X && 1", simplify the code to use an uncond branch. 1411 // "X && 0" would have been constant folded to 0. 1412 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1413 ConstantBool) { 1414 // br(X && 1) -> br(X). 1415 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1416 TrueCount); 1417 } 1418 1419 // Emit the LHS as a conditional. If the LHS conditional is false, we 1420 // want to jump to the FalseBlock. 1421 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1422 // The counter tells us how often we evaluate RHS, and all of TrueCount 1423 // can be propagated to that branch. 1424 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1425 1426 ConditionalEvaluation eval(*this); 1427 { 1428 ApplyDebugLocation DL(*this, Cond); 1429 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1430 EmitBlock(LHSTrue); 1431 } 1432 1433 incrementProfileCounter(CondBOp); 1434 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1435 1436 // Any temporaries created here are conditional. 1437 eval.begin(*this); 1438 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1439 eval.end(*this); 1440 1441 return; 1442 } 1443 1444 if (CondBOp->getOpcode() == BO_LOr) { 1445 // If we have "0 || X", simplify the code. "1 || X" would have constant 1446 // folded if the case was simple enough. 1447 bool ConstantBool = false; 1448 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1449 !ConstantBool) { 1450 // br(0 || X) -> br(X). 1451 incrementProfileCounter(CondBOp); 1452 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1453 TrueCount); 1454 } 1455 1456 // If we have "X || 0", simplify the code to use an uncond branch. 1457 // "X || 1" would have been constant folded to 1. 1458 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1459 !ConstantBool) { 1460 // br(X || 0) -> br(X). 1461 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1462 TrueCount); 1463 } 1464 1465 // Emit the LHS as a conditional. If the LHS conditional is true, we 1466 // want to jump to the TrueBlock. 1467 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1468 // We have the count for entry to the RHS and for the whole expression 1469 // being true, so we can divy up True count between the short circuit and 1470 // the RHS. 1471 uint64_t LHSCount = 1472 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1473 uint64_t RHSCount = TrueCount - LHSCount; 1474 1475 ConditionalEvaluation eval(*this); 1476 { 1477 ApplyDebugLocation DL(*this, Cond); 1478 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1479 EmitBlock(LHSFalse); 1480 } 1481 1482 incrementProfileCounter(CondBOp); 1483 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1484 1485 // Any temporaries created here are conditional. 1486 eval.begin(*this); 1487 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1488 1489 eval.end(*this); 1490 1491 return; 1492 } 1493 } 1494 1495 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1496 // br(!x, t, f) -> br(x, f, t) 1497 if (CondUOp->getOpcode() == UO_LNot) { 1498 // Negate the count. 1499 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1500 // Negate the condition and swap the destination blocks. 1501 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1502 FalseCount); 1503 } 1504 } 1505 1506 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1507 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1508 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1509 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1510 1511 ConditionalEvaluation cond(*this); 1512 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1513 getProfileCount(CondOp)); 1514 1515 // When computing PGO branch weights, we only know the overall count for 1516 // the true block. This code is essentially doing tail duplication of the 1517 // naive code-gen, introducing new edges for which counts are not 1518 // available. Divide the counts proportionally between the LHS and RHS of 1519 // the conditional operator. 1520 uint64_t LHSScaledTrueCount = 0; 1521 if (TrueCount) { 1522 double LHSRatio = 1523 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1524 LHSScaledTrueCount = TrueCount * LHSRatio; 1525 } 1526 1527 cond.begin(*this); 1528 EmitBlock(LHSBlock); 1529 incrementProfileCounter(CondOp); 1530 { 1531 ApplyDebugLocation DL(*this, Cond); 1532 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1533 LHSScaledTrueCount); 1534 } 1535 cond.end(*this); 1536 1537 cond.begin(*this); 1538 EmitBlock(RHSBlock); 1539 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1540 TrueCount - LHSScaledTrueCount); 1541 cond.end(*this); 1542 1543 return; 1544 } 1545 1546 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1547 // Conditional operator handling can give us a throw expression as a 1548 // condition for a case like: 1549 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1550 // Fold this to: 1551 // br(c, throw x, br(y, t, f)) 1552 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1553 return; 1554 } 1555 1556 // If the branch has a condition wrapped by __builtin_unpredictable, 1557 // create metadata that specifies that the branch is unpredictable. 1558 // Don't bother if not optimizing because that metadata would not be used. 1559 llvm::MDNode *Unpredictable = nullptr; 1560 auto *Call = dyn_cast<CallExpr>(Cond); 1561 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1562 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1563 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1564 llvm::MDBuilder MDHelper(getLLVMContext()); 1565 Unpredictable = MDHelper.createUnpredictable(); 1566 } 1567 } 1568 1569 // Create branch weights based on the number of times we get here and the 1570 // number of times the condition should be true. 1571 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1572 llvm::MDNode *Weights = 1573 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1574 1575 // Emit the code with the fully general case. 1576 llvm::Value *CondV; 1577 { 1578 ApplyDebugLocation DL(*this, Cond); 1579 CondV = EvaluateExprAsBool(Cond); 1580 } 1581 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1582 } 1583 1584 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1585 /// specified stmt yet. 1586 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1587 CGM.ErrorUnsupported(S, Type); 1588 } 1589 1590 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1591 /// variable-length array whose elements have a non-zero bit-pattern. 1592 /// 1593 /// \param baseType the inner-most element type of the array 1594 /// \param src - a char* pointing to the bit-pattern for a single 1595 /// base element of the array 1596 /// \param sizeInChars - the total size of the VLA, in chars 1597 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1598 Address dest, Address src, 1599 llvm::Value *sizeInChars) { 1600 CGBuilderTy &Builder = CGF.Builder; 1601 1602 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1603 llvm::Value *baseSizeInChars 1604 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1605 1606 Address begin = 1607 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1608 llvm::Value *end = 1609 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1610 1611 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1612 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1613 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1614 1615 // Make a loop over the VLA. C99 guarantees that the VLA element 1616 // count must be nonzero. 1617 CGF.EmitBlock(loopBB); 1618 1619 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1620 cur->addIncoming(begin.getPointer(), originBB); 1621 1622 CharUnits curAlign = 1623 dest.getAlignment().alignmentOfArrayElement(baseSize); 1624 1625 // memcpy the individual element bit-pattern. 1626 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1627 /*volatile*/ false); 1628 1629 // Go to the next element. 1630 llvm::Value *next = 1631 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1632 1633 // Leave if that's the end of the VLA. 1634 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1635 Builder.CreateCondBr(done, contBB, loopBB); 1636 cur->addIncoming(next, loopBB); 1637 1638 CGF.EmitBlock(contBB); 1639 } 1640 1641 void 1642 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1643 // Ignore empty classes in C++. 1644 if (getLangOpts().CPlusPlus) { 1645 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1646 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1647 return; 1648 } 1649 } 1650 1651 // Cast the dest ptr to the appropriate i8 pointer type. 1652 if (DestPtr.getElementType() != Int8Ty) 1653 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1654 1655 // Get size and alignment info for this aggregate. 1656 CharUnits size = getContext().getTypeSizeInChars(Ty); 1657 1658 llvm::Value *SizeVal; 1659 const VariableArrayType *vla; 1660 1661 // Don't bother emitting a zero-byte memset. 1662 if (size.isZero()) { 1663 // But note that getTypeInfo returns 0 for a VLA. 1664 if (const VariableArrayType *vlaType = 1665 dyn_cast_or_null<VariableArrayType>( 1666 getContext().getAsArrayType(Ty))) { 1667 QualType eltType; 1668 llvm::Value *numElts; 1669 std::tie(numElts, eltType) = getVLASize(vlaType); 1670 1671 SizeVal = numElts; 1672 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1673 if (!eltSize.isOne()) 1674 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1675 vla = vlaType; 1676 } else { 1677 return; 1678 } 1679 } else { 1680 SizeVal = CGM.getSize(size); 1681 vla = nullptr; 1682 } 1683 1684 // If the type contains a pointer to data member we can't memset it to zero. 1685 // Instead, create a null constant and copy it to the destination. 1686 // TODO: there are other patterns besides zero that we can usefully memset, 1687 // like -1, which happens to be the pattern used by member-pointers. 1688 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1689 // For a VLA, emit a single element, then splat that over the VLA. 1690 if (vla) Ty = getContext().getBaseElementType(vla); 1691 1692 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1693 1694 llvm::GlobalVariable *NullVariable = 1695 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1696 /*isConstant=*/true, 1697 llvm::GlobalVariable::PrivateLinkage, 1698 NullConstant, Twine()); 1699 CharUnits NullAlign = DestPtr.getAlignment(); 1700 NullVariable->setAlignment(NullAlign.getQuantity()); 1701 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1702 NullAlign); 1703 1704 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1705 1706 // Get and call the appropriate llvm.memcpy overload. 1707 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1708 return; 1709 } 1710 1711 // Otherwise, just memset the whole thing to zero. This is legal 1712 // because in LLVM, all default initializers (other than the ones we just 1713 // handled above) are guaranteed to have a bit pattern of all zeros. 1714 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1715 } 1716 1717 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1718 // Make sure that there is a block for the indirect goto. 1719 if (!IndirectBranch) 1720 GetIndirectGotoBlock(); 1721 1722 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1723 1724 // Make sure the indirect branch includes all of the address-taken blocks. 1725 IndirectBranch->addDestination(BB); 1726 return llvm::BlockAddress::get(CurFn, BB); 1727 } 1728 1729 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1730 // If we already made the indirect branch for indirect goto, return its block. 1731 if (IndirectBranch) return IndirectBranch->getParent(); 1732 1733 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1734 1735 // Create the PHI node that indirect gotos will add entries to. 1736 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1737 "indirect.goto.dest"); 1738 1739 // Create the indirect branch instruction. 1740 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1741 return IndirectBranch->getParent(); 1742 } 1743 1744 /// Computes the length of an array in elements, as well as the base 1745 /// element type and a properly-typed first element pointer. 1746 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1747 QualType &baseType, 1748 Address &addr) { 1749 const ArrayType *arrayType = origArrayType; 1750 1751 // If it's a VLA, we have to load the stored size. Note that 1752 // this is the size of the VLA in bytes, not its size in elements. 1753 llvm::Value *numVLAElements = nullptr; 1754 if (isa<VariableArrayType>(arrayType)) { 1755 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1756 1757 // Walk into all VLAs. This doesn't require changes to addr, 1758 // which has type T* where T is the first non-VLA element type. 1759 do { 1760 QualType elementType = arrayType->getElementType(); 1761 arrayType = getContext().getAsArrayType(elementType); 1762 1763 // If we only have VLA components, 'addr' requires no adjustment. 1764 if (!arrayType) { 1765 baseType = elementType; 1766 return numVLAElements; 1767 } 1768 } while (isa<VariableArrayType>(arrayType)); 1769 1770 // We get out here only if we find a constant array type 1771 // inside the VLA. 1772 } 1773 1774 // We have some number of constant-length arrays, so addr should 1775 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1776 // down to the first element of addr. 1777 SmallVector<llvm::Value*, 8> gepIndices; 1778 1779 // GEP down to the array type. 1780 llvm::ConstantInt *zero = Builder.getInt32(0); 1781 gepIndices.push_back(zero); 1782 1783 uint64_t countFromCLAs = 1; 1784 QualType eltType; 1785 1786 llvm::ArrayType *llvmArrayType = 1787 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1788 while (llvmArrayType) { 1789 assert(isa<ConstantArrayType>(arrayType)); 1790 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1791 == llvmArrayType->getNumElements()); 1792 1793 gepIndices.push_back(zero); 1794 countFromCLAs *= llvmArrayType->getNumElements(); 1795 eltType = arrayType->getElementType(); 1796 1797 llvmArrayType = 1798 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1799 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1800 assert((!llvmArrayType || arrayType) && 1801 "LLVM and Clang types are out-of-synch"); 1802 } 1803 1804 if (arrayType) { 1805 // From this point onwards, the Clang array type has been emitted 1806 // as some other type (probably a packed struct). Compute the array 1807 // size, and just emit the 'begin' expression as a bitcast. 1808 while (arrayType) { 1809 countFromCLAs *= 1810 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1811 eltType = arrayType->getElementType(); 1812 arrayType = getContext().getAsArrayType(eltType); 1813 } 1814 1815 llvm::Type *baseType = ConvertType(eltType); 1816 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1817 } else { 1818 // Create the actual GEP. 1819 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1820 gepIndices, "array.begin"), 1821 addr.getAlignment()); 1822 } 1823 1824 baseType = eltType; 1825 1826 llvm::Value *numElements 1827 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1828 1829 // If we had any VLA dimensions, factor them in. 1830 if (numVLAElements) 1831 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1832 1833 return numElements; 1834 } 1835 1836 std::pair<llvm::Value*, QualType> 1837 CodeGenFunction::getVLASize(QualType type) { 1838 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1839 assert(vla && "type was not a variable array type!"); 1840 return getVLASize(vla); 1841 } 1842 1843 std::pair<llvm::Value*, QualType> 1844 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1845 // The number of elements so far; always size_t. 1846 llvm::Value *numElements = nullptr; 1847 1848 QualType elementType; 1849 do { 1850 elementType = type->getElementType(); 1851 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1852 assert(vlaSize && "no size for VLA!"); 1853 assert(vlaSize->getType() == SizeTy); 1854 1855 if (!numElements) { 1856 numElements = vlaSize; 1857 } else { 1858 // It's undefined behavior if this wraps around, so mark it that way. 1859 // FIXME: Teach -fsanitize=undefined to trap this. 1860 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1861 } 1862 } while ((type = getContext().getAsVariableArrayType(elementType))); 1863 1864 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1865 } 1866 1867 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1868 assert(type->isVariablyModifiedType() && 1869 "Must pass variably modified type to EmitVLASizes!"); 1870 1871 EnsureInsertPoint(); 1872 1873 // We're going to walk down into the type and look for VLA 1874 // expressions. 1875 do { 1876 assert(type->isVariablyModifiedType()); 1877 1878 const Type *ty = type.getTypePtr(); 1879 switch (ty->getTypeClass()) { 1880 1881 #define TYPE(Class, Base) 1882 #define ABSTRACT_TYPE(Class, Base) 1883 #define NON_CANONICAL_TYPE(Class, Base) 1884 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1885 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1886 #include "clang/AST/TypeNodes.def" 1887 llvm_unreachable("unexpected dependent type!"); 1888 1889 // These types are never variably-modified. 1890 case Type::Builtin: 1891 case Type::Complex: 1892 case Type::Vector: 1893 case Type::ExtVector: 1894 case Type::Record: 1895 case Type::Enum: 1896 case Type::Elaborated: 1897 case Type::TemplateSpecialization: 1898 case Type::ObjCTypeParam: 1899 case Type::ObjCObject: 1900 case Type::ObjCInterface: 1901 case Type::ObjCObjectPointer: 1902 llvm_unreachable("type class is never variably-modified!"); 1903 1904 case Type::Adjusted: 1905 type = cast<AdjustedType>(ty)->getAdjustedType(); 1906 break; 1907 1908 case Type::Decayed: 1909 type = cast<DecayedType>(ty)->getPointeeType(); 1910 break; 1911 1912 case Type::Pointer: 1913 type = cast<PointerType>(ty)->getPointeeType(); 1914 break; 1915 1916 case Type::BlockPointer: 1917 type = cast<BlockPointerType>(ty)->getPointeeType(); 1918 break; 1919 1920 case Type::LValueReference: 1921 case Type::RValueReference: 1922 type = cast<ReferenceType>(ty)->getPointeeType(); 1923 break; 1924 1925 case Type::MemberPointer: 1926 type = cast<MemberPointerType>(ty)->getPointeeType(); 1927 break; 1928 1929 case Type::ConstantArray: 1930 case Type::IncompleteArray: 1931 // Losing element qualification here is fine. 1932 type = cast<ArrayType>(ty)->getElementType(); 1933 break; 1934 1935 case Type::VariableArray: { 1936 // Losing element qualification here is fine. 1937 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1938 1939 // Unknown size indication requires no size computation. 1940 // Otherwise, evaluate and record it. 1941 if (const Expr *size = vat->getSizeExpr()) { 1942 // It's possible that we might have emitted this already, 1943 // e.g. with a typedef and a pointer to it. 1944 llvm::Value *&entry = VLASizeMap[size]; 1945 if (!entry) { 1946 llvm::Value *Size = EmitScalarExpr(size); 1947 1948 // C11 6.7.6.2p5: 1949 // If the size is an expression that is not an integer constant 1950 // expression [...] each time it is evaluated it shall have a value 1951 // greater than zero. 1952 if (SanOpts.has(SanitizerKind::VLABound) && 1953 size->getType()->isSignedIntegerType()) { 1954 SanitizerScope SanScope(this); 1955 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1956 llvm::Constant *StaticArgs[] = { 1957 EmitCheckSourceLocation(size->getLocStart()), 1958 EmitCheckTypeDescriptor(size->getType()) 1959 }; 1960 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1961 SanitizerKind::VLABound), 1962 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1963 } 1964 1965 // Always zexting here would be wrong if it weren't 1966 // undefined behavior to have a negative bound. 1967 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1968 } 1969 } 1970 type = vat->getElementType(); 1971 break; 1972 } 1973 1974 case Type::FunctionProto: 1975 case Type::FunctionNoProto: 1976 type = cast<FunctionType>(ty)->getReturnType(); 1977 break; 1978 1979 case Type::Paren: 1980 case Type::TypeOf: 1981 case Type::UnaryTransform: 1982 case Type::Attributed: 1983 case Type::SubstTemplateTypeParm: 1984 case Type::PackExpansion: 1985 // Keep walking after single level desugaring. 1986 type = type.getSingleStepDesugaredType(getContext()); 1987 break; 1988 1989 case Type::Typedef: 1990 case Type::Decltype: 1991 case Type::Auto: 1992 case Type::DeducedTemplateSpecialization: 1993 // Stop walking: nothing to do. 1994 return; 1995 1996 case Type::TypeOfExpr: 1997 // Stop walking: emit typeof expression. 1998 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1999 return; 2000 2001 case Type::Atomic: 2002 type = cast<AtomicType>(ty)->getValueType(); 2003 break; 2004 2005 case Type::Pipe: 2006 type = cast<PipeType>(ty)->getElementType(); 2007 break; 2008 } 2009 } while (type->isVariablyModifiedType()); 2010 } 2011 2012 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2013 if (getContext().getBuiltinVaListType()->isArrayType()) 2014 return EmitPointerWithAlignment(E); 2015 return EmitLValue(E).getAddress(); 2016 } 2017 2018 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2019 return EmitLValue(E).getAddress(); 2020 } 2021 2022 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2023 const APValue &Init) { 2024 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2025 if (CGDebugInfo *Dbg = getDebugInfo()) 2026 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2027 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2028 } 2029 2030 CodeGenFunction::PeepholeProtection 2031 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2032 // At the moment, the only aggressive peephole we do in IR gen 2033 // is trunc(zext) folding, but if we add more, we can easily 2034 // extend this protection. 2035 2036 if (!rvalue.isScalar()) return PeepholeProtection(); 2037 llvm::Value *value = rvalue.getScalarVal(); 2038 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2039 2040 // Just make an extra bitcast. 2041 assert(HaveInsertPoint()); 2042 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2043 Builder.GetInsertBlock()); 2044 2045 PeepholeProtection protection; 2046 protection.Inst = inst; 2047 return protection; 2048 } 2049 2050 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2051 if (!protection.Inst) return; 2052 2053 // In theory, we could try to duplicate the peepholes now, but whatever. 2054 protection.Inst->eraseFromParent(); 2055 } 2056 2057 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2058 llvm::Value *AnnotatedVal, 2059 StringRef AnnotationStr, 2060 SourceLocation Location) { 2061 llvm::Value *Args[4] = { 2062 AnnotatedVal, 2063 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2064 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2065 CGM.EmitAnnotationLineNo(Location) 2066 }; 2067 return Builder.CreateCall(AnnotationFn, Args); 2068 } 2069 2070 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2071 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2072 // FIXME We create a new bitcast for every annotation because that's what 2073 // llvm-gcc was doing. 2074 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2075 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2076 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2077 I->getAnnotation(), D->getLocation()); 2078 } 2079 2080 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2081 Address Addr) { 2082 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2083 llvm::Value *V = Addr.getPointer(); 2084 llvm::Type *VTy = V->getType(); 2085 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2086 CGM.Int8PtrTy); 2087 2088 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2089 // FIXME Always emit the cast inst so we can differentiate between 2090 // annotation on the first field of a struct and annotation on the struct 2091 // itself. 2092 if (VTy != CGM.Int8PtrTy) 2093 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2094 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2095 V = Builder.CreateBitCast(V, VTy); 2096 } 2097 2098 return Address(V, Addr.getAlignment()); 2099 } 2100 2101 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2102 2103 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2104 : CGF(CGF) { 2105 assert(!CGF->IsSanitizerScope); 2106 CGF->IsSanitizerScope = true; 2107 } 2108 2109 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2110 CGF->IsSanitizerScope = false; 2111 } 2112 2113 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2114 const llvm::Twine &Name, 2115 llvm::BasicBlock *BB, 2116 llvm::BasicBlock::iterator InsertPt) const { 2117 LoopStack.InsertHelper(I); 2118 if (IsSanitizerScope) 2119 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2120 } 2121 2122 void CGBuilderInserter::InsertHelper( 2123 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2124 llvm::BasicBlock::iterator InsertPt) const { 2125 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2126 if (CGF) 2127 CGF->InsertHelper(I, Name, BB, InsertPt); 2128 } 2129 2130 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2131 CodeGenModule &CGM, const FunctionDecl *FD, 2132 std::string &FirstMissing) { 2133 // If there aren't any required features listed then go ahead and return. 2134 if (ReqFeatures.empty()) 2135 return false; 2136 2137 // Now build up the set of caller features and verify that all the required 2138 // features are there. 2139 llvm::StringMap<bool> CallerFeatureMap; 2140 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2141 2142 // If we have at least one of the features in the feature list return 2143 // true, otherwise return false. 2144 return std::all_of( 2145 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2146 SmallVector<StringRef, 1> OrFeatures; 2147 Feature.split(OrFeatures, "|"); 2148 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2149 [&](StringRef Feature) { 2150 if (!CallerFeatureMap.lookup(Feature)) { 2151 FirstMissing = Feature.str(); 2152 return false; 2153 } 2154 return true; 2155 }); 2156 }); 2157 } 2158 2159 // Emits an error if we don't have a valid set of target features for the 2160 // called function. 2161 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2162 const FunctionDecl *TargetDecl) { 2163 // Early exit if this is an indirect call. 2164 if (!TargetDecl) 2165 return; 2166 2167 // Get the current enclosing function if it exists. If it doesn't 2168 // we can't check the target features anyhow. 2169 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2170 if (!FD) 2171 return; 2172 2173 // Grab the required features for the call. For a builtin this is listed in 2174 // the td file with the default cpu, for an always_inline function this is any 2175 // listed cpu and any listed features. 2176 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2177 std::string MissingFeature; 2178 if (BuiltinID) { 2179 SmallVector<StringRef, 1> ReqFeatures; 2180 const char *FeatureList = 2181 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2182 // Return if the builtin doesn't have any required features. 2183 if (!FeatureList || StringRef(FeatureList) == "") 2184 return; 2185 StringRef(FeatureList).split(ReqFeatures, ","); 2186 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2187 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2188 << TargetDecl->getDeclName() 2189 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2190 2191 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2192 // Get the required features for the callee. 2193 SmallVector<StringRef, 1> ReqFeatures; 2194 llvm::StringMap<bool> CalleeFeatureMap; 2195 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2196 for (const auto &F : CalleeFeatureMap) { 2197 // Only positive features are "required". 2198 if (F.getValue()) 2199 ReqFeatures.push_back(F.getKey()); 2200 } 2201 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2202 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2203 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2204 } 2205 } 2206 2207 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2208 if (!CGM.getCodeGenOpts().SanitizeStats) 2209 return; 2210 2211 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2212 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2213 CGM.getSanStats().create(IRB, SSK); 2214 } 2215 2216 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2217 if (CGDebugInfo *DI = getDebugInfo()) 2218 return DI->SourceLocToDebugLoc(Location); 2219 2220 return llvm::DebugLoc(); 2221 } 2222