1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for exception behavior into
119 // the corresponding enum in the IR.
120 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
121   LangOptions::FPExceptionModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
125   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
126   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
127   }
128   llvm_unreachable("Unsupported FP Exception Behavior");
129 }
130 
131 void CodeGenFunction::SetFPModel() {
132   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
133   auto fpExceptionBehavior = ToConstrainedExceptMD(
134                                getLangOpts().getFPExceptionMode());
135 
136   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
137       RM == llvm::RoundingMode::NearestTiesToEven)
138     // Constrained intrinsics are not used.
139     ;
140   else {
141     Builder.setIsFPConstrained(true);
142     Builder.setDefaultConstrainedRounding(RM);
143     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
144   }
145 }
146 
147 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
148                                                     LValueBaseInfo *BaseInfo,
149                                                     TBAAAccessInfo *TBAAInfo) {
150   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
151                                  /* forPointeeType= */ true);
152 }
153 
154 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
155                                                    LValueBaseInfo *BaseInfo,
156                                                    TBAAAccessInfo *TBAAInfo,
157                                                    bool forPointeeType) {
158   if (TBAAInfo)
159     *TBAAInfo = CGM.getTBAAAccessInfo(T);
160 
161   // Honor alignment typedef attributes even on incomplete types.
162   // We also honor them straight for C++ class types, even as pointees;
163   // there's an expressivity gap here.
164   if (auto TT = T->getAs<TypedefType>()) {
165     if (auto Align = TT->getDecl()->getMaxAlignment()) {
166       if (BaseInfo)
167         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
168       return getContext().toCharUnitsFromBits(Align);
169     }
170   }
171 
172   if (BaseInfo)
173     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
174 
175   CharUnits Alignment;
176   if (T->isIncompleteType()) {
177     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
178   } else {
179     // For C++ class pointees, we don't know whether we're pointing at a
180     // base or a complete object, so we generally need to use the
181     // non-virtual alignment.
182     const CXXRecordDecl *RD;
183     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
184       Alignment = CGM.getClassPointerAlignment(RD);
185     } else {
186       Alignment = getContext().getTypeAlignInChars(T);
187       if (T.getQualifiers().hasUnaligned())
188         Alignment = CharUnits::One();
189     }
190 
191     // Cap to the global maximum type alignment unless the alignment
192     // was somehow explicit on the type.
193     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
194       if (Alignment.getQuantity() > MaxAlign &&
195           !getContext().isAlignmentRequired(T))
196         Alignment = CharUnits::fromQuantity(MaxAlign);
197     }
198   }
199   return Alignment;
200 }
201 
202 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
203   LValueBaseInfo BaseInfo;
204   TBAAAccessInfo TBAAInfo;
205   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
206   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
207                           TBAAInfo);
208 }
209 
210 /// Given a value of type T* that may not be to a complete object,
211 /// construct an l-value with the natural pointee alignment of T.
212 LValue
213 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
214   LValueBaseInfo BaseInfo;
215   TBAAAccessInfo TBAAInfo;
216   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
217                                             /* forPointeeType= */ true);
218   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
219 }
220 
221 
222 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
223   return CGM.getTypes().ConvertTypeForMem(T);
224 }
225 
226 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
227   return CGM.getTypes().ConvertType(T);
228 }
229 
230 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
231   type = type.getCanonicalType();
232   while (true) {
233     switch (type->getTypeClass()) {
234 #define TYPE(name, parent)
235 #define ABSTRACT_TYPE(name, parent)
236 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
237 #define DEPENDENT_TYPE(name, parent) case Type::name:
238 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
239 #include "clang/AST/TypeNodes.inc"
240       llvm_unreachable("non-canonical or dependent type in IR-generation");
241 
242     case Type::Auto:
243     case Type::DeducedTemplateSpecialization:
244       llvm_unreachable("undeduced type in IR-generation");
245 
246     // Various scalar types.
247     case Type::Builtin:
248     case Type::Pointer:
249     case Type::BlockPointer:
250     case Type::LValueReference:
251     case Type::RValueReference:
252     case Type::MemberPointer:
253     case Type::Vector:
254     case Type::ExtVector:
255     case Type::FunctionProto:
256     case Type::FunctionNoProto:
257     case Type::Enum:
258     case Type::ObjCObjectPointer:
259     case Type::Pipe:
260     case Type::ExtInt:
261       return TEK_Scalar;
262 
263     // Complexes.
264     case Type::Complex:
265       return TEK_Complex;
266 
267     // Arrays, records, and Objective-C objects.
268     case Type::ConstantArray:
269     case Type::IncompleteArray:
270     case Type::VariableArray:
271     case Type::Record:
272     case Type::ObjCObject:
273     case Type::ObjCInterface:
274       return TEK_Aggregate;
275 
276     // We operate on atomic values according to their underlying type.
277     case Type::Atomic:
278       type = cast<AtomicType>(type)->getValueType();
279       continue;
280     }
281     llvm_unreachable("unknown type kind!");
282   }
283 }
284 
285 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
286   // For cleanliness, we try to avoid emitting the return block for
287   // simple cases.
288   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
289 
290   if (CurBB) {
291     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
292 
293     // We have a valid insert point, reuse it if it is empty or there are no
294     // explicit jumps to the return block.
295     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
296       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
297       delete ReturnBlock.getBlock();
298       ReturnBlock = JumpDest();
299     } else
300       EmitBlock(ReturnBlock.getBlock());
301     return llvm::DebugLoc();
302   }
303 
304   // Otherwise, if the return block is the target of a single direct
305   // branch then we can just put the code in that block instead. This
306   // cleans up functions which started with a unified return block.
307   if (ReturnBlock.getBlock()->hasOneUse()) {
308     llvm::BranchInst *BI =
309       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
310     if (BI && BI->isUnconditional() &&
311         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
312       // Record/return the DebugLoc of the simple 'return' expression to be used
313       // later by the actual 'ret' instruction.
314       llvm::DebugLoc Loc = BI->getDebugLoc();
315       Builder.SetInsertPoint(BI->getParent());
316       BI->eraseFromParent();
317       delete ReturnBlock.getBlock();
318       ReturnBlock = JumpDest();
319       return Loc;
320     }
321   }
322 
323   // FIXME: We are at an unreachable point, there is no reason to emit the block
324   // unless it has uses. However, we still need a place to put the debug
325   // region.end for now.
326 
327   EmitBlock(ReturnBlock.getBlock());
328   return llvm::DebugLoc();
329 }
330 
331 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
332   if (!BB) return;
333   if (!BB->use_empty())
334     return CGF.CurFn->getBasicBlockList().push_back(BB);
335   delete BB;
336 }
337 
338 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
339   assert(BreakContinueStack.empty() &&
340          "mismatched push/pop in break/continue stack!");
341 
342   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
343     && NumSimpleReturnExprs == NumReturnExprs
344     && ReturnBlock.getBlock()->use_empty();
345   // Usually the return expression is evaluated before the cleanup
346   // code.  If the function contains only a simple return statement,
347   // such as a constant, the location before the cleanup code becomes
348   // the last useful breakpoint in the function, because the simple
349   // return expression will be evaluated after the cleanup code. To be
350   // safe, set the debug location for cleanup code to the location of
351   // the return statement.  Otherwise the cleanup code should be at the
352   // end of the function's lexical scope.
353   //
354   // If there are multiple branches to the return block, the branch
355   // instructions will get the location of the return statements and
356   // all will be fine.
357   if (CGDebugInfo *DI = getDebugInfo()) {
358     if (OnlySimpleReturnStmts)
359       DI->EmitLocation(Builder, LastStopPoint);
360     else
361       DI->EmitLocation(Builder, EndLoc);
362   }
363 
364   // Pop any cleanups that might have been associated with the
365   // parameters.  Do this in whatever block we're currently in; it's
366   // important to do this before we enter the return block or return
367   // edges will be *really* confused.
368   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
369   bool HasOnlyLifetimeMarkers =
370       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
371   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
372   if (HasCleanups) {
373     // Make sure the line table doesn't jump back into the body for
374     // the ret after it's been at EndLoc.
375     Optional<ApplyDebugLocation> AL;
376     if (CGDebugInfo *DI = getDebugInfo()) {
377       if (OnlySimpleReturnStmts)
378         DI->EmitLocation(Builder, EndLoc);
379       else
380         // We may not have a valid end location. Try to apply it anyway, and
381         // fall back to an artificial location if needed.
382         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
383     }
384 
385     PopCleanupBlocks(PrologueCleanupDepth);
386   }
387 
388   // Emit function epilog (to return).
389   llvm::DebugLoc Loc = EmitReturnBlock();
390 
391   if (ShouldInstrumentFunction()) {
392     if (CGM.getCodeGenOpts().InstrumentFunctions)
393       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
394     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
395       CurFn->addFnAttr("instrument-function-exit-inlined",
396                        "__cyg_profile_func_exit");
397   }
398 
399   // Emit debug descriptor for function end.
400   if (CGDebugInfo *DI = getDebugInfo())
401     DI->EmitFunctionEnd(Builder, CurFn);
402 
403   // Reset the debug location to that of the simple 'return' expression, if any
404   // rather than that of the end of the function's scope '}'.
405   ApplyDebugLocation AL(*this, Loc);
406   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
407   EmitEndEHSpec(CurCodeDecl);
408 
409   assert(EHStack.empty() &&
410          "did not remove all scopes from cleanup stack!");
411 
412   // If someone did an indirect goto, emit the indirect goto block at the end of
413   // the function.
414   if (IndirectBranch) {
415     EmitBlock(IndirectBranch->getParent());
416     Builder.ClearInsertionPoint();
417   }
418 
419   // If some of our locals escaped, insert a call to llvm.localescape in the
420   // entry block.
421   if (!EscapedLocals.empty()) {
422     // Invert the map from local to index into a simple vector. There should be
423     // no holes.
424     SmallVector<llvm::Value *, 4> EscapeArgs;
425     EscapeArgs.resize(EscapedLocals.size());
426     for (auto &Pair : EscapedLocals)
427       EscapeArgs[Pair.second] = Pair.first;
428     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
429         &CGM.getModule(), llvm::Intrinsic::localescape);
430     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
431   }
432 
433   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
434   llvm::Instruction *Ptr = AllocaInsertPt;
435   AllocaInsertPt = nullptr;
436   Ptr->eraseFromParent();
437 
438   // If someone took the address of a label but never did an indirect goto, we
439   // made a zero entry PHI node, which is illegal, zap it now.
440   if (IndirectBranch) {
441     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
442     if (PN->getNumIncomingValues() == 0) {
443       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
444       PN->eraseFromParent();
445     }
446   }
447 
448   EmitIfUsed(*this, EHResumeBlock);
449   EmitIfUsed(*this, TerminateLandingPad);
450   EmitIfUsed(*this, TerminateHandler);
451   EmitIfUsed(*this, UnreachableBlock);
452 
453   for (const auto &FuncletAndParent : TerminateFunclets)
454     EmitIfUsed(*this, FuncletAndParent.second);
455 
456   if (CGM.getCodeGenOpts().EmitDeclMetadata)
457     EmitDeclMetadata();
458 
459   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
460            I = DeferredReplacements.begin(),
461            E = DeferredReplacements.end();
462        I != E; ++I) {
463     I->first->replaceAllUsesWith(I->second);
464     I->first->eraseFromParent();
465   }
466 
467   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
468   // PHIs if the current function is a coroutine. We don't do it for all
469   // functions as it may result in slight increase in numbers of instructions
470   // if compiled with no optimizations. We do it for coroutine as the lifetime
471   // of CleanupDestSlot alloca make correct coroutine frame building very
472   // difficult.
473   if (NormalCleanupDest.isValid() && isCoroutine()) {
474     llvm::DominatorTree DT(*CurFn);
475     llvm::PromoteMemToReg(
476         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
477     NormalCleanupDest = Address::invalid();
478   }
479 
480   // Scan function arguments for vector width.
481   for (llvm::Argument &A : CurFn->args())
482     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
483       LargestVectorWidth =
484           std::max((uint64_t)LargestVectorWidth,
485                    VT->getPrimitiveSizeInBits().getKnownMinSize());
486 
487   // Update vector width based on return type.
488   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
489     LargestVectorWidth =
490         std::max((uint64_t)LargestVectorWidth,
491                  VT->getPrimitiveSizeInBits().getKnownMinSize());
492 
493   // Add the required-vector-width attribute. This contains the max width from:
494   // 1. min-vector-width attribute used in the source program.
495   // 2. Any builtins used that have a vector width specified.
496   // 3. Values passed in and out of inline assembly.
497   // 4. Width of vector arguments and return types for this function.
498   // 5. Width of vector aguments and return types for functions called by this
499   //    function.
500   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
501 
502   // If we generated an unreachable return block, delete it now.
503   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
504     Builder.ClearInsertionPoint();
505     ReturnBlock.getBlock()->eraseFromParent();
506   }
507   if (ReturnValue.isValid()) {
508     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
509     if (RetAlloca && RetAlloca->use_empty()) {
510       RetAlloca->eraseFromParent();
511       ReturnValue = Address::invalid();
512     }
513   }
514 }
515 
516 /// ShouldInstrumentFunction - Return true if the current function should be
517 /// instrumented with __cyg_profile_func_* calls
518 bool CodeGenFunction::ShouldInstrumentFunction() {
519   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
520       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
521       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
522     return false;
523   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
524     return false;
525   return true;
526 }
527 
528 /// ShouldXRayInstrument - Return true if the current function should be
529 /// instrumented with XRay nop sleds.
530 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
531   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
532 }
533 
534 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
535 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
536 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
537   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
538          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
539           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
540               XRayInstrKind::Custom);
541 }
542 
543 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
545          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
546           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
547               XRayInstrKind::Typed);
548 }
549 
550 llvm::Constant *
551 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
552                                             llvm::Constant *Addr) {
553   // Addresses stored in prologue data can't require run-time fixups and must
554   // be PC-relative. Run-time fixups are undesirable because they necessitate
555   // writable text segments, which are unsafe. And absolute addresses are
556   // undesirable because they break PIE mode.
557 
558   // Add a layer of indirection through a private global. Taking its address
559   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
560   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
561                                       /*isConstant=*/true,
562                                       llvm::GlobalValue::PrivateLinkage, Addr);
563 
564   // Create a PC-relative address.
565   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
566   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
567   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
568   return (IntPtrTy == Int32Ty)
569              ? PCRelAsInt
570              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
571 }
572 
573 llvm::Value *
574 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
575                                           llvm::Value *EncodedAddr) {
576   // Reconstruct the address of the global.
577   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
578   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
579   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
580   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
581 
582   // Load the original pointer through the global.
583   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
584                             "decoded_addr");
585 }
586 
587 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
588                                                llvm::Function *Fn)
589 {
590   if (!FD->hasAttr<OpenCLKernelAttr>())
591     return;
592 
593   llvm::LLVMContext &Context = getLLVMContext();
594 
595   CGM.GenOpenCLArgMetadata(Fn, FD, this);
596 
597   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
598     QualType HintQTy = A->getTypeHint();
599     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
600     bool IsSignedInteger =
601         HintQTy->isSignedIntegerType() ||
602         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
603     llvm::Metadata *AttrMDArgs[] = {
604         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
605             CGM.getTypes().ConvertType(A->getTypeHint()))),
606         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
607             llvm::IntegerType::get(Context, 32),
608             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
609     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
610   }
611 
612   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
613     llvm::Metadata *AttrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
617     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
618   }
619 
620   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
621     llvm::Metadata *AttrMDArgs[] = {
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
626   }
627 
628   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
629           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
630     llvm::Metadata *AttrMDArgs[] = {
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
632     Fn->setMetadata("intel_reqd_sub_group_size",
633                     llvm::MDNode::get(Context, AttrMDArgs));
634   }
635 }
636 
637 /// Determine whether the function F ends with a return stmt.
638 static bool endsWithReturn(const Decl* F) {
639   const Stmt *Body = nullptr;
640   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
641     Body = FD->getBody();
642   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
643     Body = OMD->getBody();
644 
645   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
646     auto LastStmt = CS->body_rbegin();
647     if (LastStmt != CS->body_rend())
648       return isa<ReturnStmt>(*LastStmt);
649   }
650   return false;
651 }
652 
653 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
654   if (SanOpts.has(SanitizerKind::Thread)) {
655     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
656     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
657   }
658 }
659 
660 /// Check if the return value of this function requires sanitization.
661 bool CodeGenFunction::requiresReturnValueCheck() const {
662   return requiresReturnValueNullabilityCheck() ||
663          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
664           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
665 }
666 
667 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
668   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
669   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
670       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
671       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
672     return false;
673 
674   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
675     return false;
676 
677   if (MD->getNumParams() == 2) {
678     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
679     if (!PT || !PT->isVoidPointerType() ||
680         !PT->getPointeeType().isConstQualified())
681       return false;
682   }
683 
684   return true;
685 }
686 
687 /// Return the UBSan prologue signature for \p FD if one is available.
688 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
689                                             const FunctionDecl *FD) {
690   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
691     if (!MD->isStatic())
692       return nullptr;
693   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
694 }
695 
696 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
697                                     llvm::Function *Fn,
698                                     const CGFunctionInfo &FnInfo,
699                                     const FunctionArgList &Args,
700                                     SourceLocation Loc,
701                                     SourceLocation StartLoc) {
702   assert(!CurFn &&
703          "Do not use a CodeGenFunction object for more than one function");
704 
705   const Decl *D = GD.getDecl();
706 
707   DidCallStackSave = false;
708   CurCodeDecl = D;
709   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
710     if (FD->usesSEHTry())
711       CurSEHParent = FD;
712   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
713   FnRetTy = RetTy;
714   CurFn = Fn;
715   CurFnInfo = &FnInfo;
716   assert(CurFn->isDeclaration() && "Function already has body?");
717 
718   // If this function has been blacklisted for any of the enabled sanitizers,
719   // disable the sanitizer for the function.
720   do {
721 #define SANITIZER(NAME, ID)                                                    \
722   if (SanOpts.empty())                                                         \
723     break;                                                                     \
724   if (SanOpts.has(SanitizerKind::ID))                                          \
725     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
726       SanOpts.set(SanitizerKind::ID, false);
727 
728 #include "clang/Basic/Sanitizers.def"
729 #undef SANITIZER
730   } while (0);
731 
732   if (D) {
733     // Apply the no_sanitize* attributes to SanOpts.
734     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
735       SanitizerMask mask = Attr->getMask();
736       SanOpts.Mask &= ~mask;
737       if (mask & SanitizerKind::Address)
738         SanOpts.set(SanitizerKind::KernelAddress, false);
739       if (mask & SanitizerKind::KernelAddress)
740         SanOpts.set(SanitizerKind::Address, false);
741       if (mask & SanitizerKind::HWAddress)
742         SanOpts.set(SanitizerKind::KernelHWAddress, false);
743       if (mask & SanitizerKind::KernelHWAddress)
744         SanOpts.set(SanitizerKind::HWAddress, false);
745     }
746   }
747 
748   // Apply sanitizer attributes to the function.
749   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
750     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
751   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
752     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
753   if (SanOpts.has(SanitizerKind::MemTag))
754     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
755   if (SanOpts.has(SanitizerKind::Thread))
756     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
757   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
758     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
759   if (SanOpts.has(SanitizerKind::SafeStack))
760     Fn->addFnAttr(llvm::Attribute::SafeStack);
761   if (SanOpts.has(SanitizerKind::ShadowCallStack))
762     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
763 
764   // Apply fuzzing attribute to the function.
765   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
766     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
767 
768   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
769   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
770   if (SanOpts.has(SanitizerKind::Thread)) {
771     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
772       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
773       if (OMD->getMethodFamily() == OMF_dealloc ||
774           OMD->getMethodFamily() == OMF_initialize ||
775           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
776         markAsIgnoreThreadCheckingAtRuntime(Fn);
777       }
778     }
779   }
780 
781   // Ignore unrelated casts in STL allocate() since the allocator must cast
782   // from void* to T* before object initialization completes. Don't match on the
783   // namespace because not all allocators are in std::
784   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
785     if (matchesStlAllocatorFn(D, getContext()))
786       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
787   }
788 
789   // Ignore null checks in coroutine functions since the coroutines passes
790   // are not aware of how to move the extra UBSan instructions across the split
791   // coroutine boundaries.
792   if (D && SanOpts.has(SanitizerKind::Null))
793     if (const auto *FD = dyn_cast<FunctionDecl>(D))
794       if (FD->getBody() &&
795           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
796         SanOpts.Mask &= ~SanitizerKind::Null;
797 
798   // Apply xray attributes to the function (as a string, for now)
799   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
800     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
801             XRayInstrKind::FunctionEntry) ||
802         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
803             XRayInstrKind::FunctionExit)) {
804       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
805         Fn->addFnAttr("function-instrument", "xray-always");
806       if (XRayAttr->neverXRayInstrument())
807         Fn->addFnAttr("function-instrument", "xray-never");
808       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
809         if (ShouldXRayInstrumentFunction())
810           Fn->addFnAttr("xray-log-args",
811                         llvm::utostr(LogArgs->getArgumentCount()));
812     }
813   } else {
814     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
815       Fn->addFnAttr(
816           "xray-instruction-threshold",
817           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
818   }
819 
820   if (ShouldXRayInstrumentFunction()) {
821     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
822       Fn->addFnAttr("xray-ignore-loops");
823 
824     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionExit))
826       Fn->addFnAttr("xray-skip-exit");
827 
828     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
829             XRayInstrKind::FunctionEntry))
830       Fn->addFnAttr("xray-skip-entry");
831   }
832 
833   unsigned Count, Offset;
834   if (const auto *Attr =
835           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
836     Count = Attr->getCount();
837     Offset = Attr->getOffset();
838   } else {
839     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
840     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
841   }
842   if (Count && Offset <= Count) {
843     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
844     if (Offset)
845       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
846   }
847 
848   // Add no-jump-tables value.
849   Fn->addFnAttr("no-jump-tables",
850                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
851 
852   // Add no-inline-line-tables value.
853   if (CGM.getCodeGenOpts().NoInlineLineTables)
854     Fn->addFnAttr("no-inline-line-tables");
855 
856   // Add profile-sample-accurate value.
857   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
858     Fn->addFnAttr("profile-sample-accurate");
859 
860   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
861     Fn->addFnAttr("cfi-canonical-jump-table");
862 
863   if (getLangOpts().OpenCL) {
864     // Add metadata for a kernel function.
865     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
866       EmitOpenCLKernelMetadata(FD, Fn);
867   }
868 
869   // If we are checking function types, emit a function type signature as
870   // prologue data.
871   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
872     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
873       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
874         // Remove any (C++17) exception specifications, to allow calling e.g. a
875         // noexcept function through a non-noexcept pointer.
876         auto ProtoTy =
877           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
878                                                         EST_None);
879         llvm::Constant *FTRTTIConst =
880             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
881         llvm::Constant *FTRTTIConstEncoded =
882             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
883         llvm::Constant *PrologueStructElems[] = {PrologueSig,
884                                                  FTRTTIConstEncoded};
885         llvm::Constant *PrologueStructConst =
886             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
887         Fn->setPrologueData(PrologueStructConst);
888       }
889     }
890   }
891 
892   // If we're checking nullability, we need to know whether we can check the
893   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
894   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
895     auto Nullability = FnRetTy->getNullability(getContext());
896     if (Nullability && *Nullability == NullabilityKind::NonNull) {
897       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
898             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
899         RetValNullabilityPrecondition =
900             llvm::ConstantInt::getTrue(getLLVMContext());
901     }
902   }
903 
904   // If we're in C++ mode and the function name is "main", it is guaranteed
905   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
906   // used within a program").
907   //
908   // OpenCL C 2.0 v2.2-11 s6.9.i:
909   //     Recursion is not supported.
910   //
911   // SYCL v1.2.1 s3.10:
912   //     kernels cannot include RTTI information, exception classes,
913   //     recursive code, virtual functions or make use of C++ libraries that
914   //     are not compiled for the device.
915   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
916     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
917         getLangOpts().SYCLIsDevice ||
918         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
919       Fn->addFnAttr(llvm::Attribute::NoRecurse);
920   }
921 
922   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
923     if (FD->usesFPIntrin())
924       Fn->addFnAttr(llvm::Attribute::StrictFP);
925 
926   // If a custom alignment is used, force realigning to this alignment on
927   // any main function which certainly will need it.
928   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
929     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
930         CGM.getCodeGenOpts().StackAlignment)
931       Fn->addFnAttr("stackrealign");
932 
933   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
934 
935   // Create a marker to make it easy to insert allocas into the entryblock
936   // later.  Don't create this with the builder, because we don't want it
937   // folded.
938   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
939   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
940 
941   ReturnBlock = getJumpDestInCurrentScope("return");
942 
943   Builder.SetInsertPoint(EntryBB);
944 
945   // If we're checking the return value, allocate space for a pointer to a
946   // precise source location of the checked return statement.
947   if (requiresReturnValueCheck()) {
948     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
949     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
950   }
951 
952   // Emit subprogram debug descriptor.
953   if (CGDebugInfo *DI = getDebugInfo()) {
954     // Reconstruct the type from the argument list so that implicit parameters,
955     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
956     // convention.
957     CallingConv CC = CallingConv::CC_C;
958     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
959       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
960         CC = SrcFnTy->getCallConv();
961     SmallVector<QualType, 16> ArgTypes;
962     for (const VarDecl *VD : Args)
963       ArgTypes.push_back(VD->getType());
964     QualType FnType = getContext().getFunctionType(
965         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
966     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
967                           Builder);
968   }
969 
970   if (ShouldInstrumentFunction()) {
971     if (CGM.getCodeGenOpts().InstrumentFunctions)
972       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
973     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
974       CurFn->addFnAttr("instrument-function-entry-inlined",
975                        "__cyg_profile_func_enter");
976     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
977       CurFn->addFnAttr("instrument-function-entry-inlined",
978                        "__cyg_profile_func_enter_bare");
979   }
980 
981   // Since emitting the mcount call here impacts optimizations such as function
982   // inlining, we just add an attribute to insert a mcount call in backend.
983   // The attribute "counting-function" is set to mcount function name which is
984   // architecture dependent.
985   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
986     // Calls to fentry/mcount should not be generated if function has
987     // the no_instrument_function attribute.
988     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
989       if (CGM.getCodeGenOpts().CallFEntry)
990         Fn->addFnAttr("fentry-call", "true");
991       else {
992         Fn->addFnAttr("instrument-function-entry-inlined",
993                       getTarget().getMCountName());
994       }
995       if (CGM.getCodeGenOpts().MNopMCount) {
996         if (!CGM.getCodeGenOpts().CallFEntry)
997           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
998             << "-mnop-mcount" << "-mfentry";
999         Fn->addFnAttr("mnop-mcount");
1000       }
1001 
1002       if (CGM.getCodeGenOpts().RecordMCount) {
1003         if (!CGM.getCodeGenOpts().CallFEntry)
1004           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1005             << "-mrecord-mcount" << "-mfentry";
1006         Fn->addFnAttr("mrecord-mcount");
1007       }
1008     }
1009   }
1010 
1011   if (CGM.getCodeGenOpts().PackedStack) {
1012     if (getContext().getTargetInfo().getTriple().getArch() !=
1013         llvm::Triple::systemz)
1014       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1015         << "-mpacked-stack";
1016     Fn->addFnAttr("packed-stack");
1017   }
1018 
1019   if (RetTy->isVoidType()) {
1020     // Void type; nothing to return.
1021     ReturnValue = Address::invalid();
1022 
1023     // Count the implicit return.
1024     if (!endsWithReturn(D))
1025       ++NumReturnExprs;
1026   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1027     // Indirect return; emit returned value directly into sret slot.
1028     // This reduces code size, and affects correctness in C++.
1029     auto AI = CurFn->arg_begin();
1030     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1031       ++AI;
1032     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1033     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1034       ReturnValuePointer =
1035           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1036       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1037                               ReturnValue.getPointer(), Int8PtrTy),
1038                           ReturnValuePointer);
1039     }
1040   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1041              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1042     // Load the sret pointer from the argument struct and return into that.
1043     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1044     llvm::Function::arg_iterator EI = CurFn->arg_end();
1045     --EI;
1046     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1047     ReturnValuePointer = Address(Addr, getPointerAlign());
1048     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1049     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1050   } else {
1051     ReturnValue = CreateIRTemp(RetTy, "retval");
1052 
1053     // Tell the epilog emitter to autorelease the result.  We do this
1054     // now so that various specialized functions can suppress it
1055     // during their IR-generation.
1056     if (getLangOpts().ObjCAutoRefCount &&
1057         !CurFnInfo->isReturnsRetained() &&
1058         RetTy->isObjCRetainableType())
1059       AutoreleaseResult = true;
1060   }
1061 
1062   EmitStartEHSpec(CurCodeDecl);
1063 
1064   PrologueCleanupDepth = EHStack.stable_begin();
1065 
1066   // Emit OpenMP specific initialization of the device functions.
1067   if (getLangOpts().OpenMP && CurCodeDecl)
1068     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1069 
1070   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1071 
1072   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1073     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1074     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1075     if (MD->getParent()->isLambda() &&
1076         MD->getOverloadedOperator() == OO_Call) {
1077       // We're in a lambda; figure out the captures.
1078       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1079                                         LambdaThisCaptureField);
1080       if (LambdaThisCaptureField) {
1081         // If the lambda captures the object referred to by '*this' - either by
1082         // value or by reference, make sure CXXThisValue points to the correct
1083         // object.
1084 
1085         // Get the lvalue for the field (which is a copy of the enclosing object
1086         // or contains the address of the enclosing object).
1087         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1088         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1089           // If the enclosing object was captured by value, just use its address.
1090           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1091         } else {
1092           // Load the lvalue pointed to by the field, since '*this' was captured
1093           // by reference.
1094           CXXThisValue =
1095               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1096         }
1097       }
1098       for (auto *FD : MD->getParent()->fields()) {
1099         if (FD->hasCapturedVLAType()) {
1100           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1101                                            SourceLocation()).getScalarVal();
1102           auto VAT = FD->getCapturedVLAType();
1103           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1104         }
1105       }
1106     } else {
1107       // Not in a lambda; just use 'this' from the method.
1108       // FIXME: Should we generate a new load for each use of 'this'?  The
1109       // fast register allocator would be happier...
1110       CXXThisValue = CXXABIThisValue;
1111     }
1112 
1113     // Check the 'this' pointer once per function, if it's available.
1114     if (CXXABIThisValue) {
1115       SanitizerSet SkippedChecks;
1116       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1117       QualType ThisTy = MD->getThisType();
1118 
1119       // If this is the call operator of a lambda with no capture-default, it
1120       // may have a static invoker function, which may call this operator with
1121       // a null 'this' pointer.
1122       if (isLambdaCallOperator(MD) &&
1123           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1124         SkippedChecks.set(SanitizerKind::Null, true);
1125 
1126       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1127                                                 : TCK_MemberCall,
1128                     Loc, CXXABIThisValue, ThisTy,
1129                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1130                     SkippedChecks);
1131     }
1132   }
1133 
1134   // If any of the arguments have a variably modified type, make sure to
1135   // emit the type size.
1136   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1137        i != e; ++i) {
1138     const VarDecl *VD = *i;
1139 
1140     // Dig out the type as written from ParmVarDecls; it's unclear whether
1141     // the standard (C99 6.9.1p10) requires this, but we're following the
1142     // precedent set by gcc.
1143     QualType Ty;
1144     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1145       Ty = PVD->getOriginalType();
1146     else
1147       Ty = VD->getType();
1148 
1149     if (Ty->isVariablyModifiedType())
1150       EmitVariablyModifiedType(Ty);
1151   }
1152   // Emit a location at the end of the prologue.
1153   if (CGDebugInfo *DI = getDebugInfo())
1154     DI->EmitLocation(Builder, StartLoc);
1155 
1156   // TODO: Do we need to handle this in two places like we do with
1157   // target-features/target-cpu?
1158   if (CurFuncDecl)
1159     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1160       LargestVectorWidth = VecWidth->getVectorWidth();
1161 }
1162 
1163 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1164   incrementProfileCounter(Body);
1165   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1166     EmitCompoundStmtWithoutScope(*S);
1167   else
1168     EmitStmt(Body);
1169 }
1170 
1171 /// When instrumenting to collect profile data, the counts for some blocks
1172 /// such as switch cases need to not include the fall-through counts, so
1173 /// emit a branch around the instrumentation code. When not instrumenting,
1174 /// this just calls EmitBlock().
1175 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1176                                                const Stmt *S) {
1177   llvm::BasicBlock *SkipCountBB = nullptr;
1178   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1179     // When instrumenting for profiling, the fallthrough to certain
1180     // statements needs to skip over the instrumentation code so that we
1181     // get an accurate count.
1182     SkipCountBB = createBasicBlock("skipcount");
1183     EmitBranch(SkipCountBB);
1184   }
1185   EmitBlock(BB);
1186   uint64_t CurrentCount = getCurrentProfileCount();
1187   incrementProfileCounter(S);
1188   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1189   if (SkipCountBB)
1190     EmitBlock(SkipCountBB);
1191 }
1192 
1193 /// Tries to mark the given function nounwind based on the
1194 /// non-existence of any throwing calls within it.  We believe this is
1195 /// lightweight enough to do at -O0.
1196 static void TryMarkNoThrow(llvm::Function *F) {
1197   // LLVM treats 'nounwind' on a function as part of the type, so we
1198   // can't do this on functions that can be overwritten.
1199   if (F->isInterposable()) return;
1200 
1201   for (llvm::BasicBlock &BB : *F)
1202     for (llvm::Instruction &I : BB)
1203       if (I.mayThrow())
1204         return;
1205 
1206   F->setDoesNotThrow();
1207 }
1208 
1209 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1210                                                FunctionArgList &Args) {
1211   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1212   QualType ResTy = FD->getReturnType();
1213 
1214   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1215   if (MD && MD->isInstance()) {
1216     if (CGM.getCXXABI().HasThisReturn(GD))
1217       ResTy = MD->getThisType();
1218     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1219       ResTy = CGM.getContext().VoidPtrTy;
1220     CGM.getCXXABI().buildThisParam(*this, Args);
1221   }
1222 
1223   // The base version of an inheriting constructor whose constructed base is a
1224   // virtual base is not passed any arguments (because it doesn't actually call
1225   // the inherited constructor).
1226   bool PassedParams = true;
1227   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1228     if (auto Inherited = CD->getInheritedConstructor())
1229       PassedParams =
1230           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1231 
1232   if (PassedParams) {
1233     for (auto *Param : FD->parameters()) {
1234       Args.push_back(Param);
1235       if (!Param->hasAttr<PassObjectSizeAttr>())
1236         continue;
1237 
1238       auto *Implicit = ImplicitParamDecl::Create(
1239           getContext(), Param->getDeclContext(), Param->getLocation(),
1240           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1241       SizeArguments[Param] = Implicit;
1242       Args.push_back(Implicit);
1243     }
1244   }
1245 
1246   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1247     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1248 
1249   return ResTy;
1250 }
1251 
1252 static bool
1253 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1254                                              const ASTContext &Context) {
1255   QualType T = FD->getReturnType();
1256   // Avoid the optimization for functions that return a record type with a
1257   // trivial destructor or another trivially copyable type.
1258   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1259     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1260       return !ClassDecl->hasTrivialDestructor();
1261   }
1262   return !T.isTriviallyCopyableType(Context);
1263 }
1264 
1265 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1266                                    const CGFunctionInfo &FnInfo) {
1267   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1268   CurGD = GD;
1269 
1270   FunctionArgList Args;
1271   QualType ResTy = BuildFunctionArgList(GD, Args);
1272 
1273   // Check if we should generate debug info for this function.
1274   if (FD->hasAttr<NoDebugAttr>())
1275     DebugInfo = nullptr; // disable debug info indefinitely for this function
1276 
1277   // The function might not have a body if we're generating thunks for a
1278   // function declaration.
1279   SourceRange BodyRange;
1280   if (Stmt *Body = FD->getBody())
1281     BodyRange = Body->getSourceRange();
1282   else
1283     BodyRange = FD->getLocation();
1284   CurEHLocation = BodyRange.getEnd();
1285 
1286   // Use the location of the start of the function to determine where
1287   // the function definition is located. By default use the location
1288   // of the declaration as the location for the subprogram. A function
1289   // may lack a declaration in the source code if it is created by code
1290   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1291   SourceLocation Loc = FD->getLocation();
1292 
1293   // If this is a function specialization then use the pattern body
1294   // as the location for the function.
1295   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1296     if (SpecDecl->hasBody(SpecDecl))
1297       Loc = SpecDecl->getLocation();
1298 
1299   Stmt *Body = FD->getBody();
1300 
1301   // Initialize helper which will detect jumps which can cause invalid lifetime
1302   // markers.
1303   if (Body && ShouldEmitLifetimeMarkers)
1304     Bypasses.Init(Body);
1305 
1306   // Emit the standard function prologue.
1307   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1308 
1309   // Generate the body of the function.
1310   PGO.assignRegionCounters(GD, CurFn);
1311   if (isa<CXXDestructorDecl>(FD))
1312     EmitDestructorBody(Args);
1313   else if (isa<CXXConstructorDecl>(FD))
1314     EmitConstructorBody(Args);
1315   else if (getLangOpts().CUDA &&
1316            !getLangOpts().CUDAIsDevice &&
1317            FD->hasAttr<CUDAGlobalAttr>())
1318     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1319   else if (isa<CXXMethodDecl>(FD) &&
1320            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1321     // The lambda static invoker function is special, because it forwards or
1322     // clones the body of the function call operator (but is actually static).
1323     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1324   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1325              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1326               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1327     // Implicit copy-assignment gets the same special treatment as implicit
1328     // copy-constructors.
1329     emitImplicitAssignmentOperatorBody(Args);
1330   } else if (Body) {
1331     EmitFunctionBody(Body);
1332   } else
1333     llvm_unreachable("no definition for emitted function");
1334 
1335   // C++11 [stmt.return]p2:
1336   //   Flowing off the end of a function [...] results in undefined behavior in
1337   //   a value-returning function.
1338   // C11 6.9.1p12:
1339   //   If the '}' that terminates a function is reached, and the value of the
1340   //   function call is used by the caller, the behavior is undefined.
1341   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1342       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1343     bool ShouldEmitUnreachable =
1344         CGM.getCodeGenOpts().StrictReturn ||
1345         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1346     if (SanOpts.has(SanitizerKind::Return)) {
1347       SanitizerScope SanScope(this);
1348       llvm::Value *IsFalse = Builder.getFalse();
1349       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1350                 SanitizerHandler::MissingReturn,
1351                 EmitCheckSourceLocation(FD->getLocation()), None);
1352     } else if (ShouldEmitUnreachable) {
1353       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1354         EmitTrapCall(llvm::Intrinsic::trap);
1355     }
1356     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1357       Builder.CreateUnreachable();
1358       Builder.ClearInsertionPoint();
1359     }
1360   }
1361 
1362   // Emit the standard function epilogue.
1363   FinishFunction(BodyRange.getEnd());
1364 
1365   // If we haven't marked the function nothrow through other means, do
1366   // a quick pass now to see if we can.
1367   if (!CurFn->doesNotThrow())
1368     TryMarkNoThrow(CurFn);
1369 }
1370 
1371 /// ContainsLabel - Return true if the statement contains a label in it.  If
1372 /// this statement is not executed normally, it not containing a label means
1373 /// that we can just remove the code.
1374 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1375   // Null statement, not a label!
1376   if (!S) return false;
1377 
1378   // If this is a label, we have to emit the code, consider something like:
1379   // if (0) {  ...  foo:  bar(); }  goto foo;
1380   //
1381   // TODO: If anyone cared, we could track __label__'s, since we know that you
1382   // can't jump to one from outside their declared region.
1383   if (isa<LabelStmt>(S))
1384     return true;
1385 
1386   // If this is a case/default statement, and we haven't seen a switch, we have
1387   // to emit the code.
1388   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1389     return true;
1390 
1391   // If this is a switch statement, we want to ignore cases below it.
1392   if (isa<SwitchStmt>(S))
1393     IgnoreCaseStmts = true;
1394 
1395   // Scan subexpressions for verboten labels.
1396   for (const Stmt *SubStmt : S->children())
1397     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1398       return true;
1399 
1400   return false;
1401 }
1402 
1403 /// containsBreak - Return true if the statement contains a break out of it.
1404 /// If the statement (recursively) contains a switch or loop with a break
1405 /// inside of it, this is fine.
1406 bool CodeGenFunction::containsBreak(const Stmt *S) {
1407   // Null statement, not a label!
1408   if (!S) return false;
1409 
1410   // If this is a switch or loop that defines its own break scope, then we can
1411   // include it and anything inside of it.
1412   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1413       isa<ForStmt>(S))
1414     return false;
1415 
1416   if (isa<BreakStmt>(S))
1417     return true;
1418 
1419   // Scan subexpressions for verboten breaks.
1420   for (const Stmt *SubStmt : S->children())
1421     if (containsBreak(SubStmt))
1422       return true;
1423 
1424   return false;
1425 }
1426 
1427 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1428   if (!S) return false;
1429 
1430   // Some statement kinds add a scope and thus never add a decl to the current
1431   // scope. Note, this list is longer than the list of statements that might
1432   // have an unscoped decl nested within them, but this way is conservatively
1433   // correct even if more statement kinds are added.
1434   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1435       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1436       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1437       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1438     return false;
1439 
1440   if (isa<DeclStmt>(S))
1441     return true;
1442 
1443   for (const Stmt *SubStmt : S->children())
1444     if (mightAddDeclToScope(SubStmt))
1445       return true;
1446 
1447   return false;
1448 }
1449 
1450 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1451 /// to a constant, or if it does but contains a label, return false.  If it
1452 /// constant folds return true and set the boolean result in Result.
1453 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1454                                                    bool &ResultBool,
1455                                                    bool AllowLabels) {
1456   llvm::APSInt ResultInt;
1457   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1458     return false;
1459 
1460   ResultBool = ResultInt.getBoolValue();
1461   return true;
1462 }
1463 
1464 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1465 /// to a constant, or if it does but contains a label, return false.  If it
1466 /// constant folds return true and set the folded value.
1467 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1468                                                    llvm::APSInt &ResultInt,
1469                                                    bool AllowLabels) {
1470   // FIXME: Rename and handle conversion of other evaluatable things
1471   // to bool.
1472   Expr::EvalResult Result;
1473   if (!Cond->EvaluateAsInt(Result, getContext()))
1474     return false;  // Not foldable, not integer or not fully evaluatable.
1475 
1476   llvm::APSInt Int = Result.Val.getInt();
1477   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1478     return false;  // Contains a label.
1479 
1480   ResultInt = Int;
1481   return true;
1482 }
1483 
1484 
1485 
1486 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1487 /// statement) to the specified blocks.  Based on the condition, this might try
1488 /// to simplify the codegen of the conditional based on the branch.
1489 ///
1490 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1491                                            llvm::BasicBlock *TrueBlock,
1492                                            llvm::BasicBlock *FalseBlock,
1493                                            uint64_t TrueCount) {
1494   Cond = Cond->IgnoreParens();
1495 
1496   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1497 
1498     // Handle X && Y in a condition.
1499     if (CondBOp->getOpcode() == BO_LAnd) {
1500       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1501       // folded if the case was simple enough.
1502       bool ConstantBool = false;
1503       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1504           ConstantBool) {
1505         // br(1 && X) -> br(X).
1506         incrementProfileCounter(CondBOp);
1507         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1508                                     TrueCount);
1509       }
1510 
1511       // If we have "X && 1", simplify the code to use an uncond branch.
1512       // "X && 0" would have been constant folded to 0.
1513       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1514           ConstantBool) {
1515         // br(X && 1) -> br(X).
1516         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1517                                     TrueCount);
1518       }
1519 
1520       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1521       // want to jump to the FalseBlock.
1522       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1523       // The counter tells us how often we evaluate RHS, and all of TrueCount
1524       // can be propagated to that branch.
1525       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1526 
1527       ConditionalEvaluation eval(*this);
1528       {
1529         ApplyDebugLocation DL(*this, Cond);
1530         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1531         EmitBlock(LHSTrue);
1532       }
1533 
1534       incrementProfileCounter(CondBOp);
1535       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1536 
1537       // Any temporaries created here are conditional.
1538       eval.begin(*this);
1539       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1540       eval.end(*this);
1541 
1542       return;
1543     }
1544 
1545     if (CondBOp->getOpcode() == BO_LOr) {
1546       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1547       // folded if the case was simple enough.
1548       bool ConstantBool = false;
1549       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1550           !ConstantBool) {
1551         // br(0 || X) -> br(X).
1552         incrementProfileCounter(CondBOp);
1553         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1554                                     TrueCount);
1555       }
1556 
1557       // If we have "X || 0", simplify the code to use an uncond branch.
1558       // "X || 1" would have been constant folded to 1.
1559       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1560           !ConstantBool) {
1561         // br(X || 0) -> br(X).
1562         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1563                                     TrueCount);
1564       }
1565 
1566       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1567       // want to jump to the TrueBlock.
1568       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1569       // We have the count for entry to the RHS and for the whole expression
1570       // being true, so we can divy up True count between the short circuit and
1571       // the RHS.
1572       uint64_t LHSCount =
1573           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1574       uint64_t RHSCount = TrueCount - LHSCount;
1575 
1576       ConditionalEvaluation eval(*this);
1577       {
1578         ApplyDebugLocation DL(*this, Cond);
1579         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1580         EmitBlock(LHSFalse);
1581       }
1582 
1583       incrementProfileCounter(CondBOp);
1584       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1585 
1586       // Any temporaries created here are conditional.
1587       eval.begin(*this);
1588       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1589 
1590       eval.end(*this);
1591 
1592       return;
1593     }
1594   }
1595 
1596   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1597     // br(!x, t, f) -> br(x, f, t)
1598     if (CondUOp->getOpcode() == UO_LNot) {
1599       // Negate the count.
1600       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1601       // Negate the condition and swap the destination blocks.
1602       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1603                                   FalseCount);
1604     }
1605   }
1606 
1607   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1608     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1609     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1610     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1611 
1612     ConditionalEvaluation cond(*this);
1613     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1614                          getProfileCount(CondOp));
1615 
1616     // When computing PGO branch weights, we only know the overall count for
1617     // the true block. This code is essentially doing tail duplication of the
1618     // naive code-gen, introducing new edges for which counts are not
1619     // available. Divide the counts proportionally between the LHS and RHS of
1620     // the conditional operator.
1621     uint64_t LHSScaledTrueCount = 0;
1622     if (TrueCount) {
1623       double LHSRatio =
1624           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1625       LHSScaledTrueCount = TrueCount * LHSRatio;
1626     }
1627 
1628     cond.begin(*this);
1629     EmitBlock(LHSBlock);
1630     incrementProfileCounter(CondOp);
1631     {
1632       ApplyDebugLocation DL(*this, Cond);
1633       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1634                            LHSScaledTrueCount);
1635     }
1636     cond.end(*this);
1637 
1638     cond.begin(*this);
1639     EmitBlock(RHSBlock);
1640     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1641                          TrueCount - LHSScaledTrueCount);
1642     cond.end(*this);
1643 
1644     return;
1645   }
1646 
1647   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1648     // Conditional operator handling can give us a throw expression as a
1649     // condition for a case like:
1650     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1651     // Fold this to:
1652     //   br(c, throw x, br(y, t, f))
1653     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1654     return;
1655   }
1656 
1657   // If the branch has a condition wrapped by __builtin_unpredictable,
1658   // create metadata that specifies that the branch is unpredictable.
1659   // Don't bother if not optimizing because that metadata would not be used.
1660   llvm::MDNode *Unpredictable = nullptr;
1661   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1662   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1663     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1664     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1665       llvm::MDBuilder MDHelper(getLLVMContext());
1666       Unpredictable = MDHelper.createUnpredictable();
1667     }
1668   }
1669 
1670   // Create branch weights based on the number of times we get here and the
1671   // number of times the condition should be true.
1672   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1673   llvm::MDNode *Weights =
1674       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1675 
1676   // Emit the code with the fully general case.
1677   llvm::Value *CondV;
1678   {
1679     ApplyDebugLocation DL(*this, Cond);
1680     CondV = EvaluateExprAsBool(Cond);
1681   }
1682   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1683 }
1684 
1685 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1686 /// specified stmt yet.
1687 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1688   CGM.ErrorUnsupported(S, Type);
1689 }
1690 
1691 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1692 /// variable-length array whose elements have a non-zero bit-pattern.
1693 ///
1694 /// \param baseType the inner-most element type of the array
1695 /// \param src - a char* pointing to the bit-pattern for a single
1696 /// base element of the array
1697 /// \param sizeInChars - the total size of the VLA, in chars
1698 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1699                                Address dest, Address src,
1700                                llvm::Value *sizeInChars) {
1701   CGBuilderTy &Builder = CGF.Builder;
1702 
1703   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1704   llvm::Value *baseSizeInChars
1705     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1706 
1707   Address begin =
1708     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1709   llvm::Value *end =
1710     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1711 
1712   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1713   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1714   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1715 
1716   // Make a loop over the VLA.  C99 guarantees that the VLA element
1717   // count must be nonzero.
1718   CGF.EmitBlock(loopBB);
1719 
1720   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1721   cur->addIncoming(begin.getPointer(), originBB);
1722 
1723   CharUnits curAlign =
1724     dest.getAlignment().alignmentOfArrayElement(baseSize);
1725 
1726   // memcpy the individual element bit-pattern.
1727   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1728                        /*volatile*/ false);
1729 
1730   // Go to the next element.
1731   llvm::Value *next =
1732     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1733 
1734   // Leave if that's the end of the VLA.
1735   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1736   Builder.CreateCondBr(done, contBB, loopBB);
1737   cur->addIncoming(next, loopBB);
1738 
1739   CGF.EmitBlock(contBB);
1740 }
1741 
1742 void
1743 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1744   // Ignore empty classes in C++.
1745   if (getLangOpts().CPlusPlus) {
1746     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1747       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1748         return;
1749     }
1750   }
1751 
1752   // Cast the dest ptr to the appropriate i8 pointer type.
1753   if (DestPtr.getElementType() != Int8Ty)
1754     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1755 
1756   // Get size and alignment info for this aggregate.
1757   CharUnits size = getContext().getTypeSizeInChars(Ty);
1758 
1759   llvm::Value *SizeVal;
1760   const VariableArrayType *vla;
1761 
1762   // Don't bother emitting a zero-byte memset.
1763   if (size.isZero()) {
1764     // But note that getTypeInfo returns 0 for a VLA.
1765     if (const VariableArrayType *vlaType =
1766           dyn_cast_or_null<VariableArrayType>(
1767                                           getContext().getAsArrayType(Ty))) {
1768       auto VlaSize = getVLASize(vlaType);
1769       SizeVal = VlaSize.NumElts;
1770       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1771       if (!eltSize.isOne())
1772         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1773       vla = vlaType;
1774     } else {
1775       return;
1776     }
1777   } else {
1778     SizeVal = CGM.getSize(size);
1779     vla = nullptr;
1780   }
1781 
1782   // If the type contains a pointer to data member we can't memset it to zero.
1783   // Instead, create a null constant and copy it to the destination.
1784   // TODO: there are other patterns besides zero that we can usefully memset,
1785   // like -1, which happens to be the pattern used by member-pointers.
1786   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1787     // For a VLA, emit a single element, then splat that over the VLA.
1788     if (vla) Ty = getContext().getBaseElementType(vla);
1789 
1790     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1791 
1792     llvm::GlobalVariable *NullVariable =
1793       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1794                                /*isConstant=*/true,
1795                                llvm::GlobalVariable::PrivateLinkage,
1796                                NullConstant, Twine());
1797     CharUnits NullAlign = DestPtr.getAlignment();
1798     NullVariable->setAlignment(NullAlign.getAsAlign());
1799     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1800                    NullAlign);
1801 
1802     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1803 
1804     // Get and call the appropriate llvm.memcpy overload.
1805     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1806     return;
1807   }
1808 
1809   // Otherwise, just memset the whole thing to zero.  This is legal
1810   // because in LLVM, all default initializers (other than the ones we just
1811   // handled above) are guaranteed to have a bit pattern of all zeros.
1812   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1813 }
1814 
1815 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1816   // Make sure that there is a block for the indirect goto.
1817   if (!IndirectBranch)
1818     GetIndirectGotoBlock();
1819 
1820   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1821 
1822   // Make sure the indirect branch includes all of the address-taken blocks.
1823   IndirectBranch->addDestination(BB);
1824   return llvm::BlockAddress::get(CurFn, BB);
1825 }
1826 
1827 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1828   // If we already made the indirect branch for indirect goto, return its block.
1829   if (IndirectBranch) return IndirectBranch->getParent();
1830 
1831   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1832 
1833   // Create the PHI node that indirect gotos will add entries to.
1834   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1835                                               "indirect.goto.dest");
1836 
1837   // Create the indirect branch instruction.
1838   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1839   return IndirectBranch->getParent();
1840 }
1841 
1842 /// Computes the length of an array in elements, as well as the base
1843 /// element type and a properly-typed first element pointer.
1844 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1845                                               QualType &baseType,
1846                                               Address &addr) {
1847   const ArrayType *arrayType = origArrayType;
1848 
1849   // If it's a VLA, we have to load the stored size.  Note that
1850   // this is the size of the VLA in bytes, not its size in elements.
1851   llvm::Value *numVLAElements = nullptr;
1852   if (isa<VariableArrayType>(arrayType)) {
1853     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1854 
1855     // Walk into all VLAs.  This doesn't require changes to addr,
1856     // which has type T* where T is the first non-VLA element type.
1857     do {
1858       QualType elementType = arrayType->getElementType();
1859       arrayType = getContext().getAsArrayType(elementType);
1860 
1861       // If we only have VLA components, 'addr' requires no adjustment.
1862       if (!arrayType) {
1863         baseType = elementType;
1864         return numVLAElements;
1865       }
1866     } while (isa<VariableArrayType>(arrayType));
1867 
1868     // We get out here only if we find a constant array type
1869     // inside the VLA.
1870   }
1871 
1872   // We have some number of constant-length arrays, so addr should
1873   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1874   // down to the first element of addr.
1875   SmallVector<llvm::Value*, 8> gepIndices;
1876 
1877   // GEP down to the array type.
1878   llvm::ConstantInt *zero = Builder.getInt32(0);
1879   gepIndices.push_back(zero);
1880 
1881   uint64_t countFromCLAs = 1;
1882   QualType eltType;
1883 
1884   llvm::ArrayType *llvmArrayType =
1885     dyn_cast<llvm::ArrayType>(addr.getElementType());
1886   while (llvmArrayType) {
1887     assert(isa<ConstantArrayType>(arrayType));
1888     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1889              == llvmArrayType->getNumElements());
1890 
1891     gepIndices.push_back(zero);
1892     countFromCLAs *= llvmArrayType->getNumElements();
1893     eltType = arrayType->getElementType();
1894 
1895     llvmArrayType =
1896       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1897     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1898     assert((!llvmArrayType || arrayType) &&
1899            "LLVM and Clang types are out-of-synch");
1900   }
1901 
1902   if (arrayType) {
1903     // From this point onwards, the Clang array type has been emitted
1904     // as some other type (probably a packed struct). Compute the array
1905     // size, and just emit the 'begin' expression as a bitcast.
1906     while (arrayType) {
1907       countFromCLAs *=
1908           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1909       eltType = arrayType->getElementType();
1910       arrayType = getContext().getAsArrayType(eltType);
1911     }
1912 
1913     llvm::Type *baseType = ConvertType(eltType);
1914     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1915   } else {
1916     // Create the actual GEP.
1917     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1918                                              gepIndices, "array.begin"),
1919                    addr.getAlignment());
1920   }
1921 
1922   baseType = eltType;
1923 
1924   llvm::Value *numElements
1925     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1926 
1927   // If we had any VLA dimensions, factor them in.
1928   if (numVLAElements)
1929     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1930 
1931   return numElements;
1932 }
1933 
1934 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1935   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1936   assert(vla && "type was not a variable array type!");
1937   return getVLASize(vla);
1938 }
1939 
1940 CodeGenFunction::VlaSizePair
1941 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1942   // The number of elements so far; always size_t.
1943   llvm::Value *numElements = nullptr;
1944 
1945   QualType elementType;
1946   do {
1947     elementType = type->getElementType();
1948     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1949     assert(vlaSize && "no size for VLA!");
1950     assert(vlaSize->getType() == SizeTy);
1951 
1952     if (!numElements) {
1953       numElements = vlaSize;
1954     } else {
1955       // It's undefined behavior if this wraps around, so mark it that way.
1956       // FIXME: Teach -fsanitize=undefined to trap this.
1957       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1958     }
1959   } while ((type = getContext().getAsVariableArrayType(elementType)));
1960 
1961   return { numElements, elementType };
1962 }
1963 
1964 CodeGenFunction::VlaSizePair
1965 CodeGenFunction::getVLAElements1D(QualType type) {
1966   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1967   assert(vla && "type was not a variable array type!");
1968   return getVLAElements1D(vla);
1969 }
1970 
1971 CodeGenFunction::VlaSizePair
1972 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1973   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1974   assert(VlaSize && "no size for VLA!");
1975   assert(VlaSize->getType() == SizeTy);
1976   return { VlaSize, Vla->getElementType() };
1977 }
1978 
1979 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1980   assert(type->isVariablyModifiedType() &&
1981          "Must pass variably modified type to EmitVLASizes!");
1982 
1983   EnsureInsertPoint();
1984 
1985   // We're going to walk down into the type and look for VLA
1986   // expressions.
1987   do {
1988     assert(type->isVariablyModifiedType());
1989 
1990     const Type *ty = type.getTypePtr();
1991     switch (ty->getTypeClass()) {
1992 
1993 #define TYPE(Class, Base)
1994 #define ABSTRACT_TYPE(Class, Base)
1995 #define NON_CANONICAL_TYPE(Class, Base)
1996 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1997 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1998 #include "clang/AST/TypeNodes.inc"
1999       llvm_unreachable("unexpected dependent type!");
2000 
2001     // These types are never variably-modified.
2002     case Type::Builtin:
2003     case Type::Complex:
2004     case Type::Vector:
2005     case Type::ExtVector:
2006     case Type::Record:
2007     case Type::Enum:
2008     case Type::Elaborated:
2009     case Type::TemplateSpecialization:
2010     case Type::ObjCTypeParam:
2011     case Type::ObjCObject:
2012     case Type::ObjCInterface:
2013     case Type::ObjCObjectPointer:
2014     case Type::ExtInt:
2015       llvm_unreachable("type class is never variably-modified!");
2016 
2017     case Type::Adjusted:
2018       type = cast<AdjustedType>(ty)->getAdjustedType();
2019       break;
2020 
2021     case Type::Decayed:
2022       type = cast<DecayedType>(ty)->getPointeeType();
2023       break;
2024 
2025     case Type::Pointer:
2026       type = cast<PointerType>(ty)->getPointeeType();
2027       break;
2028 
2029     case Type::BlockPointer:
2030       type = cast<BlockPointerType>(ty)->getPointeeType();
2031       break;
2032 
2033     case Type::LValueReference:
2034     case Type::RValueReference:
2035       type = cast<ReferenceType>(ty)->getPointeeType();
2036       break;
2037 
2038     case Type::MemberPointer:
2039       type = cast<MemberPointerType>(ty)->getPointeeType();
2040       break;
2041 
2042     case Type::ConstantArray:
2043     case Type::IncompleteArray:
2044       // Losing element qualification here is fine.
2045       type = cast<ArrayType>(ty)->getElementType();
2046       break;
2047 
2048     case Type::VariableArray: {
2049       // Losing element qualification here is fine.
2050       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2051 
2052       // Unknown size indication requires no size computation.
2053       // Otherwise, evaluate and record it.
2054       if (const Expr *size = vat->getSizeExpr()) {
2055         // It's possible that we might have emitted this already,
2056         // e.g. with a typedef and a pointer to it.
2057         llvm::Value *&entry = VLASizeMap[size];
2058         if (!entry) {
2059           llvm::Value *Size = EmitScalarExpr(size);
2060 
2061           // C11 6.7.6.2p5:
2062           //   If the size is an expression that is not an integer constant
2063           //   expression [...] each time it is evaluated it shall have a value
2064           //   greater than zero.
2065           if (SanOpts.has(SanitizerKind::VLABound) &&
2066               size->getType()->isSignedIntegerType()) {
2067             SanitizerScope SanScope(this);
2068             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2069             llvm::Constant *StaticArgs[] = {
2070                 EmitCheckSourceLocation(size->getBeginLoc()),
2071                 EmitCheckTypeDescriptor(size->getType())};
2072             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2073                                      SanitizerKind::VLABound),
2074                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2075           }
2076 
2077           // Always zexting here would be wrong if it weren't
2078           // undefined behavior to have a negative bound.
2079           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2080         }
2081       }
2082       type = vat->getElementType();
2083       break;
2084     }
2085 
2086     case Type::FunctionProto:
2087     case Type::FunctionNoProto:
2088       type = cast<FunctionType>(ty)->getReturnType();
2089       break;
2090 
2091     case Type::Paren:
2092     case Type::TypeOf:
2093     case Type::UnaryTransform:
2094     case Type::Attributed:
2095     case Type::SubstTemplateTypeParm:
2096     case Type::PackExpansion:
2097     case Type::MacroQualified:
2098       // Keep walking after single level desugaring.
2099       type = type.getSingleStepDesugaredType(getContext());
2100       break;
2101 
2102     case Type::Typedef:
2103     case Type::Decltype:
2104     case Type::Auto:
2105     case Type::DeducedTemplateSpecialization:
2106       // Stop walking: nothing to do.
2107       return;
2108 
2109     case Type::TypeOfExpr:
2110       // Stop walking: emit typeof expression.
2111       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2112       return;
2113 
2114     case Type::Atomic:
2115       type = cast<AtomicType>(ty)->getValueType();
2116       break;
2117 
2118     case Type::Pipe:
2119       type = cast<PipeType>(ty)->getElementType();
2120       break;
2121     }
2122   } while (type->isVariablyModifiedType());
2123 }
2124 
2125 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2126   if (getContext().getBuiltinVaListType()->isArrayType())
2127     return EmitPointerWithAlignment(E);
2128   return EmitLValue(E).getAddress(*this);
2129 }
2130 
2131 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2132   return EmitLValue(E).getAddress(*this);
2133 }
2134 
2135 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2136                                               const APValue &Init) {
2137   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2138   if (CGDebugInfo *Dbg = getDebugInfo())
2139     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2140       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2141 }
2142 
2143 CodeGenFunction::PeepholeProtection
2144 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2145   // At the moment, the only aggressive peephole we do in IR gen
2146   // is trunc(zext) folding, but if we add more, we can easily
2147   // extend this protection.
2148 
2149   if (!rvalue.isScalar()) return PeepholeProtection();
2150   llvm::Value *value = rvalue.getScalarVal();
2151   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2152 
2153   // Just make an extra bitcast.
2154   assert(HaveInsertPoint());
2155   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2156                                                   Builder.GetInsertBlock());
2157 
2158   PeepholeProtection protection;
2159   protection.Inst = inst;
2160   return protection;
2161 }
2162 
2163 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2164   if (!protection.Inst) return;
2165 
2166   // In theory, we could try to duplicate the peepholes now, but whatever.
2167   protection.Inst->eraseFromParent();
2168 }
2169 
2170 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2171                                               QualType Ty, SourceLocation Loc,
2172                                               SourceLocation AssumptionLoc,
2173                                               llvm::Value *Alignment,
2174                                               llvm::Value *OffsetValue) {
2175   llvm::Value *TheCheck;
2176   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2177       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2178   if (SanOpts.has(SanitizerKind::Alignment)) {
2179     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2180                                  OffsetValue, TheCheck, Assumption);
2181   }
2182 }
2183 
2184 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2185                                               const Expr *E,
2186                                               SourceLocation AssumptionLoc,
2187                                               llvm::Value *Alignment,
2188                                               llvm::Value *OffsetValue) {
2189   if (auto *CE = dyn_cast<CastExpr>(E))
2190     E = CE->getSubExprAsWritten();
2191   QualType Ty = E->getType();
2192   SourceLocation Loc = E->getExprLoc();
2193 
2194   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2195                           OffsetValue);
2196 }
2197 
2198 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2199                                                  llvm::Value *AnnotatedVal,
2200                                                  StringRef AnnotationStr,
2201                                                  SourceLocation Location) {
2202   llvm::Value *Args[4] = {
2203     AnnotatedVal,
2204     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2205     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2206     CGM.EmitAnnotationLineNo(Location)
2207   };
2208   return Builder.CreateCall(AnnotationFn, Args);
2209 }
2210 
2211 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2212   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2213   // FIXME We create a new bitcast for every annotation because that's what
2214   // llvm-gcc was doing.
2215   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2216     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2217                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2218                        I->getAnnotation(), D->getLocation());
2219 }
2220 
2221 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2222                                               Address Addr) {
2223   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2224   llvm::Value *V = Addr.getPointer();
2225   llvm::Type *VTy = V->getType();
2226   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2227                                     CGM.Int8PtrTy);
2228 
2229   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2230     // FIXME Always emit the cast inst so we can differentiate between
2231     // annotation on the first field of a struct and annotation on the struct
2232     // itself.
2233     if (VTy != CGM.Int8PtrTy)
2234       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2235     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2236     V = Builder.CreateBitCast(V, VTy);
2237   }
2238 
2239   return Address(V, Addr.getAlignment());
2240 }
2241 
2242 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2243 
2244 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2245     : CGF(CGF) {
2246   assert(!CGF->IsSanitizerScope);
2247   CGF->IsSanitizerScope = true;
2248 }
2249 
2250 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2251   CGF->IsSanitizerScope = false;
2252 }
2253 
2254 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2255                                    const llvm::Twine &Name,
2256                                    llvm::BasicBlock *BB,
2257                                    llvm::BasicBlock::iterator InsertPt) const {
2258   LoopStack.InsertHelper(I);
2259   if (IsSanitizerScope)
2260     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2261 }
2262 
2263 void CGBuilderInserter::InsertHelper(
2264     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2265     llvm::BasicBlock::iterator InsertPt) const {
2266   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2267   if (CGF)
2268     CGF->InsertHelper(I, Name, BB, InsertPt);
2269 }
2270 
2271 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2272                                 CodeGenModule &CGM, const FunctionDecl *FD,
2273                                 std::string &FirstMissing) {
2274   // If there aren't any required features listed then go ahead and return.
2275   if (ReqFeatures.empty())
2276     return false;
2277 
2278   // Now build up the set of caller features and verify that all the required
2279   // features are there.
2280   llvm::StringMap<bool> CallerFeatureMap;
2281   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2282 
2283   // If we have at least one of the features in the feature list return
2284   // true, otherwise return false.
2285   return std::all_of(
2286       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2287         SmallVector<StringRef, 1> OrFeatures;
2288         Feature.split(OrFeatures, '|');
2289         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2290           if (!CallerFeatureMap.lookup(Feature)) {
2291             FirstMissing = Feature.str();
2292             return false;
2293           }
2294           return true;
2295         });
2296       });
2297 }
2298 
2299 // Emits an error if we don't have a valid set of target features for the
2300 // called function.
2301 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2302                                           const FunctionDecl *TargetDecl) {
2303   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2304 }
2305 
2306 // Emits an error if we don't have a valid set of target features for the
2307 // called function.
2308 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2309                                           const FunctionDecl *TargetDecl) {
2310   // Early exit if this is an indirect call.
2311   if (!TargetDecl)
2312     return;
2313 
2314   // Get the current enclosing function if it exists. If it doesn't
2315   // we can't check the target features anyhow.
2316   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2317   if (!FD)
2318     return;
2319 
2320   // Grab the required features for the call. For a builtin this is listed in
2321   // the td file with the default cpu, for an always_inline function this is any
2322   // listed cpu and any listed features.
2323   unsigned BuiltinID = TargetDecl->getBuiltinID();
2324   std::string MissingFeature;
2325   if (BuiltinID) {
2326     SmallVector<StringRef, 1> ReqFeatures;
2327     const char *FeatureList =
2328         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2329     // Return if the builtin doesn't have any required features.
2330     if (!FeatureList || StringRef(FeatureList) == "")
2331       return;
2332     StringRef(FeatureList).split(ReqFeatures, ',');
2333     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2334       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2335           << TargetDecl->getDeclName()
2336           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2337 
2338   } else if (!TargetDecl->isMultiVersion() &&
2339              TargetDecl->hasAttr<TargetAttr>()) {
2340     // Get the required features for the callee.
2341 
2342     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2343     ParsedTargetAttr ParsedAttr =
2344         CGM.getContext().filterFunctionTargetAttrs(TD);
2345 
2346     SmallVector<StringRef, 1> ReqFeatures;
2347     llvm::StringMap<bool> CalleeFeatureMap;
2348     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2349 
2350     for (const auto &F : ParsedAttr.Features) {
2351       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2352         ReqFeatures.push_back(StringRef(F).substr(1));
2353     }
2354 
2355     for (const auto &F : CalleeFeatureMap) {
2356       // Only positive features are "required".
2357       if (F.getValue())
2358         ReqFeatures.push_back(F.getKey());
2359     }
2360     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2361       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2362           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2363   }
2364 }
2365 
2366 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2367   if (!CGM.getCodeGenOpts().SanitizeStats)
2368     return;
2369 
2370   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2371   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2372   CGM.getSanStats().create(IRB, SSK);
2373 }
2374 
2375 llvm::Value *
2376 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2377   llvm::Value *Condition = nullptr;
2378 
2379   if (!RO.Conditions.Architecture.empty())
2380     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2381 
2382   if (!RO.Conditions.Features.empty()) {
2383     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2384     Condition =
2385         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2386   }
2387   return Condition;
2388 }
2389 
2390 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2391                                              llvm::Function *Resolver,
2392                                              CGBuilderTy &Builder,
2393                                              llvm::Function *FuncToReturn,
2394                                              bool SupportsIFunc) {
2395   if (SupportsIFunc) {
2396     Builder.CreateRet(FuncToReturn);
2397     return;
2398   }
2399 
2400   llvm::SmallVector<llvm::Value *, 10> Args;
2401   llvm::for_each(Resolver->args(),
2402                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2403 
2404   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2405   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2406 
2407   if (Resolver->getReturnType()->isVoidTy())
2408     Builder.CreateRetVoid();
2409   else
2410     Builder.CreateRet(Result);
2411 }
2412 
2413 void CodeGenFunction::EmitMultiVersionResolver(
2414     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2415   assert(getContext().getTargetInfo().getTriple().isX86() &&
2416          "Only implemented for x86 targets");
2417 
2418   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2419 
2420   // Main function's basic block.
2421   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2422   Builder.SetInsertPoint(CurBlock);
2423   EmitX86CpuInit();
2424 
2425   for (const MultiVersionResolverOption &RO : Options) {
2426     Builder.SetInsertPoint(CurBlock);
2427     llvm::Value *Condition = FormResolverCondition(RO);
2428 
2429     // The 'default' or 'generic' case.
2430     if (!Condition) {
2431       assert(&RO == Options.end() - 1 &&
2432              "Default or Generic case must be last");
2433       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2434                                        SupportsIFunc);
2435       return;
2436     }
2437 
2438     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2439     CGBuilderTy RetBuilder(*this, RetBlock);
2440     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2441                                      SupportsIFunc);
2442     CurBlock = createBasicBlock("resolver_else", Resolver);
2443     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2444   }
2445 
2446   // If no generic/default, emit an unreachable.
2447   Builder.SetInsertPoint(CurBlock);
2448   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2449   TrapCall->setDoesNotReturn();
2450   TrapCall->setDoesNotThrow();
2451   Builder.CreateUnreachable();
2452   Builder.ClearInsertionPoint();
2453 }
2454 
2455 // Loc - where the diagnostic will point, where in the source code this
2456 //  alignment has failed.
2457 // SecondaryLoc - if present (will be present if sufficiently different from
2458 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2459 //  It should be the location where the __attribute__((assume_aligned))
2460 //  was written e.g.
2461 void CodeGenFunction::emitAlignmentAssumptionCheck(
2462     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2463     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2464     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2465     llvm::Instruction *Assumption) {
2466   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2467          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2468              llvm::Intrinsic::getDeclaration(
2469                  Builder.GetInsertBlock()->getParent()->getParent(),
2470                  llvm::Intrinsic::assume) &&
2471          "Assumption should be a call to llvm.assume().");
2472   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2473          "Assumption should be the last instruction of the basic block, "
2474          "since the basic block is still being generated.");
2475 
2476   if (!SanOpts.has(SanitizerKind::Alignment))
2477     return;
2478 
2479   // Don't check pointers to volatile data. The behavior here is implementation-
2480   // defined.
2481   if (Ty->getPointeeType().isVolatileQualified())
2482     return;
2483 
2484   // We need to temorairly remove the assumption so we can insert the
2485   // sanitizer check before it, else the check will be dropped by optimizations.
2486   Assumption->removeFromParent();
2487 
2488   {
2489     SanitizerScope SanScope(this);
2490 
2491     if (!OffsetValue)
2492       OffsetValue = Builder.getInt1(0); // no offset.
2493 
2494     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2495                                     EmitCheckSourceLocation(SecondaryLoc),
2496                                     EmitCheckTypeDescriptor(Ty)};
2497     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2498                                   EmitCheckValue(Alignment),
2499                                   EmitCheckValue(OffsetValue)};
2500     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2501               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2502   }
2503 
2504   // We are now in the (new, empty) "cont" basic block.
2505   // Reintroduce the assumption.
2506   Builder.Insert(Assumption);
2507   // FIXME: Assumption still has it's original basic block as it's Parent.
2508 }
2509 
2510 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2511   if (CGDebugInfo *DI = getDebugInfo())
2512     return DI->SourceLocToDebugLoc(Location);
2513 
2514   return llvm::DebugLoc();
2515 }
2516