1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 401 /// instrumentation function with the current function and the call site, if 402 /// function instrumentation is enabled. 403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 404 auto NL = ApplyDebugLocation::CreateArtificial(*this); 405 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 406 llvm::PointerType *PointerTy = Int8PtrTy; 407 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 408 llvm::FunctionType *FunctionTy = 409 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 410 411 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 412 llvm::CallInst *CallSite = Builder.CreateCall( 413 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 414 llvm::ConstantInt::get(Int32Ty, 0), 415 "callsite"); 416 417 llvm::Value *args[] = { 418 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 419 CallSite 420 }; 421 422 EmitNounwindRuntimeCall(F, args); 423 } 424 425 void CodeGenFunction::EmitMCountInstrumentation() { 426 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 427 428 llvm::Constant *MCountFn = 429 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 430 EmitNounwindRuntimeCall(MCountFn); 431 } 432 433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 434 // information in the program executable. The argument information stored 435 // includes the argument name, its type, the address and access qualifiers used. 436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 437 CodeGenModule &CGM, llvm::LLVMContext &Context, 438 CGBuilderTy &Builder, ASTContext &ASTCtx) { 439 // Create MDNodes that represent the kernel arg metadata. 440 // Each MDNode is a list in the form of "key", N number of values which is 441 // the same number of values as their are kernel arguments. 442 443 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 444 445 // MDNode for the kernel argument address space qualifiers. 446 SmallVector<llvm::Metadata *, 8> addressQuals; 447 448 // MDNode for the kernel argument access qualifiers (images only). 449 SmallVector<llvm::Metadata *, 8> accessQuals; 450 451 // MDNode for the kernel argument type names. 452 SmallVector<llvm::Metadata *, 8> argTypeNames; 453 454 // MDNode for the kernel argument base type names. 455 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 456 457 // MDNode for the kernel argument type qualifiers. 458 SmallVector<llvm::Metadata *, 8> argTypeQuals; 459 460 // MDNode for the kernel argument names. 461 SmallVector<llvm::Metadata *, 8> argNames; 462 463 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 464 const ParmVarDecl *parm = FD->getParamDecl(i); 465 QualType ty = parm->getType(); 466 std::string typeQuals; 467 468 if (ty->isPointerType()) { 469 QualType pointeeTy = ty->getPointeeType(); 470 471 // Get address qualifier. 472 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 473 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 474 475 // Get argument type name. 476 std::string typeName = 477 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 478 479 // Turn "unsigned type" to "utype" 480 std::string::size_type pos = typeName.find("unsigned"); 481 if (pointeeTy.isCanonical() && pos != std::string::npos) 482 typeName.erase(pos+1, 8); 483 484 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 485 486 std::string baseTypeName = 487 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 488 Policy) + 489 "*"; 490 491 // Turn "unsigned type" to "utype" 492 pos = baseTypeName.find("unsigned"); 493 if (pos != std::string::npos) 494 baseTypeName.erase(pos+1, 8); 495 496 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 497 498 // Get argument type qualifiers: 499 if (ty.isRestrictQualified()) 500 typeQuals = "restrict"; 501 if (pointeeTy.isConstQualified() || 502 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 503 typeQuals += typeQuals.empty() ? "const" : " const"; 504 if (pointeeTy.isVolatileQualified()) 505 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 506 } else { 507 uint32_t AddrSpc = 0; 508 bool isPipe = ty->isPipeType(); 509 if (ty->isImageType() || isPipe) 510 AddrSpc = 511 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 512 513 addressQuals.push_back( 514 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 515 516 // Get argument type name. 517 std::string typeName; 518 if (isPipe) 519 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 520 else 521 typeName = ty.getUnqualifiedType().getAsString(Policy); 522 523 // Turn "unsigned type" to "utype" 524 std::string::size_type pos = typeName.find("unsigned"); 525 if (ty.isCanonical() && pos != std::string::npos) 526 typeName.erase(pos+1, 8); 527 528 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 529 530 std::string baseTypeName; 531 if (isPipe) 532 baseTypeName = 533 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 534 else 535 baseTypeName = 536 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 537 538 // Turn "unsigned type" to "utype" 539 pos = baseTypeName.find("unsigned"); 540 if (pos != std::string::npos) 541 baseTypeName.erase(pos+1, 8); 542 543 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 544 545 // Get argument type qualifiers: 546 if (ty.isConstQualified()) 547 typeQuals = "const"; 548 if (ty.isVolatileQualified()) 549 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 550 if (isPipe) 551 typeQuals = "pipe"; 552 } 553 554 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 555 556 // Get image and pipe access qualifier: 557 if (ty->isImageType()|| ty->isPipeType()) { 558 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 559 if (A && A->isWriteOnly()) 560 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 561 else if (A && A->isReadWrite()) 562 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 563 else 564 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 565 } else 566 accessQuals.push_back(llvm::MDString::get(Context, "none")); 567 568 // Get argument name. 569 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 570 } 571 572 Fn->setMetadata("kernel_arg_addr_space", 573 llvm::MDNode::get(Context, addressQuals)); 574 Fn->setMetadata("kernel_arg_access_qual", 575 llvm::MDNode::get(Context, accessQuals)); 576 Fn->setMetadata("kernel_arg_type", 577 llvm::MDNode::get(Context, argTypeNames)); 578 Fn->setMetadata("kernel_arg_base_type", 579 llvm::MDNode::get(Context, argBaseTypeNames)); 580 Fn->setMetadata("kernel_arg_type_qual", 581 llvm::MDNode::get(Context, argTypeQuals)); 582 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 583 Fn->setMetadata("kernel_arg_name", 584 llvm::MDNode::get(Context, argNames)); 585 } 586 587 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 588 llvm::Function *Fn) 589 { 590 if (!FD->hasAttr<OpenCLKernelAttr>()) 591 return; 592 593 llvm::LLVMContext &Context = getLLVMContext(); 594 595 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 596 597 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 598 QualType hintQTy = A->getTypeHint(); 599 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 600 bool isSignedInteger = 601 hintQTy->isSignedIntegerType() || 602 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 603 llvm::Metadata *attrMDArgs[] = { 604 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 605 CGM.getTypes().ConvertType(A->getTypeHint()))), 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 llvm::IntegerType::get(Context, 32), 608 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 609 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 610 } 611 612 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 613 llvm::Metadata *attrMDArgs[] = { 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 616 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 617 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 618 } 619 620 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 621 llvm::Metadata *attrMDArgs[] = { 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 } 628 629 /// Determine whether the function F ends with a return stmt. 630 static bool endsWithReturn(const Decl* F) { 631 const Stmt *Body = nullptr; 632 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 633 Body = FD->getBody(); 634 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 635 Body = OMD->getBody(); 636 637 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 638 auto LastStmt = CS->body_rbegin(); 639 if (LastStmt != CS->body_rend()) 640 return isa<ReturnStmt>(*LastStmt); 641 } 642 return false; 643 } 644 645 void CodeGenFunction::StartFunction(GlobalDecl GD, 646 QualType RetTy, 647 llvm::Function *Fn, 648 const CGFunctionInfo &FnInfo, 649 const FunctionArgList &Args, 650 SourceLocation Loc, 651 SourceLocation StartLoc) { 652 assert(!CurFn && 653 "Do not use a CodeGenFunction object for more than one function"); 654 655 const Decl *D = GD.getDecl(); 656 657 DidCallStackSave = false; 658 CurCodeDecl = D; 659 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 660 if (FD->usesSEHTry()) 661 CurSEHParent = FD; 662 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 663 FnRetTy = RetTy; 664 CurFn = Fn; 665 CurFnInfo = &FnInfo; 666 assert(CurFn->isDeclaration() && "Function already has body?"); 667 668 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 669 SanOpts.clear(); 670 671 if (D) { 672 // Apply the no_sanitize* attributes to SanOpts. 673 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 674 SanOpts.Mask &= ~Attr->getMask(); 675 } 676 677 // Apply sanitizer attributes to the function. 678 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 679 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 680 if (SanOpts.has(SanitizerKind::Thread)) 681 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 682 if (SanOpts.has(SanitizerKind::Memory)) 683 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 684 if (SanOpts.has(SanitizerKind::SafeStack)) 685 Fn->addFnAttr(llvm::Attribute::SafeStack); 686 687 // Pass inline keyword to optimizer if it appears explicitly on any 688 // declaration. Also, in the case of -fno-inline attach NoInline 689 // attribute to all function that are not marked AlwaysInline. 690 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 691 if (!CGM.getCodeGenOpts().NoInline) { 692 for (auto RI : FD->redecls()) 693 if (RI->isInlineSpecified()) { 694 Fn->addFnAttr(llvm::Attribute::InlineHint); 695 break; 696 } 697 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 698 Fn->addFnAttr(llvm::Attribute::NoInline); 699 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 700 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 701 } 702 703 // Add no-jump-tables value. 704 Fn->addFnAttr("no-jump-tables", 705 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 706 707 if (getLangOpts().OpenCL) { 708 // Add metadata for a kernel function. 709 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 710 EmitOpenCLKernelMetadata(FD, Fn); 711 } 712 713 // If we are checking function types, emit a function type signature as 714 // prologue data. 715 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 716 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 717 if (llvm::Constant *PrologueSig = 718 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 719 llvm::Constant *FTRTTIConst = 720 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 721 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 722 llvm::Constant *PrologueStructConst = 723 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 724 Fn->setPrologueData(PrologueStructConst); 725 } 726 } 727 } 728 729 // If we're in C++ mode and the function name is "main", it is guaranteed 730 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 731 // used within a program"). 732 if (getLangOpts().CPlusPlus) 733 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 734 if (FD->isMain()) 735 Fn->addFnAttr(llvm::Attribute::NoRecurse); 736 737 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 738 739 // Create a marker to make it easy to insert allocas into the entryblock 740 // later. Don't create this with the builder, because we don't want it 741 // folded. 742 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 743 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 744 745 ReturnBlock = getJumpDestInCurrentScope("return"); 746 747 Builder.SetInsertPoint(EntryBB); 748 749 // Emit subprogram debug descriptor. 750 if (CGDebugInfo *DI = getDebugInfo()) { 751 // Reconstruct the type from the argument list so that implicit parameters, 752 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 753 // convention. 754 CallingConv CC = CallingConv::CC_C; 755 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 756 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 757 CC = SrcFnTy->getCallConv(); 758 SmallVector<QualType, 16> ArgTypes; 759 for (const VarDecl *VD : Args) 760 ArgTypes.push_back(VD->getType()); 761 QualType FnType = getContext().getFunctionType( 762 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 763 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 764 } 765 766 if (ShouldInstrumentFunction()) 767 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 768 769 if (CGM.getCodeGenOpts().InstrumentForProfiling) 770 EmitMCountInstrumentation(); 771 772 if (RetTy->isVoidType()) { 773 // Void type; nothing to return. 774 ReturnValue = Address::invalid(); 775 776 // Count the implicit return. 777 if (!endsWithReturn(D)) 778 ++NumReturnExprs; 779 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 780 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 781 // Indirect aggregate return; emit returned value directly into sret slot. 782 // This reduces code size, and affects correctness in C++. 783 auto AI = CurFn->arg_begin(); 784 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 785 ++AI; 786 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 787 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 788 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 789 // Load the sret pointer from the argument struct and return into that. 790 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 791 llvm::Function::arg_iterator EI = CurFn->arg_end(); 792 --EI; 793 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 794 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 795 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 796 } else { 797 ReturnValue = CreateIRTemp(RetTy, "retval"); 798 799 // Tell the epilog emitter to autorelease the result. We do this 800 // now so that various specialized functions can suppress it 801 // during their IR-generation. 802 if (getLangOpts().ObjCAutoRefCount && 803 !CurFnInfo->isReturnsRetained() && 804 RetTy->isObjCRetainableType()) 805 AutoreleaseResult = true; 806 } 807 808 EmitStartEHSpec(CurCodeDecl); 809 810 PrologueCleanupDepth = EHStack.stable_begin(); 811 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 812 813 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 814 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 815 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 816 if (MD->getParent()->isLambda() && 817 MD->getOverloadedOperator() == OO_Call) { 818 // We're in a lambda; figure out the captures. 819 MD->getParent()->getCaptureFields(LambdaCaptureFields, 820 LambdaThisCaptureField); 821 if (LambdaThisCaptureField) { 822 // If the lambda captures the object referred to by '*this' - either by 823 // value or by reference, make sure CXXThisValue points to the correct 824 // object. 825 826 // Get the lvalue for the field (which is a copy of the enclosing object 827 // or contains the address of the enclosing object). 828 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 829 if (!LambdaThisCaptureField->getType()->isPointerType()) { 830 // If the enclosing object was captured by value, just use its address. 831 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 832 } else { 833 // Load the lvalue pointed to by the field, since '*this' was captured 834 // by reference. 835 CXXThisValue = 836 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 837 } 838 } 839 for (auto *FD : MD->getParent()->fields()) { 840 if (FD->hasCapturedVLAType()) { 841 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 842 SourceLocation()).getScalarVal(); 843 auto VAT = FD->getCapturedVLAType(); 844 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 845 } 846 } 847 } else { 848 // Not in a lambda; just use 'this' from the method. 849 // FIXME: Should we generate a new load for each use of 'this'? The 850 // fast register allocator would be happier... 851 CXXThisValue = CXXABIThisValue; 852 } 853 } 854 855 // If any of the arguments have a variably modified type, make sure to 856 // emit the type size. 857 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 858 i != e; ++i) { 859 const VarDecl *VD = *i; 860 861 // Dig out the type as written from ParmVarDecls; it's unclear whether 862 // the standard (C99 6.9.1p10) requires this, but we're following the 863 // precedent set by gcc. 864 QualType Ty; 865 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 866 Ty = PVD->getOriginalType(); 867 else 868 Ty = VD->getType(); 869 870 if (Ty->isVariablyModifiedType()) 871 EmitVariablyModifiedType(Ty); 872 } 873 // Emit a location at the end of the prologue. 874 if (CGDebugInfo *DI = getDebugInfo()) 875 DI->EmitLocation(Builder, StartLoc); 876 } 877 878 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 879 const Stmt *Body) { 880 incrementProfileCounter(Body); 881 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 882 EmitCompoundStmtWithoutScope(*S); 883 else 884 EmitStmt(Body); 885 } 886 887 /// When instrumenting to collect profile data, the counts for some blocks 888 /// such as switch cases need to not include the fall-through counts, so 889 /// emit a branch around the instrumentation code. When not instrumenting, 890 /// this just calls EmitBlock(). 891 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 892 const Stmt *S) { 893 llvm::BasicBlock *SkipCountBB = nullptr; 894 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 895 // When instrumenting for profiling, the fallthrough to certain 896 // statements needs to skip over the instrumentation code so that we 897 // get an accurate count. 898 SkipCountBB = createBasicBlock("skipcount"); 899 EmitBranch(SkipCountBB); 900 } 901 EmitBlock(BB); 902 uint64_t CurrentCount = getCurrentProfileCount(); 903 incrementProfileCounter(S); 904 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 905 if (SkipCountBB) 906 EmitBlock(SkipCountBB); 907 } 908 909 /// Tries to mark the given function nounwind based on the 910 /// non-existence of any throwing calls within it. We believe this is 911 /// lightweight enough to do at -O0. 912 static void TryMarkNoThrow(llvm::Function *F) { 913 // LLVM treats 'nounwind' on a function as part of the type, so we 914 // can't do this on functions that can be overwritten. 915 if (F->isInterposable()) return; 916 917 for (llvm::BasicBlock &BB : *F) 918 for (llvm::Instruction &I : BB) 919 if (I.mayThrow()) 920 return; 921 922 F->setDoesNotThrow(); 923 } 924 925 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 926 const CGFunctionInfo &FnInfo) { 927 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 928 929 // Check if we should generate debug info for this function. 930 if (FD->hasAttr<NoDebugAttr>()) 931 DebugInfo = nullptr; // disable debug info indefinitely for this function 932 933 FunctionArgList Args; 934 QualType ResTy = FD->getReturnType(); 935 936 CurGD = GD; 937 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 938 if (MD && MD->isInstance()) { 939 if (CGM.getCXXABI().HasThisReturn(GD)) 940 ResTy = MD->getThisType(getContext()); 941 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 942 ResTy = CGM.getContext().VoidPtrTy; 943 CGM.getCXXABI().buildThisParam(*this, Args); 944 } 945 946 for (auto *Param : FD->params()) { 947 Args.push_back(Param); 948 if (!Param->hasAttr<PassObjectSizeAttr>()) 949 continue; 950 951 IdentifierInfo *NoID = nullptr; 952 auto *Implicit = ImplicitParamDecl::Create( 953 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 954 getContext().getSizeType()); 955 SizeArguments[Param] = Implicit; 956 Args.push_back(Implicit); 957 } 958 959 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 960 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 961 962 SourceRange BodyRange; 963 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 964 CurEHLocation = BodyRange.getEnd(); 965 966 // Use the location of the start of the function to determine where 967 // the function definition is located. By default use the location 968 // of the declaration as the location for the subprogram. A function 969 // may lack a declaration in the source code if it is created by code 970 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 971 SourceLocation Loc = FD->getLocation(); 972 973 // If this is a function specialization then use the pattern body 974 // as the location for the function. 975 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 976 if (SpecDecl->hasBody(SpecDecl)) 977 Loc = SpecDecl->getLocation(); 978 979 // Emit the standard function prologue. 980 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 981 982 // Generate the body of the function. 983 PGO.assignRegionCounters(GD, CurFn); 984 if (isa<CXXDestructorDecl>(FD)) 985 EmitDestructorBody(Args); 986 else if (isa<CXXConstructorDecl>(FD)) 987 EmitConstructorBody(Args); 988 else if (getLangOpts().CUDA && 989 !getLangOpts().CUDAIsDevice && 990 FD->hasAttr<CUDAGlobalAttr>()) 991 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 992 else if (isa<CXXConversionDecl>(FD) && 993 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 994 // The lambda conversion to block pointer is special; the semantics can't be 995 // expressed in the AST, so IRGen needs to special-case it. 996 EmitLambdaToBlockPointerBody(Args); 997 } else if (isa<CXXMethodDecl>(FD) && 998 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 999 // The lambda static invoker function is special, because it forwards or 1000 // clones the body of the function call operator (but is actually static). 1001 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1002 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1003 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1004 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1005 // Implicit copy-assignment gets the same special treatment as implicit 1006 // copy-constructors. 1007 emitImplicitAssignmentOperatorBody(Args); 1008 } else if (Stmt *Body = FD->getBody()) { 1009 EmitFunctionBody(Args, Body); 1010 } else 1011 llvm_unreachable("no definition for emitted function"); 1012 1013 // C++11 [stmt.return]p2: 1014 // Flowing off the end of a function [...] results in undefined behavior in 1015 // a value-returning function. 1016 // C11 6.9.1p12: 1017 // If the '}' that terminates a function is reached, and the value of the 1018 // function call is used by the caller, the behavior is undefined. 1019 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1020 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1021 if (SanOpts.has(SanitizerKind::Return)) { 1022 SanitizerScope SanScope(this); 1023 llvm::Value *IsFalse = Builder.getFalse(); 1024 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1025 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1026 None); 1027 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1028 EmitTrapCall(llvm::Intrinsic::trap); 1029 } 1030 Builder.CreateUnreachable(); 1031 Builder.ClearInsertionPoint(); 1032 } 1033 1034 // Emit the standard function epilogue. 1035 FinishFunction(BodyRange.getEnd()); 1036 1037 // If we haven't marked the function nothrow through other means, do 1038 // a quick pass now to see if we can. 1039 if (!CurFn->doesNotThrow()) 1040 TryMarkNoThrow(CurFn); 1041 } 1042 1043 /// ContainsLabel - Return true if the statement contains a label in it. If 1044 /// this statement is not executed normally, it not containing a label means 1045 /// that we can just remove the code. 1046 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1047 // Null statement, not a label! 1048 if (!S) return false; 1049 1050 // If this is a label, we have to emit the code, consider something like: 1051 // if (0) { ... foo: bar(); } goto foo; 1052 // 1053 // TODO: If anyone cared, we could track __label__'s, since we know that you 1054 // can't jump to one from outside their declared region. 1055 if (isa<LabelStmt>(S)) 1056 return true; 1057 1058 // If this is a case/default statement, and we haven't seen a switch, we have 1059 // to emit the code. 1060 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1061 return true; 1062 1063 // If this is a switch statement, we want to ignore cases below it. 1064 if (isa<SwitchStmt>(S)) 1065 IgnoreCaseStmts = true; 1066 1067 // Scan subexpressions for verboten labels. 1068 for (const Stmt *SubStmt : S->children()) 1069 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1070 return true; 1071 1072 return false; 1073 } 1074 1075 /// containsBreak - Return true if the statement contains a break out of it. 1076 /// If the statement (recursively) contains a switch or loop with a break 1077 /// inside of it, this is fine. 1078 bool CodeGenFunction::containsBreak(const Stmt *S) { 1079 // Null statement, not a label! 1080 if (!S) return false; 1081 1082 // If this is a switch or loop that defines its own break scope, then we can 1083 // include it and anything inside of it. 1084 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1085 isa<ForStmt>(S)) 1086 return false; 1087 1088 if (isa<BreakStmt>(S)) 1089 return true; 1090 1091 // Scan subexpressions for verboten breaks. 1092 for (const Stmt *SubStmt : S->children()) 1093 if (containsBreak(SubStmt)) 1094 return true; 1095 1096 return false; 1097 } 1098 1099 1100 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1101 /// to a constant, or if it does but contains a label, return false. If it 1102 /// constant folds return true and set the boolean result in Result. 1103 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1104 bool &ResultBool) { 1105 llvm::APSInt ResultInt; 1106 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1107 return false; 1108 1109 ResultBool = ResultInt.getBoolValue(); 1110 return true; 1111 } 1112 1113 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1114 /// to a constant, or if it does but contains a label, return false. If it 1115 /// constant folds return true and set the folded value. 1116 bool CodeGenFunction:: 1117 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1118 // FIXME: Rename and handle conversion of other evaluatable things 1119 // to bool. 1120 llvm::APSInt Int; 1121 if (!Cond->EvaluateAsInt(Int, getContext())) 1122 return false; // Not foldable, not integer or not fully evaluatable. 1123 1124 if (CodeGenFunction::ContainsLabel(Cond)) 1125 return false; // Contains a label. 1126 1127 ResultInt = Int; 1128 return true; 1129 } 1130 1131 1132 1133 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1134 /// statement) to the specified blocks. Based on the condition, this might try 1135 /// to simplify the codegen of the conditional based on the branch. 1136 /// 1137 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1138 llvm::BasicBlock *TrueBlock, 1139 llvm::BasicBlock *FalseBlock, 1140 uint64_t TrueCount) { 1141 Cond = Cond->IgnoreParens(); 1142 1143 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1144 1145 // Handle X && Y in a condition. 1146 if (CondBOp->getOpcode() == BO_LAnd) { 1147 // If we have "1 && X", simplify the code. "0 && X" would have constant 1148 // folded if the case was simple enough. 1149 bool ConstantBool = false; 1150 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1151 ConstantBool) { 1152 // br(1 && X) -> br(X). 1153 incrementProfileCounter(CondBOp); 1154 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1155 TrueCount); 1156 } 1157 1158 // If we have "X && 1", simplify the code to use an uncond branch. 1159 // "X && 0" would have been constant folded to 0. 1160 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1161 ConstantBool) { 1162 // br(X && 1) -> br(X). 1163 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1164 TrueCount); 1165 } 1166 1167 // Emit the LHS as a conditional. If the LHS conditional is false, we 1168 // want to jump to the FalseBlock. 1169 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1170 // The counter tells us how often we evaluate RHS, and all of TrueCount 1171 // can be propagated to that branch. 1172 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1173 1174 ConditionalEvaluation eval(*this); 1175 { 1176 ApplyDebugLocation DL(*this, Cond); 1177 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1178 EmitBlock(LHSTrue); 1179 } 1180 1181 incrementProfileCounter(CondBOp); 1182 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1183 1184 // Any temporaries created here are conditional. 1185 eval.begin(*this); 1186 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1187 eval.end(*this); 1188 1189 return; 1190 } 1191 1192 if (CondBOp->getOpcode() == BO_LOr) { 1193 // If we have "0 || X", simplify the code. "1 || X" would have constant 1194 // folded if the case was simple enough. 1195 bool ConstantBool = false; 1196 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1197 !ConstantBool) { 1198 // br(0 || X) -> br(X). 1199 incrementProfileCounter(CondBOp); 1200 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1201 TrueCount); 1202 } 1203 1204 // If we have "X || 0", simplify the code to use an uncond branch. 1205 // "X || 1" would have been constant folded to 1. 1206 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1207 !ConstantBool) { 1208 // br(X || 0) -> br(X). 1209 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1210 TrueCount); 1211 } 1212 1213 // Emit the LHS as a conditional. If the LHS conditional is true, we 1214 // want to jump to the TrueBlock. 1215 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1216 // We have the count for entry to the RHS and for the whole expression 1217 // being true, so we can divy up True count between the short circuit and 1218 // the RHS. 1219 uint64_t LHSCount = 1220 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1221 uint64_t RHSCount = TrueCount - LHSCount; 1222 1223 ConditionalEvaluation eval(*this); 1224 { 1225 ApplyDebugLocation DL(*this, Cond); 1226 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1227 EmitBlock(LHSFalse); 1228 } 1229 1230 incrementProfileCounter(CondBOp); 1231 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1232 1233 // Any temporaries created here are conditional. 1234 eval.begin(*this); 1235 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1236 1237 eval.end(*this); 1238 1239 return; 1240 } 1241 } 1242 1243 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1244 // br(!x, t, f) -> br(x, f, t) 1245 if (CondUOp->getOpcode() == UO_LNot) { 1246 // Negate the count. 1247 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1248 // Negate the condition and swap the destination blocks. 1249 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1250 FalseCount); 1251 } 1252 } 1253 1254 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1255 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1256 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1257 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1258 1259 ConditionalEvaluation cond(*this); 1260 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1261 getProfileCount(CondOp)); 1262 1263 // When computing PGO branch weights, we only know the overall count for 1264 // the true block. This code is essentially doing tail duplication of the 1265 // naive code-gen, introducing new edges for which counts are not 1266 // available. Divide the counts proportionally between the LHS and RHS of 1267 // the conditional operator. 1268 uint64_t LHSScaledTrueCount = 0; 1269 if (TrueCount) { 1270 double LHSRatio = 1271 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1272 LHSScaledTrueCount = TrueCount * LHSRatio; 1273 } 1274 1275 cond.begin(*this); 1276 EmitBlock(LHSBlock); 1277 incrementProfileCounter(CondOp); 1278 { 1279 ApplyDebugLocation DL(*this, Cond); 1280 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1281 LHSScaledTrueCount); 1282 } 1283 cond.end(*this); 1284 1285 cond.begin(*this); 1286 EmitBlock(RHSBlock); 1287 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1288 TrueCount - LHSScaledTrueCount); 1289 cond.end(*this); 1290 1291 return; 1292 } 1293 1294 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1295 // Conditional operator handling can give us a throw expression as a 1296 // condition for a case like: 1297 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1298 // Fold this to: 1299 // br(c, throw x, br(y, t, f)) 1300 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1301 return; 1302 } 1303 1304 // If the branch has a condition wrapped by __builtin_unpredictable, 1305 // create metadata that specifies that the branch is unpredictable. 1306 // Don't bother if not optimizing because that metadata would not be used. 1307 llvm::MDNode *Unpredictable = nullptr; 1308 auto *Call = dyn_cast<CallExpr>(Cond); 1309 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1310 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1311 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1312 llvm::MDBuilder MDHelper(getLLVMContext()); 1313 Unpredictable = MDHelper.createUnpredictable(); 1314 } 1315 } 1316 1317 // Create branch weights based on the number of times we get here and the 1318 // number of times the condition should be true. 1319 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1320 llvm::MDNode *Weights = 1321 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1322 1323 // Emit the code with the fully general case. 1324 llvm::Value *CondV; 1325 { 1326 ApplyDebugLocation DL(*this, Cond); 1327 CondV = EvaluateExprAsBool(Cond); 1328 } 1329 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1330 } 1331 1332 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1333 /// specified stmt yet. 1334 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1335 CGM.ErrorUnsupported(S, Type); 1336 } 1337 1338 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1339 /// variable-length array whose elements have a non-zero bit-pattern. 1340 /// 1341 /// \param baseType the inner-most element type of the array 1342 /// \param src - a char* pointing to the bit-pattern for a single 1343 /// base element of the array 1344 /// \param sizeInChars - the total size of the VLA, in chars 1345 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1346 Address dest, Address src, 1347 llvm::Value *sizeInChars) { 1348 CGBuilderTy &Builder = CGF.Builder; 1349 1350 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1351 llvm::Value *baseSizeInChars 1352 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1353 1354 Address begin = 1355 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1356 llvm::Value *end = 1357 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1358 1359 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1360 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1361 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1362 1363 // Make a loop over the VLA. C99 guarantees that the VLA element 1364 // count must be nonzero. 1365 CGF.EmitBlock(loopBB); 1366 1367 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1368 cur->addIncoming(begin.getPointer(), originBB); 1369 1370 CharUnits curAlign = 1371 dest.getAlignment().alignmentOfArrayElement(baseSize); 1372 1373 // memcpy the individual element bit-pattern. 1374 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1375 /*volatile*/ false); 1376 1377 // Go to the next element. 1378 llvm::Value *next = 1379 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1380 1381 // Leave if that's the end of the VLA. 1382 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1383 Builder.CreateCondBr(done, contBB, loopBB); 1384 cur->addIncoming(next, loopBB); 1385 1386 CGF.EmitBlock(contBB); 1387 } 1388 1389 void 1390 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1391 // Ignore empty classes in C++. 1392 if (getLangOpts().CPlusPlus) { 1393 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1394 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1395 return; 1396 } 1397 } 1398 1399 // Cast the dest ptr to the appropriate i8 pointer type. 1400 if (DestPtr.getElementType() != Int8Ty) 1401 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1402 1403 // Get size and alignment info for this aggregate. 1404 CharUnits size = getContext().getTypeSizeInChars(Ty); 1405 1406 llvm::Value *SizeVal; 1407 const VariableArrayType *vla; 1408 1409 // Don't bother emitting a zero-byte memset. 1410 if (size.isZero()) { 1411 // But note that getTypeInfo returns 0 for a VLA. 1412 if (const VariableArrayType *vlaType = 1413 dyn_cast_or_null<VariableArrayType>( 1414 getContext().getAsArrayType(Ty))) { 1415 QualType eltType; 1416 llvm::Value *numElts; 1417 std::tie(numElts, eltType) = getVLASize(vlaType); 1418 1419 SizeVal = numElts; 1420 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1421 if (!eltSize.isOne()) 1422 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1423 vla = vlaType; 1424 } else { 1425 return; 1426 } 1427 } else { 1428 SizeVal = CGM.getSize(size); 1429 vla = nullptr; 1430 } 1431 1432 // If the type contains a pointer to data member we can't memset it to zero. 1433 // Instead, create a null constant and copy it to the destination. 1434 // TODO: there are other patterns besides zero that we can usefully memset, 1435 // like -1, which happens to be the pattern used by member-pointers. 1436 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1437 // For a VLA, emit a single element, then splat that over the VLA. 1438 if (vla) Ty = getContext().getBaseElementType(vla); 1439 1440 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1441 1442 llvm::GlobalVariable *NullVariable = 1443 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1444 /*isConstant=*/true, 1445 llvm::GlobalVariable::PrivateLinkage, 1446 NullConstant, Twine()); 1447 CharUnits NullAlign = DestPtr.getAlignment(); 1448 NullVariable->setAlignment(NullAlign.getQuantity()); 1449 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1450 NullAlign); 1451 1452 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1453 1454 // Get and call the appropriate llvm.memcpy overload. 1455 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1456 return; 1457 } 1458 1459 // Otherwise, just memset the whole thing to zero. This is legal 1460 // because in LLVM, all default initializers (other than the ones we just 1461 // handled above) are guaranteed to have a bit pattern of all zeros. 1462 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1463 } 1464 1465 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1466 // Make sure that there is a block for the indirect goto. 1467 if (!IndirectBranch) 1468 GetIndirectGotoBlock(); 1469 1470 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1471 1472 // Make sure the indirect branch includes all of the address-taken blocks. 1473 IndirectBranch->addDestination(BB); 1474 return llvm::BlockAddress::get(CurFn, BB); 1475 } 1476 1477 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1478 // If we already made the indirect branch for indirect goto, return its block. 1479 if (IndirectBranch) return IndirectBranch->getParent(); 1480 1481 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1482 1483 // Create the PHI node that indirect gotos will add entries to. 1484 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1485 "indirect.goto.dest"); 1486 1487 // Create the indirect branch instruction. 1488 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1489 return IndirectBranch->getParent(); 1490 } 1491 1492 /// Computes the length of an array in elements, as well as the base 1493 /// element type and a properly-typed first element pointer. 1494 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1495 QualType &baseType, 1496 Address &addr) { 1497 const ArrayType *arrayType = origArrayType; 1498 1499 // If it's a VLA, we have to load the stored size. Note that 1500 // this is the size of the VLA in bytes, not its size in elements. 1501 llvm::Value *numVLAElements = nullptr; 1502 if (isa<VariableArrayType>(arrayType)) { 1503 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1504 1505 // Walk into all VLAs. This doesn't require changes to addr, 1506 // which has type T* where T is the first non-VLA element type. 1507 do { 1508 QualType elementType = arrayType->getElementType(); 1509 arrayType = getContext().getAsArrayType(elementType); 1510 1511 // If we only have VLA components, 'addr' requires no adjustment. 1512 if (!arrayType) { 1513 baseType = elementType; 1514 return numVLAElements; 1515 } 1516 } while (isa<VariableArrayType>(arrayType)); 1517 1518 // We get out here only if we find a constant array type 1519 // inside the VLA. 1520 } 1521 1522 // We have some number of constant-length arrays, so addr should 1523 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1524 // down to the first element of addr. 1525 SmallVector<llvm::Value*, 8> gepIndices; 1526 1527 // GEP down to the array type. 1528 llvm::ConstantInt *zero = Builder.getInt32(0); 1529 gepIndices.push_back(zero); 1530 1531 uint64_t countFromCLAs = 1; 1532 QualType eltType; 1533 1534 llvm::ArrayType *llvmArrayType = 1535 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1536 while (llvmArrayType) { 1537 assert(isa<ConstantArrayType>(arrayType)); 1538 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1539 == llvmArrayType->getNumElements()); 1540 1541 gepIndices.push_back(zero); 1542 countFromCLAs *= llvmArrayType->getNumElements(); 1543 eltType = arrayType->getElementType(); 1544 1545 llvmArrayType = 1546 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1547 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1548 assert((!llvmArrayType || arrayType) && 1549 "LLVM and Clang types are out-of-synch"); 1550 } 1551 1552 if (arrayType) { 1553 // From this point onwards, the Clang array type has been emitted 1554 // as some other type (probably a packed struct). Compute the array 1555 // size, and just emit the 'begin' expression as a bitcast. 1556 while (arrayType) { 1557 countFromCLAs *= 1558 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1559 eltType = arrayType->getElementType(); 1560 arrayType = getContext().getAsArrayType(eltType); 1561 } 1562 1563 llvm::Type *baseType = ConvertType(eltType); 1564 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1565 } else { 1566 // Create the actual GEP. 1567 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1568 gepIndices, "array.begin"), 1569 addr.getAlignment()); 1570 } 1571 1572 baseType = eltType; 1573 1574 llvm::Value *numElements 1575 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1576 1577 // If we had any VLA dimensions, factor them in. 1578 if (numVLAElements) 1579 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1580 1581 return numElements; 1582 } 1583 1584 std::pair<llvm::Value*, QualType> 1585 CodeGenFunction::getVLASize(QualType type) { 1586 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1587 assert(vla && "type was not a variable array type!"); 1588 return getVLASize(vla); 1589 } 1590 1591 std::pair<llvm::Value*, QualType> 1592 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1593 // The number of elements so far; always size_t. 1594 llvm::Value *numElements = nullptr; 1595 1596 QualType elementType; 1597 do { 1598 elementType = type->getElementType(); 1599 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1600 assert(vlaSize && "no size for VLA!"); 1601 assert(vlaSize->getType() == SizeTy); 1602 1603 if (!numElements) { 1604 numElements = vlaSize; 1605 } else { 1606 // It's undefined behavior if this wraps around, so mark it that way. 1607 // FIXME: Teach -fsanitize=undefined to trap this. 1608 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1609 } 1610 } while ((type = getContext().getAsVariableArrayType(elementType))); 1611 1612 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1613 } 1614 1615 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1616 assert(type->isVariablyModifiedType() && 1617 "Must pass variably modified type to EmitVLASizes!"); 1618 1619 EnsureInsertPoint(); 1620 1621 // We're going to walk down into the type and look for VLA 1622 // expressions. 1623 do { 1624 assert(type->isVariablyModifiedType()); 1625 1626 const Type *ty = type.getTypePtr(); 1627 switch (ty->getTypeClass()) { 1628 1629 #define TYPE(Class, Base) 1630 #define ABSTRACT_TYPE(Class, Base) 1631 #define NON_CANONICAL_TYPE(Class, Base) 1632 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1633 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1634 #include "clang/AST/TypeNodes.def" 1635 llvm_unreachable("unexpected dependent type!"); 1636 1637 // These types are never variably-modified. 1638 case Type::Builtin: 1639 case Type::Complex: 1640 case Type::Vector: 1641 case Type::ExtVector: 1642 case Type::Record: 1643 case Type::Enum: 1644 case Type::Elaborated: 1645 case Type::TemplateSpecialization: 1646 case Type::ObjCObject: 1647 case Type::ObjCInterface: 1648 case Type::ObjCObjectPointer: 1649 llvm_unreachable("type class is never variably-modified!"); 1650 1651 case Type::Adjusted: 1652 type = cast<AdjustedType>(ty)->getAdjustedType(); 1653 break; 1654 1655 case Type::Decayed: 1656 type = cast<DecayedType>(ty)->getPointeeType(); 1657 break; 1658 1659 case Type::Pointer: 1660 type = cast<PointerType>(ty)->getPointeeType(); 1661 break; 1662 1663 case Type::BlockPointer: 1664 type = cast<BlockPointerType>(ty)->getPointeeType(); 1665 break; 1666 1667 case Type::LValueReference: 1668 case Type::RValueReference: 1669 type = cast<ReferenceType>(ty)->getPointeeType(); 1670 break; 1671 1672 case Type::MemberPointer: 1673 type = cast<MemberPointerType>(ty)->getPointeeType(); 1674 break; 1675 1676 case Type::ConstantArray: 1677 case Type::IncompleteArray: 1678 // Losing element qualification here is fine. 1679 type = cast<ArrayType>(ty)->getElementType(); 1680 break; 1681 1682 case Type::VariableArray: { 1683 // Losing element qualification here is fine. 1684 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1685 1686 // Unknown size indication requires no size computation. 1687 // Otherwise, evaluate and record it. 1688 if (const Expr *size = vat->getSizeExpr()) { 1689 // It's possible that we might have emitted this already, 1690 // e.g. with a typedef and a pointer to it. 1691 llvm::Value *&entry = VLASizeMap[size]; 1692 if (!entry) { 1693 llvm::Value *Size = EmitScalarExpr(size); 1694 1695 // C11 6.7.6.2p5: 1696 // If the size is an expression that is not an integer constant 1697 // expression [...] each time it is evaluated it shall have a value 1698 // greater than zero. 1699 if (SanOpts.has(SanitizerKind::VLABound) && 1700 size->getType()->isSignedIntegerType()) { 1701 SanitizerScope SanScope(this); 1702 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1703 llvm::Constant *StaticArgs[] = { 1704 EmitCheckSourceLocation(size->getLocStart()), 1705 EmitCheckTypeDescriptor(size->getType()) 1706 }; 1707 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1708 SanitizerKind::VLABound), 1709 "vla_bound_not_positive", StaticArgs, Size); 1710 } 1711 1712 // Always zexting here would be wrong if it weren't 1713 // undefined behavior to have a negative bound. 1714 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1715 } 1716 } 1717 type = vat->getElementType(); 1718 break; 1719 } 1720 1721 case Type::FunctionProto: 1722 case Type::FunctionNoProto: 1723 type = cast<FunctionType>(ty)->getReturnType(); 1724 break; 1725 1726 case Type::Paren: 1727 case Type::TypeOf: 1728 case Type::UnaryTransform: 1729 case Type::Attributed: 1730 case Type::SubstTemplateTypeParm: 1731 case Type::PackExpansion: 1732 // Keep walking after single level desugaring. 1733 type = type.getSingleStepDesugaredType(getContext()); 1734 break; 1735 1736 case Type::Typedef: 1737 case Type::Decltype: 1738 case Type::Auto: 1739 // Stop walking: nothing to do. 1740 return; 1741 1742 case Type::TypeOfExpr: 1743 // Stop walking: emit typeof expression. 1744 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1745 return; 1746 1747 case Type::Atomic: 1748 type = cast<AtomicType>(ty)->getValueType(); 1749 break; 1750 1751 case Type::Pipe: 1752 type = cast<PipeType>(ty)->getElementType(); 1753 break; 1754 } 1755 } while (type->isVariablyModifiedType()); 1756 } 1757 1758 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1759 if (getContext().getBuiltinVaListType()->isArrayType()) 1760 return EmitPointerWithAlignment(E); 1761 return EmitLValue(E).getAddress(); 1762 } 1763 1764 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1765 return EmitLValue(E).getAddress(); 1766 } 1767 1768 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1769 llvm::Constant *Init) { 1770 assert (Init && "Invalid DeclRefExpr initializer!"); 1771 if (CGDebugInfo *Dbg = getDebugInfo()) 1772 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1773 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1774 } 1775 1776 CodeGenFunction::PeepholeProtection 1777 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1778 // At the moment, the only aggressive peephole we do in IR gen 1779 // is trunc(zext) folding, but if we add more, we can easily 1780 // extend this protection. 1781 1782 if (!rvalue.isScalar()) return PeepholeProtection(); 1783 llvm::Value *value = rvalue.getScalarVal(); 1784 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1785 1786 // Just make an extra bitcast. 1787 assert(HaveInsertPoint()); 1788 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1789 Builder.GetInsertBlock()); 1790 1791 PeepholeProtection protection; 1792 protection.Inst = inst; 1793 return protection; 1794 } 1795 1796 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1797 if (!protection.Inst) return; 1798 1799 // In theory, we could try to duplicate the peepholes now, but whatever. 1800 protection.Inst->eraseFromParent(); 1801 } 1802 1803 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1804 llvm::Value *AnnotatedVal, 1805 StringRef AnnotationStr, 1806 SourceLocation Location) { 1807 llvm::Value *Args[4] = { 1808 AnnotatedVal, 1809 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1810 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1811 CGM.EmitAnnotationLineNo(Location) 1812 }; 1813 return Builder.CreateCall(AnnotationFn, Args); 1814 } 1815 1816 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1817 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1818 // FIXME We create a new bitcast for every annotation because that's what 1819 // llvm-gcc was doing. 1820 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1821 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1822 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1823 I->getAnnotation(), D->getLocation()); 1824 } 1825 1826 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1827 Address Addr) { 1828 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1829 llvm::Value *V = Addr.getPointer(); 1830 llvm::Type *VTy = V->getType(); 1831 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1832 CGM.Int8PtrTy); 1833 1834 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1835 // FIXME Always emit the cast inst so we can differentiate between 1836 // annotation on the first field of a struct and annotation on the struct 1837 // itself. 1838 if (VTy != CGM.Int8PtrTy) 1839 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1840 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1841 V = Builder.CreateBitCast(V, VTy); 1842 } 1843 1844 return Address(V, Addr.getAlignment()); 1845 } 1846 1847 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1848 1849 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1850 : CGF(CGF) { 1851 assert(!CGF->IsSanitizerScope); 1852 CGF->IsSanitizerScope = true; 1853 } 1854 1855 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1856 CGF->IsSanitizerScope = false; 1857 } 1858 1859 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1860 const llvm::Twine &Name, 1861 llvm::BasicBlock *BB, 1862 llvm::BasicBlock::iterator InsertPt) const { 1863 LoopStack.InsertHelper(I); 1864 if (IsSanitizerScope) 1865 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1866 } 1867 1868 void CGBuilderInserter::InsertHelper( 1869 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1870 llvm::BasicBlock::iterator InsertPt) const { 1871 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1872 if (CGF) 1873 CGF->InsertHelper(I, Name, BB, InsertPt); 1874 } 1875 1876 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1877 CodeGenModule &CGM, const FunctionDecl *FD, 1878 std::string &FirstMissing) { 1879 // If there aren't any required features listed then go ahead and return. 1880 if (ReqFeatures.empty()) 1881 return false; 1882 1883 // Now build up the set of caller features and verify that all the required 1884 // features are there. 1885 llvm::StringMap<bool> CallerFeatureMap; 1886 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1887 1888 // If we have at least one of the features in the feature list return 1889 // true, otherwise return false. 1890 return std::all_of( 1891 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1892 SmallVector<StringRef, 1> OrFeatures; 1893 Feature.split(OrFeatures, "|"); 1894 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1895 [&](StringRef Feature) { 1896 if (!CallerFeatureMap.lookup(Feature)) { 1897 FirstMissing = Feature.str(); 1898 return false; 1899 } 1900 return true; 1901 }); 1902 }); 1903 } 1904 1905 // Emits an error if we don't have a valid set of target features for the 1906 // called function. 1907 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1908 const FunctionDecl *TargetDecl) { 1909 // Early exit if this is an indirect call. 1910 if (!TargetDecl) 1911 return; 1912 1913 // Get the current enclosing function if it exists. If it doesn't 1914 // we can't check the target features anyhow. 1915 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1916 if (!FD) 1917 return; 1918 1919 // Grab the required features for the call. For a builtin this is listed in 1920 // the td file with the default cpu, for an always_inline function this is any 1921 // listed cpu and any listed features. 1922 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1923 std::string MissingFeature; 1924 if (BuiltinID) { 1925 SmallVector<StringRef, 1> ReqFeatures; 1926 const char *FeatureList = 1927 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1928 // Return if the builtin doesn't have any required features. 1929 if (!FeatureList || StringRef(FeatureList) == "") 1930 return; 1931 StringRef(FeatureList).split(ReqFeatures, ","); 1932 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1933 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1934 << TargetDecl->getDeclName() 1935 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1936 1937 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1938 // Get the required features for the callee. 1939 SmallVector<StringRef, 1> ReqFeatures; 1940 llvm::StringMap<bool> CalleeFeatureMap; 1941 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1942 for (const auto &F : CalleeFeatureMap) { 1943 // Only positive features are "required". 1944 if (F.getValue()) 1945 ReqFeatures.push_back(F.getKey()); 1946 } 1947 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1948 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1949 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1950 } 1951 } 1952 1953 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1954 if (!CGM.getCodeGenOpts().SanitizeStats) 1955 return; 1956 1957 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1958 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1959 CGM.getSanStats().create(IRB, SSK); 1960 } 1961