1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   Builder.setFastMathFlags(FMF);
107 }
108 
109 CodeGenFunction::~CodeGenFunction() {
110   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
111 
112   // If there are any unclaimed block infos, go ahead and destroy them
113   // now.  This can happen if IR-gen gets clever and skips evaluating
114   // something.
115   if (FirstBlockInfo)
116     destroyBlockInfos(FirstBlockInfo);
117 
118   if (getLangOpts().OpenMP && CurFn)
119     CGM.getOpenMPRuntime().functionFinished(*this);
120 }
121 
122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
123                                                     LValueBaseInfo *BaseInfo,
124                                                     TBAAAccessInfo *TBAAInfo) {
125   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
126                                  /* forPointeeType= */ true);
127 }
128 
129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
130                                                    LValueBaseInfo *BaseInfo,
131                                                    TBAAAccessInfo *TBAAInfo,
132                                                    bool forPointeeType) {
133   if (TBAAInfo)
134     *TBAAInfo = CGM.getTBAAAccessInfo(T);
135 
136   // Honor alignment typedef attributes even on incomplete types.
137   // We also honor them straight for C++ class types, even as pointees;
138   // there's an expressivity gap here.
139   if (auto TT = T->getAs<TypedefType>()) {
140     if (auto Align = TT->getDecl()->getMaxAlignment()) {
141       if (BaseInfo)
142         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
143       return getContext().toCharUnitsFromBits(Align);
144     }
145   }
146 
147   if (BaseInfo)
148     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
149 
150   CharUnits Alignment;
151   if (T->isIncompleteType()) {
152     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
153   } else {
154     // For C++ class pointees, we don't know whether we're pointing at a
155     // base or a complete object, so we generally need to use the
156     // non-virtual alignment.
157     const CXXRecordDecl *RD;
158     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
159       Alignment = CGM.getClassPointerAlignment(RD);
160     } else {
161       Alignment = getContext().getTypeAlignInChars(T);
162       if (T.getQualifiers().hasUnaligned())
163         Alignment = CharUnits::One();
164     }
165 
166     // Cap to the global maximum type alignment unless the alignment
167     // was somehow explicit on the type.
168     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
169       if (Alignment.getQuantity() > MaxAlign &&
170           !getContext().isAlignmentRequired(T))
171         Alignment = CharUnits::fromQuantity(MaxAlign);
172     }
173   }
174   return Alignment;
175 }
176 
177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178   LValueBaseInfo BaseInfo;
179   TBAAAccessInfo TBAAInfo;
180   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                           TBAAInfo);
183 }
184 
185 /// Given a value of type T* that may not be to a complete object,
186 /// construct an l-value with the natural pointee alignment of T.
187 LValue
188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                             /* forPointeeType= */ true);
193   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194 }
195 
196 
197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198   return CGM.getTypes().ConvertTypeForMem(T);
199 }
200 
201 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202   return CGM.getTypes().ConvertType(T);
203 }
204 
205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206   type = type.getCanonicalType();
207   while (true) {
208     switch (type->getTypeClass()) {
209 #define TYPE(name, parent)
210 #define ABSTRACT_TYPE(name, parent)
211 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212 #define DEPENDENT_TYPE(name, parent) case Type::name:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214 #include "clang/AST/TypeNodes.def"
215       llvm_unreachable("non-canonical or dependent type in IR-generation");
216 
217     case Type::Auto:
218     case Type::DeducedTemplateSpecialization:
219       llvm_unreachable("undeduced type in IR-generation");
220 
221     // Various scalar types.
222     case Type::Builtin:
223     case Type::Pointer:
224     case Type::BlockPointer:
225     case Type::LValueReference:
226     case Type::RValueReference:
227     case Type::MemberPointer:
228     case Type::Vector:
229     case Type::ExtVector:
230     case Type::FunctionProto:
231     case Type::FunctionNoProto:
232     case Type::Enum:
233     case Type::ObjCObjectPointer:
234     case Type::Pipe:
235       return TEK_Scalar;
236 
237     // Complexes.
238     case Type::Complex:
239       return TEK_Complex;
240 
241     // Arrays, records, and Objective-C objects.
242     case Type::ConstantArray:
243     case Type::IncompleteArray:
244     case Type::VariableArray:
245     case Type::Record:
246     case Type::ObjCObject:
247     case Type::ObjCInterface:
248       return TEK_Aggregate;
249 
250     // We operate on atomic values according to their underlying type.
251     case Type::Atomic:
252       type = cast<AtomicType>(type)->getValueType();
253       continue;
254     }
255     llvm_unreachable("unknown type kind!");
256   }
257 }
258 
259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
260   // For cleanliness, we try to avoid emitting the return block for
261   // simple cases.
262   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
263 
264   if (CurBB) {
265     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
266 
267     // We have a valid insert point, reuse it if it is empty or there are no
268     // explicit jumps to the return block.
269     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
270       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
271       delete ReturnBlock.getBlock();
272     } else
273       EmitBlock(ReturnBlock.getBlock());
274     return llvm::DebugLoc();
275   }
276 
277   // Otherwise, if the return block is the target of a single direct
278   // branch then we can just put the code in that block instead. This
279   // cleans up functions which started with a unified return block.
280   if (ReturnBlock.getBlock()->hasOneUse()) {
281     llvm::BranchInst *BI =
282       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
283     if (BI && BI->isUnconditional() &&
284         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
285       // Record/return the DebugLoc of the simple 'return' expression to be used
286       // later by the actual 'ret' instruction.
287       llvm::DebugLoc Loc = BI->getDebugLoc();
288       Builder.SetInsertPoint(BI->getParent());
289       BI->eraseFromParent();
290       delete ReturnBlock.getBlock();
291       return Loc;
292     }
293   }
294 
295   // FIXME: We are at an unreachable point, there is no reason to emit the block
296   // unless it has uses. However, we still need a place to put the debug
297   // region.end for now.
298 
299   EmitBlock(ReturnBlock.getBlock());
300   return llvm::DebugLoc();
301 }
302 
303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
304   if (!BB) return;
305   if (!BB->use_empty())
306     return CGF.CurFn->getBasicBlockList().push_back(BB);
307   delete BB;
308 }
309 
310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
311   assert(BreakContinueStack.empty() &&
312          "mismatched push/pop in break/continue stack!");
313 
314   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
315     && NumSimpleReturnExprs == NumReturnExprs
316     && ReturnBlock.getBlock()->use_empty();
317   // Usually the return expression is evaluated before the cleanup
318   // code.  If the function contains only a simple return statement,
319   // such as a constant, the location before the cleanup code becomes
320   // the last useful breakpoint in the function, because the simple
321   // return expression will be evaluated after the cleanup code. To be
322   // safe, set the debug location for cleanup code to the location of
323   // the return statement.  Otherwise the cleanup code should be at the
324   // end of the function's lexical scope.
325   //
326   // If there are multiple branches to the return block, the branch
327   // instructions will get the location of the return statements and
328   // all will be fine.
329   if (CGDebugInfo *DI = getDebugInfo()) {
330     if (OnlySimpleReturnStmts)
331       DI->EmitLocation(Builder, LastStopPoint);
332     else
333       DI->EmitLocation(Builder, EndLoc);
334   }
335 
336   // Pop any cleanups that might have been associated with the
337   // parameters.  Do this in whatever block we're currently in; it's
338   // important to do this before we enter the return block or return
339   // edges will be *really* confused.
340   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
341   bool HasOnlyLifetimeMarkers =
342       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
343   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
344   if (HasCleanups) {
345     // Make sure the line table doesn't jump back into the body for
346     // the ret after it's been at EndLoc.
347     if (CGDebugInfo *DI = getDebugInfo())
348       if (OnlySimpleReturnStmts)
349         DI->EmitLocation(Builder, EndLoc);
350 
351     PopCleanupBlocks(PrologueCleanupDepth);
352   }
353 
354   // Emit function epilog (to return).
355   llvm::DebugLoc Loc = EmitReturnBlock();
356 
357   if (ShouldInstrumentFunction()) {
358     if (CGM.getCodeGenOpts().InstrumentFunctions)
359       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
360     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
361       CurFn->addFnAttr("instrument-function-exit-inlined",
362                        "__cyg_profile_func_exit");
363   }
364 
365   // Emit debug descriptor for function end.
366   if (CGDebugInfo *DI = getDebugInfo())
367     DI->EmitFunctionEnd(Builder, CurFn);
368 
369   // Reset the debug location to that of the simple 'return' expression, if any
370   // rather than that of the end of the function's scope '}'.
371   ApplyDebugLocation AL(*this, Loc);
372   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
373   EmitEndEHSpec(CurCodeDecl);
374 
375   assert(EHStack.empty() &&
376          "did not remove all scopes from cleanup stack!");
377 
378   // If someone did an indirect goto, emit the indirect goto block at the end of
379   // the function.
380   if (IndirectBranch) {
381     EmitBlock(IndirectBranch->getParent());
382     Builder.ClearInsertionPoint();
383   }
384 
385   // If some of our locals escaped, insert a call to llvm.localescape in the
386   // entry block.
387   if (!EscapedLocals.empty()) {
388     // Invert the map from local to index into a simple vector. There should be
389     // no holes.
390     SmallVector<llvm::Value *, 4> EscapeArgs;
391     EscapeArgs.resize(EscapedLocals.size());
392     for (auto &Pair : EscapedLocals)
393       EscapeArgs[Pair.second] = Pair.first;
394     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
395         &CGM.getModule(), llvm::Intrinsic::localescape);
396     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
397   }
398 
399   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
400   llvm::Instruction *Ptr = AllocaInsertPt;
401   AllocaInsertPt = nullptr;
402   Ptr->eraseFromParent();
403 
404   // If someone took the address of a label but never did an indirect goto, we
405   // made a zero entry PHI node, which is illegal, zap it now.
406   if (IndirectBranch) {
407     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
408     if (PN->getNumIncomingValues() == 0) {
409       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
410       PN->eraseFromParent();
411     }
412   }
413 
414   EmitIfUsed(*this, EHResumeBlock);
415   EmitIfUsed(*this, TerminateLandingPad);
416   EmitIfUsed(*this, TerminateHandler);
417   EmitIfUsed(*this, UnreachableBlock);
418 
419   if (CGM.getCodeGenOpts().EmitDeclMetadata)
420     EmitDeclMetadata();
421 
422   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
423            I = DeferredReplacements.begin(),
424            E = DeferredReplacements.end();
425        I != E; ++I) {
426     I->first->replaceAllUsesWith(I->second);
427     I->first->eraseFromParent();
428   }
429 
430   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
431   // PHIs if the current function is a coroutine. We don't do it for all
432   // functions as it may result in slight increase in numbers of instructions
433   // if compiled with no optimizations. We do it for coroutine as the lifetime
434   // of CleanupDestSlot alloca make correct coroutine frame building very
435   // difficult.
436   if (NormalCleanupDest && isCoroutine()) {
437     llvm::DominatorTree DT(*CurFn);
438     llvm::PromoteMemToReg(NormalCleanupDest, DT);
439     NormalCleanupDest = nullptr;
440   }
441 }
442 
443 /// ShouldInstrumentFunction - Return true if the current function should be
444 /// instrumented with __cyg_profile_func_* calls
445 bool CodeGenFunction::ShouldInstrumentFunction() {
446   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
447       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
448       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
449     return false;
450   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
451     return false;
452   return true;
453 }
454 
455 /// ShouldXRayInstrument - Return true if the current function should be
456 /// instrumented with XRay nop sleds.
457 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
458   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
459 }
460 
461 llvm::Constant *
462 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
463                                             llvm::Constant *Addr) {
464   // Addresses stored in prologue data can't require run-time fixups and must
465   // be PC-relative. Run-time fixups are undesirable because they necessitate
466   // writable text segments, which are unsafe. And absolute addresses are
467   // undesirable because they break PIE mode.
468 
469   // Add a layer of indirection through a private global. Taking its address
470   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
471   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
472                                       /*isConstant=*/true,
473                                       llvm::GlobalValue::PrivateLinkage, Addr);
474 
475   // Create a PC-relative address.
476   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
477   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
478   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
479   return (IntPtrTy == Int32Ty)
480              ? PCRelAsInt
481              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
482 }
483 
484 llvm::Value *
485 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
486                                           llvm::Value *EncodedAddr) {
487   // Reconstruct the address of the global.
488   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
489   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
490   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
491   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
492 
493   // Load the original pointer through the global.
494   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
495                             "decoded_addr");
496 }
497 
498 static void removeImageAccessQualifier(std::string& TyName) {
499   std::string ReadOnlyQual("__read_only");
500   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
501   if (ReadOnlyPos != std::string::npos)
502     // "+ 1" for the space after access qualifier.
503     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
504   else {
505     std::string WriteOnlyQual("__write_only");
506     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
507     if (WriteOnlyPos != std::string::npos)
508       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
509     else {
510       std::string ReadWriteQual("__read_write");
511       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
512       if (ReadWritePos != std::string::npos)
513         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
514     }
515   }
516 }
517 
518 // Returns the address space id that should be produced to the
519 // kernel_arg_addr_space metadata. This is always fixed to the ids
520 // as specified in the SPIR 2.0 specification in order to differentiate
521 // for example in clGetKernelArgInfo() implementation between the address
522 // spaces with targets without unique mapping to the OpenCL address spaces
523 // (basically all single AS CPUs).
524 static unsigned ArgInfoAddressSpace(LangAS AS) {
525   switch (AS) {
526   case LangAS::opencl_global:   return 1;
527   case LangAS::opencl_constant: return 2;
528   case LangAS::opencl_local:    return 3;
529   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
530   default:
531     return 0; // Assume private.
532   }
533 }
534 
535 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
536 // information in the program executable. The argument information stored
537 // includes the argument name, its type, the address and access qualifiers used.
538 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
539                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
540                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
541   // Create MDNodes that represent the kernel arg metadata.
542   // Each MDNode is a list in the form of "key", N number of values which is
543   // the same number of values as their are kernel arguments.
544 
545   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
546 
547   // MDNode for the kernel argument address space qualifiers.
548   SmallVector<llvm::Metadata *, 8> addressQuals;
549 
550   // MDNode for the kernel argument access qualifiers (images only).
551   SmallVector<llvm::Metadata *, 8> accessQuals;
552 
553   // MDNode for the kernel argument type names.
554   SmallVector<llvm::Metadata *, 8> argTypeNames;
555 
556   // MDNode for the kernel argument base type names.
557   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
558 
559   // MDNode for the kernel argument type qualifiers.
560   SmallVector<llvm::Metadata *, 8> argTypeQuals;
561 
562   // MDNode for the kernel argument names.
563   SmallVector<llvm::Metadata *, 8> argNames;
564 
565   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
566     const ParmVarDecl *parm = FD->getParamDecl(i);
567     QualType ty = parm->getType();
568     std::string typeQuals;
569 
570     if (ty->isPointerType()) {
571       QualType pointeeTy = ty->getPointeeType();
572 
573       // Get address qualifier.
574       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
575         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
576 
577       // Get argument type name.
578       std::string typeName =
579           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
580 
581       // Turn "unsigned type" to "utype"
582       std::string::size_type pos = typeName.find("unsigned");
583       if (pointeeTy.isCanonical() && pos != std::string::npos)
584         typeName.erase(pos+1, 8);
585 
586       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
587 
588       std::string baseTypeName =
589           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
590               Policy) +
591           "*";
592 
593       // Turn "unsigned type" to "utype"
594       pos = baseTypeName.find("unsigned");
595       if (pos != std::string::npos)
596         baseTypeName.erase(pos+1, 8);
597 
598       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
599 
600       // Get argument type qualifiers:
601       if (ty.isRestrictQualified())
602         typeQuals = "restrict";
603       if (pointeeTy.isConstQualified() ||
604           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
605         typeQuals += typeQuals.empty() ? "const" : " const";
606       if (pointeeTy.isVolatileQualified())
607         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
608     } else {
609       uint32_t AddrSpc = 0;
610       bool isPipe = ty->isPipeType();
611       if (ty->isImageType() || isPipe)
612         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
613 
614       addressQuals.push_back(
615           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
616 
617       // Get argument type name.
618       std::string typeName;
619       if (isPipe)
620         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
621                      .getAsString(Policy);
622       else
623         typeName = ty.getUnqualifiedType().getAsString(Policy);
624 
625       // Turn "unsigned type" to "utype"
626       std::string::size_type pos = typeName.find("unsigned");
627       if (ty.isCanonical() && pos != std::string::npos)
628         typeName.erase(pos+1, 8);
629 
630       std::string baseTypeName;
631       if (isPipe)
632         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
633                           ->getElementType().getCanonicalType()
634                           .getAsString(Policy);
635       else
636         baseTypeName =
637           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
638 
639       // Remove access qualifiers on images
640       // (as they are inseparable from type in clang implementation,
641       // but OpenCL spec provides a special query to get access qualifier
642       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
643       if (ty->isImageType()) {
644         removeImageAccessQualifier(typeName);
645         removeImageAccessQualifier(baseTypeName);
646       }
647 
648       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
649 
650       // Turn "unsigned type" to "utype"
651       pos = baseTypeName.find("unsigned");
652       if (pos != std::string::npos)
653         baseTypeName.erase(pos+1, 8);
654 
655       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
656 
657       if (isPipe)
658         typeQuals = "pipe";
659     }
660 
661     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
662 
663     // Get image and pipe access qualifier:
664     if (ty->isImageType()|| ty->isPipeType()) {
665       const Decl *PDecl = parm;
666       if (auto *TD = dyn_cast<TypedefType>(ty))
667         PDecl = TD->getDecl();
668       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
669       if (A && A->isWriteOnly())
670         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
671       else if (A && A->isReadWrite())
672         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
673       else
674         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
675     } else
676       accessQuals.push_back(llvm::MDString::get(Context, "none"));
677 
678     // Get argument name.
679     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
680   }
681 
682   Fn->setMetadata("kernel_arg_addr_space",
683                   llvm::MDNode::get(Context, addressQuals));
684   Fn->setMetadata("kernel_arg_access_qual",
685                   llvm::MDNode::get(Context, accessQuals));
686   Fn->setMetadata("kernel_arg_type",
687                   llvm::MDNode::get(Context, argTypeNames));
688   Fn->setMetadata("kernel_arg_base_type",
689                   llvm::MDNode::get(Context, argBaseTypeNames));
690   Fn->setMetadata("kernel_arg_type_qual",
691                   llvm::MDNode::get(Context, argTypeQuals));
692   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
693     Fn->setMetadata("kernel_arg_name",
694                     llvm::MDNode::get(Context, argNames));
695 }
696 
697 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
698                                                llvm::Function *Fn)
699 {
700   if (!FD->hasAttr<OpenCLKernelAttr>())
701     return;
702 
703   llvm::LLVMContext &Context = getLLVMContext();
704 
705   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
706 
707   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
708     QualType HintQTy = A->getTypeHint();
709     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
710     bool IsSignedInteger =
711         HintQTy->isSignedIntegerType() ||
712         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
713     llvm::Metadata *AttrMDArgs[] = {
714         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
715             CGM.getTypes().ConvertType(A->getTypeHint()))),
716         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717             llvm::IntegerType::get(Context, 32),
718             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
719     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
720   }
721 
722   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
723     llvm::Metadata *AttrMDArgs[] = {
724         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
725         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
726         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
727     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
728   }
729 
730   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
731     llvm::Metadata *AttrMDArgs[] = {
732         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
733         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
734         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
735     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
736   }
737 
738   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
739           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
740     llvm::Metadata *AttrMDArgs[] = {
741         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
742     Fn->setMetadata("intel_reqd_sub_group_size",
743                     llvm::MDNode::get(Context, AttrMDArgs));
744   }
745 }
746 
747 /// Determine whether the function F ends with a return stmt.
748 static bool endsWithReturn(const Decl* F) {
749   const Stmt *Body = nullptr;
750   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
751     Body = FD->getBody();
752   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
753     Body = OMD->getBody();
754 
755   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
756     auto LastStmt = CS->body_rbegin();
757     if (LastStmt != CS->body_rend())
758       return isa<ReturnStmt>(*LastStmt);
759   }
760   return false;
761 }
762 
763 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
764   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
765   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
766 }
767 
768 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
769   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
770   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
771       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
772       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
773     return false;
774 
775   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
776     return false;
777 
778   if (MD->getNumParams() == 2) {
779     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
780     if (!PT || !PT->isVoidPointerType() ||
781         !PT->getPointeeType().isConstQualified())
782       return false;
783   }
784 
785   return true;
786 }
787 
788 /// Return the UBSan prologue signature for \p FD if one is available.
789 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
790                                             const FunctionDecl *FD) {
791   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
792     if (!MD->isStatic())
793       return nullptr;
794   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
795 }
796 
797 void CodeGenFunction::StartFunction(GlobalDecl GD,
798                                     QualType RetTy,
799                                     llvm::Function *Fn,
800                                     const CGFunctionInfo &FnInfo,
801                                     const FunctionArgList &Args,
802                                     SourceLocation Loc,
803                                     SourceLocation StartLoc) {
804   assert(!CurFn &&
805          "Do not use a CodeGenFunction object for more than one function");
806 
807   const Decl *D = GD.getDecl();
808 
809   DidCallStackSave = false;
810   CurCodeDecl = D;
811   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
812     if (FD->usesSEHTry())
813       CurSEHParent = FD;
814   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
815   FnRetTy = RetTy;
816   CurFn = Fn;
817   CurFnInfo = &FnInfo;
818   assert(CurFn->isDeclaration() && "Function already has body?");
819 
820   // If this function has been blacklisted for any of the enabled sanitizers,
821   // disable the sanitizer for the function.
822   do {
823 #define SANITIZER(NAME, ID)                                                    \
824   if (SanOpts.empty())                                                         \
825     break;                                                                     \
826   if (SanOpts.has(SanitizerKind::ID))                                          \
827     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
828       SanOpts.set(SanitizerKind::ID, false);
829 
830 #include "clang/Basic/Sanitizers.def"
831 #undef SANITIZER
832   } while (0);
833 
834   if (D) {
835     // Apply the no_sanitize* attributes to SanOpts.
836     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
837       SanOpts.Mask &= ~Attr->getMask();
838   }
839 
840   // Apply sanitizer attributes to the function.
841   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
842     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
843   if (SanOpts.has(SanitizerKind::Thread))
844     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
845   if (SanOpts.has(SanitizerKind::Memory))
846     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
847   if (SanOpts.has(SanitizerKind::SafeStack))
848     Fn->addFnAttr(llvm::Attribute::SafeStack);
849 
850   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
851   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
852   if (SanOpts.has(SanitizerKind::Thread)) {
853     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
854       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
855       if (OMD->getMethodFamily() == OMF_dealloc ||
856           OMD->getMethodFamily() == OMF_initialize ||
857           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
858         markAsIgnoreThreadCheckingAtRuntime(Fn);
859       }
860     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
861       IdentifierInfo *II = FD->getIdentifier();
862       if (II && II->isStr("__destroy_helper_block_"))
863         markAsIgnoreThreadCheckingAtRuntime(Fn);
864     }
865   }
866 
867   // Ignore unrelated casts in STL allocate() since the allocator must cast
868   // from void* to T* before object initialization completes. Don't match on the
869   // namespace because not all allocators are in std::
870   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
871     if (matchesStlAllocatorFn(D, getContext()))
872       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
873   }
874 
875   // Apply xray attributes to the function (as a string, for now)
876   if (D && ShouldXRayInstrumentFunction()) {
877     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
878       if (XRayAttr->alwaysXRayInstrument())
879         Fn->addFnAttr("function-instrument", "xray-always");
880       if (XRayAttr->neverXRayInstrument())
881         Fn->addFnAttr("function-instrument", "xray-never");
882       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
883         Fn->addFnAttr("xray-log-args",
884                       llvm::utostr(LogArgs->getArgumentCount()));
885       }
886     } else {
887       if (!CGM.imbueXRayAttrs(Fn, Loc))
888         Fn->addFnAttr(
889             "xray-instruction-threshold",
890             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
891     }
892   }
893 
894   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
895     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
896       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
897 
898   // Add no-jump-tables value.
899   Fn->addFnAttr("no-jump-tables",
900                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
901 
902   // Add profile-sample-accurate value.
903   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
904     Fn->addFnAttr("profile-sample-accurate");
905 
906   if (getLangOpts().OpenCL) {
907     // Add metadata for a kernel function.
908     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
909       EmitOpenCLKernelMetadata(FD, Fn);
910   }
911 
912   // If we are checking function types, emit a function type signature as
913   // prologue data.
914   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
915     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
916       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
917         llvm::Constant *FTRTTIConst =
918             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
919         llvm::Constant *FTRTTIConstEncoded =
920             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
921         llvm::Constant *PrologueStructElems[] = {PrologueSig,
922                                                  FTRTTIConstEncoded};
923         llvm::Constant *PrologueStructConst =
924             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
925         Fn->setPrologueData(PrologueStructConst);
926       }
927     }
928   }
929 
930   // If we're checking nullability, we need to know whether we can check the
931   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
932   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
933     auto Nullability = FnRetTy->getNullability(getContext());
934     if (Nullability && *Nullability == NullabilityKind::NonNull) {
935       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
936             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
937         RetValNullabilityPrecondition =
938             llvm::ConstantInt::getTrue(getLLVMContext());
939     }
940   }
941 
942   // If we're in C++ mode and the function name is "main", it is guaranteed
943   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
944   // used within a program").
945   if (getLangOpts().CPlusPlus)
946     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
947       if (FD->isMain())
948         Fn->addFnAttr(llvm::Attribute::NoRecurse);
949 
950   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
951 
952   // Create a marker to make it easy to insert allocas into the entryblock
953   // later.  Don't create this with the builder, because we don't want it
954   // folded.
955   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
956   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
957 
958   ReturnBlock = getJumpDestInCurrentScope("return");
959 
960   Builder.SetInsertPoint(EntryBB);
961 
962   // If we're checking the return value, allocate space for a pointer to a
963   // precise source location of the checked return statement.
964   if (requiresReturnValueCheck()) {
965     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
966     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
967   }
968 
969   // Emit subprogram debug descriptor.
970   if (CGDebugInfo *DI = getDebugInfo()) {
971     // Reconstruct the type from the argument list so that implicit parameters,
972     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
973     // convention.
974     CallingConv CC = CallingConv::CC_C;
975     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
976       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
977         CC = SrcFnTy->getCallConv();
978     SmallVector<QualType, 16> ArgTypes;
979     for (const VarDecl *VD : Args)
980       ArgTypes.push_back(VD->getType());
981     QualType FnType = getContext().getFunctionType(
982         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
983     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
984   }
985 
986   if (ShouldInstrumentFunction()) {
987     if (CGM.getCodeGenOpts().InstrumentFunctions)
988       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
989     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
990       CurFn->addFnAttr("instrument-function-entry-inlined",
991                        "__cyg_profile_func_enter");
992     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
993       CurFn->addFnAttr("instrument-function-entry-inlined",
994                        "__cyg_profile_func_enter_bare");
995   }
996 
997   // Since emitting the mcount call here impacts optimizations such as function
998   // inlining, we just add an attribute to insert a mcount call in backend.
999   // The attribute "counting-function" is set to mcount function name which is
1000   // architecture dependent.
1001   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1002     if (CGM.getCodeGenOpts().CallFEntry)
1003       Fn->addFnAttr("fentry-call", "true");
1004     else {
1005       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1006         Fn->addFnAttr("instrument-function-entry-inlined",
1007                       getTarget().getMCountName());
1008       }
1009     }
1010   }
1011 
1012   if (RetTy->isVoidType()) {
1013     // Void type; nothing to return.
1014     ReturnValue = Address::invalid();
1015 
1016     // Count the implicit return.
1017     if (!endsWithReturn(D))
1018       ++NumReturnExprs;
1019   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1020              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1021     // Indirect aggregate return; emit returned value directly into sret slot.
1022     // This reduces code size, and affects correctness in C++.
1023     auto AI = CurFn->arg_begin();
1024     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1025       ++AI;
1026     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1027   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1028              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1029     // Load the sret pointer from the argument struct and return into that.
1030     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1031     llvm::Function::arg_iterator EI = CurFn->arg_end();
1032     --EI;
1033     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1034     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1035     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1036   } else {
1037     ReturnValue = CreateIRTemp(RetTy, "retval");
1038 
1039     // Tell the epilog emitter to autorelease the result.  We do this
1040     // now so that various specialized functions can suppress it
1041     // during their IR-generation.
1042     if (getLangOpts().ObjCAutoRefCount &&
1043         !CurFnInfo->isReturnsRetained() &&
1044         RetTy->isObjCRetainableType())
1045       AutoreleaseResult = true;
1046   }
1047 
1048   EmitStartEHSpec(CurCodeDecl);
1049 
1050   PrologueCleanupDepth = EHStack.stable_begin();
1051   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1052 
1053   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1054     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1055     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1056     if (MD->getParent()->isLambda() &&
1057         MD->getOverloadedOperator() == OO_Call) {
1058       // We're in a lambda; figure out the captures.
1059       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1060                                         LambdaThisCaptureField);
1061       if (LambdaThisCaptureField) {
1062         // If the lambda captures the object referred to by '*this' - either by
1063         // value or by reference, make sure CXXThisValue points to the correct
1064         // object.
1065 
1066         // Get the lvalue for the field (which is a copy of the enclosing object
1067         // or contains the address of the enclosing object).
1068         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1069         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1070           // If the enclosing object was captured by value, just use its address.
1071           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1072         } else {
1073           // Load the lvalue pointed to by the field, since '*this' was captured
1074           // by reference.
1075           CXXThisValue =
1076               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1077         }
1078       }
1079       for (auto *FD : MD->getParent()->fields()) {
1080         if (FD->hasCapturedVLAType()) {
1081           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1082                                            SourceLocation()).getScalarVal();
1083           auto VAT = FD->getCapturedVLAType();
1084           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1085         }
1086       }
1087     } else {
1088       // Not in a lambda; just use 'this' from the method.
1089       // FIXME: Should we generate a new load for each use of 'this'?  The
1090       // fast register allocator would be happier...
1091       CXXThisValue = CXXABIThisValue;
1092     }
1093 
1094     // Check the 'this' pointer once per function, if it's available.
1095     if (CXXABIThisValue) {
1096       SanitizerSet SkippedChecks;
1097       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1098       QualType ThisTy = MD->getThisType(getContext());
1099 
1100       // If this is the call operator of a lambda with no capture-default, it
1101       // may have a static invoker function, which may call this operator with
1102       // a null 'this' pointer.
1103       if (isLambdaCallOperator(MD) &&
1104           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1105               LCD_None)
1106         SkippedChecks.set(SanitizerKind::Null, true);
1107 
1108       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1109                                                 : TCK_MemberCall,
1110                     Loc, CXXABIThisValue, ThisTy,
1111                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1112                     SkippedChecks);
1113     }
1114   }
1115 
1116   // If any of the arguments have a variably modified type, make sure to
1117   // emit the type size.
1118   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1119        i != e; ++i) {
1120     const VarDecl *VD = *i;
1121 
1122     // Dig out the type as written from ParmVarDecls; it's unclear whether
1123     // the standard (C99 6.9.1p10) requires this, but we're following the
1124     // precedent set by gcc.
1125     QualType Ty;
1126     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1127       Ty = PVD->getOriginalType();
1128     else
1129       Ty = VD->getType();
1130 
1131     if (Ty->isVariablyModifiedType())
1132       EmitVariablyModifiedType(Ty);
1133   }
1134   // Emit a location at the end of the prologue.
1135   if (CGDebugInfo *DI = getDebugInfo())
1136     DI->EmitLocation(Builder, StartLoc);
1137 }
1138 
1139 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1140                                        const Stmt *Body) {
1141   incrementProfileCounter(Body);
1142   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1143     EmitCompoundStmtWithoutScope(*S);
1144   else
1145     EmitStmt(Body);
1146 }
1147 
1148 /// When instrumenting to collect profile data, the counts for some blocks
1149 /// such as switch cases need to not include the fall-through counts, so
1150 /// emit a branch around the instrumentation code. When not instrumenting,
1151 /// this just calls EmitBlock().
1152 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1153                                                const Stmt *S) {
1154   llvm::BasicBlock *SkipCountBB = nullptr;
1155   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1156     // When instrumenting for profiling, the fallthrough to certain
1157     // statements needs to skip over the instrumentation code so that we
1158     // get an accurate count.
1159     SkipCountBB = createBasicBlock("skipcount");
1160     EmitBranch(SkipCountBB);
1161   }
1162   EmitBlock(BB);
1163   uint64_t CurrentCount = getCurrentProfileCount();
1164   incrementProfileCounter(S);
1165   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1166   if (SkipCountBB)
1167     EmitBlock(SkipCountBB);
1168 }
1169 
1170 /// Tries to mark the given function nounwind based on the
1171 /// non-existence of any throwing calls within it.  We believe this is
1172 /// lightweight enough to do at -O0.
1173 static void TryMarkNoThrow(llvm::Function *F) {
1174   // LLVM treats 'nounwind' on a function as part of the type, so we
1175   // can't do this on functions that can be overwritten.
1176   if (F->isInterposable()) return;
1177 
1178   for (llvm::BasicBlock &BB : *F)
1179     for (llvm::Instruction &I : BB)
1180       if (I.mayThrow())
1181         return;
1182 
1183   F->setDoesNotThrow();
1184 }
1185 
1186 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1187                                                FunctionArgList &Args) {
1188   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1189   QualType ResTy = FD->getReturnType();
1190 
1191   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1192   if (MD && MD->isInstance()) {
1193     if (CGM.getCXXABI().HasThisReturn(GD))
1194       ResTy = MD->getThisType(getContext());
1195     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1196       ResTy = CGM.getContext().VoidPtrTy;
1197     CGM.getCXXABI().buildThisParam(*this, Args);
1198   }
1199 
1200   // The base version of an inheriting constructor whose constructed base is a
1201   // virtual base is not passed any arguments (because it doesn't actually call
1202   // the inherited constructor).
1203   bool PassedParams = true;
1204   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1205     if (auto Inherited = CD->getInheritedConstructor())
1206       PassedParams =
1207           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1208 
1209   if (PassedParams) {
1210     for (auto *Param : FD->parameters()) {
1211       Args.push_back(Param);
1212       if (!Param->hasAttr<PassObjectSizeAttr>())
1213         continue;
1214 
1215       auto *Implicit = ImplicitParamDecl::Create(
1216           getContext(), Param->getDeclContext(), Param->getLocation(),
1217           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1218       SizeArguments[Param] = Implicit;
1219       Args.push_back(Implicit);
1220     }
1221   }
1222 
1223   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1224     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1225 
1226   return ResTy;
1227 }
1228 
1229 static bool
1230 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1231                                              const ASTContext &Context) {
1232   QualType T = FD->getReturnType();
1233   // Avoid the optimization for functions that return a record type with a
1234   // trivial destructor or another trivially copyable type.
1235   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1236     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1237       return !ClassDecl->hasTrivialDestructor();
1238   }
1239   return !T.isTriviallyCopyableType(Context);
1240 }
1241 
1242 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1243                                    const CGFunctionInfo &FnInfo) {
1244   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1245   CurGD = GD;
1246 
1247   FunctionArgList Args;
1248   QualType ResTy = BuildFunctionArgList(GD, Args);
1249 
1250   // Check if we should generate debug info for this function.
1251   if (FD->hasAttr<NoDebugAttr>())
1252     DebugInfo = nullptr; // disable debug info indefinitely for this function
1253 
1254   // The function might not have a body if we're generating thunks for a
1255   // function declaration.
1256   SourceRange BodyRange;
1257   if (Stmt *Body = FD->getBody())
1258     BodyRange = Body->getSourceRange();
1259   else
1260     BodyRange = FD->getLocation();
1261   CurEHLocation = BodyRange.getEnd();
1262 
1263   // Use the location of the start of the function to determine where
1264   // the function definition is located. By default use the location
1265   // of the declaration as the location for the subprogram. A function
1266   // may lack a declaration in the source code if it is created by code
1267   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1268   SourceLocation Loc = FD->getLocation();
1269 
1270   // If this is a function specialization then use the pattern body
1271   // as the location for the function.
1272   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1273     if (SpecDecl->hasBody(SpecDecl))
1274       Loc = SpecDecl->getLocation();
1275 
1276   Stmt *Body = FD->getBody();
1277 
1278   // Initialize helper which will detect jumps which can cause invalid lifetime
1279   // markers.
1280   if (Body && ShouldEmitLifetimeMarkers)
1281     Bypasses.Init(Body);
1282 
1283   // Emit the standard function prologue.
1284   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1285 
1286   // Generate the body of the function.
1287   PGO.assignRegionCounters(GD, CurFn);
1288   if (isa<CXXDestructorDecl>(FD))
1289     EmitDestructorBody(Args);
1290   else if (isa<CXXConstructorDecl>(FD))
1291     EmitConstructorBody(Args);
1292   else if (getLangOpts().CUDA &&
1293            !getLangOpts().CUDAIsDevice &&
1294            FD->hasAttr<CUDAGlobalAttr>())
1295     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1296   else if (isa<CXXMethodDecl>(FD) &&
1297            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1298     // The lambda static invoker function is special, because it forwards or
1299     // clones the body of the function call operator (but is actually static).
1300     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1301   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1302              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1303               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1304     // Implicit copy-assignment gets the same special treatment as implicit
1305     // copy-constructors.
1306     emitImplicitAssignmentOperatorBody(Args);
1307   } else if (Body) {
1308     EmitFunctionBody(Args, Body);
1309   } else
1310     llvm_unreachable("no definition for emitted function");
1311 
1312   // C++11 [stmt.return]p2:
1313   //   Flowing off the end of a function [...] results in undefined behavior in
1314   //   a value-returning function.
1315   // C11 6.9.1p12:
1316   //   If the '}' that terminates a function is reached, and the value of the
1317   //   function call is used by the caller, the behavior is undefined.
1318   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1319       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1320     bool ShouldEmitUnreachable =
1321         CGM.getCodeGenOpts().StrictReturn ||
1322         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1323     if (SanOpts.has(SanitizerKind::Return)) {
1324       SanitizerScope SanScope(this);
1325       llvm::Value *IsFalse = Builder.getFalse();
1326       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1327                 SanitizerHandler::MissingReturn,
1328                 EmitCheckSourceLocation(FD->getLocation()), None);
1329     } else if (ShouldEmitUnreachable) {
1330       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1331         EmitTrapCall(llvm::Intrinsic::trap);
1332     }
1333     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1334       Builder.CreateUnreachable();
1335       Builder.ClearInsertionPoint();
1336     }
1337   }
1338 
1339   // Emit the standard function epilogue.
1340   FinishFunction(BodyRange.getEnd());
1341 
1342   // If we haven't marked the function nothrow through other means, do
1343   // a quick pass now to see if we can.
1344   if (!CurFn->doesNotThrow())
1345     TryMarkNoThrow(CurFn);
1346 }
1347 
1348 /// ContainsLabel - Return true if the statement contains a label in it.  If
1349 /// this statement is not executed normally, it not containing a label means
1350 /// that we can just remove the code.
1351 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1352   // Null statement, not a label!
1353   if (!S) return false;
1354 
1355   // If this is a label, we have to emit the code, consider something like:
1356   // if (0) {  ...  foo:  bar(); }  goto foo;
1357   //
1358   // TODO: If anyone cared, we could track __label__'s, since we know that you
1359   // can't jump to one from outside their declared region.
1360   if (isa<LabelStmt>(S))
1361     return true;
1362 
1363   // If this is a case/default statement, and we haven't seen a switch, we have
1364   // to emit the code.
1365   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1366     return true;
1367 
1368   // If this is a switch statement, we want to ignore cases below it.
1369   if (isa<SwitchStmt>(S))
1370     IgnoreCaseStmts = true;
1371 
1372   // Scan subexpressions for verboten labels.
1373   for (const Stmt *SubStmt : S->children())
1374     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1375       return true;
1376 
1377   return false;
1378 }
1379 
1380 /// containsBreak - Return true if the statement contains a break out of it.
1381 /// If the statement (recursively) contains a switch or loop with a break
1382 /// inside of it, this is fine.
1383 bool CodeGenFunction::containsBreak(const Stmt *S) {
1384   // Null statement, not a label!
1385   if (!S) return false;
1386 
1387   // If this is a switch or loop that defines its own break scope, then we can
1388   // include it and anything inside of it.
1389   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1390       isa<ForStmt>(S))
1391     return false;
1392 
1393   if (isa<BreakStmt>(S))
1394     return true;
1395 
1396   // Scan subexpressions for verboten breaks.
1397   for (const Stmt *SubStmt : S->children())
1398     if (containsBreak(SubStmt))
1399       return true;
1400 
1401   return false;
1402 }
1403 
1404 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1405   if (!S) return false;
1406 
1407   // Some statement kinds add a scope and thus never add a decl to the current
1408   // scope. Note, this list is longer than the list of statements that might
1409   // have an unscoped decl nested within them, but this way is conservatively
1410   // correct even if more statement kinds are added.
1411   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1412       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1413       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1414       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1415     return false;
1416 
1417   if (isa<DeclStmt>(S))
1418     return true;
1419 
1420   for (const Stmt *SubStmt : S->children())
1421     if (mightAddDeclToScope(SubStmt))
1422       return true;
1423 
1424   return false;
1425 }
1426 
1427 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1428 /// to a constant, or if it does but contains a label, return false.  If it
1429 /// constant folds return true and set the boolean result in Result.
1430 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1431                                                    bool &ResultBool,
1432                                                    bool AllowLabels) {
1433   llvm::APSInt ResultInt;
1434   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1435     return false;
1436 
1437   ResultBool = ResultInt.getBoolValue();
1438   return true;
1439 }
1440 
1441 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1442 /// to a constant, or if it does but contains a label, return false.  If it
1443 /// constant folds return true and set the folded value.
1444 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1445                                                    llvm::APSInt &ResultInt,
1446                                                    bool AllowLabels) {
1447   // FIXME: Rename and handle conversion of other evaluatable things
1448   // to bool.
1449   llvm::APSInt Int;
1450   if (!Cond->EvaluateAsInt(Int, getContext()))
1451     return false;  // Not foldable, not integer or not fully evaluatable.
1452 
1453   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1454     return false;  // Contains a label.
1455 
1456   ResultInt = Int;
1457   return true;
1458 }
1459 
1460 
1461 
1462 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1463 /// statement) to the specified blocks.  Based on the condition, this might try
1464 /// to simplify the codegen of the conditional based on the branch.
1465 ///
1466 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1467                                            llvm::BasicBlock *TrueBlock,
1468                                            llvm::BasicBlock *FalseBlock,
1469                                            uint64_t TrueCount) {
1470   Cond = Cond->IgnoreParens();
1471 
1472   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1473 
1474     // Handle X && Y in a condition.
1475     if (CondBOp->getOpcode() == BO_LAnd) {
1476       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1477       // folded if the case was simple enough.
1478       bool ConstantBool = false;
1479       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1480           ConstantBool) {
1481         // br(1 && X) -> br(X).
1482         incrementProfileCounter(CondBOp);
1483         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1484                                     TrueCount);
1485       }
1486 
1487       // If we have "X && 1", simplify the code to use an uncond branch.
1488       // "X && 0" would have been constant folded to 0.
1489       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1490           ConstantBool) {
1491         // br(X && 1) -> br(X).
1492         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1493                                     TrueCount);
1494       }
1495 
1496       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1497       // want to jump to the FalseBlock.
1498       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1499       // The counter tells us how often we evaluate RHS, and all of TrueCount
1500       // can be propagated to that branch.
1501       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1502 
1503       ConditionalEvaluation eval(*this);
1504       {
1505         ApplyDebugLocation DL(*this, Cond);
1506         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1507         EmitBlock(LHSTrue);
1508       }
1509 
1510       incrementProfileCounter(CondBOp);
1511       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1512 
1513       // Any temporaries created here are conditional.
1514       eval.begin(*this);
1515       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1516       eval.end(*this);
1517 
1518       return;
1519     }
1520 
1521     if (CondBOp->getOpcode() == BO_LOr) {
1522       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1523       // folded if the case was simple enough.
1524       bool ConstantBool = false;
1525       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1526           !ConstantBool) {
1527         // br(0 || X) -> br(X).
1528         incrementProfileCounter(CondBOp);
1529         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1530                                     TrueCount);
1531       }
1532 
1533       // If we have "X || 0", simplify the code to use an uncond branch.
1534       // "X || 1" would have been constant folded to 1.
1535       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1536           !ConstantBool) {
1537         // br(X || 0) -> br(X).
1538         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1539                                     TrueCount);
1540       }
1541 
1542       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1543       // want to jump to the TrueBlock.
1544       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1545       // We have the count for entry to the RHS and for the whole expression
1546       // being true, so we can divy up True count between the short circuit and
1547       // the RHS.
1548       uint64_t LHSCount =
1549           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1550       uint64_t RHSCount = TrueCount - LHSCount;
1551 
1552       ConditionalEvaluation eval(*this);
1553       {
1554         ApplyDebugLocation DL(*this, Cond);
1555         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1556         EmitBlock(LHSFalse);
1557       }
1558 
1559       incrementProfileCounter(CondBOp);
1560       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1561 
1562       // Any temporaries created here are conditional.
1563       eval.begin(*this);
1564       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1565 
1566       eval.end(*this);
1567 
1568       return;
1569     }
1570   }
1571 
1572   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1573     // br(!x, t, f) -> br(x, f, t)
1574     if (CondUOp->getOpcode() == UO_LNot) {
1575       // Negate the count.
1576       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1577       // Negate the condition and swap the destination blocks.
1578       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1579                                   FalseCount);
1580     }
1581   }
1582 
1583   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1584     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1585     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1586     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1587 
1588     ConditionalEvaluation cond(*this);
1589     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1590                          getProfileCount(CondOp));
1591 
1592     // When computing PGO branch weights, we only know the overall count for
1593     // the true block. This code is essentially doing tail duplication of the
1594     // naive code-gen, introducing new edges for which counts are not
1595     // available. Divide the counts proportionally between the LHS and RHS of
1596     // the conditional operator.
1597     uint64_t LHSScaledTrueCount = 0;
1598     if (TrueCount) {
1599       double LHSRatio =
1600           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1601       LHSScaledTrueCount = TrueCount * LHSRatio;
1602     }
1603 
1604     cond.begin(*this);
1605     EmitBlock(LHSBlock);
1606     incrementProfileCounter(CondOp);
1607     {
1608       ApplyDebugLocation DL(*this, Cond);
1609       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1610                            LHSScaledTrueCount);
1611     }
1612     cond.end(*this);
1613 
1614     cond.begin(*this);
1615     EmitBlock(RHSBlock);
1616     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1617                          TrueCount - LHSScaledTrueCount);
1618     cond.end(*this);
1619 
1620     return;
1621   }
1622 
1623   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1624     // Conditional operator handling can give us a throw expression as a
1625     // condition for a case like:
1626     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1627     // Fold this to:
1628     //   br(c, throw x, br(y, t, f))
1629     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1630     return;
1631   }
1632 
1633   // If the branch has a condition wrapped by __builtin_unpredictable,
1634   // create metadata that specifies that the branch is unpredictable.
1635   // Don't bother if not optimizing because that metadata would not be used.
1636   llvm::MDNode *Unpredictable = nullptr;
1637   auto *Call = dyn_cast<CallExpr>(Cond);
1638   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1639     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1640     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1641       llvm::MDBuilder MDHelper(getLLVMContext());
1642       Unpredictable = MDHelper.createUnpredictable();
1643     }
1644   }
1645 
1646   // Create branch weights based on the number of times we get here and the
1647   // number of times the condition should be true.
1648   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1649   llvm::MDNode *Weights =
1650       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1651 
1652   // Emit the code with the fully general case.
1653   llvm::Value *CondV;
1654   {
1655     ApplyDebugLocation DL(*this, Cond);
1656     CondV = EvaluateExprAsBool(Cond);
1657   }
1658   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1659 }
1660 
1661 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1662 /// specified stmt yet.
1663 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1664   CGM.ErrorUnsupported(S, Type);
1665 }
1666 
1667 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1668 /// variable-length array whose elements have a non-zero bit-pattern.
1669 ///
1670 /// \param baseType the inner-most element type of the array
1671 /// \param src - a char* pointing to the bit-pattern for a single
1672 /// base element of the array
1673 /// \param sizeInChars - the total size of the VLA, in chars
1674 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1675                                Address dest, Address src,
1676                                llvm::Value *sizeInChars) {
1677   CGBuilderTy &Builder = CGF.Builder;
1678 
1679   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1680   llvm::Value *baseSizeInChars
1681     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1682 
1683   Address begin =
1684     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1685   llvm::Value *end =
1686     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1687 
1688   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1689   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1690   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1691 
1692   // Make a loop over the VLA.  C99 guarantees that the VLA element
1693   // count must be nonzero.
1694   CGF.EmitBlock(loopBB);
1695 
1696   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1697   cur->addIncoming(begin.getPointer(), originBB);
1698 
1699   CharUnits curAlign =
1700     dest.getAlignment().alignmentOfArrayElement(baseSize);
1701 
1702   // memcpy the individual element bit-pattern.
1703   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1704                        /*volatile*/ false);
1705 
1706   // Go to the next element.
1707   llvm::Value *next =
1708     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1709 
1710   // Leave if that's the end of the VLA.
1711   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1712   Builder.CreateCondBr(done, contBB, loopBB);
1713   cur->addIncoming(next, loopBB);
1714 
1715   CGF.EmitBlock(contBB);
1716 }
1717 
1718 void
1719 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1720   // Ignore empty classes in C++.
1721   if (getLangOpts().CPlusPlus) {
1722     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1723       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1724         return;
1725     }
1726   }
1727 
1728   // Cast the dest ptr to the appropriate i8 pointer type.
1729   if (DestPtr.getElementType() != Int8Ty)
1730     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1731 
1732   // Get size and alignment info for this aggregate.
1733   CharUnits size = getContext().getTypeSizeInChars(Ty);
1734 
1735   llvm::Value *SizeVal;
1736   const VariableArrayType *vla;
1737 
1738   // Don't bother emitting a zero-byte memset.
1739   if (size.isZero()) {
1740     // But note that getTypeInfo returns 0 for a VLA.
1741     if (const VariableArrayType *vlaType =
1742           dyn_cast_or_null<VariableArrayType>(
1743                                           getContext().getAsArrayType(Ty))) {
1744       QualType eltType;
1745       llvm::Value *numElts;
1746       std::tie(numElts, eltType) = getVLASize(vlaType);
1747 
1748       SizeVal = numElts;
1749       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1750       if (!eltSize.isOne())
1751         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1752       vla = vlaType;
1753     } else {
1754       return;
1755     }
1756   } else {
1757     SizeVal = CGM.getSize(size);
1758     vla = nullptr;
1759   }
1760 
1761   // If the type contains a pointer to data member we can't memset it to zero.
1762   // Instead, create a null constant and copy it to the destination.
1763   // TODO: there are other patterns besides zero that we can usefully memset,
1764   // like -1, which happens to be the pattern used by member-pointers.
1765   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1766     // For a VLA, emit a single element, then splat that over the VLA.
1767     if (vla) Ty = getContext().getBaseElementType(vla);
1768 
1769     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1770 
1771     llvm::GlobalVariable *NullVariable =
1772       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1773                                /*isConstant=*/true,
1774                                llvm::GlobalVariable::PrivateLinkage,
1775                                NullConstant, Twine());
1776     CharUnits NullAlign = DestPtr.getAlignment();
1777     NullVariable->setAlignment(NullAlign.getQuantity());
1778     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1779                    NullAlign);
1780 
1781     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1782 
1783     // Get and call the appropriate llvm.memcpy overload.
1784     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1785     return;
1786   }
1787 
1788   // Otherwise, just memset the whole thing to zero.  This is legal
1789   // because in LLVM, all default initializers (other than the ones we just
1790   // handled above) are guaranteed to have a bit pattern of all zeros.
1791   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1792 }
1793 
1794 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1795   // Make sure that there is a block for the indirect goto.
1796   if (!IndirectBranch)
1797     GetIndirectGotoBlock();
1798 
1799   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1800 
1801   // Make sure the indirect branch includes all of the address-taken blocks.
1802   IndirectBranch->addDestination(BB);
1803   return llvm::BlockAddress::get(CurFn, BB);
1804 }
1805 
1806 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1807   // If we already made the indirect branch for indirect goto, return its block.
1808   if (IndirectBranch) return IndirectBranch->getParent();
1809 
1810   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1811 
1812   // Create the PHI node that indirect gotos will add entries to.
1813   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1814                                               "indirect.goto.dest");
1815 
1816   // Create the indirect branch instruction.
1817   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1818   return IndirectBranch->getParent();
1819 }
1820 
1821 /// Computes the length of an array in elements, as well as the base
1822 /// element type and a properly-typed first element pointer.
1823 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1824                                               QualType &baseType,
1825                                               Address &addr) {
1826   const ArrayType *arrayType = origArrayType;
1827 
1828   // If it's a VLA, we have to load the stored size.  Note that
1829   // this is the size of the VLA in bytes, not its size in elements.
1830   llvm::Value *numVLAElements = nullptr;
1831   if (isa<VariableArrayType>(arrayType)) {
1832     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1833 
1834     // Walk into all VLAs.  This doesn't require changes to addr,
1835     // which has type T* where T is the first non-VLA element type.
1836     do {
1837       QualType elementType = arrayType->getElementType();
1838       arrayType = getContext().getAsArrayType(elementType);
1839 
1840       // If we only have VLA components, 'addr' requires no adjustment.
1841       if (!arrayType) {
1842         baseType = elementType;
1843         return numVLAElements;
1844       }
1845     } while (isa<VariableArrayType>(arrayType));
1846 
1847     // We get out here only if we find a constant array type
1848     // inside the VLA.
1849   }
1850 
1851   // We have some number of constant-length arrays, so addr should
1852   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1853   // down to the first element of addr.
1854   SmallVector<llvm::Value*, 8> gepIndices;
1855 
1856   // GEP down to the array type.
1857   llvm::ConstantInt *zero = Builder.getInt32(0);
1858   gepIndices.push_back(zero);
1859 
1860   uint64_t countFromCLAs = 1;
1861   QualType eltType;
1862 
1863   llvm::ArrayType *llvmArrayType =
1864     dyn_cast<llvm::ArrayType>(addr.getElementType());
1865   while (llvmArrayType) {
1866     assert(isa<ConstantArrayType>(arrayType));
1867     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1868              == llvmArrayType->getNumElements());
1869 
1870     gepIndices.push_back(zero);
1871     countFromCLAs *= llvmArrayType->getNumElements();
1872     eltType = arrayType->getElementType();
1873 
1874     llvmArrayType =
1875       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1876     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1877     assert((!llvmArrayType || arrayType) &&
1878            "LLVM and Clang types are out-of-synch");
1879   }
1880 
1881   if (arrayType) {
1882     // From this point onwards, the Clang array type has been emitted
1883     // as some other type (probably a packed struct). Compute the array
1884     // size, and just emit the 'begin' expression as a bitcast.
1885     while (arrayType) {
1886       countFromCLAs *=
1887           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1888       eltType = arrayType->getElementType();
1889       arrayType = getContext().getAsArrayType(eltType);
1890     }
1891 
1892     llvm::Type *baseType = ConvertType(eltType);
1893     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1894   } else {
1895     // Create the actual GEP.
1896     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1897                                              gepIndices, "array.begin"),
1898                    addr.getAlignment());
1899   }
1900 
1901   baseType = eltType;
1902 
1903   llvm::Value *numElements
1904     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1905 
1906   // If we had any VLA dimensions, factor them in.
1907   if (numVLAElements)
1908     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1909 
1910   return numElements;
1911 }
1912 
1913 std::pair<llvm::Value*, QualType>
1914 CodeGenFunction::getVLASize(QualType type) {
1915   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1916   assert(vla && "type was not a variable array type!");
1917   return getVLASize(vla);
1918 }
1919 
1920 std::pair<llvm::Value*, QualType>
1921 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1922   // The number of elements so far; always size_t.
1923   llvm::Value *numElements = nullptr;
1924 
1925   QualType elementType;
1926   do {
1927     elementType = type->getElementType();
1928     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1929     assert(vlaSize && "no size for VLA!");
1930     assert(vlaSize->getType() == SizeTy);
1931 
1932     if (!numElements) {
1933       numElements = vlaSize;
1934     } else {
1935       // It's undefined behavior if this wraps around, so mark it that way.
1936       // FIXME: Teach -fsanitize=undefined to trap this.
1937       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1938     }
1939   } while ((type = getContext().getAsVariableArrayType(elementType)));
1940 
1941   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1942 }
1943 
1944 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1945   assert(type->isVariablyModifiedType() &&
1946          "Must pass variably modified type to EmitVLASizes!");
1947 
1948   EnsureInsertPoint();
1949 
1950   // We're going to walk down into the type and look for VLA
1951   // expressions.
1952   do {
1953     assert(type->isVariablyModifiedType());
1954 
1955     const Type *ty = type.getTypePtr();
1956     switch (ty->getTypeClass()) {
1957 
1958 #define TYPE(Class, Base)
1959 #define ABSTRACT_TYPE(Class, Base)
1960 #define NON_CANONICAL_TYPE(Class, Base)
1961 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1962 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1963 #include "clang/AST/TypeNodes.def"
1964       llvm_unreachable("unexpected dependent type!");
1965 
1966     // These types are never variably-modified.
1967     case Type::Builtin:
1968     case Type::Complex:
1969     case Type::Vector:
1970     case Type::ExtVector:
1971     case Type::Record:
1972     case Type::Enum:
1973     case Type::Elaborated:
1974     case Type::TemplateSpecialization:
1975     case Type::ObjCTypeParam:
1976     case Type::ObjCObject:
1977     case Type::ObjCInterface:
1978     case Type::ObjCObjectPointer:
1979       llvm_unreachable("type class is never variably-modified!");
1980 
1981     case Type::Adjusted:
1982       type = cast<AdjustedType>(ty)->getAdjustedType();
1983       break;
1984 
1985     case Type::Decayed:
1986       type = cast<DecayedType>(ty)->getPointeeType();
1987       break;
1988 
1989     case Type::Pointer:
1990       type = cast<PointerType>(ty)->getPointeeType();
1991       break;
1992 
1993     case Type::BlockPointer:
1994       type = cast<BlockPointerType>(ty)->getPointeeType();
1995       break;
1996 
1997     case Type::LValueReference:
1998     case Type::RValueReference:
1999       type = cast<ReferenceType>(ty)->getPointeeType();
2000       break;
2001 
2002     case Type::MemberPointer:
2003       type = cast<MemberPointerType>(ty)->getPointeeType();
2004       break;
2005 
2006     case Type::ConstantArray:
2007     case Type::IncompleteArray:
2008       // Losing element qualification here is fine.
2009       type = cast<ArrayType>(ty)->getElementType();
2010       break;
2011 
2012     case Type::VariableArray: {
2013       // Losing element qualification here is fine.
2014       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2015 
2016       // Unknown size indication requires no size computation.
2017       // Otherwise, evaluate and record it.
2018       if (const Expr *size = vat->getSizeExpr()) {
2019         // It's possible that we might have emitted this already,
2020         // e.g. with a typedef and a pointer to it.
2021         llvm::Value *&entry = VLASizeMap[size];
2022         if (!entry) {
2023           llvm::Value *Size = EmitScalarExpr(size);
2024 
2025           // C11 6.7.6.2p5:
2026           //   If the size is an expression that is not an integer constant
2027           //   expression [...] each time it is evaluated it shall have a value
2028           //   greater than zero.
2029           if (SanOpts.has(SanitizerKind::VLABound) &&
2030               size->getType()->isSignedIntegerType()) {
2031             SanitizerScope SanScope(this);
2032             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2033             llvm::Constant *StaticArgs[] = {
2034               EmitCheckSourceLocation(size->getLocStart()),
2035               EmitCheckTypeDescriptor(size->getType())
2036             };
2037             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2038                                      SanitizerKind::VLABound),
2039                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2040           }
2041 
2042           // Always zexting here would be wrong if it weren't
2043           // undefined behavior to have a negative bound.
2044           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2045         }
2046       }
2047       type = vat->getElementType();
2048       break;
2049     }
2050 
2051     case Type::FunctionProto:
2052     case Type::FunctionNoProto:
2053       type = cast<FunctionType>(ty)->getReturnType();
2054       break;
2055 
2056     case Type::Paren:
2057     case Type::TypeOf:
2058     case Type::UnaryTransform:
2059     case Type::Attributed:
2060     case Type::SubstTemplateTypeParm:
2061     case Type::PackExpansion:
2062       // Keep walking after single level desugaring.
2063       type = type.getSingleStepDesugaredType(getContext());
2064       break;
2065 
2066     case Type::Typedef:
2067     case Type::Decltype:
2068     case Type::Auto:
2069     case Type::DeducedTemplateSpecialization:
2070       // Stop walking: nothing to do.
2071       return;
2072 
2073     case Type::TypeOfExpr:
2074       // Stop walking: emit typeof expression.
2075       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2076       return;
2077 
2078     case Type::Atomic:
2079       type = cast<AtomicType>(ty)->getValueType();
2080       break;
2081 
2082     case Type::Pipe:
2083       type = cast<PipeType>(ty)->getElementType();
2084       break;
2085     }
2086   } while (type->isVariablyModifiedType());
2087 }
2088 
2089 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2090   if (getContext().getBuiltinVaListType()->isArrayType())
2091     return EmitPointerWithAlignment(E);
2092   return EmitLValue(E).getAddress();
2093 }
2094 
2095 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2096   return EmitLValue(E).getAddress();
2097 }
2098 
2099 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2100                                               const APValue &Init) {
2101   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2102   if (CGDebugInfo *Dbg = getDebugInfo())
2103     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2104       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2105 }
2106 
2107 CodeGenFunction::PeepholeProtection
2108 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2109   // At the moment, the only aggressive peephole we do in IR gen
2110   // is trunc(zext) folding, but if we add more, we can easily
2111   // extend this protection.
2112 
2113   if (!rvalue.isScalar()) return PeepholeProtection();
2114   llvm::Value *value = rvalue.getScalarVal();
2115   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2116 
2117   // Just make an extra bitcast.
2118   assert(HaveInsertPoint());
2119   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2120                                                   Builder.GetInsertBlock());
2121 
2122   PeepholeProtection protection;
2123   protection.Inst = inst;
2124   return protection;
2125 }
2126 
2127 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2128   if (!protection.Inst) return;
2129 
2130   // In theory, we could try to duplicate the peepholes now, but whatever.
2131   protection.Inst->eraseFromParent();
2132 }
2133 
2134 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2135                                                  llvm::Value *AnnotatedVal,
2136                                                  StringRef AnnotationStr,
2137                                                  SourceLocation Location) {
2138   llvm::Value *Args[4] = {
2139     AnnotatedVal,
2140     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2141     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2142     CGM.EmitAnnotationLineNo(Location)
2143   };
2144   return Builder.CreateCall(AnnotationFn, Args);
2145 }
2146 
2147 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2148   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2149   // FIXME We create a new bitcast for every annotation because that's what
2150   // llvm-gcc was doing.
2151   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2152     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2153                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2154                        I->getAnnotation(), D->getLocation());
2155 }
2156 
2157 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2158                                               Address Addr) {
2159   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2160   llvm::Value *V = Addr.getPointer();
2161   llvm::Type *VTy = V->getType();
2162   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2163                                     CGM.Int8PtrTy);
2164 
2165   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2166     // FIXME Always emit the cast inst so we can differentiate between
2167     // annotation on the first field of a struct and annotation on the struct
2168     // itself.
2169     if (VTy != CGM.Int8PtrTy)
2170       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2171     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2172     V = Builder.CreateBitCast(V, VTy);
2173   }
2174 
2175   return Address(V, Addr.getAlignment());
2176 }
2177 
2178 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2179 
2180 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2181     : CGF(CGF) {
2182   assert(!CGF->IsSanitizerScope);
2183   CGF->IsSanitizerScope = true;
2184 }
2185 
2186 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2187   CGF->IsSanitizerScope = false;
2188 }
2189 
2190 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2191                                    const llvm::Twine &Name,
2192                                    llvm::BasicBlock *BB,
2193                                    llvm::BasicBlock::iterator InsertPt) const {
2194   LoopStack.InsertHelper(I);
2195   if (IsSanitizerScope)
2196     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2197 }
2198 
2199 void CGBuilderInserter::InsertHelper(
2200     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2201     llvm::BasicBlock::iterator InsertPt) const {
2202   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2203   if (CGF)
2204     CGF->InsertHelper(I, Name, BB, InsertPt);
2205 }
2206 
2207 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2208                                 CodeGenModule &CGM, const FunctionDecl *FD,
2209                                 std::string &FirstMissing) {
2210   // If there aren't any required features listed then go ahead and return.
2211   if (ReqFeatures.empty())
2212     return false;
2213 
2214   // Now build up the set of caller features and verify that all the required
2215   // features are there.
2216   llvm::StringMap<bool> CallerFeatureMap;
2217   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2218 
2219   // If we have at least one of the features in the feature list return
2220   // true, otherwise return false.
2221   return std::all_of(
2222       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2223         SmallVector<StringRef, 1> OrFeatures;
2224         Feature.split(OrFeatures, "|");
2225         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2226                            [&](StringRef Feature) {
2227                              if (!CallerFeatureMap.lookup(Feature)) {
2228                                FirstMissing = Feature.str();
2229                                return false;
2230                              }
2231                              return true;
2232                            });
2233       });
2234 }
2235 
2236 // Emits an error if we don't have a valid set of target features for the
2237 // called function.
2238 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2239                                           const FunctionDecl *TargetDecl) {
2240   // Early exit if this is an indirect call.
2241   if (!TargetDecl)
2242     return;
2243 
2244   // Get the current enclosing function if it exists. If it doesn't
2245   // we can't check the target features anyhow.
2246   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2247   if (!FD)
2248     return;
2249 
2250   // Grab the required features for the call. For a builtin this is listed in
2251   // the td file with the default cpu, for an always_inline function this is any
2252   // listed cpu and any listed features.
2253   unsigned BuiltinID = TargetDecl->getBuiltinID();
2254   std::string MissingFeature;
2255   if (BuiltinID) {
2256     SmallVector<StringRef, 1> ReqFeatures;
2257     const char *FeatureList =
2258         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2259     // Return if the builtin doesn't have any required features.
2260     if (!FeatureList || StringRef(FeatureList) == "")
2261       return;
2262     StringRef(FeatureList).split(ReqFeatures, ",");
2263     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2264       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2265           << TargetDecl->getDeclName()
2266           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2267 
2268   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2269     // Get the required features for the callee.
2270     SmallVector<StringRef, 1> ReqFeatures;
2271     llvm::StringMap<bool> CalleeFeatureMap;
2272     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2273     for (const auto &F : CalleeFeatureMap) {
2274       // Only positive features are "required".
2275       if (F.getValue())
2276         ReqFeatures.push_back(F.getKey());
2277     }
2278     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2279       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2280           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2281   }
2282 }
2283 
2284 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2285   if (!CGM.getCodeGenOpts().SanitizeStats)
2286     return;
2287 
2288   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2289   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2290   CGM.getSanStats().create(IRB, SSK);
2291 }
2292 
2293 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2294   if (CGDebugInfo *DI = getDebugInfo())
2295     return DI->SourceLocToDebugLoc(Location);
2296 
2297   return llvm::DebugLoc();
2298 }
2299