1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   Builder.setFastMathFlags(FMF);
107 }
108 
109 CodeGenFunction::~CodeGenFunction() {
110   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
111 
112   // If there are any unclaimed block infos, go ahead and destroy them
113   // now.  This can happen if IR-gen gets clever and skips evaluating
114   // something.
115   if (FirstBlockInfo)
116     destroyBlockInfos(FirstBlockInfo);
117 
118   if (getLangOpts().OpenMP && CurFn)
119     CGM.getOpenMPRuntime().functionFinished(*this);
120 }
121 
122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
123                                                     LValueBaseInfo *BaseInfo,
124                                                     TBAAAccessInfo *TBAAInfo) {
125   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
126                                  /* forPointeeType= */ true);
127 }
128 
129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
130                                                    LValueBaseInfo *BaseInfo,
131                                                    TBAAAccessInfo *TBAAInfo,
132                                                    bool forPointeeType) {
133   if (TBAAInfo)
134     *TBAAInfo = CGM.getTBAAAccessInfo(T);
135 
136   // Honor alignment typedef attributes even on incomplete types.
137   // We also honor them straight for C++ class types, even as pointees;
138   // there's an expressivity gap here.
139   if (auto TT = T->getAs<TypedefType>()) {
140     if (auto Align = TT->getDecl()->getMaxAlignment()) {
141       if (BaseInfo)
142         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
143       return getContext().toCharUnitsFromBits(Align);
144     }
145   }
146 
147   if (BaseInfo)
148     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
149 
150   CharUnits Alignment;
151   if (T->isIncompleteType()) {
152     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
153   } else {
154     // For C++ class pointees, we don't know whether we're pointing at a
155     // base or a complete object, so we generally need to use the
156     // non-virtual alignment.
157     const CXXRecordDecl *RD;
158     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
159       Alignment = CGM.getClassPointerAlignment(RD);
160     } else {
161       Alignment = getContext().getTypeAlignInChars(T);
162       if (T.getQualifiers().hasUnaligned())
163         Alignment = CharUnits::One();
164     }
165 
166     // Cap to the global maximum type alignment unless the alignment
167     // was somehow explicit on the type.
168     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
169       if (Alignment.getQuantity() > MaxAlign &&
170           !getContext().isAlignmentRequired(T))
171         Alignment = CharUnits::fromQuantity(MaxAlign);
172     }
173   }
174   return Alignment;
175 }
176 
177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178   LValueBaseInfo BaseInfo;
179   TBAAAccessInfo TBAAInfo;
180   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                           TBAAInfo);
183 }
184 
185 /// Given a value of type T* that may not be to a complete object,
186 /// construct an l-value with the natural pointee alignment of T.
187 LValue
188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                             /* forPointeeType= */ true);
193   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194 }
195 
196 
197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198   return CGM.getTypes().ConvertTypeForMem(T);
199 }
200 
201 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202   return CGM.getTypes().ConvertType(T);
203 }
204 
205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206   type = type.getCanonicalType();
207   while (true) {
208     switch (type->getTypeClass()) {
209 #define TYPE(name, parent)
210 #define ABSTRACT_TYPE(name, parent)
211 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212 #define DEPENDENT_TYPE(name, parent) case Type::name:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214 #include "clang/AST/TypeNodes.def"
215       llvm_unreachable("non-canonical or dependent type in IR-generation");
216 
217     case Type::Auto:
218     case Type::DeducedTemplateSpecialization:
219       llvm_unreachable("undeduced type in IR-generation");
220 
221     // Various scalar types.
222     case Type::Builtin:
223     case Type::Pointer:
224     case Type::BlockPointer:
225     case Type::LValueReference:
226     case Type::RValueReference:
227     case Type::MemberPointer:
228     case Type::Vector:
229     case Type::ExtVector:
230     case Type::FunctionProto:
231     case Type::FunctionNoProto:
232     case Type::Enum:
233     case Type::ObjCObjectPointer:
234     case Type::Pipe:
235       return TEK_Scalar;
236 
237     // Complexes.
238     case Type::Complex:
239       return TEK_Complex;
240 
241     // Arrays, records, and Objective-C objects.
242     case Type::ConstantArray:
243     case Type::IncompleteArray:
244     case Type::VariableArray:
245     case Type::Record:
246     case Type::ObjCObject:
247     case Type::ObjCInterface:
248       return TEK_Aggregate;
249 
250     // We operate on atomic values according to their underlying type.
251     case Type::Atomic:
252       type = cast<AtomicType>(type)->getValueType();
253       continue;
254     }
255     llvm_unreachable("unknown type kind!");
256   }
257 }
258 
259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
260   // For cleanliness, we try to avoid emitting the return block for
261   // simple cases.
262   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
263 
264   if (CurBB) {
265     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
266 
267     // We have a valid insert point, reuse it if it is empty or there are no
268     // explicit jumps to the return block.
269     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
270       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
271       delete ReturnBlock.getBlock();
272     } else
273       EmitBlock(ReturnBlock.getBlock());
274     return llvm::DebugLoc();
275   }
276 
277   // Otherwise, if the return block is the target of a single direct
278   // branch then we can just put the code in that block instead. This
279   // cleans up functions which started with a unified return block.
280   if (ReturnBlock.getBlock()->hasOneUse()) {
281     llvm::BranchInst *BI =
282       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
283     if (BI && BI->isUnconditional() &&
284         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
285       // Record/return the DebugLoc of the simple 'return' expression to be used
286       // later by the actual 'ret' instruction.
287       llvm::DebugLoc Loc = BI->getDebugLoc();
288       Builder.SetInsertPoint(BI->getParent());
289       BI->eraseFromParent();
290       delete ReturnBlock.getBlock();
291       return Loc;
292     }
293   }
294 
295   // FIXME: We are at an unreachable point, there is no reason to emit the block
296   // unless it has uses. However, we still need a place to put the debug
297   // region.end for now.
298 
299   EmitBlock(ReturnBlock.getBlock());
300   return llvm::DebugLoc();
301 }
302 
303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
304   if (!BB) return;
305   if (!BB->use_empty())
306     return CGF.CurFn->getBasicBlockList().push_back(BB);
307   delete BB;
308 }
309 
310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
311   assert(BreakContinueStack.empty() &&
312          "mismatched push/pop in break/continue stack!");
313 
314   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
315     && NumSimpleReturnExprs == NumReturnExprs
316     && ReturnBlock.getBlock()->use_empty();
317   // Usually the return expression is evaluated before the cleanup
318   // code.  If the function contains only a simple return statement,
319   // such as a constant, the location before the cleanup code becomes
320   // the last useful breakpoint in the function, because the simple
321   // return expression will be evaluated after the cleanup code. To be
322   // safe, set the debug location for cleanup code to the location of
323   // the return statement.  Otherwise the cleanup code should be at the
324   // end of the function's lexical scope.
325   //
326   // If there are multiple branches to the return block, the branch
327   // instructions will get the location of the return statements and
328   // all will be fine.
329   if (CGDebugInfo *DI = getDebugInfo()) {
330     if (OnlySimpleReturnStmts)
331       DI->EmitLocation(Builder, LastStopPoint);
332     else
333       DI->EmitLocation(Builder, EndLoc);
334   }
335 
336   // Pop any cleanups that might have been associated with the
337   // parameters.  Do this in whatever block we're currently in; it's
338   // important to do this before we enter the return block or return
339   // edges will be *really* confused.
340   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
341   bool HasOnlyLifetimeMarkers =
342       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
343   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
344   if (HasCleanups) {
345     // Make sure the line table doesn't jump back into the body for
346     // the ret after it's been at EndLoc.
347     if (CGDebugInfo *DI = getDebugInfo())
348       if (OnlySimpleReturnStmts)
349         DI->EmitLocation(Builder, EndLoc);
350 
351     PopCleanupBlocks(PrologueCleanupDepth);
352   }
353 
354   // Emit function epilog (to return).
355   llvm::DebugLoc Loc = EmitReturnBlock();
356 
357   if (ShouldInstrumentFunction()) {
358     if (CGM.getCodeGenOpts().InstrumentFunctions)
359       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
360     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
361       CurFn->addFnAttr("instrument-function-exit-inlined",
362                        "__cyg_profile_func_exit");
363   }
364 
365   // Emit debug descriptor for function end.
366   if (CGDebugInfo *DI = getDebugInfo())
367     DI->EmitFunctionEnd(Builder, CurFn);
368 
369   // Reset the debug location to that of the simple 'return' expression, if any
370   // rather than that of the end of the function's scope '}'.
371   ApplyDebugLocation AL(*this, Loc);
372   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
373   EmitEndEHSpec(CurCodeDecl);
374 
375   assert(EHStack.empty() &&
376          "did not remove all scopes from cleanup stack!");
377 
378   // If someone did an indirect goto, emit the indirect goto block at the end of
379   // the function.
380   if (IndirectBranch) {
381     EmitBlock(IndirectBranch->getParent());
382     Builder.ClearInsertionPoint();
383   }
384 
385   // If some of our locals escaped, insert a call to llvm.localescape in the
386   // entry block.
387   if (!EscapedLocals.empty()) {
388     // Invert the map from local to index into a simple vector. There should be
389     // no holes.
390     SmallVector<llvm::Value *, 4> EscapeArgs;
391     EscapeArgs.resize(EscapedLocals.size());
392     for (auto &Pair : EscapedLocals)
393       EscapeArgs[Pair.second] = Pair.first;
394     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
395         &CGM.getModule(), llvm::Intrinsic::localescape);
396     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
397   }
398 
399   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
400   llvm::Instruction *Ptr = AllocaInsertPt;
401   AllocaInsertPt = nullptr;
402   Ptr->eraseFromParent();
403 
404   // If someone took the address of a label but never did an indirect goto, we
405   // made a zero entry PHI node, which is illegal, zap it now.
406   if (IndirectBranch) {
407     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
408     if (PN->getNumIncomingValues() == 0) {
409       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
410       PN->eraseFromParent();
411     }
412   }
413 
414   EmitIfUsed(*this, EHResumeBlock);
415   EmitIfUsed(*this, TerminateLandingPad);
416   EmitIfUsed(*this, TerminateHandler);
417   EmitIfUsed(*this, UnreachableBlock);
418 
419   if (CGM.getCodeGenOpts().EmitDeclMetadata)
420     EmitDeclMetadata();
421 
422   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
423            I = DeferredReplacements.begin(),
424            E = DeferredReplacements.end();
425        I != E; ++I) {
426     I->first->replaceAllUsesWith(I->second);
427     I->first->eraseFromParent();
428   }
429 
430   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
431   // PHIs if the current function is a coroutine. We don't do it for all
432   // functions as it may result in slight increase in numbers of instructions
433   // if compiled with no optimizations. We do it for coroutine as the lifetime
434   // of CleanupDestSlot alloca make correct coroutine frame building very
435   // difficult.
436   if (NormalCleanupDest && isCoroutine()) {
437     llvm::DominatorTree DT(*CurFn);
438     llvm::PromoteMemToReg(NormalCleanupDest, DT);
439     NormalCleanupDest = nullptr;
440   }
441 }
442 
443 /// ShouldInstrumentFunction - Return true if the current function should be
444 /// instrumented with __cyg_profile_func_* calls
445 bool CodeGenFunction::ShouldInstrumentFunction() {
446   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
447       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
448       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
449     return false;
450   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
451     return false;
452   return true;
453 }
454 
455 /// ShouldXRayInstrument - Return true if the current function should be
456 /// instrumented with XRay nop sleds.
457 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
458   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
459 }
460 
461 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
462 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation.
463 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
464   return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents;
465 }
466 
467 llvm::Constant *
468 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
469                                             llvm::Constant *Addr) {
470   // Addresses stored in prologue data can't require run-time fixups and must
471   // be PC-relative. Run-time fixups are undesirable because they necessitate
472   // writable text segments, which are unsafe. And absolute addresses are
473   // undesirable because they break PIE mode.
474 
475   // Add a layer of indirection through a private global. Taking its address
476   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
477   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
478                                       /*isConstant=*/true,
479                                       llvm::GlobalValue::PrivateLinkage, Addr);
480 
481   // Create a PC-relative address.
482   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
483   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
484   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
485   return (IntPtrTy == Int32Ty)
486              ? PCRelAsInt
487              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
488 }
489 
490 llvm::Value *
491 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
492                                           llvm::Value *EncodedAddr) {
493   // Reconstruct the address of the global.
494   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
495   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
496   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
497   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
498 
499   // Load the original pointer through the global.
500   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
501                             "decoded_addr");
502 }
503 
504 static void removeImageAccessQualifier(std::string& TyName) {
505   std::string ReadOnlyQual("__read_only");
506   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
507   if (ReadOnlyPos != std::string::npos)
508     // "+ 1" for the space after access qualifier.
509     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
510   else {
511     std::string WriteOnlyQual("__write_only");
512     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
513     if (WriteOnlyPos != std::string::npos)
514       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
515     else {
516       std::string ReadWriteQual("__read_write");
517       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
518       if (ReadWritePos != std::string::npos)
519         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
520     }
521   }
522 }
523 
524 // Returns the address space id that should be produced to the
525 // kernel_arg_addr_space metadata. This is always fixed to the ids
526 // as specified in the SPIR 2.0 specification in order to differentiate
527 // for example in clGetKernelArgInfo() implementation between the address
528 // spaces with targets without unique mapping to the OpenCL address spaces
529 // (basically all single AS CPUs).
530 static unsigned ArgInfoAddressSpace(LangAS AS) {
531   switch (AS) {
532   case LangAS::opencl_global:   return 1;
533   case LangAS::opencl_constant: return 2;
534   case LangAS::opencl_local:    return 3;
535   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
536   default:
537     return 0; // Assume private.
538   }
539 }
540 
541 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
542 // information in the program executable. The argument information stored
543 // includes the argument name, its type, the address and access qualifiers used.
544 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
545                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
546                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
547   // Create MDNodes that represent the kernel arg metadata.
548   // Each MDNode is a list in the form of "key", N number of values which is
549   // the same number of values as their are kernel arguments.
550 
551   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
552 
553   // MDNode for the kernel argument address space qualifiers.
554   SmallVector<llvm::Metadata *, 8> addressQuals;
555 
556   // MDNode for the kernel argument access qualifiers (images only).
557   SmallVector<llvm::Metadata *, 8> accessQuals;
558 
559   // MDNode for the kernel argument type names.
560   SmallVector<llvm::Metadata *, 8> argTypeNames;
561 
562   // MDNode for the kernel argument base type names.
563   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
564 
565   // MDNode for the kernel argument type qualifiers.
566   SmallVector<llvm::Metadata *, 8> argTypeQuals;
567 
568   // MDNode for the kernel argument names.
569   SmallVector<llvm::Metadata *, 8> argNames;
570 
571   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
572     const ParmVarDecl *parm = FD->getParamDecl(i);
573     QualType ty = parm->getType();
574     std::string typeQuals;
575 
576     if (ty->isPointerType()) {
577       QualType pointeeTy = ty->getPointeeType();
578 
579       // Get address qualifier.
580       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
581         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
582 
583       // Get argument type name.
584       std::string typeName =
585           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
586 
587       // Turn "unsigned type" to "utype"
588       std::string::size_type pos = typeName.find("unsigned");
589       if (pointeeTy.isCanonical() && pos != std::string::npos)
590         typeName.erase(pos+1, 8);
591 
592       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
593 
594       std::string baseTypeName =
595           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
596               Policy) +
597           "*";
598 
599       // Turn "unsigned type" to "utype"
600       pos = baseTypeName.find("unsigned");
601       if (pos != std::string::npos)
602         baseTypeName.erase(pos+1, 8);
603 
604       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
605 
606       // Get argument type qualifiers:
607       if (ty.isRestrictQualified())
608         typeQuals = "restrict";
609       if (pointeeTy.isConstQualified() ||
610           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
611         typeQuals += typeQuals.empty() ? "const" : " const";
612       if (pointeeTy.isVolatileQualified())
613         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
614     } else {
615       uint32_t AddrSpc = 0;
616       bool isPipe = ty->isPipeType();
617       if (ty->isImageType() || isPipe)
618         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
619 
620       addressQuals.push_back(
621           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
622 
623       // Get argument type name.
624       std::string typeName;
625       if (isPipe)
626         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
627                      .getAsString(Policy);
628       else
629         typeName = ty.getUnqualifiedType().getAsString(Policy);
630 
631       // Turn "unsigned type" to "utype"
632       std::string::size_type pos = typeName.find("unsigned");
633       if (ty.isCanonical() && pos != std::string::npos)
634         typeName.erase(pos+1, 8);
635 
636       std::string baseTypeName;
637       if (isPipe)
638         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
639                           ->getElementType().getCanonicalType()
640                           .getAsString(Policy);
641       else
642         baseTypeName =
643           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
644 
645       // Remove access qualifiers on images
646       // (as they are inseparable from type in clang implementation,
647       // but OpenCL spec provides a special query to get access qualifier
648       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
649       if (ty->isImageType()) {
650         removeImageAccessQualifier(typeName);
651         removeImageAccessQualifier(baseTypeName);
652       }
653 
654       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
655 
656       // Turn "unsigned type" to "utype"
657       pos = baseTypeName.find("unsigned");
658       if (pos != std::string::npos)
659         baseTypeName.erase(pos+1, 8);
660 
661       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
662 
663       if (isPipe)
664         typeQuals = "pipe";
665     }
666 
667     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
668 
669     // Get image and pipe access qualifier:
670     if (ty->isImageType()|| ty->isPipeType()) {
671       const Decl *PDecl = parm;
672       if (auto *TD = dyn_cast<TypedefType>(ty))
673         PDecl = TD->getDecl();
674       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
675       if (A && A->isWriteOnly())
676         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
677       else if (A && A->isReadWrite())
678         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
679       else
680         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
681     } else
682       accessQuals.push_back(llvm::MDString::get(Context, "none"));
683 
684     // Get argument name.
685     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
686   }
687 
688   Fn->setMetadata("kernel_arg_addr_space",
689                   llvm::MDNode::get(Context, addressQuals));
690   Fn->setMetadata("kernel_arg_access_qual",
691                   llvm::MDNode::get(Context, accessQuals));
692   Fn->setMetadata("kernel_arg_type",
693                   llvm::MDNode::get(Context, argTypeNames));
694   Fn->setMetadata("kernel_arg_base_type",
695                   llvm::MDNode::get(Context, argBaseTypeNames));
696   Fn->setMetadata("kernel_arg_type_qual",
697                   llvm::MDNode::get(Context, argTypeQuals));
698   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
699     Fn->setMetadata("kernel_arg_name",
700                     llvm::MDNode::get(Context, argNames));
701 }
702 
703 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
704                                                llvm::Function *Fn)
705 {
706   if (!FD->hasAttr<OpenCLKernelAttr>())
707     return;
708 
709   llvm::LLVMContext &Context = getLLVMContext();
710 
711   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
712 
713   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
714     QualType HintQTy = A->getTypeHint();
715     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
716     bool IsSignedInteger =
717         HintQTy->isSignedIntegerType() ||
718         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
719     llvm::Metadata *AttrMDArgs[] = {
720         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
721             CGM.getTypes().ConvertType(A->getTypeHint()))),
722         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
723             llvm::IntegerType::get(Context, 32),
724             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
725     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
726   }
727 
728   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
729     llvm::Metadata *AttrMDArgs[] = {
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
731         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
732         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
733     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
734   }
735 
736   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
737     llvm::Metadata *AttrMDArgs[] = {
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
739         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
740         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
741     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
742   }
743 
744   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
745           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
746     llvm::Metadata *AttrMDArgs[] = {
747         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
748     Fn->setMetadata("intel_reqd_sub_group_size",
749                     llvm::MDNode::get(Context, AttrMDArgs));
750   }
751 }
752 
753 /// Determine whether the function F ends with a return stmt.
754 static bool endsWithReturn(const Decl* F) {
755   const Stmt *Body = nullptr;
756   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
757     Body = FD->getBody();
758   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
759     Body = OMD->getBody();
760 
761   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
762     auto LastStmt = CS->body_rbegin();
763     if (LastStmt != CS->body_rend())
764       return isa<ReturnStmt>(*LastStmt);
765   }
766   return false;
767 }
768 
769 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
770   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
771   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
772 }
773 
774 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
775   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
776   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
777       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
778       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
779     return false;
780 
781   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
782     return false;
783 
784   if (MD->getNumParams() == 2) {
785     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
786     if (!PT || !PT->isVoidPointerType() ||
787         !PT->getPointeeType().isConstQualified())
788       return false;
789   }
790 
791   return true;
792 }
793 
794 /// Return the UBSan prologue signature for \p FD if one is available.
795 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
796                                             const FunctionDecl *FD) {
797   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
798     if (!MD->isStatic())
799       return nullptr;
800   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
801 }
802 
803 void CodeGenFunction::StartFunction(GlobalDecl GD,
804                                     QualType RetTy,
805                                     llvm::Function *Fn,
806                                     const CGFunctionInfo &FnInfo,
807                                     const FunctionArgList &Args,
808                                     SourceLocation Loc,
809                                     SourceLocation StartLoc) {
810   assert(!CurFn &&
811          "Do not use a CodeGenFunction object for more than one function");
812 
813   const Decl *D = GD.getDecl();
814 
815   DidCallStackSave = false;
816   CurCodeDecl = D;
817   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
818     if (FD->usesSEHTry())
819       CurSEHParent = FD;
820   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
821   FnRetTy = RetTy;
822   CurFn = Fn;
823   CurFnInfo = &FnInfo;
824   assert(CurFn->isDeclaration() && "Function already has body?");
825 
826   // If this function has been blacklisted for any of the enabled sanitizers,
827   // disable the sanitizer for the function.
828   do {
829 #define SANITIZER(NAME, ID)                                                    \
830   if (SanOpts.empty())                                                         \
831     break;                                                                     \
832   if (SanOpts.has(SanitizerKind::ID))                                          \
833     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
834       SanOpts.set(SanitizerKind::ID, false);
835 
836 #include "clang/Basic/Sanitizers.def"
837 #undef SANITIZER
838   } while (0);
839 
840   if (D) {
841     // Apply the no_sanitize* attributes to SanOpts.
842     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
843       SanOpts.Mask &= ~Attr->getMask();
844   }
845 
846   // Apply sanitizer attributes to the function.
847   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
848     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
849   if (SanOpts.hasOneOf(SanitizerKind::HWAddress))
850     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
851   if (SanOpts.has(SanitizerKind::Thread))
852     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
853   if (SanOpts.has(SanitizerKind::Memory))
854     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
855   if (SanOpts.has(SanitizerKind::SafeStack))
856     Fn->addFnAttr(llvm::Attribute::SafeStack);
857 
858   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
859   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
860   if (SanOpts.has(SanitizerKind::Thread)) {
861     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
862       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
863       if (OMD->getMethodFamily() == OMF_dealloc ||
864           OMD->getMethodFamily() == OMF_initialize ||
865           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
866         markAsIgnoreThreadCheckingAtRuntime(Fn);
867       }
868     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
869       IdentifierInfo *II = FD->getIdentifier();
870       if (II && II->isStr("__destroy_helper_block_"))
871         markAsIgnoreThreadCheckingAtRuntime(Fn);
872     }
873   }
874 
875   // Ignore unrelated casts in STL allocate() since the allocator must cast
876   // from void* to T* before object initialization completes. Don't match on the
877   // namespace because not all allocators are in std::
878   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
879     if (matchesStlAllocatorFn(D, getContext()))
880       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
881   }
882 
883   // Apply xray attributes to the function (as a string, for now)
884   if (D && ShouldXRayInstrumentFunction()) {
885     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
886       if (XRayAttr->alwaysXRayInstrument())
887         Fn->addFnAttr("function-instrument", "xray-always");
888       if (XRayAttr->neverXRayInstrument())
889         Fn->addFnAttr("function-instrument", "xray-never");
890       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
891         Fn->addFnAttr("xray-log-args",
892                       llvm::utostr(LogArgs->getArgumentCount()));
893       }
894     } else {
895       if (!CGM.imbueXRayAttrs(Fn, Loc))
896         Fn->addFnAttr(
897             "xray-instruction-threshold",
898             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
899     }
900   }
901 
902   // Add no-jump-tables value.
903   Fn->addFnAttr("no-jump-tables",
904                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
905 
906   // Add profile-sample-accurate value.
907   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
908     Fn->addFnAttr("profile-sample-accurate");
909 
910   if (getLangOpts().OpenCL) {
911     // Add metadata for a kernel function.
912     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
913       EmitOpenCLKernelMetadata(FD, Fn);
914   }
915 
916   // If we are checking function types, emit a function type signature as
917   // prologue data.
918   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
919     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
920       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
921         llvm::Constant *FTRTTIConst =
922             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
923         llvm::Constant *FTRTTIConstEncoded =
924             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
925         llvm::Constant *PrologueStructElems[] = {PrologueSig,
926                                                  FTRTTIConstEncoded};
927         llvm::Constant *PrologueStructConst =
928             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
929         Fn->setPrologueData(PrologueStructConst);
930       }
931     }
932   }
933 
934   // If we're checking nullability, we need to know whether we can check the
935   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
936   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
937     auto Nullability = FnRetTy->getNullability(getContext());
938     if (Nullability && *Nullability == NullabilityKind::NonNull) {
939       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
940             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
941         RetValNullabilityPrecondition =
942             llvm::ConstantInt::getTrue(getLLVMContext());
943     }
944   }
945 
946   // If we're in C++ mode and the function name is "main", it is guaranteed
947   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
948   // used within a program").
949   if (getLangOpts().CPlusPlus)
950     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
951       if (FD->isMain())
952         Fn->addFnAttr(llvm::Attribute::NoRecurse);
953 
954   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
955 
956   // Create a marker to make it easy to insert allocas into the entryblock
957   // later.  Don't create this with the builder, because we don't want it
958   // folded.
959   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
960   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
961 
962   ReturnBlock = getJumpDestInCurrentScope("return");
963 
964   Builder.SetInsertPoint(EntryBB);
965 
966   // If we're checking the return value, allocate space for a pointer to a
967   // precise source location of the checked return statement.
968   if (requiresReturnValueCheck()) {
969     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
970     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
971   }
972 
973   // Emit subprogram debug descriptor.
974   if (CGDebugInfo *DI = getDebugInfo()) {
975     // Reconstruct the type from the argument list so that implicit parameters,
976     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
977     // convention.
978     CallingConv CC = CallingConv::CC_C;
979     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
980       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
981         CC = SrcFnTy->getCallConv();
982     SmallVector<QualType, 16> ArgTypes;
983     for (const VarDecl *VD : Args)
984       ArgTypes.push_back(VD->getType());
985     QualType FnType = getContext().getFunctionType(
986         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
987     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
988   }
989 
990   if (ShouldInstrumentFunction()) {
991     if (CGM.getCodeGenOpts().InstrumentFunctions)
992       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
993     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
994       CurFn->addFnAttr("instrument-function-entry-inlined",
995                        "__cyg_profile_func_enter");
996     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
997       CurFn->addFnAttr("instrument-function-entry-inlined",
998                        "__cyg_profile_func_enter_bare");
999   }
1000 
1001   // Since emitting the mcount call here impacts optimizations such as function
1002   // inlining, we just add an attribute to insert a mcount call in backend.
1003   // The attribute "counting-function" is set to mcount function name which is
1004   // architecture dependent.
1005   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1006     if (CGM.getCodeGenOpts().CallFEntry)
1007       Fn->addFnAttr("fentry-call", "true");
1008     else {
1009       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1010         Fn->addFnAttr("instrument-function-entry-inlined",
1011                       getTarget().getMCountName());
1012       }
1013     }
1014   }
1015 
1016   if (RetTy->isVoidType()) {
1017     // Void type; nothing to return.
1018     ReturnValue = Address::invalid();
1019 
1020     // Count the implicit return.
1021     if (!endsWithReturn(D))
1022       ++NumReturnExprs;
1023   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1024              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1025     // Indirect aggregate return; emit returned value directly into sret slot.
1026     // This reduces code size, and affects correctness in C++.
1027     auto AI = CurFn->arg_begin();
1028     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1029       ++AI;
1030     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1031   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1032              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1033     // Load the sret pointer from the argument struct and return into that.
1034     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1035     llvm::Function::arg_iterator EI = CurFn->arg_end();
1036     --EI;
1037     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1038     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1039     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1040   } else {
1041     ReturnValue = CreateIRTemp(RetTy, "retval");
1042 
1043     // Tell the epilog emitter to autorelease the result.  We do this
1044     // now so that various specialized functions can suppress it
1045     // during their IR-generation.
1046     if (getLangOpts().ObjCAutoRefCount &&
1047         !CurFnInfo->isReturnsRetained() &&
1048         RetTy->isObjCRetainableType())
1049       AutoreleaseResult = true;
1050   }
1051 
1052   EmitStartEHSpec(CurCodeDecl);
1053 
1054   PrologueCleanupDepth = EHStack.stable_begin();
1055   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1056 
1057   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1058     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1059     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1060     if (MD->getParent()->isLambda() &&
1061         MD->getOverloadedOperator() == OO_Call) {
1062       // We're in a lambda; figure out the captures.
1063       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1064                                         LambdaThisCaptureField);
1065       if (LambdaThisCaptureField) {
1066         // If the lambda captures the object referred to by '*this' - either by
1067         // value or by reference, make sure CXXThisValue points to the correct
1068         // object.
1069 
1070         // Get the lvalue for the field (which is a copy of the enclosing object
1071         // or contains the address of the enclosing object).
1072         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1073         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1074           // If the enclosing object was captured by value, just use its address.
1075           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1076         } else {
1077           // Load the lvalue pointed to by the field, since '*this' was captured
1078           // by reference.
1079           CXXThisValue =
1080               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1081         }
1082       }
1083       for (auto *FD : MD->getParent()->fields()) {
1084         if (FD->hasCapturedVLAType()) {
1085           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1086                                            SourceLocation()).getScalarVal();
1087           auto VAT = FD->getCapturedVLAType();
1088           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1089         }
1090       }
1091     } else {
1092       // Not in a lambda; just use 'this' from the method.
1093       // FIXME: Should we generate a new load for each use of 'this'?  The
1094       // fast register allocator would be happier...
1095       CXXThisValue = CXXABIThisValue;
1096     }
1097 
1098     // Check the 'this' pointer once per function, if it's available.
1099     if (CXXABIThisValue) {
1100       SanitizerSet SkippedChecks;
1101       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1102       QualType ThisTy = MD->getThisType(getContext());
1103 
1104       // If this is the call operator of a lambda with no capture-default, it
1105       // may have a static invoker function, which may call this operator with
1106       // a null 'this' pointer.
1107       if (isLambdaCallOperator(MD) &&
1108           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1109               LCD_None)
1110         SkippedChecks.set(SanitizerKind::Null, true);
1111 
1112       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1113                                                 : TCK_MemberCall,
1114                     Loc, CXXABIThisValue, ThisTy,
1115                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1116                     SkippedChecks);
1117     }
1118   }
1119 
1120   // If any of the arguments have a variably modified type, make sure to
1121   // emit the type size.
1122   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1123        i != e; ++i) {
1124     const VarDecl *VD = *i;
1125 
1126     // Dig out the type as written from ParmVarDecls; it's unclear whether
1127     // the standard (C99 6.9.1p10) requires this, but we're following the
1128     // precedent set by gcc.
1129     QualType Ty;
1130     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1131       Ty = PVD->getOriginalType();
1132     else
1133       Ty = VD->getType();
1134 
1135     if (Ty->isVariablyModifiedType())
1136       EmitVariablyModifiedType(Ty);
1137   }
1138   // Emit a location at the end of the prologue.
1139   if (CGDebugInfo *DI = getDebugInfo())
1140     DI->EmitLocation(Builder, StartLoc);
1141 }
1142 
1143 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1144                                        const Stmt *Body) {
1145   incrementProfileCounter(Body);
1146   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1147     EmitCompoundStmtWithoutScope(*S);
1148   else
1149     EmitStmt(Body);
1150 }
1151 
1152 /// When instrumenting to collect profile data, the counts for some blocks
1153 /// such as switch cases need to not include the fall-through counts, so
1154 /// emit a branch around the instrumentation code. When not instrumenting,
1155 /// this just calls EmitBlock().
1156 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1157                                                const Stmt *S) {
1158   llvm::BasicBlock *SkipCountBB = nullptr;
1159   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1160     // When instrumenting for profiling, the fallthrough to certain
1161     // statements needs to skip over the instrumentation code so that we
1162     // get an accurate count.
1163     SkipCountBB = createBasicBlock("skipcount");
1164     EmitBranch(SkipCountBB);
1165   }
1166   EmitBlock(BB);
1167   uint64_t CurrentCount = getCurrentProfileCount();
1168   incrementProfileCounter(S);
1169   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1170   if (SkipCountBB)
1171     EmitBlock(SkipCountBB);
1172 }
1173 
1174 /// Tries to mark the given function nounwind based on the
1175 /// non-existence of any throwing calls within it.  We believe this is
1176 /// lightweight enough to do at -O0.
1177 static void TryMarkNoThrow(llvm::Function *F) {
1178   // LLVM treats 'nounwind' on a function as part of the type, so we
1179   // can't do this on functions that can be overwritten.
1180   if (F->isInterposable()) return;
1181 
1182   for (llvm::BasicBlock &BB : *F)
1183     for (llvm::Instruction &I : BB)
1184       if (I.mayThrow())
1185         return;
1186 
1187   F->setDoesNotThrow();
1188 }
1189 
1190 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1191                                                FunctionArgList &Args) {
1192   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1193   QualType ResTy = FD->getReturnType();
1194 
1195   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1196   if (MD && MD->isInstance()) {
1197     if (CGM.getCXXABI().HasThisReturn(GD))
1198       ResTy = MD->getThisType(getContext());
1199     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1200       ResTy = CGM.getContext().VoidPtrTy;
1201     CGM.getCXXABI().buildThisParam(*this, Args);
1202   }
1203 
1204   // The base version of an inheriting constructor whose constructed base is a
1205   // virtual base is not passed any arguments (because it doesn't actually call
1206   // the inherited constructor).
1207   bool PassedParams = true;
1208   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1209     if (auto Inherited = CD->getInheritedConstructor())
1210       PassedParams =
1211           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1212 
1213   if (PassedParams) {
1214     for (auto *Param : FD->parameters()) {
1215       Args.push_back(Param);
1216       if (!Param->hasAttr<PassObjectSizeAttr>())
1217         continue;
1218 
1219       auto *Implicit = ImplicitParamDecl::Create(
1220           getContext(), Param->getDeclContext(), Param->getLocation(),
1221           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1222       SizeArguments[Param] = Implicit;
1223       Args.push_back(Implicit);
1224     }
1225   }
1226 
1227   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1228     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1229 
1230   return ResTy;
1231 }
1232 
1233 static bool
1234 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1235                                              const ASTContext &Context) {
1236   QualType T = FD->getReturnType();
1237   // Avoid the optimization for functions that return a record type with a
1238   // trivial destructor or another trivially copyable type.
1239   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1240     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1241       return !ClassDecl->hasTrivialDestructor();
1242   }
1243   return !T.isTriviallyCopyableType(Context);
1244 }
1245 
1246 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1247                                    const CGFunctionInfo &FnInfo) {
1248   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1249   CurGD = GD;
1250 
1251   FunctionArgList Args;
1252   QualType ResTy = BuildFunctionArgList(GD, Args);
1253 
1254   // Check if we should generate debug info for this function.
1255   if (FD->hasAttr<NoDebugAttr>())
1256     DebugInfo = nullptr; // disable debug info indefinitely for this function
1257 
1258   // The function might not have a body if we're generating thunks for a
1259   // function declaration.
1260   SourceRange BodyRange;
1261   if (Stmt *Body = FD->getBody())
1262     BodyRange = Body->getSourceRange();
1263   else
1264     BodyRange = FD->getLocation();
1265   CurEHLocation = BodyRange.getEnd();
1266 
1267   // Use the location of the start of the function to determine where
1268   // the function definition is located. By default use the location
1269   // of the declaration as the location for the subprogram. A function
1270   // may lack a declaration in the source code if it is created by code
1271   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1272   SourceLocation Loc = FD->getLocation();
1273 
1274   // If this is a function specialization then use the pattern body
1275   // as the location for the function.
1276   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1277     if (SpecDecl->hasBody(SpecDecl))
1278       Loc = SpecDecl->getLocation();
1279 
1280   Stmt *Body = FD->getBody();
1281 
1282   // Initialize helper which will detect jumps which can cause invalid lifetime
1283   // markers.
1284   if (Body && ShouldEmitLifetimeMarkers)
1285     Bypasses.Init(Body);
1286 
1287   // Emit the standard function prologue.
1288   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1289 
1290   // Generate the body of the function.
1291   PGO.assignRegionCounters(GD, CurFn);
1292   if (isa<CXXDestructorDecl>(FD))
1293     EmitDestructorBody(Args);
1294   else if (isa<CXXConstructorDecl>(FD))
1295     EmitConstructorBody(Args);
1296   else if (getLangOpts().CUDA &&
1297            !getLangOpts().CUDAIsDevice &&
1298            FD->hasAttr<CUDAGlobalAttr>())
1299     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1300   else if (isa<CXXMethodDecl>(FD) &&
1301            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1302     // The lambda static invoker function is special, because it forwards or
1303     // clones the body of the function call operator (but is actually static).
1304     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1305   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1306              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1307               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1308     // Implicit copy-assignment gets the same special treatment as implicit
1309     // copy-constructors.
1310     emitImplicitAssignmentOperatorBody(Args);
1311   } else if (Body) {
1312     EmitFunctionBody(Args, Body);
1313   } else
1314     llvm_unreachable("no definition for emitted function");
1315 
1316   // C++11 [stmt.return]p2:
1317   //   Flowing off the end of a function [...] results in undefined behavior in
1318   //   a value-returning function.
1319   // C11 6.9.1p12:
1320   //   If the '}' that terminates a function is reached, and the value of the
1321   //   function call is used by the caller, the behavior is undefined.
1322   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1323       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1324     bool ShouldEmitUnreachable =
1325         CGM.getCodeGenOpts().StrictReturn ||
1326         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1327     if (SanOpts.has(SanitizerKind::Return)) {
1328       SanitizerScope SanScope(this);
1329       llvm::Value *IsFalse = Builder.getFalse();
1330       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1331                 SanitizerHandler::MissingReturn,
1332                 EmitCheckSourceLocation(FD->getLocation()), None);
1333     } else if (ShouldEmitUnreachable) {
1334       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1335         EmitTrapCall(llvm::Intrinsic::trap);
1336     }
1337     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1338       Builder.CreateUnreachable();
1339       Builder.ClearInsertionPoint();
1340     }
1341   }
1342 
1343   // Emit the standard function epilogue.
1344   FinishFunction(BodyRange.getEnd());
1345 
1346   // If we haven't marked the function nothrow through other means, do
1347   // a quick pass now to see if we can.
1348   if (!CurFn->doesNotThrow())
1349     TryMarkNoThrow(CurFn);
1350 }
1351 
1352 /// ContainsLabel - Return true if the statement contains a label in it.  If
1353 /// this statement is not executed normally, it not containing a label means
1354 /// that we can just remove the code.
1355 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1356   // Null statement, not a label!
1357   if (!S) return false;
1358 
1359   // If this is a label, we have to emit the code, consider something like:
1360   // if (0) {  ...  foo:  bar(); }  goto foo;
1361   //
1362   // TODO: If anyone cared, we could track __label__'s, since we know that you
1363   // can't jump to one from outside their declared region.
1364   if (isa<LabelStmt>(S))
1365     return true;
1366 
1367   // If this is a case/default statement, and we haven't seen a switch, we have
1368   // to emit the code.
1369   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1370     return true;
1371 
1372   // If this is a switch statement, we want to ignore cases below it.
1373   if (isa<SwitchStmt>(S))
1374     IgnoreCaseStmts = true;
1375 
1376   // Scan subexpressions for verboten labels.
1377   for (const Stmt *SubStmt : S->children())
1378     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1379       return true;
1380 
1381   return false;
1382 }
1383 
1384 /// containsBreak - Return true if the statement contains a break out of it.
1385 /// If the statement (recursively) contains a switch or loop with a break
1386 /// inside of it, this is fine.
1387 bool CodeGenFunction::containsBreak(const Stmt *S) {
1388   // Null statement, not a label!
1389   if (!S) return false;
1390 
1391   // If this is a switch or loop that defines its own break scope, then we can
1392   // include it and anything inside of it.
1393   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1394       isa<ForStmt>(S))
1395     return false;
1396 
1397   if (isa<BreakStmt>(S))
1398     return true;
1399 
1400   // Scan subexpressions for verboten breaks.
1401   for (const Stmt *SubStmt : S->children())
1402     if (containsBreak(SubStmt))
1403       return true;
1404 
1405   return false;
1406 }
1407 
1408 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1409   if (!S) return false;
1410 
1411   // Some statement kinds add a scope and thus never add a decl to the current
1412   // scope. Note, this list is longer than the list of statements that might
1413   // have an unscoped decl nested within them, but this way is conservatively
1414   // correct even if more statement kinds are added.
1415   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1416       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1417       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1418       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1419     return false;
1420 
1421   if (isa<DeclStmt>(S))
1422     return true;
1423 
1424   for (const Stmt *SubStmt : S->children())
1425     if (mightAddDeclToScope(SubStmt))
1426       return true;
1427 
1428   return false;
1429 }
1430 
1431 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1432 /// to a constant, or if it does but contains a label, return false.  If it
1433 /// constant folds return true and set the boolean result in Result.
1434 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1435                                                    bool &ResultBool,
1436                                                    bool AllowLabels) {
1437   llvm::APSInt ResultInt;
1438   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1439     return false;
1440 
1441   ResultBool = ResultInt.getBoolValue();
1442   return true;
1443 }
1444 
1445 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1446 /// to a constant, or if it does but contains a label, return false.  If it
1447 /// constant folds return true and set the folded value.
1448 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1449                                                    llvm::APSInt &ResultInt,
1450                                                    bool AllowLabels) {
1451   // FIXME: Rename and handle conversion of other evaluatable things
1452   // to bool.
1453   llvm::APSInt Int;
1454   if (!Cond->EvaluateAsInt(Int, getContext()))
1455     return false;  // Not foldable, not integer or not fully evaluatable.
1456 
1457   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1458     return false;  // Contains a label.
1459 
1460   ResultInt = Int;
1461   return true;
1462 }
1463 
1464 
1465 
1466 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1467 /// statement) to the specified blocks.  Based on the condition, this might try
1468 /// to simplify the codegen of the conditional based on the branch.
1469 ///
1470 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1471                                            llvm::BasicBlock *TrueBlock,
1472                                            llvm::BasicBlock *FalseBlock,
1473                                            uint64_t TrueCount) {
1474   Cond = Cond->IgnoreParens();
1475 
1476   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1477 
1478     // Handle X && Y in a condition.
1479     if (CondBOp->getOpcode() == BO_LAnd) {
1480       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1481       // folded if the case was simple enough.
1482       bool ConstantBool = false;
1483       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1484           ConstantBool) {
1485         // br(1 && X) -> br(X).
1486         incrementProfileCounter(CondBOp);
1487         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1488                                     TrueCount);
1489       }
1490 
1491       // If we have "X && 1", simplify the code to use an uncond branch.
1492       // "X && 0" would have been constant folded to 0.
1493       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1494           ConstantBool) {
1495         // br(X && 1) -> br(X).
1496         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1497                                     TrueCount);
1498       }
1499 
1500       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1501       // want to jump to the FalseBlock.
1502       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1503       // The counter tells us how often we evaluate RHS, and all of TrueCount
1504       // can be propagated to that branch.
1505       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1506 
1507       ConditionalEvaluation eval(*this);
1508       {
1509         ApplyDebugLocation DL(*this, Cond);
1510         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1511         EmitBlock(LHSTrue);
1512       }
1513 
1514       incrementProfileCounter(CondBOp);
1515       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1516 
1517       // Any temporaries created here are conditional.
1518       eval.begin(*this);
1519       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1520       eval.end(*this);
1521 
1522       return;
1523     }
1524 
1525     if (CondBOp->getOpcode() == BO_LOr) {
1526       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1527       // folded if the case was simple enough.
1528       bool ConstantBool = false;
1529       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1530           !ConstantBool) {
1531         // br(0 || X) -> br(X).
1532         incrementProfileCounter(CondBOp);
1533         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1534                                     TrueCount);
1535       }
1536 
1537       // If we have "X || 0", simplify the code to use an uncond branch.
1538       // "X || 1" would have been constant folded to 1.
1539       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1540           !ConstantBool) {
1541         // br(X || 0) -> br(X).
1542         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1543                                     TrueCount);
1544       }
1545 
1546       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1547       // want to jump to the TrueBlock.
1548       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1549       // We have the count for entry to the RHS and for the whole expression
1550       // being true, so we can divy up True count between the short circuit and
1551       // the RHS.
1552       uint64_t LHSCount =
1553           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1554       uint64_t RHSCount = TrueCount - LHSCount;
1555 
1556       ConditionalEvaluation eval(*this);
1557       {
1558         ApplyDebugLocation DL(*this, Cond);
1559         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1560         EmitBlock(LHSFalse);
1561       }
1562 
1563       incrementProfileCounter(CondBOp);
1564       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1565 
1566       // Any temporaries created here are conditional.
1567       eval.begin(*this);
1568       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1569 
1570       eval.end(*this);
1571 
1572       return;
1573     }
1574   }
1575 
1576   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1577     // br(!x, t, f) -> br(x, f, t)
1578     if (CondUOp->getOpcode() == UO_LNot) {
1579       // Negate the count.
1580       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1581       // Negate the condition and swap the destination blocks.
1582       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1583                                   FalseCount);
1584     }
1585   }
1586 
1587   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1588     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1589     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1590     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1591 
1592     ConditionalEvaluation cond(*this);
1593     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1594                          getProfileCount(CondOp));
1595 
1596     // When computing PGO branch weights, we only know the overall count for
1597     // the true block. This code is essentially doing tail duplication of the
1598     // naive code-gen, introducing new edges for which counts are not
1599     // available. Divide the counts proportionally between the LHS and RHS of
1600     // the conditional operator.
1601     uint64_t LHSScaledTrueCount = 0;
1602     if (TrueCount) {
1603       double LHSRatio =
1604           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1605       LHSScaledTrueCount = TrueCount * LHSRatio;
1606     }
1607 
1608     cond.begin(*this);
1609     EmitBlock(LHSBlock);
1610     incrementProfileCounter(CondOp);
1611     {
1612       ApplyDebugLocation DL(*this, Cond);
1613       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1614                            LHSScaledTrueCount);
1615     }
1616     cond.end(*this);
1617 
1618     cond.begin(*this);
1619     EmitBlock(RHSBlock);
1620     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1621                          TrueCount - LHSScaledTrueCount);
1622     cond.end(*this);
1623 
1624     return;
1625   }
1626 
1627   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1628     // Conditional operator handling can give us a throw expression as a
1629     // condition for a case like:
1630     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1631     // Fold this to:
1632     //   br(c, throw x, br(y, t, f))
1633     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1634     return;
1635   }
1636 
1637   // If the branch has a condition wrapped by __builtin_unpredictable,
1638   // create metadata that specifies that the branch is unpredictable.
1639   // Don't bother if not optimizing because that metadata would not be used.
1640   llvm::MDNode *Unpredictable = nullptr;
1641   auto *Call = dyn_cast<CallExpr>(Cond);
1642   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1643     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1644     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1645       llvm::MDBuilder MDHelper(getLLVMContext());
1646       Unpredictable = MDHelper.createUnpredictable();
1647     }
1648   }
1649 
1650   // Create branch weights based on the number of times we get here and the
1651   // number of times the condition should be true.
1652   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1653   llvm::MDNode *Weights =
1654       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1655 
1656   // Emit the code with the fully general case.
1657   llvm::Value *CondV;
1658   {
1659     ApplyDebugLocation DL(*this, Cond);
1660     CondV = EvaluateExprAsBool(Cond);
1661   }
1662   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1663 }
1664 
1665 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1666 /// specified stmt yet.
1667 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1668   CGM.ErrorUnsupported(S, Type);
1669 }
1670 
1671 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1672 /// variable-length array whose elements have a non-zero bit-pattern.
1673 ///
1674 /// \param baseType the inner-most element type of the array
1675 /// \param src - a char* pointing to the bit-pattern for a single
1676 /// base element of the array
1677 /// \param sizeInChars - the total size of the VLA, in chars
1678 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1679                                Address dest, Address src,
1680                                llvm::Value *sizeInChars) {
1681   CGBuilderTy &Builder = CGF.Builder;
1682 
1683   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1684   llvm::Value *baseSizeInChars
1685     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1686 
1687   Address begin =
1688     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1689   llvm::Value *end =
1690     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1691 
1692   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1693   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1694   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1695 
1696   // Make a loop over the VLA.  C99 guarantees that the VLA element
1697   // count must be nonzero.
1698   CGF.EmitBlock(loopBB);
1699 
1700   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1701   cur->addIncoming(begin.getPointer(), originBB);
1702 
1703   CharUnits curAlign =
1704     dest.getAlignment().alignmentOfArrayElement(baseSize);
1705 
1706   // memcpy the individual element bit-pattern.
1707   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1708                        /*volatile*/ false);
1709 
1710   // Go to the next element.
1711   llvm::Value *next =
1712     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1713 
1714   // Leave if that's the end of the VLA.
1715   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1716   Builder.CreateCondBr(done, contBB, loopBB);
1717   cur->addIncoming(next, loopBB);
1718 
1719   CGF.EmitBlock(contBB);
1720 }
1721 
1722 void
1723 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1724   // Ignore empty classes in C++.
1725   if (getLangOpts().CPlusPlus) {
1726     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1727       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1728         return;
1729     }
1730   }
1731 
1732   // Cast the dest ptr to the appropriate i8 pointer type.
1733   if (DestPtr.getElementType() != Int8Ty)
1734     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1735 
1736   // Get size and alignment info for this aggregate.
1737   CharUnits size = getContext().getTypeSizeInChars(Ty);
1738 
1739   llvm::Value *SizeVal;
1740   const VariableArrayType *vla;
1741 
1742   // Don't bother emitting a zero-byte memset.
1743   if (size.isZero()) {
1744     // But note that getTypeInfo returns 0 for a VLA.
1745     if (const VariableArrayType *vlaType =
1746           dyn_cast_or_null<VariableArrayType>(
1747                                           getContext().getAsArrayType(Ty))) {
1748       QualType eltType;
1749       llvm::Value *numElts;
1750       std::tie(numElts, eltType) = getVLASize(vlaType);
1751 
1752       SizeVal = numElts;
1753       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1754       if (!eltSize.isOne())
1755         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1756       vla = vlaType;
1757     } else {
1758       return;
1759     }
1760   } else {
1761     SizeVal = CGM.getSize(size);
1762     vla = nullptr;
1763   }
1764 
1765   // If the type contains a pointer to data member we can't memset it to zero.
1766   // Instead, create a null constant and copy it to the destination.
1767   // TODO: there are other patterns besides zero that we can usefully memset,
1768   // like -1, which happens to be the pattern used by member-pointers.
1769   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1770     // For a VLA, emit a single element, then splat that over the VLA.
1771     if (vla) Ty = getContext().getBaseElementType(vla);
1772 
1773     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1774 
1775     llvm::GlobalVariable *NullVariable =
1776       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1777                                /*isConstant=*/true,
1778                                llvm::GlobalVariable::PrivateLinkage,
1779                                NullConstant, Twine());
1780     CharUnits NullAlign = DestPtr.getAlignment();
1781     NullVariable->setAlignment(NullAlign.getQuantity());
1782     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1783                    NullAlign);
1784 
1785     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1786 
1787     // Get and call the appropriate llvm.memcpy overload.
1788     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1789     return;
1790   }
1791 
1792   // Otherwise, just memset the whole thing to zero.  This is legal
1793   // because in LLVM, all default initializers (other than the ones we just
1794   // handled above) are guaranteed to have a bit pattern of all zeros.
1795   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1796 }
1797 
1798 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1799   // Make sure that there is a block for the indirect goto.
1800   if (!IndirectBranch)
1801     GetIndirectGotoBlock();
1802 
1803   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1804 
1805   // Make sure the indirect branch includes all of the address-taken blocks.
1806   IndirectBranch->addDestination(BB);
1807   return llvm::BlockAddress::get(CurFn, BB);
1808 }
1809 
1810 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1811   // If we already made the indirect branch for indirect goto, return its block.
1812   if (IndirectBranch) return IndirectBranch->getParent();
1813 
1814   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1815 
1816   // Create the PHI node that indirect gotos will add entries to.
1817   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1818                                               "indirect.goto.dest");
1819 
1820   // Create the indirect branch instruction.
1821   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1822   return IndirectBranch->getParent();
1823 }
1824 
1825 /// Computes the length of an array in elements, as well as the base
1826 /// element type and a properly-typed first element pointer.
1827 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1828                                               QualType &baseType,
1829                                               Address &addr) {
1830   const ArrayType *arrayType = origArrayType;
1831 
1832   // If it's a VLA, we have to load the stored size.  Note that
1833   // this is the size of the VLA in bytes, not its size in elements.
1834   llvm::Value *numVLAElements = nullptr;
1835   if (isa<VariableArrayType>(arrayType)) {
1836     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1837 
1838     // Walk into all VLAs.  This doesn't require changes to addr,
1839     // which has type T* where T is the first non-VLA element type.
1840     do {
1841       QualType elementType = arrayType->getElementType();
1842       arrayType = getContext().getAsArrayType(elementType);
1843 
1844       // If we only have VLA components, 'addr' requires no adjustment.
1845       if (!arrayType) {
1846         baseType = elementType;
1847         return numVLAElements;
1848       }
1849     } while (isa<VariableArrayType>(arrayType));
1850 
1851     // We get out here only if we find a constant array type
1852     // inside the VLA.
1853   }
1854 
1855   // We have some number of constant-length arrays, so addr should
1856   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1857   // down to the first element of addr.
1858   SmallVector<llvm::Value*, 8> gepIndices;
1859 
1860   // GEP down to the array type.
1861   llvm::ConstantInt *zero = Builder.getInt32(0);
1862   gepIndices.push_back(zero);
1863 
1864   uint64_t countFromCLAs = 1;
1865   QualType eltType;
1866 
1867   llvm::ArrayType *llvmArrayType =
1868     dyn_cast<llvm::ArrayType>(addr.getElementType());
1869   while (llvmArrayType) {
1870     assert(isa<ConstantArrayType>(arrayType));
1871     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1872              == llvmArrayType->getNumElements());
1873 
1874     gepIndices.push_back(zero);
1875     countFromCLAs *= llvmArrayType->getNumElements();
1876     eltType = arrayType->getElementType();
1877 
1878     llvmArrayType =
1879       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1880     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1881     assert((!llvmArrayType || arrayType) &&
1882            "LLVM and Clang types are out-of-synch");
1883   }
1884 
1885   if (arrayType) {
1886     // From this point onwards, the Clang array type has been emitted
1887     // as some other type (probably a packed struct). Compute the array
1888     // size, and just emit the 'begin' expression as a bitcast.
1889     while (arrayType) {
1890       countFromCLAs *=
1891           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1892       eltType = arrayType->getElementType();
1893       arrayType = getContext().getAsArrayType(eltType);
1894     }
1895 
1896     llvm::Type *baseType = ConvertType(eltType);
1897     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1898   } else {
1899     // Create the actual GEP.
1900     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1901                                              gepIndices, "array.begin"),
1902                    addr.getAlignment());
1903   }
1904 
1905   baseType = eltType;
1906 
1907   llvm::Value *numElements
1908     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1909 
1910   // If we had any VLA dimensions, factor them in.
1911   if (numVLAElements)
1912     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1913 
1914   return numElements;
1915 }
1916 
1917 std::pair<llvm::Value*, QualType>
1918 CodeGenFunction::getVLASize(QualType type) {
1919   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1920   assert(vla && "type was not a variable array type!");
1921   return getVLASize(vla);
1922 }
1923 
1924 std::pair<llvm::Value*, QualType>
1925 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1926   // The number of elements so far; always size_t.
1927   llvm::Value *numElements = nullptr;
1928 
1929   QualType elementType;
1930   do {
1931     elementType = type->getElementType();
1932     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1933     assert(vlaSize && "no size for VLA!");
1934     assert(vlaSize->getType() == SizeTy);
1935 
1936     if (!numElements) {
1937       numElements = vlaSize;
1938     } else {
1939       // It's undefined behavior if this wraps around, so mark it that way.
1940       // FIXME: Teach -fsanitize=undefined to trap this.
1941       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1942     }
1943   } while ((type = getContext().getAsVariableArrayType(elementType)));
1944 
1945   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1946 }
1947 
1948 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1949   assert(type->isVariablyModifiedType() &&
1950          "Must pass variably modified type to EmitVLASizes!");
1951 
1952   EnsureInsertPoint();
1953 
1954   // We're going to walk down into the type and look for VLA
1955   // expressions.
1956   do {
1957     assert(type->isVariablyModifiedType());
1958 
1959     const Type *ty = type.getTypePtr();
1960     switch (ty->getTypeClass()) {
1961 
1962 #define TYPE(Class, Base)
1963 #define ABSTRACT_TYPE(Class, Base)
1964 #define NON_CANONICAL_TYPE(Class, Base)
1965 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1966 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1967 #include "clang/AST/TypeNodes.def"
1968       llvm_unreachable("unexpected dependent type!");
1969 
1970     // These types are never variably-modified.
1971     case Type::Builtin:
1972     case Type::Complex:
1973     case Type::Vector:
1974     case Type::ExtVector:
1975     case Type::Record:
1976     case Type::Enum:
1977     case Type::Elaborated:
1978     case Type::TemplateSpecialization:
1979     case Type::ObjCTypeParam:
1980     case Type::ObjCObject:
1981     case Type::ObjCInterface:
1982     case Type::ObjCObjectPointer:
1983       llvm_unreachable("type class is never variably-modified!");
1984 
1985     case Type::Adjusted:
1986       type = cast<AdjustedType>(ty)->getAdjustedType();
1987       break;
1988 
1989     case Type::Decayed:
1990       type = cast<DecayedType>(ty)->getPointeeType();
1991       break;
1992 
1993     case Type::Pointer:
1994       type = cast<PointerType>(ty)->getPointeeType();
1995       break;
1996 
1997     case Type::BlockPointer:
1998       type = cast<BlockPointerType>(ty)->getPointeeType();
1999       break;
2000 
2001     case Type::LValueReference:
2002     case Type::RValueReference:
2003       type = cast<ReferenceType>(ty)->getPointeeType();
2004       break;
2005 
2006     case Type::MemberPointer:
2007       type = cast<MemberPointerType>(ty)->getPointeeType();
2008       break;
2009 
2010     case Type::ConstantArray:
2011     case Type::IncompleteArray:
2012       // Losing element qualification here is fine.
2013       type = cast<ArrayType>(ty)->getElementType();
2014       break;
2015 
2016     case Type::VariableArray: {
2017       // Losing element qualification here is fine.
2018       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2019 
2020       // Unknown size indication requires no size computation.
2021       // Otherwise, evaluate and record it.
2022       if (const Expr *size = vat->getSizeExpr()) {
2023         // It's possible that we might have emitted this already,
2024         // e.g. with a typedef and a pointer to it.
2025         llvm::Value *&entry = VLASizeMap[size];
2026         if (!entry) {
2027           llvm::Value *Size = EmitScalarExpr(size);
2028 
2029           // C11 6.7.6.2p5:
2030           //   If the size is an expression that is not an integer constant
2031           //   expression [...] each time it is evaluated it shall have a value
2032           //   greater than zero.
2033           if (SanOpts.has(SanitizerKind::VLABound) &&
2034               size->getType()->isSignedIntegerType()) {
2035             SanitizerScope SanScope(this);
2036             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2037             llvm::Constant *StaticArgs[] = {
2038               EmitCheckSourceLocation(size->getLocStart()),
2039               EmitCheckTypeDescriptor(size->getType())
2040             };
2041             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2042                                      SanitizerKind::VLABound),
2043                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2044           }
2045 
2046           // Always zexting here would be wrong if it weren't
2047           // undefined behavior to have a negative bound.
2048           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2049         }
2050       }
2051       type = vat->getElementType();
2052       break;
2053     }
2054 
2055     case Type::FunctionProto:
2056     case Type::FunctionNoProto:
2057       type = cast<FunctionType>(ty)->getReturnType();
2058       break;
2059 
2060     case Type::Paren:
2061     case Type::TypeOf:
2062     case Type::UnaryTransform:
2063     case Type::Attributed:
2064     case Type::SubstTemplateTypeParm:
2065     case Type::PackExpansion:
2066       // Keep walking after single level desugaring.
2067       type = type.getSingleStepDesugaredType(getContext());
2068       break;
2069 
2070     case Type::Typedef:
2071     case Type::Decltype:
2072     case Type::Auto:
2073     case Type::DeducedTemplateSpecialization:
2074       // Stop walking: nothing to do.
2075       return;
2076 
2077     case Type::TypeOfExpr:
2078       // Stop walking: emit typeof expression.
2079       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2080       return;
2081 
2082     case Type::Atomic:
2083       type = cast<AtomicType>(ty)->getValueType();
2084       break;
2085 
2086     case Type::Pipe:
2087       type = cast<PipeType>(ty)->getElementType();
2088       break;
2089     }
2090   } while (type->isVariablyModifiedType());
2091 }
2092 
2093 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2094   if (getContext().getBuiltinVaListType()->isArrayType())
2095     return EmitPointerWithAlignment(E);
2096   return EmitLValue(E).getAddress();
2097 }
2098 
2099 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2100   return EmitLValue(E).getAddress();
2101 }
2102 
2103 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2104                                               const APValue &Init) {
2105   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2106   if (CGDebugInfo *Dbg = getDebugInfo())
2107     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2108       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2109 }
2110 
2111 CodeGenFunction::PeepholeProtection
2112 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2113   // At the moment, the only aggressive peephole we do in IR gen
2114   // is trunc(zext) folding, but if we add more, we can easily
2115   // extend this protection.
2116 
2117   if (!rvalue.isScalar()) return PeepholeProtection();
2118   llvm::Value *value = rvalue.getScalarVal();
2119   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2120 
2121   // Just make an extra bitcast.
2122   assert(HaveInsertPoint());
2123   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2124                                                   Builder.GetInsertBlock());
2125 
2126   PeepholeProtection protection;
2127   protection.Inst = inst;
2128   return protection;
2129 }
2130 
2131 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2132   if (!protection.Inst) return;
2133 
2134   // In theory, we could try to duplicate the peepholes now, but whatever.
2135   protection.Inst->eraseFromParent();
2136 }
2137 
2138 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2139                                                  llvm::Value *AnnotatedVal,
2140                                                  StringRef AnnotationStr,
2141                                                  SourceLocation Location) {
2142   llvm::Value *Args[4] = {
2143     AnnotatedVal,
2144     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2145     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2146     CGM.EmitAnnotationLineNo(Location)
2147   };
2148   return Builder.CreateCall(AnnotationFn, Args);
2149 }
2150 
2151 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2152   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2153   // FIXME We create a new bitcast for every annotation because that's what
2154   // llvm-gcc was doing.
2155   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2156     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2157                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2158                        I->getAnnotation(), D->getLocation());
2159 }
2160 
2161 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2162                                               Address Addr) {
2163   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2164   llvm::Value *V = Addr.getPointer();
2165   llvm::Type *VTy = V->getType();
2166   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2167                                     CGM.Int8PtrTy);
2168 
2169   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2170     // FIXME Always emit the cast inst so we can differentiate between
2171     // annotation on the first field of a struct and annotation on the struct
2172     // itself.
2173     if (VTy != CGM.Int8PtrTy)
2174       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2175     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2176     V = Builder.CreateBitCast(V, VTy);
2177   }
2178 
2179   return Address(V, Addr.getAlignment());
2180 }
2181 
2182 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2183 
2184 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2185     : CGF(CGF) {
2186   assert(!CGF->IsSanitizerScope);
2187   CGF->IsSanitizerScope = true;
2188 }
2189 
2190 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2191   CGF->IsSanitizerScope = false;
2192 }
2193 
2194 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2195                                    const llvm::Twine &Name,
2196                                    llvm::BasicBlock *BB,
2197                                    llvm::BasicBlock::iterator InsertPt) const {
2198   LoopStack.InsertHelper(I);
2199   if (IsSanitizerScope)
2200     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2201 }
2202 
2203 void CGBuilderInserter::InsertHelper(
2204     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2205     llvm::BasicBlock::iterator InsertPt) const {
2206   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2207   if (CGF)
2208     CGF->InsertHelper(I, Name, BB, InsertPt);
2209 }
2210 
2211 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2212                                 CodeGenModule &CGM, const FunctionDecl *FD,
2213                                 std::string &FirstMissing) {
2214   // If there aren't any required features listed then go ahead and return.
2215   if (ReqFeatures.empty())
2216     return false;
2217 
2218   // Now build up the set of caller features and verify that all the required
2219   // features are there.
2220   llvm::StringMap<bool> CallerFeatureMap;
2221   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2222 
2223   // If we have at least one of the features in the feature list return
2224   // true, otherwise return false.
2225   return std::all_of(
2226       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2227         SmallVector<StringRef, 1> OrFeatures;
2228         Feature.split(OrFeatures, "|");
2229         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2230                            [&](StringRef Feature) {
2231                              if (!CallerFeatureMap.lookup(Feature)) {
2232                                FirstMissing = Feature.str();
2233                                return false;
2234                              }
2235                              return true;
2236                            });
2237       });
2238 }
2239 
2240 // Emits an error if we don't have a valid set of target features for the
2241 // called function.
2242 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2243                                           const FunctionDecl *TargetDecl) {
2244   // Early exit if this is an indirect call.
2245   if (!TargetDecl)
2246     return;
2247 
2248   // Get the current enclosing function if it exists. If it doesn't
2249   // we can't check the target features anyhow.
2250   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2251   if (!FD)
2252     return;
2253 
2254   // Grab the required features for the call. For a builtin this is listed in
2255   // the td file with the default cpu, for an always_inline function this is any
2256   // listed cpu and any listed features.
2257   unsigned BuiltinID = TargetDecl->getBuiltinID();
2258   std::string MissingFeature;
2259   if (BuiltinID) {
2260     SmallVector<StringRef, 1> ReqFeatures;
2261     const char *FeatureList =
2262         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2263     // Return if the builtin doesn't have any required features.
2264     if (!FeatureList || StringRef(FeatureList) == "")
2265       return;
2266     StringRef(FeatureList).split(ReqFeatures, ",");
2267     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2268       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2269           << TargetDecl->getDeclName()
2270           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2271 
2272   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2273     // Get the required features for the callee.
2274     SmallVector<StringRef, 1> ReqFeatures;
2275     llvm::StringMap<bool> CalleeFeatureMap;
2276     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2277     for (const auto &F : CalleeFeatureMap) {
2278       // Only positive features are "required".
2279       if (F.getValue())
2280         ReqFeatures.push_back(F.getKey());
2281     }
2282     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2283       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2284           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2285   }
2286 }
2287 
2288 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2289   if (!CGM.getCodeGenOpts().SanitizeStats)
2290     return;
2291 
2292   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2293   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2294   CGM.getSanStats().create(IRB, SSK);
2295 }
2296 
2297 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2298   if (CGDebugInfo *DI = getDebugInfo())
2299     return DI->SourceLocToDebugLoc(Location);
2300 
2301   return llvm::DebugLoc();
2302 }
2303