1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGDebugInfo.h"
17 #include "CGException.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : BlockFunction(cgm, *this, Builder), CGM(cgm),
32     Target(CGM.getContext().Target),
33     Builder(cgm.getModule().getContext()),
34     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
35     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
36     SwitchInsn(0), CaseRangeBlock(0),
37     DidCallStackSave(false), UnreachableBlock(0),
38     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
39     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
40     TrapBB(0) {
41 
42   // Get some frequently used types.
43   LLVMPointerWidth = Target.getPointerWidth(0);
44   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
45   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
46   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
47   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
48 
49   Exceptions = getContext().getLangOptions().Exceptions;
50   CatchUndefined = getContext().getLangOptions().CatchUndefined;
51   CGM.getMangleContext().startNewFunction();
52 }
53 
54 ASTContext &CodeGenFunction::getContext() const {
55   return CGM.getContext();
56 }
57 
58 
59 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) {
60   llvm::Value *Res = LocalDeclMap[VD];
61   assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
62   return Res;
63 }
64 
65 llvm::Constant *
66 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
67   return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
68 }
69 
70 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
71   return CGM.getTypes().ConvertTypeForMem(T);
72 }
73 
74 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
75   return CGM.getTypes().ConvertType(T);
76 }
77 
78 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
79   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
80     T->isMemberFunctionPointerType();
81 }
82 
83 void CodeGenFunction::EmitReturnBlock() {
84   // For cleanliness, we try to avoid emitting the return block for
85   // simple cases.
86   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
87 
88   if (CurBB) {
89     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
90 
91     // We have a valid insert point, reuse it if it is empty or there are no
92     // explicit jumps to the return block.
93     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
94       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
95       delete ReturnBlock.getBlock();
96     } else
97       EmitBlock(ReturnBlock.getBlock());
98     return;
99   }
100 
101   // Otherwise, if the return block is the target of a single direct
102   // branch then we can just put the code in that block instead. This
103   // cleans up functions which started with a unified return block.
104   if (ReturnBlock.getBlock()->hasOneUse()) {
105     llvm::BranchInst *BI =
106       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
107     if (BI && BI->isUnconditional() &&
108         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
109       // Reset insertion point and delete the branch.
110       Builder.SetInsertPoint(BI->getParent());
111       BI->eraseFromParent();
112       delete ReturnBlock.getBlock();
113       return;
114     }
115   }
116 
117   // FIXME: We are at an unreachable point, there is no reason to emit the block
118   // unless it has uses. However, we still need a place to put the debug
119   // region.end for now.
120 
121   EmitBlock(ReturnBlock.getBlock());
122 }
123 
124 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
125   if (!BB) return;
126   if (!BB->use_empty())
127     return CGF.CurFn->getBasicBlockList().push_back(BB);
128   delete BB;
129 }
130 
131 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
132   assert(BreakContinueStack.empty() &&
133          "mismatched push/pop in break/continue stack!");
134 
135   // Emit function epilog (to return).
136   EmitReturnBlock();
137 
138   EmitFunctionInstrumentation("__cyg_profile_func_exit");
139 
140   // Emit debug descriptor for function end.
141   if (CGDebugInfo *DI = getDebugInfo()) {
142     DI->setLocation(EndLoc);
143     DI->EmitFunctionEnd(Builder);
144   }
145 
146   EmitFunctionEpilog(*CurFnInfo);
147   EmitEndEHSpec(CurCodeDecl);
148 
149   assert(EHStack.empty() &&
150          "did not remove all scopes from cleanup stack!");
151 
152   // If someone did an indirect goto, emit the indirect goto block at the end of
153   // the function.
154   if (IndirectBranch) {
155     EmitBlock(IndirectBranch->getParent());
156     Builder.ClearInsertionPoint();
157   }
158 
159   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
160   llvm::Instruction *Ptr = AllocaInsertPt;
161   AllocaInsertPt = 0;
162   Ptr->eraseFromParent();
163 
164   // If someone took the address of a label but never did an indirect goto, we
165   // made a zero entry PHI node, which is illegal, zap it now.
166   if (IndirectBranch) {
167     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
168     if (PN->getNumIncomingValues() == 0) {
169       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
170       PN->eraseFromParent();
171     }
172   }
173 
174   EmitIfUsed(*this, RethrowBlock.getBlock());
175   EmitIfUsed(*this, TerminateLandingPad);
176   EmitIfUsed(*this, TerminateHandler);
177   EmitIfUsed(*this, UnreachableBlock);
178 
179   if (CGM.getCodeGenOpts().EmitDeclMetadata)
180     EmitDeclMetadata();
181 }
182 
183 /// ShouldInstrumentFunction - Return true if the current function should be
184 /// instrumented with __cyg_profile_func_* calls
185 bool CodeGenFunction::ShouldInstrumentFunction() {
186   if (!CGM.getCodeGenOpts().InstrumentFunctions)
187     return false;
188   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
189     return false;
190   return true;
191 }
192 
193 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
194 /// instrumentation function with the current function and the call site, if
195 /// function instrumentation is enabled.
196 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
197   if (!ShouldInstrumentFunction())
198     return;
199 
200   const llvm::PointerType *PointerTy;
201   const llvm::FunctionType *FunctionTy;
202   std::vector<const llvm::Type*> ProfileFuncArgs;
203 
204   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
205   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
206   ProfileFuncArgs.push_back(PointerTy);
207   ProfileFuncArgs.push_back(PointerTy);
208   FunctionTy = llvm::FunctionType::get(
209     llvm::Type::getVoidTy(VMContext),
210     ProfileFuncArgs, false);
211 
212   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
213   llvm::CallInst *CallSite = Builder.CreateCall(
214     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
215     llvm::ConstantInt::get(Int32Ty, 0),
216     "callsite");
217 
218   Builder.CreateCall2(F,
219                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
220                       CallSite);
221 }
222 
223 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
224                                     llvm::Function *Fn,
225                                     const FunctionArgList &Args,
226                                     SourceLocation StartLoc) {
227   const Decl *D = GD.getDecl();
228 
229   DidCallStackSave = false;
230   CurCodeDecl = CurFuncDecl = D;
231   FnRetTy = RetTy;
232   CurFn = Fn;
233   assert(CurFn->isDeclaration() && "Function already has body?");
234 
235   // Pass inline keyword to optimizer if it appears explicitly on any
236   // declaration.
237   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
238     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
239            RE = FD->redecls_end(); RI != RE; ++RI)
240       if (RI->isInlineSpecified()) {
241         Fn->addFnAttr(llvm::Attribute::InlineHint);
242         break;
243       }
244 
245   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
246 
247   // Create a marker to make it easy to insert allocas into the entryblock
248   // later.  Don't create this with the builder, because we don't want it
249   // folded.
250   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
251   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
252   if (Builder.isNamePreserving())
253     AllocaInsertPt->setName("allocapt");
254 
255   ReturnBlock = getJumpDestInCurrentScope("return");
256 
257   Builder.SetInsertPoint(EntryBB);
258 
259   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
260                                                  false, false, 0, 0,
261                                                  /*FIXME?*/
262                                                  FunctionType::ExtInfo());
263 
264   // Emit subprogram debug descriptor.
265   if (CGDebugInfo *DI = getDebugInfo()) {
266     DI->setLocation(StartLoc);
267     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
268   }
269 
270   EmitFunctionInstrumentation("__cyg_profile_func_enter");
271 
272   // FIXME: Leaked.
273   // CC info is ignored, hopefully?
274   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
275                                               FunctionType::ExtInfo());
276 
277   if (RetTy->isVoidType()) {
278     // Void type; nothing to return.
279     ReturnValue = 0;
280   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
281              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
282     // Indirect aggregate return; emit returned value directly into sret slot.
283     // This reduces code size, and affects correctness in C++.
284     ReturnValue = CurFn->arg_begin();
285   } else {
286     ReturnValue = CreateIRTemp(RetTy, "retval");
287   }
288 
289   EmitStartEHSpec(CurCodeDecl);
290   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
291 
292   if (CXXThisDecl)
293     CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this");
294   if (CXXVTTDecl)
295     CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt");
296 
297   // If any of the arguments have a variably modified type, make sure to
298   // emit the type size.
299   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
300        i != e; ++i) {
301     QualType Ty = i->second;
302 
303     if (Ty->isVariablyModifiedType())
304       EmitVLASize(Ty);
305   }
306 }
307 
308 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
309   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
310   assert(FD->getBody());
311   EmitStmt(FD->getBody());
312 }
313 
314 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
315   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
316 
317   // Check if we should generate debug info for this function.
318   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
319     DebugInfo = CGM.getDebugInfo();
320 
321   FunctionArgList Args;
322 
323   CurGD = GD;
324   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
325     if (MD->isInstance()) {
326       // Create the implicit 'this' decl.
327       // FIXME: I'm not entirely sure I like using a fake decl just for code
328       // generation. Maybe we can come up with a better way?
329       CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0,
330                                               FD->getLocation(),
331                                               &getContext().Idents.get("this"),
332                                               MD->getThisType(getContext()));
333       Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType()));
334 
335       // Check if we need a VTT parameter as well.
336       if (CodeGenVTables::needsVTTParameter(GD)) {
337         // FIXME: The comment about using a fake decl above applies here too.
338         QualType T = getContext().getPointerType(getContext().VoidPtrTy);
339         CXXVTTDecl =
340           ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(),
341                                     &getContext().Idents.get("vtt"), T);
342         Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType()));
343       }
344     }
345   }
346 
347   if (FD->getNumParams()) {
348     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
349     assert(FProto && "Function def must have prototype!");
350 
351     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
352       Args.push_back(std::make_pair(FD->getParamDecl(i),
353                                     FProto->getArgType(i)));
354   }
355 
356   SourceRange BodyRange;
357   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
358 
359   // Emit the standard function prologue.
360   StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin());
361 
362   // Generate the body of the function.
363   if (isa<CXXDestructorDecl>(FD))
364     EmitDestructorBody(Args);
365   else if (isa<CXXConstructorDecl>(FD))
366     EmitConstructorBody(Args);
367   else
368     EmitFunctionBody(Args);
369 
370   // Emit the standard function epilogue.
371   FinishFunction(BodyRange.getEnd());
372 }
373 
374 /// ContainsLabel - Return true if the statement contains a label in it.  If
375 /// this statement is not executed normally, it not containing a label means
376 /// that we can just remove the code.
377 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
378   // Null statement, not a label!
379   if (S == 0) return false;
380 
381   // If this is a label, we have to emit the code, consider something like:
382   // if (0) {  ...  foo:  bar(); }  goto foo;
383   if (isa<LabelStmt>(S))
384     return true;
385 
386   // If this is a case/default statement, and we haven't seen a switch, we have
387   // to emit the code.
388   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
389     return true;
390 
391   // If this is a switch statement, we want to ignore cases below it.
392   if (isa<SwitchStmt>(S))
393     IgnoreCaseStmts = true;
394 
395   // Scan subexpressions for verboten labels.
396   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
397        I != E; ++I)
398     if (ContainsLabel(*I, IgnoreCaseStmts))
399       return true;
400 
401   return false;
402 }
403 
404 
405 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
406 /// a constant, or if it does but contains a label, return 0.  If it constant
407 /// folds to 'true' and does not contain a label, return 1, if it constant folds
408 /// to 'false' and does not contain a label, return -1.
409 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
410   // FIXME: Rename and handle conversion of other evaluatable things
411   // to bool.
412   Expr::EvalResult Result;
413   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
414       Result.HasSideEffects)
415     return 0;  // Not foldable, not integer or not fully evaluatable.
416 
417   if (CodeGenFunction::ContainsLabel(Cond))
418     return 0;  // Contains a label.
419 
420   return Result.Val.getInt().getBoolValue() ? 1 : -1;
421 }
422 
423 
424 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
425 /// statement) to the specified blocks.  Based on the condition, this might try
426 /// to simplify the codegen of the conditional based on the branch.
427 ///
428 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
429                                            llvm::BasicBlock *TrueBlock,
430                                            llvm::BasicBlock *FalseBlock) {
431   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
432     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
433 
434   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
435     // Handle X && Y in a condition.
436     if (CondBOp->getOpcode() == BinaryOperator::LAnd) {
437       // If we have "1 && X", simplify the code.  "0 && X" would have constant
438       // folded if the case was simple enough.
439       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
440         // br(1 && X) -> br(X).
441         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
442       }
443 
444       // If we have "X && 1", simplify the code to use an uncond branch.
445       // "X && 0" would have been constant folded to 0.
446       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
447         // br(X && 1) -> br(X).
448         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
449       }
450 
451       // Emit the LHS as a conditional.  If the LHS conditional is false, we
452       // want to jump to the FalseBlock.
453       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
454       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
455       EmitBlock(LHSTrue);
456 
457       // Any temporaries created here are conditional.
458       BeginConditionalBranch();
459       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
460       EndConditionalBranch();
461 
462       return;
463     } else if (CondBOp->getOpcode() == BinaryOperator::LOr) {
464       // If we have "0 || X", simplify the code.  "1 || X" would have constant
465       // folded if the case was simple enough.
466       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
467         // br(0 || X) -> br(X).
468         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
469       }
470 
471       // If we have "X || 0", simplify the code to use an uncond branch.
472       // "X || 1" would have been constant folded to 1.
473       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
474         // br(X || 0) -> br(X).
475         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
476       }
477 
478       // Emit the LHS as a conditional.  If the LHS conditional is true, we
479       // want to jump to the TrueBlock.
480       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
481       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
482       EmitBlock(LHSFalse);
483 
484       // Any temporaries created here are conditional.
485       BeginConditionalBranch();
486       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
487       EndConditionalBranch();
488 
489       return;
490     }
491   }
492 
493   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
494     // br(!x, t, f) -> br(x, f, t)
495     if (CondUOp->getOpcode() == UnaryOperator::LNot)
496       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
497   }
498 
499   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
500     // Handle ?: operator.
501 
502     // Just ignore GNU ?: extension.
503     if (CondOp->getLHS()) {
504       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
505       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
506       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
507       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
508       EmitBlock(LHSBlock);
509       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
510       EmitBlock(RHSBlock);
511       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
512       return;
513     }
514   }
515 
516   // Emit the code with the fully general case.
517   llvm::Value *CondV = EvaluateExprAsBool(Cond);
518   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
519 }
520 
521 /// ErrorUnsupported - Print out an error that codegen doesn't support the
522 /// specified stmt yet.
523 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
524                                        bool OmitOnError) {
525   CGM.ErrorUnsupported(S, Type, OmitOnError);
526 }
527 
528 void
529 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
530   // If the type contains a pointer to data member we can't memset it to zero.
531   // Instead, create a null constant and copy it to the destination.
532   if (CGM.getTypes().ContainsPointerToDataMember(Ty)) {
533     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
534 
535     llvm::GlobalVariable *NullVariable =
536       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
537                                /*isConstant=*/true,
538                                llvm::GlobalVariable::PrivateLinkage,
539                                NullConstant, llvm::Twine());
540     EmitAggregateCopy(DestPtr, NullVariable, Ty, /*isVolatile=*/false);
541     return;
542   }
543 
544 
545   // Ignore empty classes in C++.
546   if (getContext().getLangOptions().CPlusPlus) {
547     if (const RecordType *RT = Ty->getAs<RecordType>()) {
548       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
549         return;
550     }
551   }
552 
553   // Otherwise, just memset the whole thing to zero.  This is legal
554   // because in LLVM, all default initializers (other than the ones we just
555   // handled above) are guaranteed to have a bit pattern of all zeros.
556   const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
557   if (DestPtr->getType() != BP)
558     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
559 
560   // Get size and alignment info for this aggregate.
561   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
562 
563   // Don't bother emitting a zero-byte memset.
564   if (TypeInfo.first == 0)
565     return;
566 
567   // FIXME: Handle variable sized types.
568   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
569                  llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)),
570                       // TypeInfo.first describes size in bits.
571                       llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
572                       llvm::ConstantInt::get(Int32Ty, TypeInfo.second/8),
573                       llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
574                                              0));
575 }
576 
577 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
578   // Make sure that there is a block for the indirect goto.
579   if (IndirectBranch == 0)
580     GetIndirectGotoBlock();
581 
582   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
583 
584   // Make sure the indirect branch includes all of the address-taken blocks.
585   IndirectBranch->addDestination(BB);
586   return llvm::BlockAddress::get(CurFn, BB);
587 }
588 
589 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
590   // If we already made the indirect branch for indirect goto, return its block.
591   if (IndirectBranch) return IndirectBranch->getParent();
592 
593   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
594 
595   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
596 
597   // Create the PHI node that indirect gotos will add entries to.
598   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
599 
600   // Create the indirect branch instruction.
601   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
602   return IndirectBranch->getParent();
603 }
604 
605 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
606   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
607 
608   assert(SizeEntry && "Did not emit size for type");
609   return SizeEntry;
610 }
611 
612 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
613   assert(Ty->isVariablyModifiedType() &&
614          "Must pass variably modified type to EmitVLASizes!");
615 
616   EnsureInsertPoint();
617 
618   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
619     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
620 
621     if (!SizeEntry) {
622       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
623 
624       // Get the element size;
625       QualType ElemTy = VAT->getElementType();
626       llvm::Value *ElemSize;
627       if (ElemTy->isVariableArrayType())
628         ElemSize = EmitVLASize(ElemTy);
629       else
630         ElemSize = llvm::ConstantInt::get(SizeTy,
631             getContext().getTypeSizeInChars(ElemTy).getQuantity());
632 
633       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
634       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
635 
636       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
637     }
638 
639     return SizeEntry;
640   }
641 
642   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
643     EmitVLASize(AT->getElementType());
644     return 0;
645   }
646 
647   const PointerType *PT = Ty->getAs<PointerType>();
648   assert(PT && "unknown VM type!");
649   EmitVLASize(PT->getPointeeType());
650   return 0;
651 }
652 
653 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
654   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
655     return EmitScalarExpr(E);
656   return EmitLValue(E).getAddress();
657 }
658 
659 /// Pops cleanup blocks until the given savepoint is reached.
660 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
661   assert(Old.isValid());
662 
663   while (EHStack.stable_begin() != Old) {
664     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
665 
666     // As long as Old strictly encloses the scope's enclosing normal
667     // cleanup, we're going to emit another normal cleanup which
668     // fallthrough can propagate through.
669     bool FallThroughIsBranchThrough =
670       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
671 
672     PopCleanupBlock(FallThroughIsBranchThrough);
673   }
674 }
675 
676 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
677                                            EHCleanupScope &Scope) {
678   assert(Scope.isNormalCleanup());
679   llvm::BasicBlock *Entry = Scope.getNormalBlock();
680   if (!Entry) {
681     Entry = CGF.createBasicBlock("cleanup");
682     Scope.setNormalBlock(Entry);
683   }
684   return Entry;
685 }
686 
687 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
688                                        EHCleanupScope &Scope) {
689   assert(Scope.isEHCleanup());
690   llvm::BasicBlock *Entry = Scope.getEHBlock();
691   if (!Entry) {
692     Entry = CGF.createBasicBlock("eh.cleanup");
693     Scope.setEHBlock(Entry);
694   }
695   return Entry;
696 }
697 
698 /// Transitions the terminator of the given exit-block of a cleanup to
699 /// be a cleanup switch.
700 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
701                                                    llvm::BasicBlock *Block) {
702   // If it's a branch, turn it into a switch whose default
703   // destination is its original target.
704   llvm::TerminatorInst *Term = Block->getTerminator();
705   assert(Term && "can't transition block without terminator");
706 
707   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
708     assert(Br->isUnconditional());
709     llvm::LoadInst *Load =
710       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
711     llvm::SwitchInst *Switch =
712       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
713     Br->eraseFromParent();
714     return Switch;
715   } else {
716     return cast<llvm::SwitchInst>(Term);
717   }
718 }
719 
720 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
721 /// is basically llvm::MergeBlockIntoPredecessor, except
722 /// simplified/optimized for the tighter constraints on cleanup blocks.
723 ///
724 /// Returns the new block, whatever it is.
725 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
726                                               llvm::BasicBlock *Entry) {
727   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
728   if (!Pred) return Entry;
729 
730   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
731   if (!Br || Br->isConditional()) return Entry;
732   assert(Br->getSuccessor(0) == Entry);
733 
734   // If we were previously inserting at the end of the cleanup entry
735   // block, we'll need to continue inserting at the end of the
736   // predecessor.
737   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
738   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
739 
740   // Kill the branch.
741   Br->eraseFromParent();
742 
743   // Merge the blocks.
744   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
745 
746   // Kill the entry block.
747   Entry->eraseFromParent();
748 
749   if (WasInsertBlock)
750     CGF.Builder.SetInsertPoint(Pred);
751 
752   return Pred;
753 }
754 
755 static void EmitCleanup(CodeGenFunction &CGF,
756                         EHScopeStack::Cleanup *Fn,
757                         bool ForEH) {
758   if (ForEH) CGF.EHStack.pushTerminate();
759   Fn->Emit(CGF, ForEH);
760   if (ForEH) CGF.EHStack.popTerminate();
761   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
762 }
763 
764 /// Pops a cleanup block.  If the block includes a normal cleanup, the
765 /// current insertion point is threaded through the cleanup, as are
766 /// any branch fixups on the cleanup.
767 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
768   assert(!EHStack.empty() && "cleanup stack is empty!");
769   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
770   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
771   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
772 
773   // Check whether we need an EH cleanup.  This is only true if we've
774   // generated a lazy EH cleanup block.
775   bool RequiresEHCleanup = Scope.hasEHBranches();
776 
777   // Check the three conditions which might require a normal cleanup:
778 
779   // - whether there are branch fix-ups through this cleanup
780   unsigned FixupDepth = Scope.getFixupDepth();
781   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
782 
783   // - whether there are branch-throughs or branch-afters
784   bool HasExistingBranches = Scope.hasBranches();
785 
786   // - whether there's a fallthrough
787   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
788   bool HasFallthrough = (FallthroughSource != 0);
789 
790   bool RequiresNormalCleanup = false;
791   if (Scope.isNormalCleanup() &&
792       (HasFixups || HasExistingBranches || HasFallthrough)) {
793     RequiresNormalCleanup = true;
794   }
795 
796   // If we don't need the cleanup at all, we're done.
797   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
798     EHStack.popCleanup(); // safe because there are no fixups
799     assert(EHStack.getNumBranchFixups() == 0 ||
800            EHStack.hasNormalCleanups());
801     return;
802   }
803 
804   // Copy the cleanup emission data out.  Note that SmallVector
805   // guarantees maximal alignment for its buffer regardless of its
806   // type parameter.
807   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
808   CleanupBuffer.reserve(Scope.getCleanupSize());
809   memcpy(CleanupBuffer.data(),
810          Scope.getCleanupBuffer(), Scope.getCleanupSize());
811   CleanupBuffer.set_size(Scope.getCleanupSize());
812   EHScopeStack::Cleanup *Fn =
813     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
814 
815   // We want to emit the EH cleanup after the normal cleanup, but go
816   // ahead and do the setup for the EH cleanup while the scope is still
817   // alive.
818   llvm::BasicBlock *EHEntry = 0;
819   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
820   if (RequiresEHCleanup) {
821     EHEntry = CreateEHEntry(*this, Scope);
822 
823     // Figure out the branch-through dest if necessary.
824     llvm::BasicBlock *EHBranchThroughDest = 0;
825     if (Scope.hasEHBranchThroughs()) {
826       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
827       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
828       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
829     }
830 
831     // If we have exactly one branch-after and no branch-throughs, we
832     // can dispatch it without a switch.
833     if (!Scope.hasEHBranchThroughs() &&
834         Scope.getNumEHBranchAfters() == 1) {
835       assert(!EHBranchThroughDest);
836 
837       // TODO: remove the spurious eh.cleanup.dest stores if this edge
838       // never went through any switches.
839       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
840       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
841 
842     // Otherwise, if we have any branch-afters, we need a switch.
843     } else if (Scope.getNumEHBranchAfters()) {
844       // The default of the switch belongs to the branch-throughs if
845       // they exist.
846       llvm::BasicBlock *Default =
847         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
848 
849       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
850 
851       llvm::LoadInst *Load =
852         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
853       llvm::SwitchInst *Switch =
854         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
855 
856       EHInstsToAppend.push_back(Load);
857       EHInstsToAppend.push_back(Switch);
858 
859       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
860         Switch->addCase(Scope.getEHBranchAfterIndex(I),
861                         Scope.getEHBranchAfterBlock(I));
862 
863     // Otherwise, we have only branch-throughs; jump to the next EH
864     // cleanup.
865     } else {
866       assert(EHBranchThroughDest);
867       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
868     }
869   }
870 
871   if (!RequiresNormalCleanup) {
872     EHStack.popCleanup();
873   } else {
874     // As a kindof crazy internal case, branch-through fall-throughs
875     // leave the insertion point set to the end of the last cleanup.
876     bool HasPrebranchedFallthrough =
877       (HasFallthrough && FallthroughSource->getTerminator());
878     assert(!HasPrebranchedFallthrough ||
879            FallthroughSource->getTerminator()->getSuccessor(0)
880              == Scope.getNormalBlock());
881 
882     // If we have a fallthrough and no other need for the cleanup,
883     // emit it directly.
884     if (HasFallthrough && !HasPrebranchedFallthrough &&
885         !HasFixups && !HasExistingBranches) {
886 
887       // Fixups can cause us to optimistically create a normal block,
888       // only to later have no real uses for it.  Just delete it in
889       // this case.
890       // TODO: we can potentially simplify all the uses after this.
891       if (Scope.getNormalBlock()) {
892         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
893         delete Scope.getNormalBlock();
894       }
895 
896       EHStack.popCleanup();
897 
898       EmitCleanup(*this, Fn, /*ForEH*/ false);
899 
900     // Otherwise, the best approach is to thread everything through
901     // the cleanup block and then try to clean up after ourselves.
902     } else {
903       // Force the entry block to exist.
904       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
905 
906       // If there's a fallthrough, we need to store the cleanup
907       // destination index.  For fall-throughs this is always zero.
908       if (HasFallthrough && !HasPrebranchedFallthrough)
909         Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
910 
911       // Emit the entry block.  This implicitly branches to it if we
912       // have fallthrough.  All the fixups and existing branches should
913       // already be branched to it.
914       EmitBlock(NormalEntry);
915 
916       bool HasEnclosingCleanups =
917         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
918 
919       // Compute the branch-through dest if we need it:
920       //   - if there are branch-throughs threaded through the scope
921       //   - if fall-through is a branch-through
922       //   - if there are fixups that will be optimistically forwarded
923       //     to the enclosing cleanup
924       llvm::BasicBlock *BranchThroughDest = 0;
925       if (Scope.hasBranchThroughs() ||
926           (HasFallthrough && FallthroughIsBranchThrough) ||
927           (HasFixups && HasEnclosingCleanups)) {
928         assert(HasEnclosingCleanups);
929         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
930         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
931       }
932 
933       llvm::BasicBlock *FallthroughDest = 0;
934       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
935 
936       // If there's exactly one branch-after and no other threads,
937       // we can route it without a switch.
938       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
939           Scope.getNumBranchAfters() == 1) {
940         assert(!BranchThroughDest);
941 
942         // TODO: clean up the possibly dead stores to the cleanup dest slot.
943         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
944         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
945 
946       // Build a switch-out if we need it:
947       //   - if there are branch-afters threaded through the scope
948       //   - if fall-through is a branch-after
949       //   - if there are fixups that have nowhere left to go and
950       //     so must be immediately resolved
951       } else if (Scope.getNumBranchAfters() ||
952                  (HasFallthrough && !FallthroughIsBranchThrough) ||
953                  (HasFixups && !HasEnclosingCleanups)) {
954 
955         llvm::BasicBlock *Default =
956           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
957 
958         // TODO: base this on the number of branch-afters and fixups
959         const unsigned SwitchCapacity = 10;
960 
961         llvm::LoadInst *Load =
962           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
963         llvm::SwitchInst *Switch =
964           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
965 
966         InstsToAppend.push_back(Load);
967         InstsToAppend.push_back(Switch);
968 
969         // Branch-after fallthrough.
970         if (HasFallthrough && !FallthroughIsBranchThrough) {
971           FallthroughDest = createBasicBlock("cleanup.cont");
972           Switch->addCase(Builder.getInt32(0), FallthroughDest);
973         }
974 
975         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
976           Switch->addCase(Scope.getBranchAfterIndex(I),
977                           Scope.getBranchAfterBlock(I));
978         }
979 
980         if (HasFixups && !HasEnclosingCleanups)
981           ResolveAllBranchFixups(Switch);
982       } else {
983         // We should always have a branch-through destination in this case.
984         assert(BranchThroughDest);
985         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
986       }
987 
988       // We're finally ready to pop the cleanup.
989       EHStack.popCleanup();
990       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
991 
992       EmitCleanup(*this, Fn, /*ForEH*/ false);
993 
994       // Append the prepared cleanup prologue from above.
995       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
996       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
997         NormalExit->getInstList().push_back(InstsToAppend[I]);
998 
999       // Optimistically hope that any fixups will continue falling through.
1000       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1001            I < E; ++I) {
1002         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1003         if (!Fixup.Destination) continue;
1004         if (!Fixup.OptimisticBranchBlock) {
1005           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1006                               getNormalCleanupDestSlot(),
1007                               Fixup.InitialBranch);
1008           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1009         }
1010         Fixup.OptimisticBranchBlock = NormalExit;
1011       }
1012 
1013       if (FallthroughDest)
1014         EmitBlock(FallthroughDest);
1015       else if (!HasFallthrough)
1016         Builder.ClearInsertionPoint();
1017 
1018       // Check whether we can merge NormalEntry into a single predecessor.
1019       // This might invalidate (non-IR) pointers to NormalEntry.
1020       llvm::BasicBlock *NewNormalEntry =
1021         SimplifyCleanupEntry(*this, NormalEntry);
1022 
1023       // If it did invalidate those pointers, and NormalEntry was the same
1024       // as NormalExit, go back and patch up the fixups.
1025       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1026         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1027                I < E; ++I)
1028           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1029     }
1030   }
1031 
1032   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1033 
1034   // Emit the EH cleanup if required.
1035   if (RequiresEHCleanup) {
1036     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1037 
1038     EmitBlock(EHEntry);
1039     EmitCleanup(*this, Fn, /*ForEH*/ true);
1040 
1041     // Append the prepared cleanup prologue from above.
1042     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1043     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1044       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1045 
1046     Builder.restoreIP(SavedIP);
1047 
1048     SimplifyCleanupEntry(*this, EHEntry);
1049   }
1050 }
1051 
1052 /// Terminate the current block by emitting a branch which might leave
1053 /// the current cleanup-protected scope.  The target scope may not yet
1054 /// be known, in which case this will require a fixup.
1055 ///
1056 /// As a side-effect, this method clears the insertion point.
1057 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1058   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1059          && "stale jump destination");
1060 
1061   if (!HaveInsertPoint())
1062     return;
1063 
1064   // Create the branch.
1065   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1066 
1067   // If we're not in a cleanup scope, or if the destination scope is
1068   // the current normal-cleanup scope, we don't need to worry about
1069   // fixups.
1070   if (!EHStack.hasNormalCleanups() ||
1071       Dest.getScopeDepth() == EHStack.getInnermostNormalCleanup()) {
1072     Builder.ClearInsertionPoint();
1073     return;
1074   }
1075 
1076   // If we can't resolve the destination cleanup scope, just add this
1077   // to the current cleanup scope as a branch fixup.
1078   if (!Dest.getScopeDepth().isValid()) {
1079     BranchFixup &Fixup = EHStack.addBranchFixup();
1080     Fixup.Destination = Dest.getBlock();
1081     Fixup.DestinationIndex = Dest.getDestIndex();
1082     Fixup.InitialBranch = BI;
1083     Fixup.OptimisticBranchBlock = 0;
1084 
1085     Builder.ClearInsertionPoint();
1086     return;
1087   }
1088 
1089   // Otherwise, thread through all the normal cleanups in scope.
1090 
1091   // Store the index at the start.
1092   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1093   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1094 
1095   // Adjust BI to point to the first cleanup block.
1096   {
1097     EHCleanupScope &Scope =
1098       cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostNormalCleanup()));
1099     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1100   }
1101 
1102   // Add this destination to all the scopes involved.
1103   EHScopeStack::stable_iterator I = EHStack.getInnermostNormalCleanup();
1104   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1105   if (E.strictlyEncloses(I)) {
1106     while (true) {
1107       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1108       assert(Scope.isNormalCleanup());
1109       I = Scope.getEnclosingNormalCleanup();
1110 
1111       // If this is the last cleanup we're propagating through, tell it
1112       // that there's a resolved jump moving through it.
1113       if (!E.strictlyEncloses(I)) {
1114         Scope.addBranchAfter(Index, Dest.getBlock());
1115         break;
1116       }
1117 
1118       // Otherwise, tell the scope that there's a jump propoagating
1119       // through it.  If this isn't new information, all the rest of
1120       // the work has been done before.
1121       if (!Scope.addBranchThrough(Dest.getBlock()))
1122         break;
1123     }
1124   }
1125 
1126   Builder.ClearInsertionPoint();
1127 }
1128 
1129 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1130   // We should never get invalid scope depths for an UnwindDest; that
1131   // implies that the destination wasn't set up correctly.
1132   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1133 
1134   if (!HaveInsertPoint())
1135     return;
1136 
1137   // Create the branch.
1138   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1139 
1140   // If the destination is in the same EH cleanup scope as us, we
1141   // don't need to thread through anything.
1142   if (Dest.getScopeDepth() == EHStack.getInnermostEHCleanup()) {
1143     Builder.ClearInsertionPoint();
1144     return;
1145   }
1146   assert(EHStack.hasEHCleanups());
1147 
1148   // Store the index at the start.
1149   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1150   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1151 
1152   // Adjust BI to point to the first cleanup block.
1153   {
1154     EHCleanupScope &Scope =
1155       cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostEHCleanup()));
1156     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1157   }
1158 
1159   // Add this destination to all the scopes involved.
1160   for (EHScopeStack::stable_iterator
1161          I = EHStack.getInnermostEHCleanup(),
1162          E = Dest.getScopeDepth(); ; ) {
1163     assert(E.strictlyEncloses(I));
1164     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1165     assert(Scope.isEHCleanup());
1166     I = Scope.getEnclosingEHCleanup();
1167 
1168     // If this is the last cleanup we're propagating through, add this
1169     // as a branch-after.
1170     if (I == E) {
1171       Scope.addEHBranchAfter(Index, Dest.getBlock());
1172       break;
1173     }
1174 
1175     // Otherwise, add it as a branch-through.  If this isn't new
1176     // information, all the rest of the work has been done before.
1177     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1178       break;
1179   }
1180 
1181   Builder.ClearInsertionPoint();
1182 }
1183 
1184 /// All the branch fixups on the EH stack have propagated out past the
1185 /// outermost normal cleanup; resolve them all by adding cases to the
1186 /// given switch instruction.
1187 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1188   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1189 
1190   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1191     // Skip this fixup if its destination isn't set or if we've
1192     // already treated it.
1193     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1194     if (Fixup.Destination == 0) continue;
1195     if (!CasesAdded.insert(Fixup.Destination)) continue;
1196 
1197     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1198                     Fixup.Destination);
1199   }
1200 
1201   EHStack.clearFixups();
1202 }
1203 
1204 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1205   assert(Block && "resolving a null target block");
1206   if (!EHStack.getNumBranchFixups()) return;
1207 
1208   assert(EHStack.hasNormalCleanups() &&
1209          "branch fixups exist with no normal cleanups on stack");
1210 
1211   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1212   bool ResolvedAny = false;
1213 
1214   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1215     // Skip this fixup if its destination doesn't match.
1216     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1217     if (Fixup.Destination != Block) continue;
1218 
1219     Fixup.Destination = 0;
1220     ResolvedAny = true;
1221 
1222     // If it doesn't have an optimistic branch block, LatestBranch is
1223     // already pointing to the right place.
1224     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1225     if (!BranchBB)
1226       continue;
1227 
1228     // Don't process the same optimistic branch block twice.
1229     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1230       continue;
1231 
1232     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1233 
1234     // Add a case to the switch.
1235     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1236   }
1237 
1238   if (ResolvedAny)
1239     EHStack.popNullFixups();
1240 }
1241 
1242 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1243   if (!NormalCleanupDest)
1244     NormalCleanupDest =
1245       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1246   return NormalCleanupDest;
1247 }
1248 
1249 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1250   if (!EHCleanupDest)
1251     EHCleanupDest =
1252       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1253   return EHCleanupDest;
1254 }
1255