1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
43 /// markers.
44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
45                                       const LangOptions &LangOpts) {
46   if (CGOpts.DisableLifetimeMarkers)
47     return false;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // Asan uses markers for use-after-scope checks.
55   if (CGOpts.SanitizeAddressUseAfterScope)
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       CurFn(nullptr), ReturnValue(Address::invalid()),
67       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
68       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
69       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
70       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
71       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
72       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
73       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
74       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
75       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
76       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
77       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
78       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
79       CXXStructorImplicitParamDecl(nullptr),
80       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
81       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
82       TerminateHandler(nullptr), TrapBB(nullptr),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87 
88   llvm::FastMathFlags FMF;
89   if (CGM.getLangOpts().FastMath)
90     FMF.setUnsafeAlgebra();
91   if (CGM.getLangOpts().FiniteMathOnly) {
92     FMF.setNoNaNs();
93     FMF.setNoInfs();
94   }
95   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
96     FMF.setNoNaNs();
97   }
98   if (CGM.getCodeGenOpts().NoSignedZeros) {
99     FMF.setNoSignedZeros();
100   }
101   if (CGM.getCodeGenOpts().ReciprocalMath) {
102     FMF.setAllowReciprocal();
103   }
104   Builder.setFastMathFlags(FMF);
105 }
106 
107 CodeGenFunction::~CodeGenFunction() {
108   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
109 
110   // If there are any unclaimed block infos, go ahead and destroy them
111   // now.  This can happen if IR-gen gets clever and skips evaluating
112   // something.
113   if (FirstBlockInfo)
114     destroyBlockInfos(FirstBlockInfo);
115 
116   if (getLangOpts().OpenMP && CurFn)
117     CGM.getOpenMPRuntime().functionFinished(*this);
118 }
119 
120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
121                                                     LValueBaseInfo *BaseInfo) {
122   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
123                                  /*forPointee*/ true);
124 }
125 
126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
127                                                    LValueBaseInfo *BaseInfo,
128                                                    bool forPointeeType) {
129   // Honor alignment typedef attributes even on incomplete types.
130   // We also honor them straight for C++ class types, even as pointees;
131   // there's an expressivity gap here.
132   if (auto TT = T->getAs<TypedefType>()) {
133     if (auto Align = TT->getDecl()->getMaxAlignment()) {
134       if (BaseInfo)
135         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
136       return getContext().toCharUnitsFromBits(Align);
137     }
138   }
139 
140   if (BaseInfo)
141     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
142 
143   CharUnits Alignment;
144   if (T->isIncompleteType()) {
145     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
146   } else {
147     // For C++ class pointees, we don't know whether we're pointing at a
148     // base or a complete object, so we generally need to use the
149     // non-virtual alignment.
150     const CXXRecordDecl *RD;
151     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
152       Alignment = CGM.getClassPointerAlignment(RD);
153     } else {
154       Alignment = getContext().getTypeAlignInChars(T);
155       if (T.getQualifiers().hasUnaligned())
156         Alignment = CharUnits::One();
157     }
158 
159     // Cap to the global maximum type alignment unless the alignment
160     // was somehow explicit on the type.
161     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
162       if (Alignment.getQuantity() > MaxAlign &&
163           !getContext().isAlignmentRequired(T))
164         Alignment = CharUnits::fromQuantity(MaxAlign);
165     }
166   }
167   return Alignment;
168 }
169 
170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
171   LValueBaseInfo BaseInfo;
172   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
173   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
174                           CGM.getTBAAInfo(T));
175 }
176 
177 /// Given a value of type T* that may not be to a complete object,
178 /// construct an l-value with the natural pointee alignment of T.
179 LValue
180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
183   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
184 }
185 
186 
187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
188   return CGM.getTypes().ConvertTypeForMem(T);
189 }
190 
191 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
192   return CGM.getTypes().ConvertType(T);
193 }
194 
195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
196   type = type.getCanonicalType();
197   while (true) {
198     switch (type->getTypeClass()) {
199 #define TYPE(name, parent)
200 #define ABSTRACT_TYPE(name, parent)
201 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
202 #define DEPENDENT_TYPE(name, parent) case Type::name:
203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
204 #include "clang/AST/TypeNodes.def"
205       llvm_unreachable("non-canonical or dependent type in IR-generation");
206 
207     case Type::Auto:
208     case Type::DeducedTemplateSpecialization:
209       llvm_unreachable("undeduced type in IR-generation");
210 
211     // Various scalar types.
212     case Type::Builtin:
213     case Type::Pointer:
214     case Type::BlockPointer:
215     case Type::LValueReference:
216     case Type::RValueReference:
217     case Type::MemberPointer:
218     case Type::Vector:
219     case Type::ExtVector:
220     case Type::FunctionProto:
221     case Type::FunctionNoProto:
222     case Type::Enum:
223     case Type::ObjCObjectPointer:
224     case Type::Pipe:
225       return TEK_Scalar;
226 
227     // Complexes.
228     case Type::Complex:
229       return TEK_Complex;
230 
231     // Arrays, records, and Objective-C objects.
232     case Type::ConstantArray:
233     case Type::IncompleteArray:
234     case Type::VariableArray:
235     case Type::Record:
236     case Type::ObjCObject:
237     case Type::ObjCInterface:
238       return TEK_Aggregate;
239 
240     // We operate on atomic values according to their underlying type.
241     case Type::Atomic:
242       type = cast<AtomicType>(type)->getValueType();
243       continue;
244     }
245     llvm_unreachable("unknown type kind!");
246   }
247 }
248 
249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
250   // For cleanliness, we try to avoid emitting the return block for
251   // simple cases.
252   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
253 
254   if (CurBB) {
255     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
256 
257     // We have a valid insert point, reuse it if it is empty or there are no
258     // explicit jumps to the return block.
259     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
260       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
261       delete ReturnBlock.getBlock();
262     } else
263       EmitBlock(ReturnBlock.getBlock());
264     return llvm::DebugLoc();
265   }
266 
267   // Otherwise, if the return block is the target of a single direct
268   // branch then we can just put the code in that block instead. This
269   // cleans up functions which started with a unified return block.
270   if (ReturnBlock.getBlock()->hasOneUse()) {
271     llvm::BranchInst *BI =
272       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
273     if (BI && BI->isUnconditional() &&
274         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
275       // Record/return the DebugLoc of the simple 'return' expression to be used
276       // later by the actual 'ret' instruction.
277       llvm::DebugLoc Loc = BI->getDebugLoc();
278       Builder.SetInsertPoint(BI->getParent());
279       BI->eraseFromParent();
280       delete ReturnBlock.getBlock();
281       return Loc;
282     }
283   }
284 
285   // FIXME: We are at an unreachable point, there is no reason to emit the block
286   // unless it has uses. However, we still need a place to put the debug
287   // region.end for now.
288 
289   EmitBlock(ReturnBlock.getBlock());
290   return llvm::DebugLoc();
291 }
292 
293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
294   if (!BB) return;
295   if (!BB->use_empty())
296     return CGF.CurFn->getBasicBlockList().push_back(BB);
297   delete BB;
298 }
299 
300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
301   assert(BreakContinueStack.empty() &&
302          "mismatched push/pop in break/continue stack!");
303 
304   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
305     && NumSimpleReturnExprs == NumReturnExprs
306     && ReturnBlock.getBlock()->use_empty();
307   // Usually the return expression is evaluated before the cleanup
308   // code.  If the function contains only a simple return statement,
309   // such as a constant, the location before the cleanup code becomes
310   // the last useful breakpoint in the function, because the simple
311   // return expression will be evaluated after the cleanup code. To be
312   // safe, set the debug location for cleanup code to the location of
313   // the return statement.  Otherwise the cleanup code should be at the
314   // end of the function's lexical scope.
315   //
316   // If there are multiple branches to the return block, the branch
317   // instructions will get the location of the return statements and
318   // all will be fine.
319   if (CGDebugInfo *DI = getDebugInfo()) {
320     if (OnlySimpleReturnStmts)
321       DI->EmitLocation(Builder, LastStopPoint);
322     else
323       DI->EmitLocation(Builder, EndLoc);
324   }
325 
326   // Pop any cleanups that might have been associated with the
327   // parameters.  Do this in whatever block we're currently in; it's
328   // important to do this before we enter the return block or return
329   // edges will be *really* confused.
330   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
331   bool HasOnlyLifetimeMarkers =
332       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
333   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
334   if (HasCleanups) {
335     // Make sure the line table doesn't jump back into the body for
336     // the ret after it's been at EndLoc.
337     if (CGDebugInfo *DI = getDebugInfo())
338       if (OnlySimpleReturnStmts)
339         DI->EmitLocation(Builder, EndLoc);
340 
341     PopCleanupBlocks(PrologueCleanupDepth);
342   }
343 
344   // Emit function epilog (to return).
345   llvm::DebugLoc Loc = EmitReturnBlock();
346 
347   if (ShouldInstrumentFunction())
348     EmitFunctionInstrumentation("__cyg_profile_func_exit");
349 
350   // Emit debug descriptor for function end.
351   if (CGDebugInfo *DI = getDebugInfo())
352     DI->EmitFunctionEnd(Builder, CurFn);
353 
354   // Reset the debug location to that of the simple 'return' expression, if any
355   // rather than that of the end of the function's scope '}'.
356   ApplyDebugLocation AL(*this, Loc);
357   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
358   EmitEndEHSpec(CurCodeDecl);
359 
360   assert(EHStack.empty() &&
361          "did not remove all scopes from cleanup stack!");
362 
363   // If someone did an indirect goto, emit the indirect goto block at the end of
364   // the function.
365   if (IndirectBranch) {
366     EmitBlock(IndirectBranch->getParent());
367     Builder.ClearInsertionPoint();
368   }
369 
370   // If some of our locals escaped, insert a call to llvm.localescape in the
371   // entry block.
372   if (!EscapedLocals.empty()) {
373     // Invert the map from local to index into a simple vector. There should be
374     // no holes.
375     SmallVector<llvm::Value *, 4> EscapeArgs;
376     EscapeArgs.resize(EscapedLocals.size());
377     for (auto &Pair : EscapedLocals)
378       EscapeArgs[Pair.second] = Pair.first;
379     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
380         &CGM.getModule(), llvm::Intrinsic::localescape);
381     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
382   }
383 
384   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
385   llvm::Instruction *Ptr = AllocaInsertPt;
386   AllocaInsertPt = nullptr;
387   Ptr->eraseFromParent();
388 
389   // If someone took the address of a label but never did an indirect goto, we
390   // made a zero entry PHI node, which is illegal, zap it now.
391   if (IndirectBranch) {
392     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
393     if (PN->getNumIncomingValues() == 0) {
394       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
395       PN->eraseFromParent();
396     }
397   }
398 
399   EmitIfUsed(*this, EHResumeBlock);
400   EmitIfUsed(*this, TerminateLandingPad);
401   EmitIfUsed(*this, TerminateHandler);
402   EmitIfUsed(*this, UnreachableBlock);
403 
404   if (CGM.getCodeGenOpts().EmitDeclMetadata)
405     EmitDeclMetadata();
406 
407   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
408            I = DeferredReplacements.begin(),
409            E = DeferredReplacements.end();
410        I != E; ++I) {
411     I->first->replaceAllUsesWith(I->second);
412     I->first->eraseFromParent();
413   }
414 }
415 
416 /// ShouldInstrumentFunction - Return true if the current function should be
417 /// instrumented with __cyg_profile_func_* calls
418 bool CodeGenFunction::ShouldInstrumentFunction() {
419   if (!CGM.getCodeGenOpts().InstrumentFunctions)
420     return false;
421   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
422     return false;
423   return true;
424 }
425 
426 /// ShouldXRayInstrument - Return true if the current function should be
427 /// instrumented with XRay nop sleds.
428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
429   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
430 }
431 
432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
433 /// instrumentation function with the current function and the call site, if
434 /// function instrumentation is enabled.
435 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
436   auto NL = ApplyDebugLocation::CreateArtificial(*this);
437   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
438   llvm::PointerType *PointerTy = Int8PtrTy;
439   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
440   llvm::FunctionType *FunctionTy =
441     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
442 
443   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
444   llvm::CallInst *CallSite = Builder.CreateCall(
445     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
446     llvm::ConstantInt::get(Int32Ty, 0),
447     "callsite");
448 
449   llvm::Value *args[] = {
450     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
451     CallSite
452   };
453 
454   EmitNounwindRuntimeCall(F, args);
455 }
456 
457 static void removeImageAccessQualifier(std::string& TyName) {
458   std::string ReadOnlyQual("__read_only");
459   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
460   if (ReadOnlyPos != std::string::npos)
461     // "+ 1" for the space after access qualifier.
462     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
463   else {
464     std::string WriteOnlyQual("__write_only");
465     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
466     if (WriteOnlyPos != std::string::npos)
467       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
468     else {
469       std::string ReadWriteQual("__read_write");
470       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
471       if (ReadWritePos != std::string::npos)
472         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
473     }
474   }
475 }
476 
477 // Returns the address space id that should be produced to the
478 // kernel_arg_addr_space metadata. This is always fixed to the ids
479 // as specified in the SPIR 2.0 specification in order to differentiate
480 // for example in clGetKernelArgInfo() implementation between the address
481 // spaces with targets without unique mapping to the OpenCL address spaces
482 // (basically all single AS CPUs).
483 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
484   switch (LangAS) {
485   case LangAS::opencl_global:   return 1;
486   case LangAS::opencl_constant: return 2;
487   case LangAS::opencl_local:    return 3;
488   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
489   default:
490     return 0; // Assume private.
491   }
492 }
493 
494 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
495 // information in the program executable. The argument information stored
496 // includes the argument name, its type, the address and access qualifiers used.
497 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
498                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
499                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
500   // Create MDNodes that represent the kernel arg metadata.
501   // Each MDNode is a list in the form of "key", N number of values which is
502   // the same number of values as their are kernel arguments.
503 
504   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
505 
506   // MDNode for the kernel argument address space qualifiers.
507   SmallVector<llvm::Metadata *, 8> addressQuals;
508 
509   // MDNode for the kernel argument access qualifiers (images only).
510   SmallVector<llvm::Metadata *, 8> accessQuals;
511 
512   // MDNode for the kernel argument type names.
513   SmallVector<llvm::Metadata *, 8> argTypeNames;
514 
515   // MDNode for the kernel argument base type names.
516   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
517 
518   // MDNode for the kernel argument type qualifiers.
519   SmallVector<llvm::Metadata *, 8> argTypeQuals;
520 
521   // MDNode for the kernel argument names.
522   SmallVector<llvm::Metadata *, 8> argNames;
523 
524   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
525     const ParmVarDecl *parm = FD->getParamDecl(i);
526     QualType ty = parm->getType();
527     std::string typeQuals;
528 
529     if (ty->isPointerType()) {
530       QualType pointeeTy = ty->getPointeeType();
531 
532       // Get address qualifier.
533       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
534         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
535 
536       // Get argument type name.
537       std::string typeName =
538           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
539 
540       // Turn "unsigned type" to "utype"
541       std::string::size_type pos = typeName.find("unsigned");
542       if (pointeeTy.isCanonical() && pos != std::string::npos)
543         typeName.erase(pos+1, 8);
544 
545       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
546 
547       std::string baseTypeName =
548           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
549               Policy) +
550           "*";
551 
552       // Turn "unsigned type" to "utype"
553       pos = baseTypeName.find("unsigned");
554       if (pos != std::string::npos)
555         baseTypeName.erase(pos+1, 8);
556 
557       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
558 
559       // Get argument type qualifiers:
560       if (ty.isRestrictQualified())
561         typeQuals = "restrict";
562       if (pointeeTy.isConstQualified() ||
563           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
564         typeQuals += typeQuals.empty() ? "const" : " const";
565       if (pointeeTy.isVolatileQualified())
566         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
567     } else {
568       uint32_t AddrSpc = 0;
569       bool isPipe = ty->isPipeType();
570       if (ty->isImageType() || isPipe)
571         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
572 
573       addressQuals.push_back(
574           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
575 
576       // Get argument type name.
577       std::string typeName;
578       if (isPipe)
579         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
580                      .getAsString(Policy);
581       else
582         typeName = ty.getUnqualifiedType().getAsString(Policy);
583 
584       // Turn "unsigned type" to "utype"
585       std::string::size_type pos = typeName.find("unsigned");
586       if (ty.isCanonical() && pos != std::string::npos)
587         typeName.erase(pos+1, 8);
588 
589       std::string baseTypeName;
590       if (isPipe)
591         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
592                           ->getElementType().getCanonicalType()
593                           .getAsString(Policy);
594       else
595         baseTypeName =
596           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
597 
598       // Remove access qualifiers on images
599       // (as they are inseparable from type in clang implementation,
600       // but OpenCL spec provides a special query to get access qualifier
601       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
602       if (ty->isImageType()) {
603         removeImageAccessQualifier(typeName);
604         removeImageAccessQualifier(baseTypeName);
605       }
606 
607       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
608 
609       // Turn "unsigned type" to "utype"
610       pos = baseTypeName.find("unsigned");
611       if (pos != std::string::npos)
612         baseTypeName.erase(pos+1, 8);
613 
614       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
615 
616       if (isPipe)
617         typeQuals = "pipe";
618     }
619 
620     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
621 
622     // Get image and pipe access qualifier:
623     if (ty->isImageType()|| ty->isPipeType()) {
624       const Decl *PDecl = parm;
625       if (auto *TD = dyn_cast<TypedefType>(ty))
626         PDecl = TD->getDecl();
627       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
628       if (A && A->isWriteOnly())
629         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
630       else if (A && A->isReadWrite())
631         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
632       else
633         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
634     } else
635       accessQuals.push_back(llvm::MDString::get(Context, "none"));
636 
637     // Get argument name.
638     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
639   }
640 
641   Fn->setMetadata("kernel_arg_addr_space",
642                   llvm::MDNode::get(Context, addressQuals));
643   Fn->setMetadata("kernel_arg_access_qual",
644                   llvm::MDNode::get(Context, accessQuals));
645   Fn->setMetadata("kernel_arg_type",
646                   llvm::MDNode::get(Context, argTypeNames));
647   Fn->setMetadata("kernel_arg_base_type",
648                   llvm::MDNode::get(Context, argBaseTypeNames));
649   Fn->setMetadata("kernel_arg_type_qual",
650                   llvm::MDNode::get(Context, argTypeQuals));
651   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
652     Fn->setMetadata("kernel_arg_name",
653                     llvm::MDNode::get(Context, argNames));
654 }
655 
656 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
657                                                llvm::Function *Fn)
658 {
659   if (!FD->hasAttr<OpenCLKernelAttr>())
660     return;
661 
662   llvm::LLVMContext &Context = getLLVMContext();
663 
664   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
665 
666   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
667     QualType HintQTy = A->getTypeHint();
668     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
669     bool IsSignedInteger =
670         HintQTy->isSignedIntegerType() ||
671         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
672     llvm::Metadata *AttrMDArgs[] = {
673         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
674             CGM.getTypes().ConvertType(A->getTypeHint()))),
675         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
676             llvm::IntegerType::get(Context, 32),
677             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
678     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
679   }
680 
681   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
682     llvm::Metadata *AttrMDArgs[] = {
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
685         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
686     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
687   }
688 
689   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
690     llvm::Metadata *AttrMDArgs[] = {
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
693         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
694     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
695   }
696 
697   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
698           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
699     llvm::Metadata *AttrMDArgs[] = {
700         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
701     Fn->setMetadata("intel_reqd_sub_group_size",
702                     llvm::MDNode::get(Context, AttrMDArgs));
703   }
704 }
705 
706 /// Determine whether the function F ends with a return stmt.
707 static bool endsWithReturn(const Decl* F) {
708   const Stmt *Body = nullptr;
709   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
710     Body = FD->getBody();
711   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
712     Body = OMD->getBody();
713 
714   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
715     auto LastStmt = CS->body_rbegin();
716     if (LastStmt != CS->body_rend())
717       return isa<ReturnStmt>(*LastStmt);
718   }
719   return false;
720 }
721 
722 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
723   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
724   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
725 }
726 
727 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
728   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
729   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
730       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
731       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
732     return false;
733 
734   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
735     return false;
736 
737   if (MD->getNumParams() == 2) {
738     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
739     if (!PT || !PT->isVoidPointerType() ||
740         !PT->getPointeeType().isConstQualified())
741       return false;
742   }
743 
744   return true;
745 }
746 
747 void CodeGenFunction::StartFunction(GlobalDecl GD,
748                                     QualType RetTy,
749                                     llvm::Function *Fn,
750                                     const CGFunctionInfo &FnInfo,
751                                     const FunctionArgList &Args,
752                                     SourceLocation Loc,
753                                     SourceLocation StartLoc) {
754   assert(!CurFn &&
755          "Do not use a CodeGenFunction object for more than one function");
756 
757   const Decl *D = GD.getDecl();
758 
759   DidCallStackSave = false;
760   CurCodeDecl = D;
761   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
762     if (FD->usesSEHTry())
763       CurSEHParent = FD;
764   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
765   FnRetTy = RetTy;
766   CurFn = Fn;
767   CurFnInfo = &FnInfo;
768   assert(CurFn->isDeclaration() && "Function already has body?");
769 
770   if (CGM.isInSanitizerBlacklist(Fn, Loc))
771     SanOpts.clear();
772 
773   if (D) {
774     // Apply the no_sanitize* attributes to SanOpts.
775     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
776       SanOpts.Mask &= ~Attr->getMask();
777   }
778 
779   // Apply sanitizer attributes to the function.
780   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
781     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
782   if (SanOpts.has(SanitizerKind::Thread))
783     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
784   if (SanOpts.has(SanitizerKind::Memory))
785     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
786   if (SanOpts.has(SanitizerKind::SafeStack))
787     Fn->addFnAttr(llvm::Attribute::SafeStack);
788 
789   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
790   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
791   if (SanOpts.has(SanitizerKind::Thread)) {
792     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
793       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
794       if (OMD->getMethodFamily() == OMF_dealloc ||
795           OMD->getMethodFamily() == OMF_initialize ||
796           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
797         markAsIgnoreThreadCheckingAtRuntime(Fn);
798       }
799     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
800       IdentifierInfo *II = FD->getIdentifier();
801       if (II && II->isStr("__destroy_helper_block_"))
802         markAsIgnoreThreadCheckingAtRuntime(Fn);
803     }
804   }
805 
806   // Ignore unrelated casts in STL allocate() since the allocator must cast
807   // from void* to T* before object initialization completes. Don't match on the
808   // namespace because not all allocators are in std::
809   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
810     if (matchesStlAllocatorFn(D, getContext()))
811       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
812   }
813 
814   // Apply xray attributes to the function (as a string, for now)
815   if (D && ShouldXRayInstrumentFunction()) {
816     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
817       if (XRayAttr->alwaysXRayInstrument())
818         Fn->addFnAttr("function-instrument", "xray-always");
819       if (XRayAttr->neverXRayInstrument())
820         Fn->addFnAttr("function-instrument", "xray-never");
821       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
822         Fn->addFnAttr("xray-log-args",
823                       llvm::utostr(LogArgs->getArgumentCount()));
824       }
825     } else {
826       if (!CGM.imbueXRayAttrs(Fn, Loc))
827         Fn->addFnAttr(
828             "xray-instruction-threshold",
829             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
830     }
831   }
832 
833   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
834     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
835       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
836 
837   // Add no-jump-tables value.
838   Fn->addFnAttr("no-jump-tables",
839                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
840 
841   if (getLangOpts().OpenCL) {
842     // Add metadata for a kernel function.
843     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
844       EmitOpenCLKernelMetadata(FD, Fn);
845   }
846 
847   // If we are checking function types, emit a function type signature as
848   // prologue data.
849   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
850     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
851       if (llvm::Constant *PrologueSig =
852               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
853         llvm::Constant *FTRTTIConst =
854             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
855         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
856         llvm::Constant *PrologueStructConst =
857             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
858         Fn->setPrologueData(PrologueStructConst);
859       }
860     }
861   }
862 
863   // If we're checking nullability, we need to know whether we can check the
864   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
865   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
866     auto Nullability = FnRetTy->getNullability(getContext());
867     if (Nullability && *Nullability == NullabilityKind::NonNull) {
868       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
869             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
870         RetValNullabilityPrecondition =
871             llvm::ConstantInt::getTrue(getLLVMContext());
872     }
873   }
874 
875   // If we're in C++ mode and the function name is "main", it is guaranteed
876   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
877   // used within a program").
878   if (getLangOpts().CPlusPlus)
879     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
880       if (FD->isMain())
881         Fn->addFnAttr(llvm::Attribute::NoRecurse);
882 
883   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
884 
885   // Create a marker to make it easy to insert allocas into the entryblock
886   // later.  Don't create this with the builder, because we don't want it
887   // folded.
888   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
889   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
890 
891   ReturnBlock = getJumpDestInCurrentScope("return");
892 
893   Builder.SetInsertPoint(EntryBB);
894 
895   // If we're checking the return value, allocate space for a pointer to a
896   // precise source location of the checked return statement.
897   if (requiresReturnValueCheck()) {
898     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
899     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
900   }
901 
902   // Emit subprogram debug descriptor.
903   if (CGDebugInfo *DI = getDebugInfo()) {
904     // Reconstruct the type from the argument list so that implicit parameters,
905     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
906     // convention.
907     CallingConv CC = CallingConv::CC_C;
908     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
909       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
910         CC = SrcFnTy->getCallConv();
911     SmallVector<QualType, 16> ArgTypes;
912     for (const VarDecl *VD : Args)
913       ArgTypes.push_back(VD->getType());
914     QualType FnType = getContext().getFunctionType(
915         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
916     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
917   }
918 
919   if (ShouldInstrumentFunction())
920     EmitFunctionInstrumentation("__cyg_profile_func_enter");
921 
922   // Since emitting the mcount call here impacts optimizations such as function
923   // inlining, we just add an attribute to insert a mcount call in backend.
924   // The attribute "counting-function" is set to mcount function name which is
925   // architecture dependent.
926   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
927     if (CGM.getCodeGenOpts().CallFEntry)
928       Fn->addFnAttr("fentry-call", "true");
929     else {
930       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
931         Fn->addFnAttr("counting-function", getTarget().getMCountName());
932     }
933   }
934 
935   if (RetTy->isVoidType()) {
936     // Void type; nothing to return.
937     ReturnValue = Address::invalid();
938 
939     // Count the implicit return.
940     if (!endsWithReturn(D))
941       ++NumReturnExprs;
942   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
943              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
944     // Indirect aggregate return; emit returned value directly into sret slot.
945     // This reduces code size, and affects correctness in C++.
946     auto AI = CurFn->arg_begin();
947     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
948       ++AI;
949     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
950   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
951              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
952     // Load the sret pointer from the argument struct and return into that.
953     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
954     llvm::Function::arg_iterator EI = CurFn->arg_end();
955     --EI;
956     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
957     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
958     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
959   } else {
960     ReturnValue = CreateIRTemp(RetTy, "retval");
961 
962     // Tell the epilog emitter to autorelease the result.  We do this
963     // now so that various specialized functions can suppress it
964     // during their IR-generation.
965     if (getLangOpts().ObjCAutoRefCount &&
966         !CurFnInfo->isReturnsRetained() &&
967         RetTy->isObjCRetainableType())
968       AutoreleaseResult = true;
969   }
970 
971   EmitStartEHSpec(CurCodeDecl);
972 
973   PrologueCleanupDepth = EHStack.stable_begin();
974   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
975 
976   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
977     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
978     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
979     if (MD->getParent()->isLambda() &&
980         MD->getOverloadedOperator() == OO_Call) {
981       // We're in a lambda; figure out the captures.
982       MD->getParent()->getCaptureFields(LambdaCaptureFields,
983                                         LambdaThisCaptureField);
984       if (LambdaThisCaptureField) {
985         // If the lambda captures the object referred to by '*this' - either by
986         // value or by reference, make sure CXXThisValue points to the correct
987         // object.
988 
989         // Get the lvalue for the field (which is a copy of the enclosing object
990         // or contains the address of the enclosing object).
991         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
992         if (!LambdaThisCaptureField->getType()->isPointerType()) {
993           // If the enclosing object was captured by value, just use its address.
994           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
995         } else {
996           // Load the lvalue pointed to by the field, since '*this' was captured
997           // by reference.
998           CXXThisValue =
999               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1000         }
1001       }
1002       for (auto *FD : MD->getParent()->fields()) {
1003         if (FD->hasCapturedVLAType()) {
1004           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1005                                            SourceLocation()).getScalarVal();
1006           auto VAT = FD->getCapturedVLAType();
1007           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1008         }
1009       }
1010     } else {
1011       // Not in a lambda; just use 'this' from the method.
1012       // FIXME: Should we generate a new load for each use of 'this'?  The
1013       // fast register allocator would be happier...
1014       CXXThisValue = CXXABIThisValue;
1015     }
1016 
1017     // Check the 'this' pointer once per function, if it's available.
1018     if (CXXABIThisValue) {
1019       SanitizerSet SkippedChecks;
1020       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1021       QualType ThisTy = MD->getThisType(getContext());
1022 
1023       // If this is the call operator of a lambda with no capture-default, it
1024       // may have a static invoker function, which may call this operator with
1025       // a null 'this' pointer.
1026       if (isLambdaCallOperator(MD) &&
1027           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1028               LCD_None)
1029         SkippedChecks.set(SanitizerKind::Null, true);
1030 
1031       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1032                                                 : TCK_MemberCall,
1033                     Loc, CXXABIThisValue, ThisTy,
1034                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1035                     SkippedChecks);
1036     }
1037   }
1038 
1039   // If any of the arguments have a variably modified type, make sure to
1040   // emit the type size.
1041   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1042        i != e; ++i) {
1043     const VarDecl *VD = *i;
1044 
1045     // Dig out the type as written from ParmVarDecls; it's unclear whether
1046     // the standard (C99 6.9.1p10) requires this, but we're following the
1047     // precedent set by gcc.
1048     QualType Ty;
1049     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1050       Ty = PVD->getOriginalType();
1051     else
1052       Ty = VD->getType();
1053 
1054     if (Ty->isVariablyModifiedType())
1055       EmitVariablyModifiedType(Ty);
1056   }
1057   // Emit a location at the end of the prologue.
1058   if (CGDebugInfo *DI = getDebugInfo())
1059     DI->EmitLocation(Builder, StartLoc);
1060 }
1061 
1062 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1063                                        const Stmt *Body) {
1064   incrementProfileCounter(Body);
1065   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1066     EmitCompoundStmtWithoutScope(*S);
1067   else
1068     EmitStmt(Body);
1069 }
1070 
1071 /// When instrumenting to collect profile data, the counts for some blocks
1072 /// such as switch cases need to not include the fall-through counts, so
1073 /// emit a branch around the instrumentation code. When not instrumenting,
1074 /// this just calls EmitBlock().
1075 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1076                                                const Stmt *S) {
1077   llvm::BasicBlock *SkipCountBB = nullptr;
1078   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1079     // When instrumenting for profiling, the fallthrough to certain
1080     // statements needs to skip over the instrumentation code so that we
1081     // get an accurate count.
1082     SkipCountBB = createBasicBlock("skipcount");
1083     EmitBranch(SkipCountBB);
1084   }
1085   EmitBlock(BB);
1086   uint64_t CurrentCount = getCurrentProfileCount();
1087   incrementProfileCounter(S);
1088   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1089   if (SkipCountBB)
1090     EmitBlock(SkipCountBB);
1091 }
1092 
1093 /// Tries to mark the given function nounwind based on the
1094 /// non-existence of any throwing calls within it.  We believe this is
1095 /// lightweight enough to do at -O0.
1096 static void TryMarkNoThrow(llvm::Function *F) {
1097   // LLVM treats 'nounwind' on a function as part of the type, so we
1098   // can't do this on functions that can be overwritten.
1099   if (F->isInterposable()) return;
1100 
1101   for (llvm::BasicBlock &BB : *F)
1102     for (llvm::Instruction &I : BB)
1103       if (I.mayThrow())
1104         return;
1105 
1106   F->setDoesNotThrow();
1107 }
1108 
1109 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1110                                                FunctionArgList &Args) {
1111   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1112   QualType ResTy = FD->getReturnType();
1113 
1114   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1115   if (MD && MD->isInstance()) {
1116     if (CGM.getCXXABI().HasThisReturn(GD))
1117       ResTy = MD->getThisType(getContext());
1118     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1119       ResTy = CGM.getContext().VoidPtrTy;
1120     CGM.getCXXABI().buildThisParam(*this, Args);
1121   }
1122 
1123   // The base version of an inheriting constructor whose constructed base is a
1124   // virtual base is not passed any arguments (because it doesn't actually call
1125   // the inherited constructor).
1126   bool PassedParams = true;
1127   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1128     if (auto Inherited = CD->getInheritedConstructor())
1129       PassedParams =
1130           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1131 
1132   if (PassedParams) {
1133     for (auto *Param : FD->parameters()) {
1134       Args.push_back(Param);
1135       if (!Param->hasAttr<PassObjectSizeAttr>())
1136         continue;
1137 
1138       auto *Implicit = ImplicitParamDecl::Create(
1139           getContext(), Param->getDeclContext(), Param->getLocation(),
1140           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1141       SizeArguments[Param] = Implicit;
1142       Args.push_back(Implicit);
1143     }
1144   }
1145 
1146   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1147     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1148 
1149   return ResTy;
1150 }
1151 
1152 static bool
1153 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1154                                              const ASTContext &Context) {
1155   QualType T = FD->getReturnType();
1156   // Avoid the optimization for functions that return a record type with a
1157   // trivial destructor or another trivially copyable type.
1158   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1159     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1160       return !ClassDecl->hasTrivialDestructor();
1161   }
1162   return !T.isTriviallyCopyableType(Context);
1163 }
1164 
1165 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1166                                    const CGFunctionInfo &FnInfo) {
1167   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1168   CurGD = GD;
1169 
1170   FunctionArgList Args;
1171   QualType ResTy = BuildFunctionArgList(GD, Args);
1172 
1173   // Check if we should generate debug info for this function.
1174   if (FD->hasAttr<NoDebugAttr>())
1175     DebugInfo = nullptr; // disable debug info indefinitely for this function
1176 
1177   // The function might not have a body if we're generating thunks for a
1178   // function declaration.
1179   SourceRange BodyRange;
1180   if (Stmt *Body = FD->getBody())
1181     BodyRange = Body->getSourceRange();
1182   else
1183     BodyRange = FD->getLocation();
1184   CurEHLocation = BodyRange.getEnd();
1185 
1186   // Use the location of the start of the function to determine where
1187   // the function definition is located. By default use the location
1188   // of the declaration as the location for the subprogram. A function
1189   // may lack a declaration in the source code if it is created by code
1190   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1191   SourceLocation Loc = FD->getLocation();
1192 
1193   // If this is a function specialization then use the pattern body
1194   // as the location for the function.
1195   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1196     if (SpecDecl->hasBody(SpecDecl))
1197       Loc = SpecDecl->getLocation();
1198 
1199   Stmt *Body = FD->getBody();
1200 
1201   // Initialize helper which will detect jumps which can cause invalid lifetime
1202   // markers.
1203   if (Body && ShouldEmitLifetimeMarkers)
1204     Bypasses.Init(Body);
1205 
1206   // Emit the standard function prologue.
1207   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1208 
1209   // Generate the body of the function.
1210   PGO.assignRegionCounters(GD, CurFn);
1211   if (isa<CXXDestructorDecl>(FD))
1212     EmitDestructorBody(Args);
1213   else if (isa<CXXConstructorDecl>(FD))
1214     EmitConstructorBody(Args);
1215   else if (getLangOpts().CUDA &&
1216            !getLangOpts().CUDAIsDevice &&
1217            FD->hasAttr<CUDAGlobalAttr>())
1218     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1219   else if (isa<CXXMethodDecl>(FD) &&
1220            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1221     // The lambda static invoker function is special, because it forwards or
1222     // clones the body of the function call operator (but is actually static).
1223     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1224   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1225              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1226               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1227     // Implicit copy-assignment gets the same special treatment as implicit
1228     // copy-constructors.
1229     emitImplicitAssignmentOperatorBody(Args);
1230   } else if (Body) {
1231     EmitFunctionBody(Args, Body);
1232   } else
1233     llvm_unreachable("no definition for emitted function");
1234 
1235   // C++11 [stmt.return]p2:
1236   //   Flowing off the end of a function [...] results in undefined behavior in
1237   //   a value-returning function.
1238   // C11 6.9.1p12:
1239   //   If the '}' that terminates a function is reached, and the value of the
1240   //   function call is used by the caller, the behavior is undefined.
1241   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1242       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1243     bool ShouldEmitUnreachable =
1244         CGM.getCodeGenOpts().StrictReturn ||
1245         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1246     if (SanOpts.has(SanitizerKind::Return)) {
1247       SanitizerScope SanScope(this);
1248       llvm::Value *IsFalse = Builder.getFalse();
1249       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1250                 SanitizerHandler::MissingReturn,
1251                 EmitCheckSourceLocation(FD->getLocation()), None);
1252     } else if (ShouldEmitUnreachable) {
1253       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1254         EmitTrapCall(llvm::Intrinsic::trap);
1255     }
1256     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1257       Builder.CreateUnreachable();
1258       Builder.ClearInsertionPoint();
1259     }
1260   }
1261 
1262   // Emit the standard function epilogue.
1263   FinishFunction(BodyRange.getEnd());
1264 
1265   // If we haven't marked the function nothrow through other means, do
1266   // a quick pass now to see if we can.
1267   if (!CurFn->doesNotThrow())
1268     TryMarkNoThrow(CurFn);
1269 }
1270 
1271 /// ContainsLabel - Return true if the statement contains a label in it.  If
1272 /// this statement is not executed normally, it not containing a label means
1273 /// that we can just remove the code.
1274 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1275   // Null statement, not a label!
1276   if (!S) return false;
1277 
1278   // If this is a label, we have to emit the code, consider something like:
1279   // if (0) {  ...  foo:  bar(); }  goto foo;
1280   //
1281   // TODO: If anyone cared, we could track __label__'s, since we know that you
1282   // can't jump to one from outside their declared region.
1283   if (isa<LabelStmt>(S))
1284     return true;
1285 
1286   // If this is a case/default statement, and we haven't seen a switch, we have
1287   // to emit the code.
1288   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1289     return true;
1290 
1291   // If this is a switch statement, we want to ignore cases below it.
1292   if (isa<SwitchStmt>(S))
1293     IgnoreCaseStmts = true;
1294 
1295   // Scan subexpressions for verboten labels.
1296   for (const Stmt *SubStmt : S->children())
1297     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1298       return true;
1299 
1300   return false;
1301 }
1302 
1303 /// containsBreak - Return true if the statement contains a break out of it.
1304 /// If the statement (recursively) contains a switch or loop with a break
1305 /// inside of it, this is fine.
1306 bool CodeGenFunction::containsBreak(const Stmt *S) {
1307   // Null statement, not a label!
1308   if (!S) return false;
1309 
1310   // If this is a switch or loop that defines its own break scope, then we can
1311   // include it and anything inside of it.
1312   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1313       isa<ForStmt>(S))
1314     return false;
1315 
1316   if (isa<BreakStmt>(S))
1317     return true;
1318 
1319   // Scan subexpressions for verboten breaks.
1320   for (const Stmt *SubStmt : S->children())
1321     if (containsBreak(SubStmt))
1322       return true;
1323 
1324   return false;
1325 }
1326 
1327 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1328   if (!S) return false;
1329 
1330   // Some statement kinds add a scope and thus never add a decl to the current
1331   // scope. Note, this list is longer than the list of statements that might
1332   // have an unscoped decl nested within them, but this way is conservatively
1333   // correct even if more statement kinds are added.
1334   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1335       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1336       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1337       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1338     return false;
1339 
1340   if (isa<DeclStmt>(S))
1341     return true;
1342 
1343   for (const Stmt *SubStmt : S->children())
1344     if (mightAddDeclToScope(SubStmt))
1345       return true;
1346 
1347   return false;
1348 }
1349 
1350 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1351 /// to a constant, or if it does but contains a label, return false.  If it
1352 /// constant folds return true and set the boolean result in Result.
1353 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1354                                                    bool &ResultBool,
1355                                                    bool AllowLabels) {
1356   llvm::APSInt ResultInt;
1357   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1358     return false;
1359 
1360   ResultBool = ResultInt.getBoolValue();
1361   return true;
1362 }
1363 
1364 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1365 /// to a constant, or if it does but contains a label, return false.  If it
1366 /// constant folds return true and set the folded value.
1367 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1368                                                    llvm::APSInt &ResultInt,
1369                                                    bool AllowLabels) {
1370   // FIXME: Rename and handle conversion of other evaluatable things
1371   // to bool.
1372   llvm::APSInt Int;
1373   if (!Cond->EvaluateAsInt(Int, getContext()))
1374     return false;  // Not foldable, not integer or not fully evaluatable.
1375 
1376   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1377     return false;  // Contains a label.
1378 
1379   ResultInt = Int;
1380   return true;
1381 }
1382 
1383 
1384 
1385 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1386 /// statement) to the specified blocks.  Based on the condition, this might try
1387 /// to simplify the codegen of the conditional based on the branch.
1388 ///
1389 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1390                                            llvm::BasicBlock *TrueBlock,
1391                                            llvm::BasicBlock *FalseBlock,
1392                                            uint64_t TrueCount) {
1393   Cond = Cond->IgnoreParens();
1394 
1395   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1396 
1397     // Handle X && Y in a condition.
1398     if (CondBOp->getOpcode() == BO_LAnd) {
1399       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1400       // folded if the case was simple enough.
1401       bool ConstantBool = false;
1402       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1403           ConstantBool) {
1404         // br(1 && X) -> br(X).
1405         incrementProfileCounter(CondBOp);
1406         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1407                                     TrueCount);
1408       }
1409 
1410       // If we have "X && 1", simplify the code to use an uncond branch.
1411       // "X && 0" would have been constant folded to 0.
1412       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1413           ConstantBool) {
1414         // br(X && 1) -> br(X).
1415         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1416                                     TrueCount);
1417       }
1418 
1419       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1420       // want to jump to the FalseBlock.
1421       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1422       // The counter tells us how often we evaluate RHS, and all of TrueCount
1423       // can be propagated to that branch.
1424       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1425 
1426       ConditionalEvaluation eval(*this);
1427       {
1428         ApplyDebugLocation DL(*this, Cond);
1429         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1430         EmitBlock(LHSTrue);
1431       }
1432 
1433       incrementProfileCounter(CondBOp);
1434       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1435 
1436       // Any temporaries created here are conditional.
1437       eval.begin(*this);
1438       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1439       eval.end(*this);
1440 
1441       return;
1442     }
1443 
1444     if (CondBOp->getOpcode() == BO_LOr) {
1445       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1446       // folded if the case was simple enough.
1447       bool ConstantBool = false;
1448       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1449           !ConstantBool) {
1450         // br(0 || X) -> br(X).
1451         incrementProfileCounter(CondBOp);
1452         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1453                                     TrueCount);
1454       }
1455 
1456       // If we have "X || 0", simplify the code to use an uncond branch.
1457       // "X || 1" would have been constant folded to 1.
1458       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1459           !ConstantBool) {
1460         // br(X || 0) -> br(X).
1461         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1462                                     TrueCount);
1463       }
1464 
1465       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1466       // want to jump to the TrueBlock.
1467       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1468       // We have the count for entry to the RHS and for the whole expression
1469       // being true, so we can divy up True count between the short circuit and
1470       // the RHS.
1471       uint64_t LHSCount =
1472           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1473       uint64_t RHSCount = TrueCount - LHSCount;
1474 
1475       ConditionalEvaluation eval(*this);
1476       {
1477         ApplyDebugLocation DL(*this, Cond);
1478         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1479         EmitBlock(LHSFalse);
1480       }
1481 
1482       incrementProfileCounter(CondBOp);
1483       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1484 
1485       // Any temporaries created here are conditional.
1486       eval.begin(*this);
1487       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1488 
1489       eval.end(*this);
1490 
1491       return;
1492     }
1493   }
1494 
1495   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1496     // br(!x, t, f) -> br(x, f, t)
1497     if (CondUOp->getOpcode() == UO_LNot) {
1498       // Negate the count.
1499       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1500       // Negate the condition and swap the destination blocks.
1501       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1502                                   FalseCount);
1503     }
1504   }
1505 
1506   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1507     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1508     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1509     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1510 
1511     ConditionalEvaluation cond(*this);
1512     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1513                          getProfileCount(CondOp));
1514 
1515     // When computing PGO branch weights, we only know the overall count for
1516     // the true block. This code is essentially doing tail duplication of the
1517     // naive code-gen, introducing new edges for which counts are not
1518     // available. Divide the counts proportionally between the LHS and RHS of
1519     // the conditional operator.
1520     uint64_t LHSScaledTrueCount = 0;
1521     if (TrueCount) {
1522       double LHSRatio =
1523           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1524       LHSScaledTrueCount = TrueCount * LHSRatio;
1525     }
1526 
1527     cond.begin(*this);
1528     EmitBlock(LHSBlock);
1529     incrementProfileCounter(CondOp);
1530     {
1531       ApplyDebugLocation DL(*this, Cond);
1532       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1533                            LHSScaledTrueCount);
1534     }
1535     cond.end(*this);
1536 
1537     cond.begin(*this);
1538     EmitBlock(RHSBlock);
1539     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1540                          TrueCount - LHSScaledTrueCount);
1541     cond.end(*this);
1542 
1543     return;
1544   }
1545 
1546   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1547     // Conditional operator handling can give us a throw expression as a
1548     // condition for a case like:
1549     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1550     // Fold this to:
1551     //   br(c, throw x, br(y, t, f))
1552     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1553     return;
1554   }
1555 
1556   // If the branch has a condition wrapped by __builtin_unpredictable,
1557   // create metadata that specifies that the branch is unpredictable.
1558   // Don't bother if not optimizing because that metadata would not be used.
1559   llvm::MDNode *Unpredictable = nullptr;
1560   auto *Call = dyn_cast<CallExpr>(Cond);
1561   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1562     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1563     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1564       llvm::MDBuilder MDHelper(getLLVMContext());
1565       Unpredictable = MDHelper.createUnpredictable();
1566     }
1567   }
1568 
1569   // Create branch weights based on the number of times we get here and the
1570   // number of times the condition should be true.
1571   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1572   llvm::MDNode *Weights =
1573       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1574 
1575   // Emit the code with the fully general case.
1576   llvm::Value *CondV;
1577   {
1578     ApplyDebugLocation DL(*this, Cond);
1579     CondV = EvaluateExprAsBool(Cond);
1580   }
1581   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1582 }
1583 
1584 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1585 /// specified stmt yet.
1586 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1587   CGM.ErrorUnsupported(S, Type);
1588 }
1589 
1590 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1591 /// variable-length array whose elements have a non-zero bit-pattern.
1592 ///
1593 /// \param baseType the inner-most element type of the array
1594 /// \param src - a char* pointing to the bit-pattern for a single
1595 /// base element of the array
1596 /// \param sizeInChars - the total size of the VLA, in chars
1597 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1598                                Address dest, Address src,
1599                                llvm::Value *sizeInChars) {
1600   CGBuilderTy &Builder = CGF.Builder;
1601 
1602   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1603   llvm::Value *baseSizeInChars
1604     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1605 
1606   Address begin =
1607     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1608   llvm::Value *end =
1609     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1610 
1611   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1612   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1613   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1614 
1615   // Make a loop over the VLA.  C99 guarantees that the VLA element
1616   // count must be nonzero.
1617   CGF.EmitBlock(loopBB);
1618 
1619   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1620   cur->addIncoming(begin.getPointer(), originBB);
1621 
1622   CharUnits curAlign =
1623     dest.getAlignment().alignmentOfArrayElement(baseSize);
1624 
1625   // memcpy the individual element bit-pattern.
1626   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1627                        /*volatile*/ false);
1628 
1629   // Go to the next element.
1630   llvm::Value *next =
1631     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1632 
1633   // Leave if that's the end of the VLA.
1634   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1635   Builder.CreateCondBr(done, contBB, loopBB);
1636   cur->addIncoming(next, loopBB);
1637 
1638   CGF.EmitBlock(contBB);
1639 }
1640 
1641 void
1642 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1643   // Ignore empty classes in C++.
1644   if (getLangOpts().CPlusPlus) {
1645     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1646       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1647         return;
1648     }
1649   }
1650 
1651   // Cast the dest ptr to the appropriate i8 pointer type.
1652   if (DestPtr.getElementType() != Int8Ty)
1653     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1654 
1655   // Get size and alignment info for this aggregate.
1656   CharUnits size = getContext().getTypeSizeInChars(Ty);
1657 
1658   llvm::Value *SizeVal;
1659   const VariableArrayType *vla;
1660 
1661   // Don't bother emitting a zero-byte memset.
1662   if (size.isZero()) {
1663     // But note that getTypeInfo returns 0 for a VLA.
1664     if (const VariableArrayType *vlaType =
1665           dyn_cast_or_null<VariableArrayType>(
1666                                           getContext().getAsArrayType(Ty))) {
1667       QualType eltType;
1668       llvm::Value *numElts;
1669       std::tie(numElts, eltType) = getVLASize(vlaType);
1670 
1671       SizeVal = numElts;
1672       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1673       if (!eltSize.isOne())
1674         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1675       vla = vlaType;
1676     } else {
1677       return;
1678     }
1679   } else {
1680     SizeVal = CGM.getSize(size);
1681     vla = nullptr;
1682   }
1683 
1684   // If the type contains a pointer to data member we can't memset it to zero.
1685   // Instead, create a null constant and copy it to the destination.
1686   // TODO: there are other patterns besides zero that we can usefully memset,
1687   // like -1, which happens to be the pattern used by member-pointers.
1688   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1689     // For a VLA, emit a single element, then splat that over the VLA.
1690     if (vla) Ty = getContext().getBaseElementType(vla);
1691 
1692     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1693 
1694     llvm::GlobalVariable *NullVariable =
1695       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1696                                /*isConstant=*/true,
1697                                llvm::GlobalVariable::PrivateLinkage,
1698                                NullConstant, Twine());
1699     CharUnits NullAlign = DestPtr.getAlignment();
1700     NullVariable->setAlignment(NullAlign.getQuantity());
1701     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1702                    NullAlign);
1703 
1704     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1705 
1706     // Get and call the appropriate llvm.memcpy overload.
1707     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1708     return;
1709   }
1710 
1711   // Otherwise, just memset the whole thing to zero.  This is legal
1712   // because in LLVM, all default initializers (other than the ones we just
1713   // handled above) are guaranteed to have a bit pattern of all zeros.
1714   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1715 }
1716 
1717 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1718   // Make sure that there is a block for the indirect goto.
1719   if (!IndirectBranch)
1720     GetIndirectGotoBlock();
1721 
1722   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1723 
1724   // Make sure the indirect branch includes all of the address-taken blocks.
1725   IndirectBranch->addDestination(BB);
1726   return llvm::BlockAddress::get(CurFn, BB);
1727 }
1728 
1729 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1730   // If we already made the indirect branch for indirect goto, return its block.
1731   if (IndirectBranch) return IndirectBranch->getParent();
1732 
1733   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1734 
1735   // Create the PHI node that indirect gotos will add entries to.
1736   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1737                                               "indirect.goto.dest");
1738 
1739   // Create the indirect branch instruction.
1740   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1741   return IndirectBranch->getParent();
1742 }
1743 
1744 /// Computes the length of an array in elements, as well as the base
1745 /// element type and a properly-typed first element pointer.
1746 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1747                                               QualType &baseType,
1748                                               Address &addr) {
1749   const ArrayType *arrayType = origArrayType;
1750 
1751   // If it's a VLA, we have to load the stored size.  Note that
1752   // this is the size of the VLA in bytes, not its size in elements.
1753   llvm::Value *numVLAElements = nullptr;
1754   if (isa<VariableArrayType>(arrayType)) {
1755     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1756 
1757     // Walk into all VLAs.  This doesn't require changes to addr,
1758     // which has type T* where T is the first non-VLA element type.
1759     do {
1760       QualType elementType = arrayType->getElementType();
1761       arrayType = getContext().getAsArrayType(elementType);
1762 
1763       // If we only have VLA components, 'addr' requires no adjustment.
1764       if (!arrayType) {
1765         baseType = elementType;
1766         return numVLAElements;
1767       }
1768     } while (isa<VariableArrayType>(arrayType));
1769 
1770     // We get out here only if we find a constant array type
1771     // inside the VLA.
1772   }
1773 
1774   // We have some number of constant-length arrays, so addr should
1775   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1776   // down to the first element of addr.
1777   SmallVector<llvm::Value*, 8> gepIndices;
1778 
1779   // GEP down to the array type.
1780   llvm::ConstantInt *zero = Builder.getInt32(0);
1781   gepIndices.push_back(zero);
1782 
1783   uint64_t countFromCLAs = 1;
1784   QualType eltType;
1785 
1786   llvm::ArrayType *llvmArrayType =
1787     dyn_cast<llvm::ArrayType>(addr.getElementType());
1788   while (llvmArrayType) {
1789     assert(isa<ConstantArrayType>(arrayType));
1790     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1791              == llvmArrayType->getNumElements());
1792 
1793     gepIndices.push_back(zero);
1794     countFromCLAs *= llvmArrayType->getNumElements();
1795     eltType = arrayType->getElementType();
1796 
1797     llvmArrayType =
1798       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1799     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1800     assert((!llvmArrayType || arrayType) &&
1801            "LLVM and Clang types are out-of-synch");
1802   }
1803 
1804   if (arrayType) {
1805     // From this point onwards, the Clang array type has been emitted
1806     // as some other type (probably a packed struct). Compute the array
1807     // size, and just emit the 'begin' expression as a bitcast.
1808     while (arrayType) {
1809       countFromCLAs *=
1810           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1811       eltType = arrayType->getElementType();
1812       arrayType = getContext().getAsArrayType(eltType);
1813     }
1814 
1815     llvm::Type *baseType = ConvertType(eltType);
1816     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1817   } else {
1818     // Create the actual GEP.
1819     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1820                                              gepIndices, "array.begin"),
1821                    addr.getAlignment());
1822   }
1823 
1824   baseType = eltType;
1825 
1826   llvm::Value *numElements
1827     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1828 
1829   // If we had any VLA dimensions, factor them in.
1830   if (numVLAElements)
1831     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1832 
1833   return numElements;
1834 }
1835 
1836 std::pair<llvm::Value*, QualType>
1837 CodeGenFunction::getVLASize(QualType type) {
1838   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1839   assert(vla && "type was not a variable array type!");
1840   return getVLASize(vla);
1841 }
1842 
1843 std::pair<llvm::Value*, QualType>
1844 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1845   // The number of elements so far; always size_t.
1846   llvm::Value *numElements = nullptr;
1847 
1848   QualType elementType;
1849   do {
1850     elementType = type->getElementType();
1851     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1852     assert(vlaSize && "no size for VLA!");
1853     assert(vlaSize->getType() == SizeTy);
1854 
1855     if (!numElements) {
1856       numElements = vlaSize;
1857     } else {
1858       // It's undefined behavior if this wraps around, so mark it that way.
1859       // FIXME: Teach -fsanitize=undefined to trap this.
1860       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1861     }
1862   } while ((type = getContext().getAsVariableArrayType(elementType)));
1863 
1864   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1865 }
1866 
1867 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1868   assert(type->isVariablyModifiedType() &&
1869          "Must pass variably modified type to EmitVLASizes!");
1870 
1871   EnsureInsertPoint();
1872 
1873   // We're going to walk down into the type and look for VLA
1874   // expressions.
1875   do {
1876     assert(type->isVariablyModifiedType());
1877 
1878     const Type *ty = type.getTypePtr();
1879     switch (ty->getTypeClass()) {
1880 
1881 #define TYPE(Class, Base)
1882 #define ABSTRACT_TYPE(Class, Base)
1883 #define NON_CANONICAL_TYPE(Class, Base)
1884 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1885 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1886 #include "clang/AST/TypeNodes.def"
1887       llvm_unreachable("unexpected dependent type!");
1888 
1889     // These types are never variably-modified.
1890     case Type::Builtin:
1891     case Type::Complex:
1892     case Type::Vector:
1893     case Type::ExtVector:
1894     case Type::Record:
1895     case Type::Enum:
1896     case Type::Elaborated:
1897     case Type::TemplateSpecialization:
1898     case Type::ObjCTypeParam:
1899     case Type::ObjCObject:
1900     case Type::ObjCInterface:
1901     case Type::ObjCObjectPointer:
1902       llvm_unreachable("type class is never variably-modified!");
1903 
1904     case Type::Adjusted:
1905       type = cast<AdjustedType>(ty)->getAdjustedType();
1906       break;
1907 
1908     case Type::Decayed:
1909       type = cast<DecayedType>(ty)->getPointeeType();
1910       break;
1911 
1912     case Type::Pointer:
1913       type = cast<PointerType>(ty)->getPointeeType();
1914       break;
1915 
1916     case Type::BlockPointer:
1917       type = cast<BlockPointerType>(ty)->getPointeeType();
1918       break;
1919 
1920     case Type::LValueReference:
1921     case Type::RValueReference:
1922       type = cast<ReferenceType>(ty)->getPointeeType();
1923       break;
1924 
1925     case Type::MemberPointer:
1926       type = cast<MemberPointerType>(ty)->getPointeeType();
1927       break;
1928 
1929     case Type::ConstantArray:
1930     case Type::IncompleteArray:
1931       // Losing element qualification here is fine.
1932       type = cast<ArrayType>(ty)->getElementType();
1933       break;
1934 
1935     case Type::VariableArray: {
1936       // Losing element qualification here is fine.
1937       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1938 
1939       // Unknown size indication requires no size computation.
1940       // Otherwise, evaluate and record it.
1941       if (const Expr *size = vat->getSizeExpr()) {
1942         // It's possible that we might have emitted this already,
1943         // e.g. with a typedef and a pointer to it.
1944         llvm::Value *&entry = VLASizeMap[size];
1945         if (!entry) {
1946           llvm::Value *Size = EmitScalarExpr(size);
1947 
1948           // C11 6.7.6.2p5:
1949           //   If the size is an expression that is not an integer constant
1950           //   expression [...] each time it is evaluated it shall have a value
1951           //   greater than zero.
1952           if (SanOpts.has(SanitizerKind::VLABound) &&
1953               size->getType()->isSignedIntegerType()) {
1954             SanitizerScope SanScope(this);
1955             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1956             llvm::Constant *StaticArgs[] = {
1957               EmitCheckSourceLocation(size->getLocStart()),
1958               EmitCheckTypeDescriptor(size->getType())
1959             };
1960             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1961                                      SanitizerKind::VLABound),
1962                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1963           }
1964 
1965           // Always zexting here would be wrong if it weren't
1966           // undefined behavior to have a negative bound.
1967           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1968         }
1969       }
1970       type = vat->getElementType();
1971       break;
1972     }
1973 
1974     case Type::FunctionProto:
1975     case Type::FunctionNoProto:
1976       type = cast<FunctionType>(ty)->getReturnType();
1977       break;
1978 
1979     case Type::Paren:
1980     case Type::TypeOf:
1981     case Type::UnaryTransform:
1982     case Type::Attributed:
1983     case Type::SubstTemplateTypeParm:
1984     case Type::PackExpansion:
1985       // Keep walking after single level desugaring.
1986       type = type.getSingleStepDesugaredType(getContext());
1987       break;
1988 
1989     case Type::Typedef:
1990     case Type::Decltype:
1991     case Type::Auto:
1992     case Type::DeducedTemplateSpecialization:
1993       // Stop walking: nothing to do.
1994       return;
1995 
1996     case Type::TypeOfExpr:
1997       // Stop walking: emit typeof expression.
1998       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1999       return;
2000 
2001     case Type::Atomic:
2002       type = cast<AtomicType>(ty)->getValueType();
2003       break;
2004 
2005     case Type::Pipe:
2006       type = cast<PipeType>(ty)->getElementType();
2007       break;
2008     }
2009   } while (type->isVariablyModifiedType());
2010 }
2011 
2012 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2013   if (getContext().getBuiltinVaListType()->isArrayType())
2014     return EmitPointerWithAlignment(E);
2015   return EmitLValue(E).getAddress();
2016 }
2017 
2018 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2019   return EmitLValue(E).getAddress();
2020 }
2021 
2022 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2023                                               const APValue &Init) {
2024   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2025   if (CGDebugInfo *Dbg = getDebugInfo())
2026     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2027       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2028 }
2029 
2030 CodeGenFunction::PeepholeProtection
2031 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2032   // At the moment, the only aggressive peephole we do in IR gen
2033   // is trunc(zext) folding, but if we add more, we can easily
2034   // extend this protection.
2035 
2036   if (!rvalue.isScalar()) return PeepholeProtection();
2037   llvm::Value *value = rvalue.getScalarVal();
2038   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2039 
2040   // Just make an extra bitcast.
2041   assert(HaveInsertPoint());
2042   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2043                                                   Builder.GetInsertBlock());
2044 
2045   PeepholeProtection protection;
2046   protection.Inst = inst;
2047   return protection;
2048 }
2049 
2050 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2051   if (!protection.Inst) return;
2052 
2053   // In theory, we could try to duplicate the peepholes now, but whatever.
2054   protection.Inst->eraseFromParent();
2055 }
2056 
2057 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2058                                                  llvm::Value *AnnotatedVal,
2059                                                  StringRef AnnotationStr,
2060                                                  SourceLocation Location) {
2061   llvm::Value *Args[4] = {
2062     AnnotatedVal,
2063     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2064     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2065     CGM.EmitAnnotationLineNo(Location)
2066   };
2067   return Builder.CreateCall(AnnotationFn, Args);
2068 }
2069 
2070 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2071   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2072   // FIXME We create a new bitcast for every annotation because that's what
2073   // llvm-gcc was doing.
2074   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2075     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2076                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2077                        I->getAnnotation(), D->getLocation());
2078 }
2079 
2080 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2081                                               Address Addr) {
2082   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2083   llvm::Value *V = Addr.getPointer();
2084   llvm::Type *VTy = V->getType();
2085   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2086                                     CGM.Int8PtrTy);
2087 
2088   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2089     // FIXME Always emit the cast inst so we can differentiate between
2090     // annotation on the first field of a struct and annotation on the struct
2091     // itself.
2092     if (VTy != CGM.Int8PtrTy)
2093       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2094     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2095     V = Builder.CreateBitCast(V, VTy);
2096   }
2097 
2098   return Address(V, Addr.getAlignment());
2099 }
2100 
2101 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2102 
2103 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2104     : CGF(CGF) {
2105   assert(!CGF->IsSanitizerScope);
2106   CGF->IsSanitizerScope = true;
2107 }
2108 
2109 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2110   CGF->IsSanitizerScope = false;
2111 }
2112 
2113 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2114                                    const llvm::Twine &Name,
2115                                    llvm::BasicBlock *BB,
2116                                    llvm::BasicBlock::iterator InsertPt) const {
2117   LoopStack.InsertHelper(I);
2118   if (IsSanitizerScope)
2119     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2120 }
2121 
2122 void CGBuilderInserter::InsertHelper(
2123     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2124     llvm::BasicBlock::iterator InsertPt) const {
2125   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2126   if (CGF)
2127     CGF->InsertHelper(I, Name, BB, InsertPt);
2128 }
2129 
2130 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2131                                 CodeGenModule &CGM, const FunctionDecl *FD,
2132                                 std::string &FirstMissing) {
2133   // If there aren't any required features listed then go ahead and return.
2134   if (ReqFeatures.empty())
2135     return false;
2136 
2137   // Now build up the set of caller features and verify that all the required
2138   // features are there.
2139   llvm::StringMap<bool> CallerFeatureMap;
2140   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2141 
2142   // If we have at least one of the features in the feature list return
2143   // true, otherwise return false.
2144   return std::all_of(
2145       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2146         SmallVector<StringRef, 1> OrFeatures;
2147         Feature.split(OrFeatures, "|");
2148         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2149                            [&](StringRef Feature) {
2150                              if (!CallerFeatureMap.lookup(Feature)) {
2151                                FirstMissing = Feature.str();
2152                                return false;
2153                              }
2154                              return true;
2155                            });
2156       });
2157 }
2158 
2159 // Emits an error if we don't have a valid set of target features for the
2160 // called function.
2161 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2162                                           const FunctionDecl *TargetDecl) {
2163   // Early exit if this is an indirect call.
2164   if (!TargetDecl)
2165     return;
2166 
2167   // Get the current enclosing function if it exists. If it doesn't
2168   // we can't check the target features anyhow.
2169   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2170   if (!FD)
2171     return;
2172 
2173   // Grab the required features for the call. For a builtin this is listed in
2174   // the td file with the default cpu, for an always_inline function this is any
2175   // listed cpu and any listed features.
2176   unsigned BuiltinID = TargetDecl->getBuiltinID();
2177   std::string MissingFeature;
2178   if (BuiltinID) {
2179     SmallVector<StringRef, 1> ReqFeatures;
2180     const char *FeatureList =
2181         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2182     // Return if the builtin doesn't have any required features.
2183     if (!FeatureList || StringRef(FeatureList) == "")
2184       return;
2185     StringRef(FeatureList).split(ReqFeatures, ",");
2186     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2187       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2188           << TargetDecl->getDeclName()
2189           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2190 
2191   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2192     // Get the required features for the callee.
2193     SmallVector<StringRef, 1> ReqFeatures;
2194     llvm::StringMap<bool> CalleeFeatureMap;
2195     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2196     for (const auto &F : CalleeFeatureMap) {
2197       // Only positive features are "required".
2198       if (F.getValue())
2199         ReqFeatures.push_back(F.getKey());
2200     }
2201     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2202       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2203           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2204   }
2205 }
2206 
2207 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2208   if (!CGM.getCodeGenOpts().SanitizeStats)
2209     return;
2210 
2211   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2212   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2213   CGM.getSanStats().create(IRB, SSK);
2214 }
2215 
2216 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2217   if (CGDebugInfo *DI = getDebugInfo())
2218     return DI->SourceLocToDebugLoc(Location);
2219 
2220   return llvm::DebugLoc();
2221 }
2222