1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 Builder.setFastMathFlags(FMF); 107 } 108 109 CodeGenFunction::~CodeGenFunction() { 110 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 111 112 // If there are any unclaimed block infos, go ahead and destroy them 113 // now. This can happen if IR-gen gets clever and skips evaluating 114 // something. 115 if (FirstBlockInfo) 116 destroyBlockInfos(FirstBlockInfo); 117 118 if (getLangOpts().OpenMP && CurFn) 119 CGM.getOpenMPRuntime().functionFinished(*this); 120 } 121 122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 123 LValueBaseInfo *BaseInfo, 124 TBAAAccessInfo *TBAAInfo) { 125 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 126 /* forPointeeType= */ true); 127 } 128 129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 130 LValueBaseInfo *BaseInfo, 131 TBAAAccessInfo *TBAAInfo, 132 bool forPointeeType) { 133 if (TBAAInfo) 134 *TBAAInfo = CGM.getTBAAAccessInfo(T); 135 136 // Honor alignment typedef attributes even on incomplete types. 137 // We also honor them straight for C++ class types, even as pointees; 138 // there's an expressivity gap here. 139 if (auto TT = T->getAs<TypedefType>()) { 140 if (auto Align = TT->getDecl()->getMaxAlignment()) { 141 if (BaseInfo) 142 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 143 return getContext().toCharUnitsFromBits(Align); 144 } 145 } 146 147 if (BaseInfo) 148 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 149 150 CharUnits Alignment; 151 if (T->isIncompleteType()) { 152 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 153 } else { 154 // For C++ class pointees, we don't know whether we're pointing at a 155 // base or a complete object, so we generally need to use the 156 // non-virtual alignment. 157 const CXXRecordDecl *RD; 158 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 159 Alignment = CGM.getClassPointerAlignment(RD); 160 } else { 161 Alignment = getContext().getTypeAlignInChars(T); 162 if (T.getQualifiers().hasUnaligned()) 163 Alignment = CharUnits::One(); 164 } 165 166 // Cap to the global maximum type alignment unless the alignment 167 // was somehow explicit on the type. 168 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 169 if (Alignment.getQuantity() > MaxAlign && 170 !getContext().isAlignmentRequired(T)) 171 Alignment = CharUnits::fromQuantity(MaxAlign); 172 } 173 } 174 return Alignment; 175 } 176 177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 178 LValueBaseInfo BaseInfo; 179 TBAAAccessInfo TBAAInfo; 180 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 181 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 182 TBAAInfo); 183 } 184 185 /// Given a value of type T* that may not be to a complete object, 186 /// construct an l-value with the natural pointee alignment of T. 187 LValue 188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 189 LValueBaseInfo BaseInfo; 190 TBAAAccessInfo TBAAInfo; 191 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 192 /* forPointeeType= */ true); 193 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 194 } 195 196 197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 198 return CGM.getTypes().ConvertTypeForMem(T); 199 } 200 201 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 202 return CGM.getTypes().ConvertType(T); 203 } 204 205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 206 type = type.getCanonicalType(); 207 while (true) { 208 switch (type->getTypeClass()) { 209 #define TYPE(name, parent) 210 #define ABSTRACT_TYPE(name, parent) 211 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 212 #define DEPENDENT_TYPE(name, parent) case Type::name: 213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 214 #include "clang/AST/TypeNodes.def" 215 llvm_unreachable("non-canonical or dependent type in IR-generation"); 216 217 case Type::Auto: 218 case Type::DeducedTemplateSpecialization: 219 llvm_unreachable("undeduced type in IR-generation"); 220 221 // Various scalar types. 222 case Type::Builtin: 223 case Type::Pointer: 224 case Type::BlockPointer: 225 case Type::LValueReference: 226 case Type::RValueReference: 227 case Type::MemberPointer: 228 case Type::Vector: 229 case Type::ExtVector: 230 case Type::FunctionProto: 231 case Type::FunctionNoProto: 232 case Type::Enum: 233 case Type::ObjCObjectPointer: 234 case Type::Pipe: 235 return TEK_Scalar; 236 237 // Complexes. 238 case Type::Complex: 239 return TEK_Complex; 240 241 // Arrays, records, and Objective-C objects. 242 case Type::ConstantArray: 243 case Type::IncompleteArray: 244 case Type::VariableArray: 245 case Type::Record: 246 case Type::ObjCObject: 247 case Type::ObjCInterface: 248 return TEK_Aggregate; 249 250 // We operate on atomic values according to their underlying type. 251 case Type::Atomic: 252 type = cast<AtomicType>(type)->getValueType(); 253 continue; 254 } 255 llvm_unreachable("unknown type kind!"); 256 } 257 } 258 259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 260 // For cleanliness, we try to avoid emitting the return block for 261 // simple cases. 262 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 263 264 if (CurBB) { 265 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 266 267 // We have a valid insert point, reuse it if it is empty or there are no 268 // explicit jumps to the return block. 269 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 270 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 271 delete ReturnBlock.getBlock(); 272 } else 273 EmitBlock(ReturnBlock.getBlock()); 274 return llvm::DebugLoc(); 275 } 276 277 // Otherwise, if the return block is the target of a single direct 278 // branch then we can just put the code in that block instead. This 279 // cleans up functions which started with a unified return block. 280 if (ReturnBlock.getBlock()->hasOneUse()) { 281 llvm::BranchInst *BI = 282 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 283 if (BI && BI->isUnconditional() && 284 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 285 // Record/return the DebugLoc of the simple 'return' expression to be used 286 // later by the actual 'ret' instruction. 287 llvm::DebugLoc Loc = BI->getDebugLoc(); 288 Builder.SetInsertPoint(BI->getParent()); 289 BI->eraseFromParent(); 290 delete ReturnBlock.getBlock(); 291 return Loc; 292 } 293 } 294 295 // FIXME: We are at an unreachable point, there is no reason to emit the block 296 // unless it has uses. However, we still need a place to put the debug 297 // region.end for now. 298 299 EmitBlock(ReturnBlock.getBlock()); 300 return llvm::DebugLoc(); 301 } 302 303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 304 if (!BB) return; 305 if (!BB->use_empty()) 306 return CGF.CurFn->getBasicBlockList().push_back(BB); 307 delete BB; 308 } 309 310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 311 assert(BreakContinueStack.empty() && 312 "mismatched push/pop in break/continue stack!"); 313 314 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 315 && NumSimpleReturnExprs == NumReturnExprs 316 && ReturnBlock.getBlock()->use_empty(); 317 // Usually the return expression is evaluated before the cleanup 318 // code. If the function contains only a simple return statement, 319 // such as a constant, the location before the cleanup code becomes 320 // the last useful breakpoint in the function, because the simple 321 // return expression will be evaluated after the cleanup code. To be 322 // safe, set the debug location for cleanup code to the location of 323 // the return statement. Otherwise the cleanup code should be at the 324 // end of the function's lexical scope. 325 // 326 // If there are multiple branches to the return block, the branch 327 // instructions will get the location of the return statements and 328 // all will be fine. 329 if (CGDebugInfo *DI = getDebugInfo()) { 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, LastStopPoint); 332 else 333 DI->EmitLocation(Builder, EndLoc); 334 } 335 336 // Pop any cleanups that might have been associated with the 337 // parameters. Do this in whatever block we're currently in; it's 338 // important to do this before we enter the return block or return 339 // edges will be *really* confused. 340 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 341 bool HasOnlyLifetimeMarkers = 342 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 343 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 344 if (HasCleanups) { 345 // Make sure the line table doesn't jump back into the body for 346 // the ret after it's been at EndLoc. 347 if (CGDebugInfo *DI = getDebugInfo()) 348 if (OnlySimpleReturnStmts) 349 DI->EmitLocation(Builder, EndLoc); 350 351 PopCleanupBlocks(PrologueCleanupDepth); 352 } 353 354 // Emit function epilog (to return). 355 llvm::DebugLoc Loc = EmitReturnBlock(); 356 357 if (ShouldInstrumentFunction()) { 358 if (CGM.getCodeGenOpts().InstrumentFunctions) 359 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 360 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 361 CurFn->addFnAttr("instrument-function-exit-inlined", 362 "__cyg_profile_func_exit"); 363 } 364 365 // Emit debug descriptor for function end. 366 if (CGDebugInfo *DI = getDebugInfo()) 367 DI->EmitFunctionEnd(Builder, CurFn); 368 369 // Reset the debug location to that of the simple 'return' expression, if any 370 // rather than that of the end of the function's scope '}'. 371 ApplyDebugLocation AL(*this, Loc); 372 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 373 EmitEndEHSpec(CurCodeDecl); 374 375 assert(EHStack.empty() && 376 "did not remove all scopes from cleanup stack!"); 377 378 // If someone did an indirect goto, emit the indirect goto block at the end of 379 // the function. 380 if (IndirectBranch) { 381 EmitBlock(IndirectBranch->getParent()); 382 Builder.ClearInsertionPoint(); 383 } 384 385 // If some of our locals escaped, insert a call to llvm.localescape in the 386 // entry block. 387 if (!EscapedLocals.empty()) { 388 // Invert the map from local to index into a simple vector. There should be 389 // no holes. 390 SmallVector<llvm::Value *, 4> EscapeArgs; 391 EscapeArgs.resize(EscapedLocals.size()); 392 for (auto &Pair : EscapedLocals) 393 EscapeArgs[Pair.second] = Pair.first; 394 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 395 &CGM.getModule(), llvm::Intrinsic::localescape); 396 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 397 } 398 399 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 400 llvm::Instruction *Ptr = AllocaInsertPt; 401 AllocaInsertPt = nullptr; 402 Ptr->eraseFromParent(); 403 404 // If someone took the address of a label but never did an indirect goto, we 405 // made a zero entry PHI node, which is illegal, zap it now. 406 if (IndirectBranch) { 407 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 408 if (PN->getNumIncomingValues() == 0) { 409 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 410 PN->eraseFromParent(); 411 } 412 } 413 414 EmitIfUsed(*this, EHResumeBlock); 415 EmitIfUsed(*this, TerminateLandingPad); 416 EmitIfUsed(*this, TerminateHandler); 417 EmitIfUsed(*this, UnreachableBlock); 418 419 if (CGM.getCodeGenOpts().EmitDeclMetadata) 420 EmitDeclMetadata(); 421 422 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 423 I = DeferredReplacements.begin(), 424 E = DeferredReplacements.end(); 425 I != E; ++I) { 426 I->first->replaceAllUsesWith(I->second); 427 I->first->eraseFromParent(); 428 } 429 430 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 431 // PHIs if the current function is a coroutine. We don't do it for all 432 // functions as it may result in slight increase in numbers of instructions 433 // if compiled with no optimizations. We do it for coroutine as the lifetime 434 // of CleanupDestSlot alloca make correct coroutine frame building very 435 // difficult. 436 if (NormalCleanupDest && isCoroutine()) { 437 llvm::DominatorTree DT(*CurFn); 438 llvm::PromoteMemToReg(NormalCleanupDest, DT); 439 NormalCleanupDest = nullptr; 440 } 441 } 442 443 /// ShouldInstrumentFunction - Return true if the current function should be 444 /// instrumented with __cyg_profile_func_* calls 445 bool CodeGenFunction::ShouldInstrumentFunction() { 446 if (!CGM.getCodeGenOpts().InstrumentFunctions && 447 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 448 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 449 return false; 450 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 451 return false; 452 return true; 453 } 454 455 /// ShouldXRayInstrument - Return true if the current function should be 456 /// instrumented with XRay nop sleds. 457 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 458 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 459 } 460 461 llvm::Constant * 462 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 463 llvm::Constant *Addr) { 464 // Addresses stored in prologue data can't require run-time fixups and must 465 // be PC-relative. Run-time fixups are undesirable because they necessitate 466 // writable text segments, which are unsafe. And absolute addresses are 467 // undesirable because they break PIE mode. 468 469 // Add a layer of indirection through a private global. Taking its address 470 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 471 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 472 /*isConstant=*/true, 473 llvm::GlobalValue::PrivateLinkage, Addr); 474 475 // Create a PC-relative address. 476 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 477 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 478 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 479 return (IntPtrTy == Int32Ty) 480 ? PCRelAsInt 481 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 482 } 483 484 llvm::Value * 485 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 486 llvm::Value *EncodedAddr) { 487 // Reconstruct the address of the global. 488 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 489 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 490 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 491 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 492 493 // Load the original pointer through the global. 494 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 495 "decoded_addr"); 496 } 497 498 static void removeImageAccessQualifier(std::string& TyName) { 499 std::string ReadOnlyQual("__read_only"); 500 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 501 if (ReadOnlyPos != std::string::npos) 502 // "+ 1" for the space after access qualifier. 503 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 504 else { 505 std::string WriteOnlyQual("__write_only"); 506 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 507 if (WriteOnlyPos != std::string::npos) 508 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 509 else { 510 std::string ReadWriteQual("__read_write"); 511 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 512 if (ReadWritePos != std::string::npos) 513 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 514 } 515 } 516 } 517 518 // Returns the address space id that should be produced to the 519 // kernel_arg_addr_space metadata. This is always fixed to the ids 520 // as specified in the SPIR 2.0 specification in order to differentiate 521 // for example in clGetKernelArgInfo() implementation between the address 522 // spaces with targets without unique mapping to the OpenCL address spaces 523 // (basically all single AS CPUs). 524 static unsigned ArgInfoAddressSpace(LangAS AS) { 525 switch (AS) { 526 case LangAS::opencl_global: return 1; 527 case LangAS::opencl_constant: return 2; 528 case LangAS::opencl_local: return 3; 529 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 530 default: 531 return 0; // Assume private. 532 } 533 } 534 535 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 536 // information in the program executable. The argument information stored 537 // includes the argument name, its type, the address and access qualifiers used. 538 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 539 CodeGenModule &CGM, llvm::LLVMContext &Context, 540 CGBuilderTy &Builder, ASTContext &ASTCtx) { 541 // Create MDNodes that represent the kernel arg metadata. 542 // Each MDNode is a list in the form of "key", N number of values which is 543 // the same number of values as their are kernel arguments. 544 545 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 546 547 // MDNode for the kernel argument address space qualifiers. 548 SmallVector<llvm::Metadata *, 8> addressQuals; 549 550 // MDNode for the kernel argument access qualifiers (images only). 551 SmallVector<llvm::Metadata *, 8> accessQuals; 552 553 // MDNode for the kernel argument type names. 554 SmallVector<llvm::Metadata *, 8> argTypeNames; 555 556 // MDNode for the kernel argument base type names. 557 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 558 559 // MDNode for the kernel argument type qualifiers. 560 SmallVector<llvm::Metadata *, 8> argTypeQuals; 561 562 // MDNode for the kernel argument names. 563 SmallVector<llvm::Metadata *, 8> argNames; 564 565 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 566 const ParmVarDecl *parm = FD->getParamDecl(i); 567 QualType ty = parm->getType(); 568 std::string typeQuals; 569 570 if (ty->isPointerType()) { 571 QualType pointeeTy = ty->getPointeeType(); 572 573 // Get address qualifier. 574 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 575 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 576 577 // Get argument type name. 578 std::string typeName = 579 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 580 581 // Turn "unsigned type" to "utype" 582 std::string::size_type pos = typeName.find("unsigned"); 583 if (pointeeTy.isCanonical() && pos != std::string::npos) 584 typeName.erase(pos+1, 8); 585 586 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 587 588 std::string baseTypeName = 589 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 590 Policy) + 591 "*"; 592 593 // Turn "unsigned type" to "utype" 594 pos = baseTypeName.find("unsigned"); 595 if (pos != std::string::npos) 596 baseTypeName.erase(pos+1, 8); 597 598 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 599 600 // Get argument type qualifiers: 601 if (ty.isRestrictQualified()) 602 typeQuals = "restrict"; 603 if (pointeeTy.isConstQualified() || 604 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 605 typeQuals += typeQuals.empty() ? "const" : " const"; 606 if (pointeeTy.isVolatileQualified()) 607 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 608 } else { 609 uint32_t AddrSpc = 0; 610 bool isPipe = ty->isPipeType(); 611 if (ty->isImageType() || isPipe) 612 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 613 614 addressQuals.push_back( 615 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 616 617 // Get argument type name. 618 std::string typeName; 619 if (isPipe) 620 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 621 .getAsString(Policy); 622 else 623 typeName = ty.getUnqualifiedType().getAsString(Policy); 624 625 // Turn "unsigned type" to "utype" 626 std::string::size_type pos = typeName.find("unsigned"); 627 if (ty.isCanonical() && pos != std::string::npos) 628 typeName.erase(pos+1, 8); 629 630 std::string baseTypeName; 631 if (isPipe) 632 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 633 ->getElementType().getCanonicalType() 634 .getAsString(Policy); 635 else 636 baseTypeName = 637 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 638 639 // Remove access qualifiers on images 640 // (as they are inseparable from type in clang implementation, 641 // but OpenCL spec provides a special query to get access qualifier 642 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 643 if (ty->isImageType()) { 644 removeImageAccessQualifier(typeName); 645 removeImageAccessQualifier(baseTypeName); 646 } 647 648 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 649 650 // Turn "unsigned type" to "utype" 651 pos = baseTypeName.find("unsigned"); 652 if (pos != std::string::npos) 653 baseTypeName.erase(pos+1, 8); 654 655 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 656 657 if (isPipe) 658 typeQuals = "pipe"; 659 } 660 661 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 662 663 // Get image and pipe access qualifier: 664 if (ty->isImageType()|| ty->isPipeType()) { 665 const Decl *PDecl = parm; 666 if (auto *TD = dyn_cast<TypedefType>(ty)) 667 PDecl = TD->getDecl(); 668 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 669 if (A && A->isWriteOnly()) 670 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 671 else if (A && A->isReadWrite()) 672 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 673 else 674 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 675 } else 676 accessQuals.push_back(llvm::MDString::get(Context, "none")); 677 678 // Get argument name. 679 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 680 } 681 682 Fn->setMetadata("kernel_arg_addr_space", 683 llvm::MDNode::get(Context, addressQuals)); 684 Fn->setMetadata("kernel_arg_access_qual", 685 llvm::MDNode::get(Context, accessQuals)); 686 Fn->setMetadata("kernel_arg_type", 687 llvm::MDNode::get(Context, argTypeNames)); 688 Fn->setMetadata("kernel_arg_base_type", 689 llvm::MDNode::get(Context, argBaseTypeNames)); 690 Fn->setMetadata("kernel_arg_type_qual", 691 llvm::MDNode::get(Context, argTypeQuals)); 692 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 693 Fn->setMetadata("kernel_arg_name", 694 llvm::MDNode::get(Context, argNames)); 695 } 696 697 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 698 llvm::Function *Fn) 699 { 700 if (!FD->hasAttr<OpenCLKernelAttr>()) 701 return; 702 703 llvm::LLVMContext &Context = getLLVMContext(); 704 705 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 706 707 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 708 QualType HintQTy = A->getTypeHint(); 709 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 710 bool IsSignedInteger = 711 HintQTy->isSignedIntegerType() || 712 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 713 llvm::Metadata *AttrMDArgs[] = { 714 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 715 CGM.getTypes().ConvertType(A->getTypeHint()))), 716 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 717 llvm::IntegerType::get(Context, 32), 718 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 719 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 720 } 721 722 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 723 llvm::Metadata *AttrMDArgs[] = { 724 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 725 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 726 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 727 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 728 } 729 730 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 731 llvm::Metadata *AttrMDArgs[] = { 732 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 733 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 734 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 735 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 736 } 737 738 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 739 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 740 llvm::Metadata *AttrMDArgs[] = { 741 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 742 Fn->setMetadata("intel_reqd_sub_group_size", 743 llvm::MDNode::get(Context, AttrMDArgs)); 744 } 745 } 746 747 /// Determine whether the function F ends with a return stmt. 748 static bool endsWithReturn(const Decl* F) { 749 const Stmt *Body = nullptr; 750 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 751 Body = FD->getBody(); 752 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 753 Body = OMD->getBody(); 754 755 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 756 auto LastStmt = CS->body_rbegin(); 757 if (LastStmt != CS->body_rend()) 758 return isa<ReturnStmt>(*LastStmt); 759 } 760 return false; 761 } 762 763 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 764 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 765 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 766 } 767 768 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 769 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 770 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 771 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 772 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 773 return false; 774 775 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 776 return false; 777 778 if (MD->getNumParams() == 2) { 779 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 780 if (!PT || !PT->isVoidPointerType() || 781 !PT->getPointeeType().isConstQualified()) 782 return false; 783 } 784 785 return true; 786 } 787 788 /// Return the UBSan prologue signature for \p FD if one is available. 789 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 790 const FunctionDecl *FD) { 791 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 792 if (!MD->isStatic()) 793 return nullptr; 794 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 795 } 796 797 void CodeGenFunction::StartFunction(GlobalDecl GD, 798 QualType RetTy, 799 llvm::Function *Fn, 800 const CGFunctionInfo &FnInfo, 801 const FunctionArgList &Args, 802 SourceLocation Loc, 803 SourceLocation StartLoc) { 804 assert(!CurFn && 805 "Do not use a CodeGenFunction object for more than one function"); 806 807 const Decl *D = GD.getDecl(); 808 809 DidCallStackSave = false; 810 CurCodeDecl = D; 811 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 812 if (FD->usesSEHTry()) 813 CurSEHParent = FD; 814 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 815 FnRetTy = RetTy; 816 CurFn = Fn; 817 CurFnInfo = &FnInfo; 818 assert(CurFn->isDeclaration() && "Function already has body?"); 819 820 // If this function has been blacklisted for any of the enabled sanitizers, 821 // disable the sanitizer for the function. 822 do { 823 #define SANITIZER(NAME, ID) \ 824 if (SanOpts.empty()) \ 825 break; \ 826 if (SanOpts.has(SanitizerKind::ID)) \ 827 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 828 SanOpts.set(SanitizerKind::ID, false); 829 830 #include "clang/Basic/Sanitizers.def" 831 #undef SANITIZER 832 } while (0); 833 834 if (D) { 835 // Apply the no_sanitize* attributes to SanOpts. 836 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 837 SanOpts.Mask &= ~Attr->getMask(); 838 } 839 840 // Apply sanitizer attributes to the function. 841 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 842 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 843 if (SanOpts.has(SanitizerKind::Thread)) 844 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 845 if (SanOpts.has(SanitizerKind::Memory)) 846 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 847 if (SanOpts.has(SanitizerKind::SafeStack)) 848 Fn->addFnAttr(llvm::Attribute::SafeStack); 849 850 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 851 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 852 if (SanOpts.has(SanitizerKind::Thread)) { 853 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 854 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 855 if (OMD->getMethodFamily() == OMF_dealloc || 856 OMD->getMethodFamily() == OMF_initialize || 857 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 858 markAsIgnoreThreadCheckingAtRuntime(Fn); 859 } 860 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 861 IdentifierInfo *II = FD->getIdentifier(); 862 if (II && II->isStr("__destroy_helper_block_")) 863 markAsIgnoreThreadCheckingAtRuntime(Fn); 864 } 865 } 866 867 // Ignore unrelated casts in STL allocate() since the allocator must cast 868 // from void* to T* before object initialization completes. Don't match on the 869 // namespace because not all allocators are in std:: 870 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 871 if (matchesStlAllocatorFn(D, getContext())) 872 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 873 } 874 875 // Apply xray attributes to the function (as a string, for now) 876 if (D && ShouldXRayInstrumentFunction()) { 877 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 878 if (XRayAttr->alwaysXRayInstrument()) 879 Fn->addFnAttr("function-instrument", "xray-always"); 880 if (XRayAttr->neverXRayInstrument()) 881 Fn->addFnAttr("function-instrument", "xray-never"); 882 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 883 Fn->addFnAttr("xray-log-args", 884 llvm::utostr(LogArgs->getArgumentCount())); 885 } 886 } else { 887 if (!CGM.imbueXRayAttrs(Fn, Loc)) 888 Fn->addFnAttr( 889 "xray-instruction-threshold", 890 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 891 } 892 } 893 894 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 895 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 896 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 897 898 // Add no-jump-tables value. 899 Fn->addFnAttr("no-jump-tables", 900 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 901 902 // Add profile-sample-accurate value. 903 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 904 Fn->addFnAttr("profile-sample-accurate"); 905 906 if (getLangOpts().OpenCL) { 907 // Add metadata for a kernel function. 908 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 909 EmitOpenCLKernelMetadata(FD, Fn); 910 } 911 912 // If we are checking function types, emit a function type signature as 913 // prologue data. 914 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 915 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 916 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 917 llvm::Constant *FTRTTIConst = 918 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 919 llvm::Constant *FTRTTIConstEncoded = 920 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 921 llvm::Constant *PrologueStructElems[] = {PrologueSig, 922 FTRTTIConstEncoded}; 923 llvm::Constant *PrologueStructConst = 924 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 925 Fn->setPrologueData(PrologueStructConst); 926 } 927 } 928 } 929 930 // If we're checking nullability, we need to know whether we can check the 931 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 932 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 933 auto Nullability = FnRetTy->getNullability(getContext()); 934 if (Nullability && *Nullability == NullabilityKind::NonNull) { 935 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 936 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 937 RetValNullabilityPrecondition = 938 llvm::ConstantInt::getTrue(getLLVMContext()); 939 } 940 } 941 942 // If we're in C++ mode and the function name is "main", it is guaranteed 943 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 944 // used within a program"). 945 if (getLangOpts().CPlusPlus) 946 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 947 if (FD->isMain()) 948 Fn->addFnAttr(llvm::Attribute::NoRecurse); 949 950 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 951 952 // Create a marker to make it easy to insert allocas into the entryblock 953 // later. Don't create this with the builder, because we don't want it 954 // folded. 955 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 956 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 957 958 ReturnBlock = getJumpDestInCurrentScope("return"); 959 960 Builder.SetInsertPoint(EntryBB); 961 962 // If we're checking the return value, allocate space for a pointer to a 963 // precise source location of the checked return statement. 964 if (requiresReturnValueCheck()) { 965 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 966 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 967 } 968 969 // Emit subprogram debug descriptor. 970 if (CGDebugInfo *DI = getDebugInfo()) { 971 // Reconstruct the type from the argument list so that implicit parameters, 972 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 973 // convention. 974 CallingConv CC = CallingConv::CC_C; 975 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 976 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 977 CC = SrcFnTy->getCallConv(); 978 SmallVector<QualType, 16> ArgTypes; 979 for (const VarDecl *VD : Args) 980 ArgTypes.push_back(VD->getType()); 981 QualType FnType = getContext().getFunctionType( 982 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 983 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 984 } 985 986 if (ShouldInstrumentFunction()) { 987 if (CGM.getCodeGenOpts().InstrumentFunctions) 988 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 989 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 990 CurFn->addFnAttr("instrument-function-entry-inlined", 991 "__cyg_profile_func_enter"); 992 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 993 CurFn->addFnAttr("instrument-function-entry-inlined", 994 "__cyg_profile_func_enter_bare"); 995 } 996 997 // Since emitting the mcount call here impacts optimizations such as function 998 // inlining, we just add an attribute to insert a mcount call in backend. 999 // The attribute "counting-function" is set to mcount function name which is 1000 // architecture dependent. 1001 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1002 if (CGM.getCodeGenOpts().CallFEntry) 1003 Fn->addFnAttr("fentry-call", "true"); 1004 else { 1005 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1006 Fn->addFnAttr("instrument-function-entry-inlined", 1007 getTarget().getMCountName()); 1008 } 1009 } 1010 } 1011 1012 if (RetTy->isVoidType()) { 1013 // Void type; nothing to return. 1014 ReturnValue = Address::invalid(); 1015 1016 // Count the implicit return. 1017 if (!endsWithReturn(D)) 1018 ++NumReturnExprs; 1019 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1020 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1021 // Indirect aggregate return; emit returned value directly into sret slot. 1022 // This reduces code size, and affects correctness in C++. 1023 auto AI = CurFn->arg_begin(); 1024 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1025 ++AI; 1026 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1027 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1028 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1029 // Load the sret pointer from the argument struct and return into that. 1030 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1031 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1032 --EI; 1033 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1034 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1035 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1036 } else { 1037 ReturnValue = CreateIRTemp(RetTy, "retval"); 1038 1039 // Tell the epilog emitter to autorelease the result. We do this 1040 // now so that various specialized functions can suppress it 1041 // during their IR-generation. 1042 if (getLangOpts().ObjCAutoRefCount && 1043 !CurFnInfo->isReturnsRetained() && 1044 RetTy->isObjCRetainableType()) 1045 AutoreleaseResult = true; 1046 } 1047 1048 EmitStartEHSpec(CurCodeDecl); 1049 1050 PrologueCleanupDepth = EHStack.stable_begin(); 1051 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1052 1053 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1054 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1055 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1056 if (MD->getParent()->isLambda() && 1057 MD->getOverloadedOperator() == OO_Call) { 1058 // We're in a lambda; figure out the captures. 1059 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1060 LambdaThisCaptureField); 1061 if (LambdaThisCaptureField) { 1062 // If the lambda captures the object referred to by '*this' - either by 1063 // value or by reference, make sure CXXThisValue points to the correct 1064 // object. 1065 1066 // Get the lvalue for the field (which is a copy of the enclosing object 1067 // or contains the address of the enclosing object). 1068 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1069 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1070 // If the enclosing object was captured by value, just use its address. 1071 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1072 } else { 1073 // Load the lvalue pointed to by the field, since '*this' was captured 1074 // by reference. 1075 CXXThisValue = 1076 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1077 } 1078 } 1079 for (auto *FD : MD->getParent()->fields()) { 1080 if (FD->hasCapturedVLAType()) { 1081 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1082 SourceLocation()).getScalarVal(); 1083 auto VAT = FD->getCapturedVLAType(); 1084 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1085 } 1086 } 1087 } else { 1088 // Not in a lambda; just use 'this' from the method. 1089 // FIXME: Should we generate a new load for each use of 'this'? The 1090 // fast register allocator would be happier... 1091 CXXThisValue = CXXABIThisValue; 1092 } 1093 1094 // Check the 'this' pointer once per function, if it's available. 1095 if (CXXABIThisValue) { 1096 SanitizerSet SkippedChecks; 1097 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1098 QualType ThisTy = MD->getThisType(getContext()); 1099 1100 // If this is the call operator of a lambda with no capture-default, it 1101 // may have a static invoker function, which may call this operator with 1102 // a null 'this' pointer. 1103 if (isLambdaCallOperator(MD) && 1104 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1105 LCD_None) 1106 SkippedChecks.set(SanitizerKind::Null, true); 1107 1108 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1109 : TCK_MemberCall, 1110 Loc, CXXABIThisValue, ThisTy, 1111 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1112 SkippedChecks); 1113 } 1114 } 1115 1116 // If any of the arguments have a variably modified type, make sure to 1117 // emit the type size. 1118 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1119 i != e; ++i) { 1120 const VarDecl *VD = *i; 1121 1122 // Dig out the type as written from ParmVarDecls; it's unclear whether 1123 // the standard (C99 6.9.1p10) requires this, but we're following the 1124 // precedent set by gcc. 1125 QualType Ty; 1126 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1127 Ty = PVD->getOriginalType(); 1128 else 1129 Ty = VD->getType(); 1130 1131 if (Ty->isVariablyModifiedType()) 1132 EmitVariablyModifiedType(Ty); 1133 } 1134 // Emit a location at the end of the prologue. 1135 if (CGDebugInfo *DI = getDebugInfo()) 1136 DI->EmitLocation(Builder, StartLoc); 1137 } 1138 1139 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1140 const Stmt *Body) { 1141 incrementProfileCounter(Body); 1142 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1143 EmitCompoundStmtWithoutScope(*S); 1144 else 1145 EmitStmt(Body); 1146 } 1147 1148 /// When instrumenting to collect profile data, the counts for some blocks 1149 /// such as switch cases need to not include the fall-through counts, so 1150 /// emit a branch around the instrumentation code. When not instrumenting, 1151 /// this just calls EmitBlock(). 1152 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1153 const Stmt *S) { 1154 llvm::BasicBlock *SkipCountBB = nullptr; 1155 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1156 // When instrumenting for profiling, the fallthrough to certain 1157 // statements needs to skip over the instrumentation code so that we 1158 // get an accurate count. 1159 SkipCountBB = createBasicBlock("skipcount"); 1160 EmitBranch(SkipCountBB); 1161 } 1162 EmitBlock(BB); 1163 uint64_t CurrentCount = getCurrentProfileCount(); 1164 incrementProfileCounter(S); 1165 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1166 if (SkipCountBB) 1167 EmitBlock(SkipCountBB); 1168 } 1169 1170 /// Tries to mark the given function nounwind based on the 1171 /// non-existence of any throwing calls within it. We believe this is 1172 /// lightweight enough to do at -O0. 1173 static void TryMarkNoThrow(llvm::Function *F) { 1174 // LLVM treats 'nounwind' on a function as part of the type, so we 1175 // can't do this on functions that can be overwritten. 1176 if (F->isInterposable()) return; 1177 1178 for (llvm::BasicBlock &BB : *F) 1179 for (llvm::Instruction &I : BB) 1180 if (I.mayThrow()) 1181 return; 1182 1183 F->setDoesNotThrow(); 1184 } 1185 1186 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1187 FunctionArgList &Args) { 1188 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1189 QualType ResTy = FD->getReturnType(); 1190 1191 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1192 if (MD && MD->isInstance()) { 1193 if (CGM.getCXXABI().HasThisReturn(GD)) 1194 ResTy = MD->getThisType(getContext()); 1195 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1196 ResTy = CGM.getContext().VoidPtrTy; 1197 CGM.getCXXABI().buildThisParam(*this, Args); 1198 } 1199 1200 // The base version of an inheriting constructor whose constructed base is a 1201 // virtual base is not passed any arguments (because it doesn't actually call 1202 // the inherited constructor). 1203 bool PassedParams = true; 1204 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1205 if (auto Inherited = CD->getInheritedConstructor()) 1206 PassedParams = 1207 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1208 1209 if (PassedParams) { 1210 for (auto *Param : FD->parameters()) { 1211 Args.push_back(Param); 1212 if (!Param->hasAttr<PassObjectSizeAttr>()) 1213 continue; 1214 1215 auto *Implicit = ImplicitParamDecl::Create( 1216 getContext(), Param->getDeclContext(), Param->getLocation(), 1217 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1218 SizeArguments[Param] = Implicit; 1219 Args.push_back(Implicit); 1220 } 1221 } 1222 1223 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1224 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1225 1226 return ResTy; 1227 } 1228 1229 static bool 1230 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1231 const ASTContext &Context) { 1232 QualType T = FD->getReturnType(); 1233 // Avoid the optimization for functions that return a record type with a 1234 // trivial destructor or another trivially copyable type. 1235 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1236 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1237 return !ClassDecl->hasTrivialDestructor(); 1238 } 1239 return !T.isTriviallyCopyableType(Context); 1240 } 1241 1242 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1243 const CGFunctionInfo &FnInfo) { 1244 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1245 CurGD = GD; 1246 1247 FunctionArgList Args; 1248 QualType ResTy = BuildFunctionArgList(GD, Args); 1249 1250 // Check if we should generate debug info for this function. 1251 if (FD->hasAttr<NoDebugAttr>()) 1252 DebugInfo = nullptr; // disable debug info indefinitely for this function 1253 1254 // The function might not have a body if we're generating thunks for a 1255 // function declaration. 1256 SourceRange BodyRange; 1257 if (Stmt *Body = FD->getBody()) 1258 BodyRange = Body->getSourceRange(); 1259 else 1260 BodyRange = FD->getLocation(); 1261 CurEHLocation = BodyRange.getEnd(); 1262 1263 // Use the location of the start of the function to determine where 1264 // the function definition is located. By default use the location 1265 // of the declaration as the location for the subprogram. A function 1266 // may lack a declaration in the source code if it is created by code 1267 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1268 SourceLocation Loc = FD->getLocation(); 1269 1270 // If this is a function specialization then use the pattern body 1271 // as the location for the function. 1272 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1273 if (SpecDecl->hasBody(SpecDecl)) 1274 Loc = SpecDecl->getLocation(); 1275 1276 Stmt *Body = FD->getBody(); 1277 1278 // Initialize helper which will detect jumps which can cause invalid lifetime 1279 // markers. 1280 if (Body && ShouldEmitLifetimeMarkers) 1281 Bypasses.Init(Body); 1282 1283 // Emit the standard function prologue. 1284 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1285 1286 // Generate the body of the function. 1287 PGO.assignRegionCounters(GD, CurFn); 1288 if (isa<CXXDestructorDecl>(FD)) 1289 EmitDestructorBody(Args); 1290 else if (isa<CXXConstructorDecl>(FD)) 1291 EmitConstructorBody(Args); 1292 else if (getLangOpts().CUDA && 1293 !getLangOpts().CUDAIsDevice && 1294 FD->hasAttr<CUDAGlobalAttr>()) 1295 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1296 else if (isa<CXXMethodDecl>(FD) && 1297 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1298 // The lambda static invoker function is special, because it forwards or 1299 // clones the body of the function call operator (but is actually static). 1300 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1301 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1302 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1303 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1304 // Implicit copy-assignment gets the same special treatment as implicit 1305 // copy-constructors. 1306 emitImplicitAssignmentOperatorBody(Args); 1307 } else if (Body) { 1308 EmitFunctionBody(Args, Body); 1309 } else 1310 llvm_unreachable("no definition for emitted function"); 1311 1312 // C++11 [stmt.return]p2: 1313 // Flowing off the end of a function [...] results in undefined behavior in 1314 // a value-returning function. 1315 // C11 6.9.1p12: 1316 // If the '}' that terminates a function is reached, and the value of the 1317 // function call is used by the caller, the behavior is undefined. 1318 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1319 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1320 bool ShouldEmitUnreachable = 1321 CGM.getCodeGenOpts().StrictReturn || 1322 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1323 if (SanOpts.has(SanitizerKind::Return)) { 1324 SanitizerScope SanScope(this); 1325 llvm::Value *IsFalse = Builder.getFalse(); 1326 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1327 SanitizerHandler::MissingReturn, 1328 EmitCheckSourceLocation(FD->getLocation()), None); 1329 } else if (ShouldEmitUnreachable) { 1330 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1331 EmitTrapCall(llvm::Intrinsic::trap); 1332 } 1333 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1334 Builder.CreateUnreachable(); 1335 Builder.ClearInsertionPoint(); 1336 } 1337 } 1338 1339 // Emit the standard function epilogue. 1340 FinishFunction(BodyRange.getEnd()); 1341 1342 // If we haven't marked the function nothrow through other means, do 1343 // a quick pass now to see if we can. 1344 if (!CurFn->doesNotThrow()) 1345 TryMarkNoThrow(CurFn); 1346 } 1347 1348 /// ContainsLabel - Return true if the statement contains a label in it. If 1349 /// this statement is not executed normally, it not containing a label means 1350 /// that we can just remove the code. 1351 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1352 // Null statement, not a label! 1353 if (!S) return false; 1354 1355 // If this is a label, we have to emit the code, consider something like: 1356 // if (0) { ... foo: bar(); } goto foo; 1357 // 1358 // TODO: If anyone cared, we could track __label__'s, since we know that you 1359 // can't jump to one from outside their declared region. 1360 if (isa<LabelStmt>(S)) 1361 return true; 1362 1363 // If this is a case/default statement, and we haven't seen a switch, we have 1364 // to emit the code. 1365 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1366 return true; 1367 1368 // If this is a switch statement, we want to ignore cases below it. 1369 if (isa<SwitchStmt>(S)) 1370 IgnoreCaseStmts = true; 1371 1372 // Scan subexpressions for verboten labels. 1373 for (const Stmt *SubStmt : S->children()) 1374 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1375 return true; 1376 1377 return false; 1378 } 1379 1380 /// containsBreak - Return true if the statement contains a break out of it. 1381 /// If the statement (recursively) contains a switch or loop with a break 1382 /// inside of it, this is fine. 1383 bool CodeGenFunction::containsBreak(const Stmt *S) { 1384 // Null statement, not a label! 1385 if (!S) return false; 1386 1387 // If this is a switch or loop that defines its own break scope, then we can 1388 // include it and anything inside of it. 1389 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1390 isa<ForStmt>(S)) 1391 return false; 1392 1393 if (isa<BreakStmt>(S)) 1394 return true; 1395 1396 // Scan subexpressions for verboten breaks. 1397 for (const Stmt *SubStmt : S->children()) 1398 if (containsBreak(SubStmt)) 1399 return true; 1400 1401 return false; 1402 } 1403 1404 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1405 if (!S) return false; 1406 1407 // Some statement kinds add a scope and thus never add a decl to the current 1408 // scope. Note, this list is longer than the list of statements that might 1409 // have an unscoped decl nested within them, but this way is conservatively 1410 // correct even if more statement kinds are added. 1411 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1412 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1413 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1414 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1415 return false; 1416 1417 if (isa<DeclStmt>(S)) 1418 return true; 1419 1420 for (const Stmt *SubStmt : S->children()) 1421 if (mightAddDeclToScope(SubStmt)) 1422 return true; 1423 1424 return false; 1425 } 1426 1427 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1428 /// to a constant, or if it does but contains a label, return false. If it 1429 /// constant folds return true and set the boolean result in Result. 1430 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1431 bool &ResultBool, 1432 bool AllowLabels) { 1433 llvm::APSInt ResultInt; 1434 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1435 return false; 1436 1437 ResultBool = ResultInt.getBoolValue(); 1438 return true; 1439 } 1440 1441 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1442 /// to a constant, or if it does but contains a label, return false. If it 1443 /// constant folds return true and set the folded value. 1444 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1445 llvm::APSInt &ResultInt, 1446 bool AllowLabels) { 1447 // FIXME: Rename and handle conversion of other evaluatable things 1448 // to bool. 1449 llvm::APSInt Int; 1450 if (!Cond->EvaluateAsInt(Int, getContext())) 1451 return false; // Not foldable, not integer or not fully evaluatable. 1452 1453 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1454 return false; // Contains a label. 1455 1456 ResultInt = Int; 1457 return true; 1458 } 1459 1460 1461 1462 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1463 /// statement) to the specified blocks. Based on the condition, this might try 1464 /// to simplify the codegen of the conditional based on the branch. 1465 /// 1466 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1467 llvm::BasicBlock *TrueBlock, 1468 llvm::BasicBlock *FalseBlock, 1469 uint64_t TrueCount) { 1470 Cond = Cond->IgnoreParens(); 1471 1472 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1473 1474 // Handle X && Y in a condition. 1475 if (CondBOp->getOpcode() == BO_LAnd) { 1476 // If we have "1 && X", simplify the code. "0 && X" would have constant 1477 // folded if the case was simple enough. 1478 bool ConstantBool = false; 1479 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1480 ConstantBool) { 1481 // br(1 && X) -> br(X). 1482 incrementProfileCounter(CondBOp); 1483 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1484 TrueCount); 1485 } 1486 1487 // If we have "X && 1", simplify the code to use an uncond branch. 1488 // "X && 0" would have been constant folded to 0. 1489 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1490 ConstantBool) { 1491 // br(X && 1) -> br(X). 1492 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1493 TrueCount); 1494 } 1495 1496 // Emit the LHS as a conditional. If the LHS conditional is false, we 1497 // want to jump to the FalseBlock. 1498 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1499 // The counter tells us how often we evaluate RHS, and all of TrueCount 1500 // can be propagated to that branch. 1501 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1502 1503 ConditionalEvaluation eval(*this); 1504 { 1505 ApplyDebugLocation DL(*this, Cond); 1506 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1507 EmitBlock(LHSTrue); 1508 } 1509 1510 incrementProfileCounter(CondBOp); 1511 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1512 1513 // Any temporaries created here are conditional. 1514 eval.begin(*this); 1515 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1516 eval.end(*this); 1517 1518 return; 1519 } 1520 1521 if (CondBOp->getOpcode() == BO_LOr) { 1522 // If we have "0 || X", simplify the code. "1 || X" would have constant 1523 // folded if the case was simple enough. 1524 bool ConstantBool = false; 1525 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1526 !ConstantBool) { 1527 // br(0 || X) -> br(X). 1528 incrementProfileCounter(CondBOp); 1529 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1530 TrueCount); 1531 } 1532 1533 // If we have "X || 0", simplify the code to use an uncond branch. 1534 // "X || 1" would have been constant folded to 1. 1535 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1536 !ConstantBool) { 1537 // br(X || 0) -> br(X). 1538 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1539 TrueCount); 1540 } 1541 1542 // Emit the LHS as a conditional. If the LHS conditional is true, we 1543 // want to jump to the TrueBlock. 1544 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1545 // We have the count for entry to the RHS and for the whole expression 1546 // being true, so we can divy up True count between the short circuit and 1547 // the RHS. 1548 uint64_t LHSCount = 1549 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1550 uint64_t RHSCount = TrueCount - LHSCount; 1551 1552 ConditionalEvaluation eval(*this); 1553 { 1554 ApplyDebugLocation DL(*this, Cond); 1555 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1556 EmitBlock(LHSFalse); 1557 } 1558 1559 incrementProfileCounter(CondBOp); 1560 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1561 1562 // Any temporaries created here are conditional. 1563 eval.begin(*this); 1564 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1565 1566 eval.end(*this); 1567 1568 return; 1569 } 1570 } 1571 1572 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1573 // br(!x, t, f) -> br(x, f, t) 1574 if (CondUOp->getOpcode() == UO_LNot) { 1575 // Negate the count. 1576 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1577 // Negate the condition and swap the destination blocks. 1578 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1579 FalseCount); 1580 } 1581 } 1582 1583 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1584 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1585 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1586 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1587 1588 ConditionalEvaluation cond(*this); 1589 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1590 getProfileCount(CondOp)); 1591 1592 // When computing PGO branch weights, we only know the overall count for 1593 // the true block. This code is essentially doing tail duplication of the 1594 // naive code-gen, introducing new edges for which counts are not 1595 // available. Divide the counts proportionally between the LHS and RHS of 1596 // the conditional operator. 1597 uint64_t LHSScaledTrueCount = 0; 1598 if (TrueCount) { 1599 double LHSRatio = 1600 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1601 LHSScaledTrueCount = TrueCount * LHSRatio; 1602 } 1603 1604 cond.begin(*this); 1605 EmitBlock(LHSBlock); 1606 incrementProfileCounter(CondOp); 1607 { 1608 ApplyDebugLocation DL(*this, Cond); 1609 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1610 LHSScaledTrueCount); 1611 } 1612 cond.end(*this); 1613 1614 cond.begin(*this); 1615 EmitBlock(RHSBlock); 1616 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1617 TrueCount - LHSScaledTrueCount); 1618 cond.end(*this); 1619 1620 return; 1621 } 1622 1623 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1624 // Conditional operator handling can give us a throw expression as a 1625 // condition for a case like: 1626 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1627 // Fold this to: 1628 // br(c, throw x, br(y, t, f)) 1629 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1630 return; 1631 } 1632 1633 // If the branch has a condition wrapped by __builtin_unpredictable, 1634 // create metadata that specifies that the branch is unpredictable. 1635 // Don't bother if not optimizing because that metadata would not be used. 1636 llvm::MDNode *Unpredictable = nullptr; 1637 auto *Call = dyn_cast<CallExpr>(Cond); 1638 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1639 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1640 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1641 llvm::MDBuilder MDHelper(getLLVMContext()); 1642 Unpredictable = MDHelper.createUnpredictable(); 1643 } 1644 } 1645 1646 // Create branch weights based on the number of times we get here and the 1647 // number of times the condition should be true. 1648 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1649 llvm::MDNode *Weights = 1650 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1651 1652 // Emit the code with the fully general case. 1653 llvm::Value *CondV; 1654 { 1655 ApplyDebugLocation DL(*this, Cond); 1656 CondV = EvaluateExprAsBool(Cond); 1657 } 1658 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1659 } 1660 1661 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1662 /// specified stmt yet. 1663 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1664 CGM.ErrorUnsupported(S, Type); 1665 } 1666 1667 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1668 /// variable-length array whose elements have a non-zero bit-pattern. 1669 /// 1670 /// \param baseType the inner-most element type of the array 1671 /// \param src - a char* pointing to the bit-pattern for a single 1672 /// base element of the array 1673 /// \param sizeInChars - the total size of the VLA, in chars 1674 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1675 Address dest, Address src, 1676 llvm::Value *sizeInChars) { 1677 CGBuilderTy &Builder = CGF.Builder; 1678 1679 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1680 llvm::Value *baseSizeInChars 1681 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1682 1683 Address begin = 1684 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1685 llvm::Value *end = 1686 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1687 1688 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1689 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1690 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1691 1692 // Make a loop over the VLA. C99 guarantees that the VLA element 1693 // count must be nonzero. 1694 CGF.EmitBlock(loopBB); 1695 1696 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1697 cur->addIncoming(begin.getPointer(), originBB); 1698 1699 CharUnits curAlign = 1700 dest.getAlignment().alignmentOfArrayElement(baseSize); 1701 1702 // memcpy the individual element bit-pattern. 1703 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1704 /*volatile*/ false); 1705 1706 // Go to the next element. 1707 llvm::Value *next = 1708 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1709 1710 // Leave if that's the end of the VLA. 1711 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1712 Builder.CreateCondBr(done, contBB, loopBB); 1713 cur->addIncoming(next, loopBB); 1714 1715 CGF.EmitBlock(contBB); 1716 } 1717 1718 void 1719 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1720 // Ignore empty classes in C++. 1721 if (getLangOpts().CPlusPlus) { 1722 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1723 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1724 return; 1725 } 1726 } 1727 1728 // Cast the dest ptr to the appropriate i8 pointer type. 1729 if (DestPtr.getElementType() != Int8Ty) 1730 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1731 1732 // Get size and alignment info for this aggregate. 1733 CharUnits size = getContext().getTypeSizeInChars(Ty); 1734 1735 llvm::Value *SizeVal; 1736 const VariableArrayType *vla; 1737 1738 // Don't bother emitting a zero-byte memset. 1739 if (size.isZero()) { 1740 // But note that getTypeInfo returns 0 for a VLA. 1741 if (const VariableArrayType *vlaType = 1742 dyn_cast_or_null<VariableArrayType>( 1743 getContext().getAsArrayType(Ty))) { 1744 QualType eltType; 1745 llvm::Value *numElts; 1746 std::tie(numElts, eltType) = getVLASize(vlaType); 1747 1748 SizeVal = numElts; 1749 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1750 if (!eltSize.isOne()) 1751 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1752 vla = vlaType; 1753 } else { 1754 return; 1755 } 1756 } else { 1757 SizeVal = CGM.getSize(size); 1758 vla = nullptr; 1759 } 1760 1761 // If the type contains a pointer to data member we can't memset it to zero. 1762 // Instead, create a null constant and copy it to the destination. 1763 // TODO: there are other patterns besides zero that we can usefully memset, 1764 // like -1, which happens to be the pattern used by member-pointers. 1765 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1766 // For a VLA, emit a single element, then splat that over the VLA. 1767 if (vla) Ty = getContext().getBaseElementType(vla); 1768 1769 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1770 1771 llvm::GlobalVariable *NullVariable = 1772 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1773 /*isConstant=*/true, 1774 llvm::GlobalVariable::PrivateLinkage, 1775 NullConstant, Twine()); 1776 CharUnits NullAlign = DestPtr.getAlignment(); 1777 NullVariable->setAlignment(NullAlign.getQuantity()); 1778 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1779 NullAlign); 1780 1781 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1782 1783 // Get and call the appropriate llvm.memcpy overload. 1784 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1785 return; 1786 } 1787 1788 // Otherwise, just memset the whole thing to zero. This is legal 1789 // because in LLVM, all default initializers (other than the ones we just 1790 // handled above) are guaranteed to have a bit pattern of all zeros. 1791 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1792 } 1793 1794 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1795 // Make sure that there is a block for the indirect goto. 1796 if (!IndirectBranch) 1797 GetIndirectGotoBlock(); 1798 1799 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1800 1801 // Make sure the indirect branch includes all of the address-taken blocks. 1802 IndirectBranch->addDestination(BB); 1803 return llvm::BlockAddress::get(CurFn, BB); 1804 } 1805 1806 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1807 // If we already made the indirect branch for indirect goto, return its block. 1808 if (IndirectBranch) return IndirectBranch->getParent(); 1809 1810 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1811 1812 // Create the PHI node that indirect gotos will add entries to. 1813 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1814 "indirect.goto.dest"); 1815 1816 // Create the indirect branch instruction. 1817 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1818 return IndirectBranch->getParent(); 1819 } 1820 1821 /// Computes the length of an array in elements, as well as the base 1822 /// element type and a properly-typed first element pointer. 1823 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1824 QualType &baseType, 1825 Address &addr) { 1826 const ArrayType *arrayType = origArrayType; 1827 1828 // If it's a VLA, we have to load the stored size. Note that 1829 // this is the size of the VLA in bytes, not its size in elements. 1830 llvm::Value *numVLAElements = nullptr; 1831 if (isa<VariableArrayType>(arrayType)) { 1832 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1833 1834 // Walk into all VLAs. This doesn't require changes to addr, 1835 // which has type T* where T is the first non-VLA element type. 1836 do { 1837 QualType elementType = arrayType->getElementType(); 1838 arrayType = getContext().getAsArrayType(elementType); 1839 1840 // If we only have VLA components, 'addr' requires no adjustment. 1841 if (!arrayType) { 1842 baseType = elementType; 1843 return numVLAElements; 1844 } 1845 } while (isa<VariableArrayType>(arrayType)); 1846 1847 // We get out here only if we find a constant array type 1848 // inside the VLA. 1849 } 1850 1851 // We have some number of constant-length arrays, so addr should 1852 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1853 // down to the first element of addr. 1854 SmallVector<llvm::Value*, 8> gepIndices; 1855 1856 // GEP down to the array type. 1857 llvm::ConstantInt *zero = Builder.getInt32(0); 1858 gepIndices.push_back(zero); 1859 1860 uint64_t countFromCLAs = 1; 1861 QualType eltType; 1862 1863 llvm::ArrayType *llvmArrayType = 1864 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1865 while (llvmArrayType) { 1866 assert(isa<ConstantArrayType>(arrayType)); 1867 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1868 == llvmArrayType->getNumElements()); 1869 1870 gepIndices.push_back(zero); 1871 countFromCLAs *= llvmArrayType->getNumElements(); 1872 eltType = arrayType->getElementType(); 1873 1874 llvmArrayType = 1875 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1876 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1877 assert((!llvmArrayType || arrayType) && 1878 "LLVM and Clang types are out-of-synch"); 1879 } 1880 1881 if (arrayType) { 1882 // From this point onwards, the Clang array type has been emitted 1883 // as some other type (probably a packed struct). Compute the array 1884 // size, and just emit the 'begin' expression as a bitcast. 1885 while (arrayType) { 1886 countFromCLAs *= 1887 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1888 eltType = arrayType->getElementType(); 1889 arrayType = getContext().getAsArrayType(eltType); 1890 } 1891 1892 llvm::Type *baseType = ConvertType(eltType); 1893 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1894 } else { 1895 // Create the actual GEP. 1896 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1897 gepIndices, "array.begin"), 1898 addr.getAlignment()); 1899 } 1900 1901 baseType = eltType; 1902 1903 llvm::Value *numElements 1904 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1905 1906 // If we had any VLA dimensions, factor them in. 1907 if (numVLAElements) 1908 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1909 1910 return numElements; 1911 } 1912 1913 std::pair<llvm::Value*, QualType> 1914 CodeGenFunction::getVLASize(QualType type) { 1915 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1916 assert(vla && "type was not a variable array type!"); 1917 return getVLASize(vla); 1918 } 1919 1920 std::pair<llvm::Value*, QualType> 1921 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1922 // The number of elements so far; always size_t. 1923 llvm::Value *numElements = nullptr; 1924 1925 QualType elementType; 1926 do { 1927 elementType = type->getElementType(); 1928 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1929 assert(vlaSize && "no size for VLA!"); 1930 assert(vlaSize->getType() == SizeTy); 1931 1932 if (!numElements) { 1933 numElements = vlaSize; 1934 } else { 1935 // It's undefined behavior if this wraps around, so mark it that way. 1936 // FIXME: Teach -fsanitize=undefined to trap this. 1937 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1938 } 1939 } while ((type = getContext().getAsVariableArrayType(elementType))); 1940 1941 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1942 } 1943 1944 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1945 assert(type->isVariablyModifiedType() && 1946 "Must pass variably modified type to EmitVLASizes!"); 1947 1948 EnsureInsertPoint(); 1949 1950 // We're going to walk down into the type and look for VLA 1951 // expressions. 1952 do { 1953 assert(type->isVariablyModifiedType()); 1954 1955 const Type *ty = type.getTypePtr(); 1956 switch (ty->getTypeClass()) { 1957 1958 #define TYPE(Class, Base) 1959 #define ABSTRACT_TYPE(Class, Base) 1960 #define NON_CANONICAL_TYPE(Class, Base) 1961 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1962 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1963 #include "clang/AST/TypeNodes.def" 1964 llvm_unreachable("unexpected dependent type!"); 1965 1966 // These types are never variably-modified. 1967 case Type::Builtin: 1968 case Type::Complex: 1969 case Type::Vector: 1970 case Type::ExtVector: 1971 case Type::Record: 1972 case Type::Enum: 1973 case Type::Elaborated: 1974 case Type::TemplateSpecialization: 1975 case Type::ObjCTypeParam: 1976 case Type::ObjCObject: 1977 case Type::ObjCInterface: 1978 case Type::ObjCObjectPointer: 1979 llvm_unreachable("type class is never variably-modified!"); 1980 1981 case Type::Adjusted: 1982 type = cast<AdjustedType>(ty)->getAdjustedType(); 1983 break; 1984 1985 case Type::Decayed: 1986 type = cast<DecayedType>(ty)->getPointeeType(); 1987 break; 1988 1989 case Type::Pointer: 1990 type = cast<PointerType>(ty)->getPointeeType(); 1991 break; 1992 1993 case Type::BlockPointer: 1994 type = cast<BlockPointerType>(ty)->getPointeeType(); 1995 break; 1996 1997 case Type::LValueReference: 1998 case Type::RValueReference: 1999 type = cast<ReferenceType>(ty)->getPointeeType(); 2000 break; 2001 2002 case Type::MemberPointer: 2003 type = cast<MemberPointerType>(ty)->getPointeeType(); 2004 break; 2005 2006 case Type::ConstantArray: 2007 case Type::IncompleteArray: 2008 // Losing element qualification here is fine. 2009 type = cast<ArrayType>(ty)->getElementType(); 2010 break; 2011 2012 case Type::VariableArray: { 2013 // Losing element qualification here is fine. 2014 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2015 2016 // Unknown size indication requires no size computation. 2017 // Otherwise, evaluate and record it. 2018 if (const Expr *size = vat->getSizeExpr()) { 2019 // It's possible that we might have emitted this already, 2020 // e.g. with a typedef and a pointer to it. 2021 llvm::Value *&entry = VLASizeMap[size]; 2022 if (!entry) { 2023 llvm::Value *Size = EmitScalarExpr(size); 2024 2025 // C11 6.7.6.2p5: 2026 // If the size is an expression that is not an integer constant 2027 // expression [...] each time it is evaluated it shall have a value 2028 // greater than zero. 2029 if (SanOpts.has(SanitizerKind::VLABound) && 2030 size->getType()->isSignedIntegerType()) { 2031 SanitizerScope SanScope(this); 2032 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2033 llvm::Constant *StaticArgs[] = { 2034 EmitCheckSourceLocation(size->getLocStart()), 2035 EmitCheckTypeDescriptor(size->getType()) 2036 }; 2037 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2038 SanitizerKind::VLABound), 2039 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2040 } 2041 2042 // Always zexting here would be wrong if it weren't 2043 // undefined behavior to have a negative bound. 2044 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2045 } 2046 } 2047 type = vat->getElementType(); 2048 break; 2049 } 2050 2051 case Type::FunctionProto: 2052 case Type::FunctionNoProto: 2053 type = cast<FunctionType>(ty)->getReturnType(); 2054 break; 2055 2056 case Type::Paren: 2057 case Type::TypeOf: 2058 case Type::UnaryTransform: 2059 case Type::Attributed: 2060 case Type::SubstTemplateTypeParm: 2061 case Type::PackExpansion: 2062 // Keep walking after single level desugaring. 2063 type = type.getSingleStepDesugaredType(getContext()); 2064 break; 2065 2066 case Type::Typedef: 2067 case Type::Decltype: 2068 case Type::Auto: 2069 case Type::DeducedTemplateSpecialization: 2070 // Stop walking: nothing to do. 2071 return; 2072 2073 case Type::TypeOfExpr: 2074 // Stop walking: emit typeof expression. 2075 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2076 return; 2077 2078 case Type::Atomic: 2079 type = cast<AtomicType>(ty)->getValueType(); 2080 break; 2081 2082 case Type::Pipe: 2083 type = cast<PipeType>(ty)->getElementType(); 2084 break; 2085 } 2086 } while (type->isVariablyModifiedType()); 2087 } 2088 2089 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2090 if (getContext().getBuiltinVaListType()->isArrayType()) 2091 return EmitPointerWithAlignment(E); 2092 return EmitLValue(E).getAddress(); 2093 } 2094 2095 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2096 return EmitLValue(E).getAddress(); 2097 } 2098 2099 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2100 const APValue &Init) { 2101 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2102 if (CGDebugInfo *Dbg = getDebugInfo()) 2103 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2104 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2105 } 2106 2107 CodeGenFunction::PeepholeProtection 2108 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2109 // At the moment, the only aggressive peephole we do in IR gen 2110 // is trunc(zext) folding, but if we add more, we can easily 2111 // extend this protection. 2112 2113 if (!rvalue.isScalar()) return PeepholeProtection(); 2114 llvm::Value *value = rvalue.getScalarVal(); 2115 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2116 2117 // Just make an extra bitcast. 2118 assert(HaveInsertPoint()); 2119 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2120 Builder.GetInsertBlock()); 2121 2122 PeepholeProtection protection; 2123 protection.Inst = inst; 2124 return protection; 2125 } 2126 2127 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2128 if (!protection.Inst) return; 2129 2130 // In theory, we could try to duplicate the peepholes now, but whatever. 2131 protection.Inst->eraseFromParent(); 2132 } 2133 2134 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2135 llvm::Value *AnnotatedVal, 2136 StringRef AnnotationStr, 2137 SourceLocation Location) { 2138 llvm::Value *Args[4] = { 2139 AnnotatedVal, 2140 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2141 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2142 CGM.EmitAnnotationLineNo(Location) 2143 }; 2144 return Builder.CreateCall(AnnotationFn, Args); 2145 } 2146 2147 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2148 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2149 // FIXME We create a new bitcast for every annotation because that's what 2150 // llvm-gcc was doing. 2151 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2152 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2153 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2154 I->getAnnotation(), D->getLocation()); 2155 } 2156 2157 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2158 Address Addr) { 2159 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2160 llvm::Value *V = Addr.getPointer(); 2161 llvm::Type *VTy = V->getType(); 2162 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2163 CGM.Int8PtrTy); 2164 2165 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2166 // FIXME Always emit the cast inst so we can differentiate between 2167 // annotation on the first field of a struct and annotation on the struct 2168 // itself. 2169 if (VTy != CGM.Int8PtrTy) 2170 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2171 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2172 V = Builder.CreateBitCast(V, VTy); 2173 } 2174 2175 return Address(V, Addr.getAlignment()); 2176 } 2177 2178 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2179 2180 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2181 : CGF(CGF) { 2182 assert(!CGF->IsSanitizerScope); 2183 CGF->IsSanitizerScope = true; 2184 } 2185 2186 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2187 CGF->IsSanitizerScope = false; 2188 } 2189 2190 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2191 const llvm::Twine &Name, 2192 llvm::BasicBlock *BB, 2193 llvm::BasicBlock::iterator InsertPt) const { 2194 LoopStack.InsertHelper(I); 2195 if (IsSanitizerScope) 2196 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2197 } 2198 2199 void CGBuilderInserter::InsertHelper( 2200 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2201 llvm::BasicBlock::iterator InsertPt) const { 2202 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2203 if (CGF) 2204 CGF->InsertHelper(I, Name, BB, InsertPt); 2205 } 2206 2207 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2208 CodeGenModule &CGM, const FunctionDecl *FD, 2209 std::string &FirstMissing) { 2210 // If there aren't any required features listed then go ahead and return. 2211 if (ReqFeatures.empty()) 2212 return false; 2213 2214 // Now build up the set of caller features and verify that all the required 2215 // features are there. 2216 llvm::StringMap<bool> CallerFeatureMap; 2217 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2218 2219 // If we have at least one of the features in the feature list return 2220 // true, otherwise return false. 2221 return std::all_of( 2222 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2223 SmallVector<StringRef, 1> OrFeatures; 2224 Feature.split(OrFeatures, "|"); 2225 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2226 [&](StringRef Feature) { 2227 if (!CallerFeatureMap.lookup(Feature)) { 2228 FirstMissing = Feature.str(); 2229 return false; 2230 } 2231 return true; 2232 }); 2233 }); 2234 } 2235 2236 // Emits an error if we don't have a valid set of target features for the 2237 // called function. 2238 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2239 const FunctionDecl *TargetDecl) { 2240 // Early exit if this is an indirect call. 2241 if (!TargetDecl) 2242 return; 2243 2244 // Get the current enclosing function if it exists. If it doesn't 2245 // we can't check the target features anyhow. 2246 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2247 if (!FD) 2248 return; 2249 2250 // Grab the required features for the call. For a builtin this is listed in 2251 // the td file with the default cpu, for an always_inline function this is any 2252 // listed cpu and any listed features. 2253 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2254 std::string MissingFeature; 2255 if (BuiltinID) { 2256 SmallVector<StringRef, 1> ReqFeatures; 2257 const char *FeatureList = 2258 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2259 // Return if the builtin doesn't have any required features. 2260 if (!FeatureList || StringRef(FeatureList) == "") 2261 return; 2262 StringRef(FeatureList).split(ReqFeatures, ","); 2263 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2264 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2265 << TargetDecl->getDeclName() 2266 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2267 2268 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2269 // Get the required features for the callee. 2270 SmallVector<StringRef, 1> ReqFeatures; 2271 llvm::StringMap<bool> CalleeFeatureMap; 2272 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2273 for (const auto &F : CalleeFeatureMap) { 2274 // Only positive features are "required". 2275 if (F.getValue()) 2276 ReqFeatures.push_back(F.getKey()); 2277 } 2278 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2279 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2280 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2281 } 2282 } 2283 2284 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2285 if (!CGM.getCodeGenOpts().SanitizeStats) 2286 return; 2287 2288 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2289 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2290 CGM.getSanStats().create(IRB, SSK); 2291 } 2292 2293 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2294 if (CGDebugInfo *DI = getDebugInfo()) 2295 return DI->SourceLocToDebugLoc(Location); 2296 2297 return llvm::DebugLoc(); 2298 } 2299