1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44 /// markers.
45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                       const LangOptions &LangOpts) {
47   if (CGOpts.DisableLifetimeMarkers)
48     return false;
49 
50   // Disable lifetime markers in msan builds.
51   // FIXME: Remove this when msan works with lifetime markers.
52   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
53     return false;
54 
55   // Asan uses markers for use-after-scope checks.
56   if (CGOpts.SanitizeAddressUseAfterScope)
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93 }
94 
95 CodeGenFunction::~CodeGenFunction() {
96   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97 
98   // If there are any unclaimed block infos, go ahead and destroy them
99   // now.  This can happen if IR-gen gets clever and skips evaluating
100   // something.
101   if (FirstBlockInfo)
102     destroyBlockInfos(FirstBlockInfo);
103 
104   if (getLangOpts().OpenMP && CurFn)
105     CGM.getOpenMPRuntime().functionFinished(*this);
106 }
107 
108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
109                                                     LValueBaseInfo *BaseInfo,
110                                                     TBAAAccessInfo *TBAAInfo) {
111   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
112                                  /* forPointeeType= */ true);
113 }
114 
115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
116                                                    LValueBaseInfo *BaseInfo,
117                                                    TBAAAccessInfo *TBAAInfo,
118                                                    bool forPointeeType) {
119   if (TBAAInfo)
120     *TBAAInfo = CGM.getTBAAAccessInfo(T);
121 
122   // Honor alignment typedef attributes even on incomplete types.
123   // We also honor them straight for C++ class types, even as pointees;
124   // there's an expressivity gap here.
125   if (auto TT = T->getAs<TypedefType>()) {
126     if (auto Align = TT->getDecl()->getMaxAlignment()) {
127       if (BaseInfo)
128         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
129       return getContext().toCharUnitsFromBits(Align);
130     }
131   }
132 
133   if (BaseInfo)
134     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
135 
136   CharUnits Alignment;
137   if (T->isIncompleteType()) {
138     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
139   } else {
140     // For C++ class pointees, we don't know whether we're pointing at a
141     // base or a complete object, so we generally need to use the
142     // non-virtual alignment.
143     const CXXRecordDecl *RD;
144     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
145       Alignment = CGM.getClassPointerAlignment(RD);
146     } else {
147       Alignment = getContext().getTypeAlignInChars(T);
148       if (T.getQualifiers().hasUnaligned())
149         Alignment = CharUnits::One();
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   LValueBaseInfo BaseInfo;
165   TBAAAccessInfo TBAAInfo;
166   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
167   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
168                           TBAAInfo);
169 }
170 
171 /// Given a value of type T* that may not be to a complete object,
172 /// construct an l-value with the natural pointee alignment of T.
173 LValue
174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
175   LValueBaseInfo BaseInfo;
176   TBAAAccessInfo TBAAInfo;
177   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
178                                             /* forPointeeType= */ true);
179   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
180 }
181 
182 
183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
184   return CGM.getTypes().ConvertTypeForMem(T);
185 }
186 
187 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
188   return CGM.getTypes().ConvertType(T);
189 }
190 
191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
192   type = type.getCanonicalType();
193   while (true) {
194     switch (type->getTypeClass()) {
195 #define TYPE(name, parent)
196 #define ABSTRACT_TYPE(name, parent)
197 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
198 #define DEPENDENT_TYPE(name, parent) case Type::name:
199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
200 #include "clang/AST/TypeNodes.def"
201       llvm_unreachable("non-canonical or dependent type in IR-generation");
202 
203     case Type::Auto:
204     case Type::DeducedTemplateSpecialization:
205       llvm_unreachable("undeduced type in IR-generation");
206 
207     // Various scalar types.
208     case Type::Builtin:
209     case Type::Pointer:
210     case Type::BlockPointer:
211     case Type::LValueReference:
212     case Type::RValueReference:
213     case Type::MemberPointer:
214     case Type::Vector:
215     case Type::ExtVector:
216     case Type::FunctionProto:
217     case Type::FunctionNoProto:
218     case Type::Enum:
219     case Type::ObjCObjectPointer:
220     case Type::Pipe:
221       return TEK_Scalar;
222 
223     // Complexes.
224     case Type::Complex:
225       return TEK_Complex;
226 
227     // Arrays, records, and Objective-C objects.
228     case Type::ConstantArray:
229     case Type::IncompleteArray:
230     case Type::VariableArray:
231     case Type::Record:
232     case Type::ObjCObject:
233     case Type::ObjCInterface:
234       return TEK_Aggregate;
235 
236     // We operate on atomic values according to their underlying type.
237     case Type::Atomic:
238       type = cast<AtomicType>(type)->getValueType();
239       continue;
240     }
241     llvm_unreachable("unknown type kind!");
242   }
243 }
244 
245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
246   // For cleanliness, we try to avoid emitting the return block for
247   // simple cases.
248   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249 
250   if (CurBB) {
251     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
252 
253     // We have a valid insert point, reuse it if it is empty or there are no
254     // explicit jumps to the return block.
255     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
256       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
257       delete ReturnBlock.getBlock();
258       ReturnBlock = JumpDest();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       ReturnBlock = JumpDest();
279       return Loc;
280     }
281   }
282 
283   // FIXME: We are at an unreachable point, there is no reason to emit the block
284   // unless it has uses. However, we still need a place to put the debug
285   // region.end for now.
286 
287   EmitBlock(ReturnBlock.getBlock());
288   return llvm::DebugLoc();
289 }
290 
291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
292   if (!BB) return;
293   if (!BB->use_empty())
294     return CGF.CurFn->getBasicBlockList().push_back(BB);
295   delete BB;
296 }
297 
298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
299   assert(BreakContinueStack.empty() &&
300          "mismatched push/pop in break/continue stack!");
301 
302   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
303     && NumSimpleReturnExprs == NumReturnExprs
304     && ReturnBlock.getBlock()->use_empty();
305   // Usually the return expression is evaluated before the cleanup
306   // code.  If the function contains only a simple return statement,
307   // such as a constant, the location before the cleanup code becomes
308   // the last useful breakpoint in the function, because the simple
309   // return expression will be evaluated after the cleanup code. To be
310   // safe, set the debug location for cleanup code to the location of
311   // the return statement.  Otherwise the cleanup code should be at the
312   // end of the function's lexical scope.
313   //
314   // If there are multiple branches to the return block, the branch
315   // instructions will get the location of the return statements and
316   // all will be fine.
317   if (CGDebugInfo *DI = getDebugInfo()) {
318     if (OnlySimpleReturnStmts)
319       DI->EmitLocation(Builder, LastStopPoint);
320     else
321       DI->EmitLocation(Builder, EndLoc);
322   }
323 
324   // Pop any cleanups that might have been associated with the
325   // parameters.  Do this in whatever block we're currently in; it's
326   // important to do this before we enter the return block or return
327   // edges will be *really* confused.
328   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
329   bool HasOnlyLifetimeMarkers =
330       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
331   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
332   if (HasCleanups) {
333     // Make sure the line table doesn't jump back into the body for
334     // the ret after it's been at EndLoc.
335     if (CGDebugInfo *DI = getDebugInfo())
336       if (OnlySimpleReturnStmts)
337         DI->EmitLocation(Builder, EndLoc);
338 
339     PopCleanupBlocks(PrologueCleanupDepth);
340   }
341 
342   // Emit function epilog (to return).
343   llvm::DebugLoc Loc = EmitReturnBlock();
344 
345   if (ShouldInstrumentFunction()) {
346     if (CGM.getCodeGenOpts().InstrumentFunctions)
347       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
348     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
349       CurFn->addFnAttr("instrument-function-exit-inlined",
350                        "__cyg_profile_func_exit");
351   }
352 
353   // Emit debug descriptor for function end.
354   if (CGDebugInfo *DI = getDebugInfo())
355     DI->EmitFunctionEnd(Builder, CurFn);
356 
357   // Reset the debug location to that of the simple 'return' expression, if any
358   // rather than that of the end of the function's scope '}'.
359   ApplyDebugLocation AL(*this, Loc);
360   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
361   EmitEndEHSpec(CurCodeDecl);
362 
363   assert(EHStack.empty() &&
364          "did not remove all scopes from cleanup stack!");
365 
366   // If someone did an indirect goto, emit the indirect goto block at the end of
367   // the function.
368   if (IndirectBranch) {
369     EmitBlock(IndirectBranch->getParent());
370     Builder.ClearInsertionPoint();
371   }
372 
373   // If some of our locals escaped, insert a call to llvm.localescape in the
374   // entry block.
375   if (!EscapedLocals.empty()) {
376     // Invert the map from local to index into a simple vector. There should be
377     // no holes.
378     SmallVector<llvm::Value *, 4> EscapeArgs;
379     EscapeArgs.resize(EscapedLocals.size());
380     for (auto &Pair : EscapedLocals)
381       EscapeArgs[Pair.second] = Pair.first;
382     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
383         &CGM.getModule(), llvm::Intrinsic::localescape);
384     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
385   }
386 
387   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
388   llvm::Instruction *Ptr = AllocaInsertPt;
389   AllocaInsertPt = nullptr;
390   Ptr->eraseFromParent();
391 
392   // If someone took the address of a label but never did an indirect goto, we
393   // made a zero entry PHI node, which is illegal, zap it now.
394   if (IndirectBranch) {
395     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
396     if (PN->getNumIncomingValues() == 0) {
397       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
398       PN->eraseFromParent();
399     }
400   }
401 
402   EmitIfUsed(*this, EHResumeBlock);
403   EmitIfUsed(*this, TerminateLandingPad);
404   EmitIfUsed(*this, TerminateHandler);
405   EmitIfUsed(*this, UnreachableBlock);
406 
407   for (const auto &FuncletAndParent : TerminateFunclets)
408     EmitIfUsed(*this, FuncletAndParent.second);
409 
410   if (CGM.getCodeGenOpts().EmitDeclMetadata)
411     EmitDeclMetadata();
412 
413   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
414            I = DeferredReplacements.begin(),
415            E = DeferredReplacements.end();
416        I != E; ++I) {
417     I->first->replaceAllUsesWith(I->second);
418     I->first->eraseFromParent();
419   }
420 
421   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
422   // PHIs if the current function is a coroutine. We don't do it for all
423   // functions as it may result in slight increase in numbers of instructions
424   // if compiled with no optimizations. We do it for coroutine as the lifetime
425   // of CleanupDestSlot alloca make correct coroutine frame building very
426   // difficult.
427   if (NormalCleanupDest.isValid() && isCoroutine()) {
428     llvm::DominatorTree DT(*CurFn);
429     llvm::PromoteMemToReg(
430         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
431     NormalCleanupDest = Address::invalid();
432   }
433 
434   // Scan function arguments for vector width.
435   for (llvm::Argument &A : CurFn->args())
436     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
437       LargestVectorWidth = std::max(LargestVectorWidth,
438                                     VT->getPrimitiveSizeInBits());
439 
440   // Update vector width based on return type.
441   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
442     LargestVectorWidth = std::max(LargestVectorWidth,
443                                   VT->getPrimitiveSizeInBits());
444 
445   // Add the required-vector-width attribute. This contains the max width from:
446   // 1. min-vector-width attribute used in the source program.
447   // 2. Any builtins used that have a vector width specified.
448   // 3. Values passed in and out of inline assembly.
449   // 4. Width of vector arguments and return types for this function.
450   // 5. Width of vector aguments and return types for functions called by this
451   //    function.
452   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
453 
454   // If we generated an unreachable return block, delete it now.
455   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
456     Builder.ClearInsertionPoint();
457     ReturnBlock.getBlock()->eraseFromParent();
458   }
459   if (ReturnValue.isValid()) {
460     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
461     if (RetAlloca && RetAlloca->use_empty()) {
462       RetAlloca->eraseFromParent();
463       ReturnValue = Address::invalid();
464     }
465   }
466 }
467 
468 /// ShouldInstrumentFunction - Return true if the current function should be
469 /// instrumented with __cyg_profile_func_* calls
470 bool CodeGenFunction::ShouldInstrumentFunction() {
471   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
472       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
473       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
474     return false;
475   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
476     return false;
477   return true;
478 }
479 
480 /// ShouldXRayInstrument - Return true if the current function should be
481 /// instrumented with XRay nop sleds.
482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
483   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
484 }
485 
486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
489   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
490          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
491           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
492               XRayInstrKind::Custom);
493 }
494 
495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
496   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
497          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
498           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
499               XRayInstrKind::Typed);
500 }
501 
502 llvm::Constant *
503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
504                                             llvm::Constant *Addr) {
505   // Addresses stored in prologue data can't require run-time fixups and must
506   // be PC-relative. Run-time fixups are undesirable because they necessitate
507   // writable text segments, which are unsafe. And absolute addresses are
508   // undesirable because they break PIE mode.
509 
510   // Add a layer of indirection through a private global. Taking its address
511   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
512   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
513                                       /*isConstant=*/true,
514                                       llvm::GlobalValue::PrivateLinkage, Addr);
515 
516   // Create a PC-relative address.
517   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
518   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
519   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
520   return (IntPtrTy == Int32Ty)
521              ? PCRelAsInt
522              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
523 }
524 
525 llvm::Value *
526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
527                                           llvm::Value *EncodedAddr) {
528   // Reconstruct the address of the global.
529   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
530   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
531   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
532   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
533 
534   // Load the original pointer through the global.
535   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
536                             "decoded_addr");
537 }
538 
539 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
540                                                llvm::Function *Fn)
541 {
542   if (!FD->hasAttr<OpenCLKernelAttr>())
543     return;
544 
545   llvm::LLVMContext &Context = getLLVMContext();
546 
547   CGM.GenOpenCLArgMetadata(Fn, FD, this);
548 
549   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
550     QualType HintQTy = A->getTypeHint();
551     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
552     bool IsSignedInteger =
553         HintQTy->isSignedIntegerType() ||
554         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
555     llvm::Metadata *AttrMDArgs[] = {
556         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
557             CGM.getTypes().ConvertType(A->getTypeHint()))),
558         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559             llvm::IntegerType::get(Context, 32),
560             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
561     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
562   }
563 
564   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
565     llvm::Metadata *AttrMDArgs[] = {
566         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
567         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
568         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
569     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
570   }
571 
572   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
573     llvm::Metadata *AttrMDArgs[] = {
574         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
575         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
576         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
577     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
578   }
579 
580   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
581           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
582     llvm::Metadata *AttrMDArgs[] = {
583         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
584     Fn->setMetadata("intel_reqd_sub_group_size",
585                     llvm::MDNode::get(Context, AttrMDArgs));
586   }
587 }
588 
589 /// Determine whether the function F ends with a return stmt.
590 static bool endsWithReturn(const Decl* F) {
591   const Stmt *Body = nullptr;
592   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
593     Body = FD->getBody();
594   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
595     Body = OMD->getBody();
596 
597   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
598     auto LastStmt = CS->body_rbegin();
599     if (LastStmt != CS->body_rend())
600       return isa<ReturnStmt>(*LastStmt);
601   }
602   return false;
603 }
604 
605 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
606   if (SanOpts.has(SanitizerKind::Thread)) {
607     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
608     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
609   }
610 }
611 
612 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
613   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
614   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
615       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
616       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
617     return false;
618 
619   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
620     return false;
621 
622   if (MD->getNumParams() == 2) {
623     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
624     if (!PT || !PT->isVoidPointerType() ||
625         !PT->getPointeeType().isConstQualified())
626       return false;
627   }
628 
629   return true;
630 }
631 
632 /// Return the UBSan prologue signature for \p FD if one is available.
633 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
634                                             const FunctionDecl *FD) {
635   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
636     if (!MD->isStatic())
637       return nullptr;
638   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
639 }
640 
641 void CodeGenFunction::StartFunction(GlobalDecl GD,
642                                     QualType RetTy,
643                                     llvm::Function *Fn,
644                                     const CGFunctionInfo &FnInfo,
645                                     const FunctionArgList &Args,
646                                     SourceLocation Loc,
647                                     SourceLocation StartLoc) {
648   assert(!CurFn &&
649          "Do not use a CodeGenFunction object for more than one function");
650 
651   const Decl *D = GD.getDecl();
652 
653   DidCallStackSave = false;
654   CurCodeDecl = D;
655   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
656     if (FD->usesSEHTry())
657       CurSEHParent = FD;
658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
659   FnRetTy = RetTy;
660   CurFn = Fn;
661   CurFnInfo = &FnInfo;
662   assert(CurFn->isDeclaration() && "Function already has body?");
663 
664   // If this function has been blacklisted for any of the enabled sanitizers,
665   // disable the sanitizer for the function.
666   do {
667 #define SANITIZER(NAME, ID)                                                    \
668   if (SanOpts.empty())                                                         \
669     break;                                                                     \
670   if (SanOpts.has(SanitizerKind::ID))                                          \
671     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
672       SanOpts.set(SanitizerKind::ID, false);
673 
674 #include "clang/Basic/Sanitizers.def"
675 #undef SANITIZER
676   } while (0);
677 
678   if (D) {
679     // Apply the no_sanitize* attributes to SanOpts.
680     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
681       SanitizerMask mask = Attr->getMask();
682       SanOpts.Mask &= ~mask;
683       if (mask & SanitizerKind::Address)
684         SanOpts.set(SanitizerKind::KernelAddress, false);
685       if (mask & SanitizerKind::KernelAddress)
686         SanOpts.set(SanitizerKind::Address, false);
687       if (mask & SanitizerKind::HWAddress)
688         SanOpts.set(SanitizerKind::KernelHWAddress, false);
689       if (mask & SanitizerKind::KernelHWAddress)
690         SanOpts.set(SanitizerKind::HWAddress, false);
691     }
692   }
693 
694   // Apply sanitizer attributes to the function.
695   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
696     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
697   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
698     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
699   if (SanOpts.has(SanitizerKind::Thread))
700     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
701   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
702     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
703   if (SanOpts.has(SanitizerKind::SafeStack))
704     Fn->addFnAttr(llvm::Attribute::SafeStack);
705   if (SanOpts.has(SanitizerKind::ShadowCallStack))
706     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
707 
708   // Apply fuzzing attribute to the function.
709   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
710     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
711 
712   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
713   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
714   if (SanOpts.has(SanitizerKind::Thread)) {
715     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
716       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
717       if (OMD->getMethodFamily() == OMF_dealloc ||
718           OMD->getMethodFamily() == OMF_initialize ||
719           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
720         markAsIgnoreThreadCheckingAtRuntime(Fn);
721       }
722     }
723   }
724 
725   // Ignore unrelated casts in STL allocate() since the allocator must cast
726   // from void* to T* before object initialization completes. Don't match on the
727   // namespace because not all allocators are in std::
728   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
729     if (matchesStlAllocatorFn(D, getContext()))
730       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
731   }
732 
733   // Apply xray attributes to the function (as a string, for now)
734   if (D) {
735     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
736       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
737               XRayInstrKind::Function)) {
738         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
739           Fn->addFnAttr("function-instrument", "xray-always");
740         if (XRayAttr->neverXRayInstrument())
741           Fn->addFnAttr("function-instrument", "xray-never");
742         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
743           if (ShouldXRayInstrumentFunction())
744             Fn->addFnAttr("xray-log-args",
745                           llvm::utostr(LogArgs->getArgumentCount()));
746       }
747     } else {
748       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
749         Fn->addFnAttr(
750             "xray-instruction-threshold",
751             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
752     }
753   }
754 
755   // Add no-jump-tables value.
756   Fn->addFnAttr("no-jump-tables",
757                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
758 
759   // Add profile-sample-accurate value.
760   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
761     Fn->addFnAttr("profile-sample-accurate");
762 
763   if (getLangOpts().OpenCL) {
764     // Add metadata for a kernel function.
765     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
766       EmitOpenCLKernelMetadata(FD, Fn);
767   }
768 
769   // If we are checking function types, emit a function type signature as
770   // prologue data.
771   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
772     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
773       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
774         // Remove any (C++17) exception specifications, to allow calling e.g. a
775         // noexcept function through a non-noexcept pointer.
776         auto ProtoTy =
777           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
778                                                         EST_None);
779         llvm::Constant *FTRTTIConst =
780             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
781         llvm::Constant *FTRTTIConstEncoded =
782             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
783         llvm::Constant *PrologueStructElems[] = {PrologueSig,
784                                                  FTRTTIConstEncoded};
785         llvm::Constant *PrologueStructConst =
786             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
787         Fn->setPrologueData(PrologueStructConst);
788       }
789     }
790   }
791 
792   // If we're checking nullability, we need to know whether we can check the
793   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
794   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
795     auto Nullability = FnRetTy->getNullability(getContext());
796     if (Nullability && *Nullability == NullabilityKind::NonNull) {
797       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
798             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
799         RetValNullabilityPrecondition =
800             llvm::ConstantInt::getTrue(getLLVMContext());
801     }
802   }
803 
804   // If we're in C++ mode and the function name is "main", it is guaranteed
805   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
806   // used within a program").
807   if (getLangOpts().CPlusPlus)
808     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
809       if (FD->isMain())
810         Fn->addFnAttr(llvm::Attribute::NoRecurse);
811 
812   // If a custom alignment is used, force realigning to this alignment on
813   // any main function which certainly will need it.
814   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
815     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
816         CGM.getCodeGenOpts().StackAlignment)
817       Fn->addFnAttr("stackrealign");
818 
819   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
820 
821   // Create a marker to make it easy to insert allocas into the entryblock
822   // later.  Don't create this with the builder, because we don't want it
823   // folded.
824   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
825   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
826 
827   ReturnBlock = getJumpDestInCurrentScope("return");
828 
829   Builder.SetInsertPoint(EntryBB);
830 
831   // If we're checking the return value, allocate space for a pointer to a
832   // precise source location of the checked return statement.
833   if (requiresReturnValueCheck()) {
834     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
835     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
836   }
837 
838   // Emit subprogram debug descriptor.
839   if (CGDebugInfo *DI = getDebugInfo()) {
840     // Reconstruct the type from the argument list so that implicit parameters,
841     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
842     // convention.
843     CallingConv CC = CallingConv::CC_C;
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
845       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
846         CC = SrcFnTy->getCallConv();
847     SmallVector<QualType, 16> ArgTypes;
848     for (const VarDecl *VD : Args)
849       ArgTypes.push_back(VD->getType());
850     QualType FnType = getContext().getFunctionType(
851         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
852     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
853                           Builder);
854   }
855 
856   if (ShouldInstrumentFunction()) {
857     if (CGM.getCodeGenOpts().InstrumentFunctions)
858       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
859     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
860       CurFn->addFnAttr("instrument-function-entry-inlined",
861                        "__cyg_profile_func_enter");
862     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
863       CurFn->addFnAttr("instrument-function-entry-inlined",
864                        "__cyg_profile_func_enter_bare");
865   }
866 
867   // Since emitting the mcount call here impacts optimizations such as function
868   // inlining, we just add an attribute to insert a mcount call in backend.
869   // The attribute "counting-function" is set to mcount function name which is
870   // architecture dependent.
871   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
872     // Calls to fentry/mcount should not be generated if function has
873     // the no_instrument_function attribute.
874     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
875       if (CGM.getCodeGenOpts().CallFEntry)
876         Fn->addFnAttr("fentry-call", "true");
877       else {
878         Fn->addFnAttr("instrument-function-entry-inlined",
879                       getTarget().getMCountName());
880       }
881     }
882   }
883 
884   if (RetTy->isVoidType()) {
885     // Void type; nothing to return.
886     ReturnValue = Address::invalid();
887 
888     // Count the implicit return.
889     if (!endsWithReturn(D))
890       ++NumReturnExprs;
891   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
892     // Indirect return; emit returned value directly into sret slot.
893     // This reduces code size, and affects correctness in C++.
894     auto AI = CurFn->arg_begin();
895     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
896       ++AI;
897     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
898   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
899              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
900     // Load the sret pointer from the argument struct and return into that.
901     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
902     llvm::Function::arg_iterator EI = CurFn->arg_end();
903     --EI;
904     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
905     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
906     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
907   } else {
908     ReturnValue = CreateIRTemp(RetTy, "retval");
909 
910     // Tell the epilog emitter to autorelease the result.  We do this
911     // now so that various specialized functions can suppress it
912     // during their IR-generation.
913     if (getLangOpts().ObjCAutoRefCount &&
914         !CurFnInfo->isReturnsRetained() &&
915         RetTy->isObjCRetainableType())
916       AutoreleaseResult = true;
917   }
918 
919   EmitStartEHSpec(CurCodeDecl);
920 
921   PrologueCleanupDepth = EHStack.stable_begin();
922 
923   // Emit OpenMP specific initialization of the device functions.
924   if (getLangOpts().OpenMP && CurCodeDecl)
925     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
926 
927   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
928 
929   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
930     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
931     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
932     if (MD->getParent()->isLambda() &&
933         MD->getOverloadedOperator() == OO_Call) {
934       // We're in a lambda; figure out the captures.
935       MD->getParent()->getCaptureFields(LambdaCaptureFields,
936                                         LambdaThisCaptureField);
937       if (LambdaThisCaptureField) {
938         // If the lambda captures the object referred to by '*this' - either by
939         // value or by reference, make sure CXXThisValue points to the correct
940         // object.
941 
942         // Get the lvalue for the field (which is a copy of the enclosing object
943         // or contains the address of the enclosing object).
944         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
945         if (!LambdaThisCaptureField->getType()->isPointerType()) {
946           // If the enclosing object was captured by value, just use its address.
947           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
948         } else {
949           // Load the lvalue pointed to by the field, since '*this' was captured
950           // by reference.
951           CXXThisValue =
952               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
953         }
954       }
955       for (auto *FD : MD->getParent()->fields()) {
956         if (FD->hasCapturedVLAType()) {
957           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
958                                            SourceLocation()).getScalarVal();
959           auto VAT = FD->getCapturedVLAType();
960           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
961         }
962       }
963     } else {
964       // Not in a lambda; just use 'this' from the method.
965       // FIXME: Should we generate a new load for each use of 'this'?  The
966       // fast register allocator would be happier...
967       CXXThisValue = CXXABIThisValue;
968     }
969 
970     // Check the 'this' pointer once per function, if it's available.
971     if (CXXABIThisValue) {
972       SanitizerSet SkippedChecks;
973       SkippedChecks.set(SanitizerKind::ObjectSize, true);
974       QualType ThisTy = MD->getThisType();
975 
976       // If this is the call operator of a lambda with no capture-default, it
977       // may have a static invoker function, which may call this operator with
978       // a null 'this' pointer.
979       if (isLambdaCallOperator(MD) &&
980           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
981         SkippedChecks.set(SanitizerKind::Null, true);
982 
983       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
984                                                 : TCK_MemberCall,
985                     Loc, CXXABIThisValue, ThisTy,
986                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
987                     SkippedChecks);
988     }
989   }
990 
991   // If any of the arguments have a variably modified type, make sure to
992   // emit the type size.
993   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
994        i != e; ++i) {
995     const VarDecl *VD = *i;
996 
997     // Dig out the type as written from ParmVarDecls; it's unclear whether
998     // the standard (C99 6.9.1p10) requires this, but we're following the
999     // precedent set by gcc.
1000     QualType Ty;
1001     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1002       Ty = PVD->getOriginalType();
1003     else
1004       Ty = VD->getType();
1005 
1006     if (Ty->isVariablyModifiedType())
1007       EmitVariablyModifiedType(Ty);
1008   }
1009   // Emit a location at the end of the prologue.
1010   if (CGDebugInfo *DI = getDebugInfo())
1011     DI->EmitLocation(Builder, StartLoc);
1012 
1013   // TODO: Do we need to handle this in two places like we do with
1014   // target-features/target-cpu?
1015   if (CurFuncDecl)
1016     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1017       LargestVectorWidth = VecWidth->getVectorWidth();
1018 }
1019 
1020 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1021   incrementProfileCounter(Body);
1022   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1023     EmitCompoundStmtWithoutScope(*S);
1024   else
1025     EmitStmt(Body);
1026 }
1027 
1028 /// When instrumenting to collect profile data, the counts for some blocks
1029 /// such as switch cases need to not include the fall-through counts, so
1030 /// emit a branch around the instrumentation code. When not instrumenting,
1031 /// this just calls EmitBlock().
1032 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1033                                                const Stmt *S) {
1034   llvm::BasicBlock *SkipCountBB = nullptr;
1035   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1036     // When instrumenting for profiling, the fallthrough to certain
1037     // statements needs to skip over the instrumentation code so that we
1038     // get an accurate count.
1039     SkipCountBB = createBasicBlock("skipcount");
1040     EmitBranch(SkipCountBB);
1041   }
1042   EmitBlock(BB);
1043   uint64_t CurrentCount = getCurrentProfileCount();
1044   incrementProfileCounter(S);
1045   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1046   if (SkipCountBB)
1047     EmitBlock(SkipCountBB);
1048 }
1049 
1050 /// Tries to mark the given function nounwind based on the
1051 /// non-existence of any throwing calls within it.  We believe this is
1052 /// lightweight enough to do at -O0.
1053 static void TryMarkNoThrow(llvm::Function *F) {
1054   // LLVM treats 'nounwind' on a function as part of the type, so we
1055   // can't do this on functions that can be overwritten.
1056   if (F->isInterposable()) return;
1057 
1058   for (llvm::BasicBlock &BB : *F)
1059     for (llvm::Instruction &I : BB)
1060       if (I.mayThrow())
1061         return;
1062 
1063   F->setDoesNotThrow();
1064 }
1065 
1066 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1067                                                FunctionArgList &Args) {
1068   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1069   QualType ResTy = FD->getReturnType();
1070 
1071   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1072   if (MD && MD->isInstance()) {
1073     if (CGM.getCXXABI().HasThisReturn(GD))
1074       ResTy = MD->getThisType();
1075     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1076       ResTy = CGM.getContext().VoidPtrTy;
1077     CGM.getCXXABI().buildThisParam(*this, Args);
1078   }
1079 
1080   // The base version of an inheriting constructor whose constructed base is a
1081   // virtual base is not passed any arguments (because it doesn't actually call
1082   // the inherited constructor).
1083   bool PassedParams = true;
1084   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1085     if (auto Inherited = CD->getInheritedConstructor())
1086       PassedParams =
1087           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1088 
1089   if (PassedParams) {
1090     for (auto *Param : FD->parameters()) {
1091       Args.push_back(Param);
1092       if (!Param->hasAttr<PassObjectSizeAttr>())
1093         continue;
1094 
1095       auto *Implicit = ImplicitParamDecl::Create(
1096           getContext(), Param->getDeclContext(), Param->getLocation(),
1097           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1098       SizeArguments[Param] = Implicit;
1099       Args.push_back(Implicit);
1100     }
1101   }
1102 
1103   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1104     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1105 
1106   return ResTy;
1107 }
1108 
1109 static bool
1110 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1111                                              const ASTContext &Context) {
1112   QualType T = FD->getReturnType();
1113   // Avoid the optimization for functions that return a record type with a
1114   // trivial destructor or another trivially copyable type.
1115   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1116     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1117       return !ClassDecl->hasTrivialDestructor();
1118   }
1119   return !T.isTriviallyCopyableType(Context);
1120 }
1121 
1122 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1123                                    const CGFunctionInfo &FnInfo) {
1124   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1125   CurGD = GD;
1126 
1127   FunctionArgList Args;
1128   QualType ResTy = BuildFunctionArgList(GD, Args);
1129 
1130   // Check if we should generate debug info for this function.
1131   if (FD->hasAttr<NoDebugAttr>())
1132     DebugInfo = nullptr; // disable debug info indefinitely for this function
1133 
1134   // The function might not have a body if we're generating thunks for a
1135   // function declaration.
1136   SourceRange BodyRange;
1137   if (Stmt *Body = FD->getBody())
1138     BodyRange = Body->getSourceRange();
1139   else
1140     BodyRange = FD->getLocation();
1141   CurEHLocation = BodyRange.getEnd();
1142 
1143   // Use the location of the start of the function to determine where
1144   // the function definition is located. By default use the location
1145   // of the declaration as the location for the subprogram. A function
1146   // may lack a declaration in the source code if it is created by code
1147   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1148   SourceLocation Loc = FD->getLocation();
1149 
1150   // If this is a function specialization then use the pattern body
1151   // as the location for the function.
1152   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1153     if (SpecDecl->hasBody(SpecDecl))
1154       Loc = SpecDecl->getLocation();
1155 
1156   Stmt *Body = FD->getBody();
1157 
1158   // Initialize helper which will detect jumps which can cause invalid lifetime
1159   // markers.
1160   if (Body && ShouldEmitLifetimeMarkers)
1161     Bypasses.Init(Body);
1162 
1163   // Emit the standard function prologue.
1164   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1165 
1166   // Generate the body of the function.
1167   PGO.assignRegionCounters(GD, CurFn);
1168   if (isa<CXXDestructorDecl>(FD))
1169     EmitDestructorBody(Args);
1170   else if (isa<CXXConstructorDecl>(FD))
1171     EmitConstructorBody(Args);
1172   else if (getLangOpts().CUDA &&
1173            !getLangOpts().CUDAIsDevice &&
1174            FD->hasAttr<CUDAGlobalAttr>())
1175     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1176   else if (isa<CXXMethodDecl>(FD) &&
1177            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1178     // The lambda static invoker function is special, because it forwards or
1179     // clones the body of the function call operator (but is actually static).
1180     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1181   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1182              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1183               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1184     // Implicit copy-assignment gets the same special treatment as implicit
1185     // copy-constructors.
1186     emitImplicitAssignmentOperatorBody(Args);
1187   } else if (Body) {
1188     EmitFunctionBody(Body);
1189   } else
1190     llvm_unreachable("no definition for emitted function");
1191 
1192   // C++11 [stmt.return]p2:
1193   //   Flowing off the end of a function [...] results in undefined behavior in
1194   //   a value-returning function.
1195   // C11 6.9.1p12:
1196   //   If the '}' that terminates a function is reached, and the value of the
1197   //   function call is used by the caller, the behavior is undefined.
1198   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1199       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1200     bool ShouldEmitUnreachable =
1201         CGM.getCodeGenOpts().StrictReturn ||
1202         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1203     if (SanOpts.has(SanitizerKind::Return)) {
1204       SanitizerScope SanScope(this);
1205       llvm::Value *IsFalse = Builder.getFalse();
1206       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1207                 SanitizerHandler::MissingReturn,
1208                 EmitCheckSourceLocation(FD->getLocation()), None);
1209     } else if (ShouldEmitUnreachable) {
1210       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1211         EmitTrapCall(llvm::Intrinsic::trap);
1212     }
1213     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1214       Builder.CreateUnreachable();
1215       Builder.ClearInsertionPoint();
1216     }
1217   }
1218 
1219   // Emit the standard function epilogue.
1220   FinishFunction(BodyRange.getEnd());
1221 
1222   // If we haven't marked the function nothrow through other means, do
1223   // a quick pass now to see if we can.
1224   if (!CurFn->doesNotThrow())
1225     TryMarkNoThrow(CurFn);
1226 }
1227 
1228 /// ContainsLabel - Return true if the statement contains a label in it.  If
1229 /// this statement is not executed normally, it not containing a label means
1230 /// that we can just remove the code.
1231 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1232   // Null statement, not a label!
1233   if (!S) return false;
1234 
1235   // If this is a label, we have to emit the code, consider something like:
1236   // if (0) {  ...  foo:  bar(); }  goto foo;
1237   //
1238   // TODO: If anyone cared, we could track __label__'s, since we know that you
1239   // can't jump to one from outside their declared region.
1240   if (isa<LabelStmt>(S))
1241     return true;
1242 
1243   // If this is a case/default statement, and we haven't seen a switch, we have
1244   // to emit the code.
1245   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1246     return true;
1247 
1248   // If this is a switch statement, we want to ignore cases below it.
1249   if (isa<SwitchStmt>(S))
1250     IgnoreCaseStmts = true;
1251 
1252   // Scan subexpressions for verboten labels.
1253   for (const Stmt *SubStmt : S->children())
1254     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1255       return true;
1256 
1257   return false;
1258 }
1259 
1260 /// containsBreak - Return true if the statement contains a break out of it.
1261 /// If the statement (recursively) contains a switch or loop with a break
1262 /// inside of it, this is fine.
1263 bool CodeGenFunction::containsBreak(const Stmt *S) {
1264   // Null statement, not a label!
1265   if (!S) return false;
1266 
1267   // If this is a switch or loop that defines its own break scope, then we can
1268   // include it and anything inside of it.
1269   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1270       isa<ForStmt>(S))
1271     return false;
1272 
1273   if (isa<BreakStmt>(S))
1274     return true;
1275 
1276   // Scan subexpressions for verboten breaks.
1277   for (const Stmt *SubStmt : S->children())
1278     if (containsBreak(SubStmt))
1279       return true;
1280 
1281   return false;
1282 }
1283 
1284 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1285   if (!S) return false;
1286 
1287   // Some statement kinds add a scope and thus never add a decl to the current
1288   // scope. Note, this list is longer than the list of statements that might
1289   // have an unscoped decl nested within them, but this way is conservatively
1290   // correct even if more statement kinds are added.
1291   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1292       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1293       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1294       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1295     return false;
1296 
1297   if (isa<DeclStmt>(S))
1298     return true;
1299 
1300   for (const Stmt *SubStmt : S->children())
1301     if (mightAddDeclToScope(SubStmt))
1302       return true;
1303 
1304   return false;
1305 }
1306 
1307 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1308 /// to a constant, or if it does but contains a label, return false.  If it
1309 /// constant folds return true and set the boolean result in Result.
1310 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1311                                                    bool &ResultBool,
1312                                                    bool AllowLabels) {
1313   llvm::APSInt ResultInt;
1314   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1315     return false;
1316 
1317   ResultBool = ResultInt.getBoolValue();
1318   return true;
1319 }
1320 
1321 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1322 /// to a constant, or if it does but contains a label, return false.  If it
1323 /// constant folds return true and set the folded value.
1324 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1325                                                    llvm::APSInt &ResultInt,
1326                                                    bool AllowLabels) {
1327   // FIXME: Rename and handle conversion of other evaluatable things
1328   // to bool.
1329   Expr::EvalResult Result;
1330   if (!Cond->EvaluateAsInt(Result, getContext()))
1331     return false;  // Not foldable, not integer or not fully evaluatable.
1332 
1333   llvm::APSInt Int = Result.Val.getInt();
1334   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1335     return false;  // Contains a label.
1336 
1337   ResultInt = Int;
1338   return true;
1339 }
1340 
1341 
1342 
1343 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1344 /// statement) to the specified blocks.  Based on the condition, this might try
1345 /// to simplify the codegen of the conditional based on the branch.
1346 ///
1347 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1348                                            llvm::BasicBlock *TrueBlock,
1349                                            llvm::BasicBlock *FalseBlock,
1350                                            uint64_t TrueCount) {
1351   Cond = Cond->IgnoreParens();
1352 
1353   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1354 
1355     // Handle X && Y in a condition.
1356     if (CondBOp->getOpcode() == BO_LAnd) {
1357       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1358       // folded if the case was simple enough.
1359       bool ConstantBool = false;
1360       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1361           ConstantBool) {
1362         // br(1 && X) -> br(X).
1363         incrementProfileCounter(CondBOp);
1364         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1365                                     TrueCount);
1366       }
1367 
1368       // If we have "X && 1", simplify the code to use an uncond branch.
1369       // "X && 0" would have been constant folded to 0.
1370       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1371           ConstantBool) {
1372         // br(X && 1) -> br(X).
1373         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1374                                     TrueCount);
1375       }
1376 
1377       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1378       // want to jump to the FalseBlock.
1379       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1380       // The counter tells us how often we evaluate RHS, and all of TrueCount
1381       // can be propagated to that branch.
1382       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1383 
1384       ConditionalEvaluation eval(*this);
1385       {
1386         ApplyDebugLocation DL(*this, Cond);
1387         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1388         EmitBlock(LHSTrue);
1389       }
1390 
1391       incrementProfileCounter(CondBOp);
1392       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1393 
1394       // Any temporaries created here are conditional.
1395       eval.begin(*this);
1396       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1397       eval.end(*this);
1398 
1399       return;
1400     }
1401 
1402     if (CondBOp->getOpcode() == BO_LOr) {
1403       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1404       // folded if the case was simple enough.
1405       bool ConstantBool = false;
1406       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1407           !ConstantBool) {
1408         // br(0 || X) -> br(X).
1409         incrementProfileCounter(CondBOp);
1410         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1411                                     TrueCount);
1412       }
1413 
1414       // If we have "X || 0", simplify the code to use an uncond branch.
1415       // "X || 1" would have been constant folded to 1.
1416       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1417           !ConstantBool) {
1418         // br(X || 0) -> br(X).
1419         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1420                                     TrueCount);
1421       }
1422 
1423       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1424       // want to jump to the TrueBlock.
1425       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1426       // We have the count for entry to the RHS and for the whole expression
1427       // being true, so we can divy up True count between the short circuit and
1428       // the RHS.
1429       uint64_t LHSCount =
1430           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1431       uint64_t RHSCount = TrueCount - LHSCount;
1432 
1433       ConditionalEvaluation eval(*this);
1434       {
1435         ApplyDebugLocation DL(*this, Cond);
1436         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1437         EmitBlock(LHSFalse);
1438       }
1439 
1440       incrementProfileCounter(CondBOp);
1441       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1442 
1443       // Any temporaries created here are conditional.
1444       eval.begin(*this);
1445       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1446 
1447       eval.end(*this);
1448 
1449       return;
1450     }
1451   }
1452 
1453   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1454     // br(!x, t, f) -> br(x, f, t)
1455     if (CondUOp->getOpcode() == UO_LNot) {
1456       // Negate the count.
1457       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1458       // Negate the condition and swap the destination blocks.
1459       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1460                                   FalseCount);
1461     }
1462   }
1463 
1464   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1465     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1466     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1467     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1468 
1469     ConditionalEvaluation cond(*this);
1470     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1471                          getProfileCount(CondOp));
1472 
1473     // When computing PGO branch weights, we only know the overall count for
1474     // the true block. This code is essentially doing tail duplication of the
1475     // naive code-gen, introducing new edges for which counts are not
1476     // available. Divide the counts proportionally between the LHS and RHS of
1477     // the conditional operator.
1478     uint64_t LHSScaledTrueCount = 0;
1479     if (TrueCount) {
1480       double LHSRatio =
1481           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1482       LHSScaledTrueCount = TrueCount * LHSRatio;
1483     }
1484 
1485     cond.begin(*this);
1486     EmitBlock(LHSBlock);
1487     incrementProfileCounter(CondOp);
1488     {
1489       ApplyDebugLocation DL(*this, Cond);
1490       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1491                            LHSScaledTrueCount);
1492     }
1493     cond.end(*this);
1494 
1495     cond.begin(*this);
1496     EmitBlock(RHSBlock);
1497     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1498                          TrueCount - LHSScaledTrueCount);
1499     cond.end(*this);
1500 
1501     return;
1502   }
1503 
1504   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1505     // Conditional operator handling can give us a throw expression as a
1506     // condition for a case like:
1507     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1508     // Fold this to:
1509     //   br(c, throw x, br(y, t, f))
1510     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1511     return;
1512   }
1513 
1514   // If the branch has a condition wrapped by __builtin_unpredictable,
1515   // create metadata that specifies that the branch is unpredictable.
1516   // Don't bother if not optimizing because that metadata would not be used.
1517   llvm::MDNode *Unpredictable = nullptr;
1518   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1519   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1520     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1521     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1522       llvm::MDBuilder MDHelper(getLLVMContext());
1523       Unpredictable = MDHelper.createUnpredictable();
1524     }
1525   }
1526 
1527   // Create branch weights based on the number of times we get here and the
1528   // number of times the condition should be true.
1529   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1530   llvm::MDNode *Weights =
1531       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1532 
1533   // Emit the code with the fully general case.
1534   llvm::Value *CondV;
1535   {
1536     ApplyDebugLocation DL(*this, Cond);
1537     CondV = EvaluateExprAsBool(Cond);
1538   }
1539   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1540 }
1541 
1542 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1543 /// specified stmt yet.
1544 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1545   CGM.ErrorUnsupported(S, Type);
1546 }
1547 
1548 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1549 /// variable-length array whose elements have a non-zero bit-pattern.
1550 ///
1551 /// \param baseType the inner-most element type of the array
1552 /// \param src - a char* pointing to the bit-pattern for a single
1553 /// base element of the array
1554 /// \param sizeInChars - the total size of the VLA, in chars
1555 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1556                                Address dest, Address src,
1557                                llvm::Value *sizeInChars) {
1558   CGBuilderTy &Builder = CGF.Builder;
1559 
1560   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1561   llvm::Value *baseSizeInChars
1562     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1563 
1564   Address begin =
1565     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1566   llvm::Value *end =
1567     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1568 
1569   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1570   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1571   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1572 
1573   // Make a loop over the VLA.  C99 guarantees that the VLA element
1574   // count must be nonzero.
1575   CGF.EmitBlock(loopBB);
1576 
1577   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1578   cur->addIncoming(begin.getPointer(), originBB);
1579 
1580   CharUnits curAlign =
1581     dest.getAlignment().alignmentOfArrayElement(baseSize);
1582 
1583   // memcpy the individual element bit-pattern.
1584   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1585                        /*volatile*/ false);
1586 
1587   // Go to the next element.
1588   llvm::Value *next =
1589     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1590 
1591   // Leave if that's the end of the VLA.
1592   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1593   Builder.CreateCondBr(done, contBB, loopBB);
1594   cur->addIncoming(next, loopBB);
1595 
1596   CGF.EmitBlock(contBB);
1597 }
1598 
1599 void
1600 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1601   // Ignore empty classes in C++.
1602   if (getLangOpts().CPlusPlus) {
1603     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1604       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1605         return;
1606     }
1607   }
1608 
1609   // Cast the dest ptr to the appropriate i8 pointer type.
1610   if (DestPtr.getElementType() != Int8Ty)
1611     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1612 
1613   // Get size and alignment info for this aggregate.
1614   CharUnits size = getContext().getTypeSizeInChars(Ty);
1615 
1616   llvm::Value *SizeVal;
1617   const VariableArrayType *vla;
1618 
1619   // Don't bother emitting a zero-byte memset.
1620   if (size.isZero()) {
1621     // But note that getTypeInfo returns 0 for a VLA.
1622     if (const VariableArrayType *vlaType =
1623           dyn_cast_or_null<VariableArrayType>(
1624                                           getContext().getAsArrayType(Ty))) {
1625       auto VlaSize = getVLASize(vlaType);
1626       SizeVal = VlaSize.NumElts;
1627       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1628       if (!eltSize.isOne())
1629         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1630       vla = vlaType;
1631     } else {
1632       return;
1633     }
1634   } else {
1635     SizeVal = CGM.getSize(size);
1636     vla = nullptr;
1637   }
1638 
1639   // If the type contains a pointer to data member we can't memset it to zero.
1640   // Instead, create a null constant and copy it to the destination.
1641   // TODO: there are other patterns besides zero that we can usefully memset,
1642   // like -1, which happens to be the pattern used by member-pointers.
1643   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1644     // For a VLA, emit a single element, then splat that over the VLA.
1645     if (vla) Ty = getContext().getBaseElementType(vla);
1646 
1647     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1648 
1649     llvm::GlobalVariable *NullVariable =
1650       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1651                                /*isConstant=*/true,
1652                                llvm::GlobalVariable::PrivateLinkage,
1653                                NullConstant, Twine());
1654     CharUnits NullAlign = DestPtr.getAlignment();
1655     NullVariable->setAlignment(NullAlign.getQuantity());
1656     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1657                    NullAlign);
1658 
1659     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1660 
1661     // Get and call the appropriate llvm.memcpy overload.
1662     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1663     return;
1664   }
1665 
1666   // Otherwise, just memset the whole thing to zero.  This is legal
1667   // because in LLVM, all default initializers (other than the ones we just
1668   // handled above) are guaranteed to have a bit pattern of all zeros.
1669   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1670 }
1671 
1672 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1673   // Make sure that there is a block for the indirect goto.
1674   if (!IndirectBranch)
1675     GetIndirectGotoBlock();
1676 
1677   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1678 
1679   // Make sure the indirect branch includes all of the address-taken blocks.
1680   IndirectBranch->addDestination(BB);
1681   return llvm::BlockAddress::get(CurFn, BB);
1682 }
1683 
1684 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1685   // If we already made the indirect branch for indirect goto, return its block.
1686   if (IndirectBranch) return IndirectBranch->getParent();
1687 
1688   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1689 
1690   // Create the PHI node that indirect gotos will add entries to.
1691   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1692                                               "indirect.goto.dest");
1693 
1694   // Create the indirect branch instruction.
1695   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1696   return IndirectBranch->getParent();
1697 }
1698 
1699 /// Computes the length of an array in elements, as well as the base
1700 /// element type and a properly-typed first element pointer.
1701 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1702                                               QualType &baseType,
1703                                               Address &addr) {
1704   const ArrayType *arrayType = origArrayType;
1705 
1706   // If it's a VLA, we have to load the stored size.  Note that
1707   // this is the size of the VLA in bytes, not its size in elements.
1708   llvm::Value *numVLAElements = nullptr;
1709   if (isa<VariableArrayType>(arrayType)) {
1710     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1711 
1712     // Walk into all VLAs.  This doesn't require changes to addr,
1713     // which has type T* where T is the first non-VLA element type.
1714     do {
1715       QualType elementType = arrayType->getElementType();
1716       arrayType = getContext().getAsArrayType(elementType);
1717 
1718       // If we only have VLA components, 'addr' requires no adjustment.
1719       if (!arrayType) {
1720         baseType = elementType;
1721         return numVLAElements;
1722       }
1723     } while (isa<VariableArrayType>(arrayType));
1724 
1725     // We get out here only if we find a constant array type
1726     // inside the VLA.
1727   }
1728 
1729   // We have some number of constant-length arrays, so addr should
1730   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1731   // down to the first element of addr.
1732   SmallVector<llvm::Value*, 8> gepIndices;
1733 
1734   // GEP down to the array type.
1735   llvm::ConstantInt *zero = Builder.getInt32(0);
1736   gepIndices.push_back(zero);
1737 
1738   uint64_t countFromCLAs = 1;
1739   QualType eltType;
1740 
1741   llvm::ArrayType *llvmArrayType =
1742     dyn_cast<llvm::ArrayType>(addr.getElementType());
1743   while (llvmArrayType) {
1744     assert(isa<ConstantArrayType>(arrayType));
1745     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1746              == llvmArrayType->getNumElements());
1747 
1748     gepIndices.push_back(zero);
1749     countFromCLAs *= llvmArrayType->getNumElements();
1750     eltType = arrayType->getElementType();
1751 
1752     llvmArrayType =
1753       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1754     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1755     assert((!llvmArrayType || arrayType) &&
1756            "LLVM and Clang types are out-of-synch");
1757   }
1758 
1759   if (arrayType) {
1760     // From this point onwards, the Clang array type has been emitted
1761     // as some other type (probably a packed struct). Compute the array
1762     // size, and just emit the 'begin' expression as a bitcast.
1763     while (arrayType) {
1764       countFromCLAs *=
1765           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1766       eltType = arrayType->getElementType();
1767       arrayType = getContext().getAsArrayType(eltType);
1768     }
1769 
1770     llvm::Type *baseType = ConvertType(eltType);
1771     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1772   } else {
1773     // Create the actual GEP.
1774     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1775                                              gepIndices, "array.begin"),
1776                    addr.getAlignment());
1777   }
1778 
1779   baseType = eltType;
1780 
1781   llvm::Value *numElements
1782     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1783 
1784   // If we had any VLA dimensions, factor them in.
1785   if (numVLAElements)
1786     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1787 
1788   return numElements;
1789 }
1790 
1791 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1792   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1793   assert(vla && "type was not a variable array type!");
1794   return getVLASize(vla);
1795 }
1796 
1797 CodeGenFunction::VlaSizePair
1798 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1799   // The number of elements so far; always size_t.
1800   llvm::Value *numElements = nullptr;
1801 
1802   QualType elementType;
1803   do {
1804     elementType = type->getElementType();
1805     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1806     assert(vlaSize && "no size for VLA!");
1807     assert(vlaSize->getType() == SizeTy);
1808 
1809     if (!numElements) {
1810       numElements = vlaSize;
1811     } else {
1812       // It's undefined behavior if this wraps around, so mark it that way.
1813       // FIXME: Teach -fsanitize=undefined to trap this.
1814       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1815     }
1816   } while ((type = getContext().getAsVariableArrayType(elementType)));
1817 
1818   return { numElements, elementType };
1819 }
1820 
1821 CodeGenFunction::VlaSizePair
1822 CodeGenFunction::getVLAElements1D(QualType type) {
1823   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1824   assert(vla && "type was not a variable array type!");
1825   return getVLAElements1D(vla);
1826 }
1827 
1828 CodeGenFunction::VlaSizePair
1829 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1830   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1831   assert(VlaSize && "no size for VLA!");
1832   assert(VlaSize->getType() == SizeTy);
1833   return { VlaSize, Vla->getElementType() };
1834 }
1835 
1836 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1837   assert(type->isVariablyModifiedType() &&
1838          "Must pass variably modified type to EmitVLASizes!");
1839 
1840   EnsureInsertPoint();
1841 
1842   // We're going to walk down into the type and look for VLA
1843   // expressions.
1844   do {
1845     assert(type->isVariablyModifiedType());
1846 
1847     const Type *ty = type.getTypePtr();
1848     switch (ty->getTypeClass()) {
1849 
1850 #define TYPE(Class, Base)
1851 #define ABSTRACT_TYPE(Class, Base)
1852 #define NON_CANONICAL_TYPE(Class, Base)
1853 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1854 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1855 #include "clang/AST/TypeNodes.def"
1856       llvm_unreachable("unexpected dependent type!");
1857 
1858     // These types are never variably-modified.
1859     case Type::Builtin:
1860     case Type::Complex:
1861     case Type::Vector:
1862     case Type::ExtVector:
1863     case Type::Record:
1864     case Type::Enum:
1865     case Type::Elaborated:
1866     case Type::TemplateSpecialization:
1867     case Type::ObjCTypeParam:
1868     case Type::ObjCObject:
1869     case Type::ObjCInterface:
1870     case Type::ObjCObjectPointer:
1871       llvm_unreachable("type class is never variably-modified!");
1872 
1873     case Type::Adjusted:
1874       type = cast<AdjustedType>(ty)->getAdjustedType();
1875       break;
1876 
1877     case Type::Decayed:
1878       type = cast<DecayedType>(ty)->getPointeeType();
1879       break;
1880 
1881     case Type::Pointer:
1882       type = cast<PointerType>(ty)->getPointeeType();
1883       break;
1884 
1885     case Type::BlockPointer:
1886       type = cast<BlockPointerType>(ty)->getPointeeType();
1887       break;
1888 
1889     case Type::LValueReference:
1890     case Type::RValueReference:
1891       type = cast<ReferenceType>(ty)->getPointeeType();
1892       break;
1893 
1894     case Type::MemberPointer:
1895       type = cast<MemberPointerType>(ty)->getPointeeType();
1896       break;
1897 
1898     case Type::ConstantArray:
1899     case Type::IncompleteArray:
1900       // Losing element qualification here is fine.
1901       type = cast<ArrayType>(ty)->getElementType();
1902       break;
1903 
1904     case Type::VariableArray: {
1905       // Losing element qualification here is fine.
1906       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1907 
1908       // Unknown size indication requires no size computation.
1909       // Otherwise, evaluate and record it.
1910       if (const Expr *size = vat->getSizeExpr()) {
1911         // It's possible that we might have emitted this already,
1912         // e.g. with a typedef and a pointer to it.
1913         llvm::Value *&entry = VLASizeMap[size];
1914         if (!entry) {
1915           llvm::Value *Size = EmitScalarExpr(size);
1916 
1917           // C11 6.7.6.2p5:
1918           //   If the size is an expression that is not an integer constant
1919           //   expression [...] each time it is evaluated it shall have a value
1920           //   greater than zero.
1921           if (SanOpts.has(SanitizerKind::VLABound) &&
1922               size->getType()->isSignedIntegerType()) {
1923             SanitizerScope SanScope(this);
1924             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1925             llvm::Constant *StaticArgs[] = {
1926                 EmitCheckSourceLocation(size->getBeginLoc()),
1927                 EmitCheckTypeDescriptor(size->getType())};
1928             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1929                                      SanitizerKind::VLABound),
1930                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1931           }
1932 
1933           // Always zexting here would be wrong if it weren't
1934           // undefined behavior to have a negative bound.
1935           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1936         }
1937       }
1938       type = vat->getElementType();
1939       break;
1940     }
1941 
1942     case Type::FunctionProto:
1943     case Type::FunctionNoProto:
1944       type = cast<FunctionType>(ty)->getReturnType();
1945       break;
1946 
1947     case Type::Paren:
1948     case Type::TypeOf:
1949     case Type::UnaryTransform:
1950     case Type::Attributed:
1951     case Type::SubstTemplateTypeParm:
1952     case Type::PackExpansion:
1953     case Type::MacroQualified:
1954       // Keep walking after single level desugaring.
1955       type = type.getSingleStepDesugaredType(getContext());
1956       break;
1957 
1958     case Type::Typedef:
1959     case Type::Decltype:
1960     case Type::Auto:
1961     case Type::DeducedTemplateSpecialization:
1962       // Stop walking: nothing to do.
1963       return;
1964 
1965     case Type::TypeOfExpr:
1966       // Stop walking: emit typeof expression.
1967       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1968       return;
1969 
1970     case Type::Atomic:
1971       type = cast<AtomicType>(ty)->getValueType();
1972       break;
1973 
1974     case Type::Pipe:
1975       type = cast<PipeType>(ty)->getElementType();
1976       break;
1977     }
1978   } while (type->isVariablyModifiedType());
1979 }
1980 
1981 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1982   if (getContext().getBuiltinVaListType()->isArrayType())
1983     return EmitPointerWithAlignment(E);
1984   return EmitLValue(E).getAddress();
1985 }
1986 
1987 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1988   return EmitLValue(E).getAddress();
1989 }
1990 
1991 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1992                                               const APValue &Init) {
1993   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1994   if (CGDebugInfo *Dbg = getDebugInfo())
1995     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1996       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1997 }
1998 
1999 CodeGenFunction::PeepholeProtection
2000 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2001   // At the moment, the only aggressive peephole we do in IR gen
2002   // is trunc(zext) folding, but if we add more, we can easily
2003   // extend this protection.
2004 
2005   if (!rvalue.isScalar()) return PeepholeProtection();
2006   llvm::Value *value = rvalue.getScalarVal();
2007   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2008 
2009   // Just make an extra bitcast.
2010   assert(HaveInsertPoint());
2011   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2012                                                   Builder.GetInsertBlock());
2013 
2014   PeepholeProtection protection;
2015   protection.Inst = inst;
2016   return protection;
2017 }
2018 
2019 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2020   if (!protection.Inst) return;
2021 
2022   // In theory, we could try to duplicate the peepholes now, but whatever.
2023   protection.Inst->eraseFromParent();
2024 }
2025 
2026 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2027                                               QualType Ty, SourceLocation Loc,
2028                                               SourceLocation AssumptionLoc,
2029                                               llvm::Value *Alignment,
2030                                               llvm::Value *OffsetValue) {
2031   llvm::Value *TheCheck;
2032   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2033       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2034   if (SanOpts.has(SanitizerKind::Alignment)) {
2035     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2036                                  OffsetValue, TheCheck, Assumption);
2037   }
2038 }
2039 
2040 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2041                                               QualType Ty, SourceLocation Loc,
2042                                               SourceLocation AssumptionLoc,
2043                                               unsigned Alignment,
2044                                               llvm::Value *OffsetValue) {
2045   llvm::Value *TheCheck;
2046   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2047       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2048   if (SanOpts.has(SanitizerKind::Alignment)) {
2049     llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2050     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal,
2051                                  OffsetValue, TheCheck, Assumption);
2052   }
2053 }
2054 
2055 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2056                                               const Expr *E,
2057                                               SourceLocation AssumptionLoc,
2058                                               unsigned Alignment,
2059                                               llvm::Value *OffsetValue) {
2060   if (auto *CE = dyn_cast<CastExpr>(E))
2061     E = CE->getSubExprAsWritten();
2062   QualType Ty = E->getType();
2063   SourceLocation Loc = E->getExprLoc();
2064 
2065   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2066                           OffsetValue);
2067 }
2068 
2069 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2070                                                  llvm::Value *AnnotatedVal,
2071                                                  StringRef AnnotationStr,
2072                                                  SourceLocation Location) {
2073   llvm::Value *Args[4] = {
2074     AnnotatedVal,
2075     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2076     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2077     CGM.EmitAnnotationLineNo(Location)
2078   };
2079   return Builder.CreateCall(AnnotationFn, Args);
2080 }
2081 
2082 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2083   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2084   // FIXME We create a new bitcast for every annotation because that's what
2085   // llvm-gcc was doing.
2086   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2087     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2088                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2089                        I->getAnnotation(), D->getLocation());
2090 }
2091 
2092 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2093                                               Address Addr) {
2094   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2095   llvm::Value *V = Addr.getPointer();
2096   llvm::Type *VTy = V->getType();
2097   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2098                                     CGM.Int8PtrTy);
2099 
2100   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2101     // FIXME Always emit the cast inst so we can differentiate between
2102     // annotation on the first field of a struct and annotation on the struct
2103     // itself.
2104     if (VTy != CGM.Int8PtrTy)
2105       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2106     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2107     V = Builder.CreateBitCast(V, VTy);
2108   }
2109 
2110   return Address(V, Addr.getAlignment());
2111 }
2112 
2113 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2114 
2115 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2116     : CGF(CGF) {
2117   assert(!CGF->IsSanitizerScope);
2118   CGF->IsSanitizerScope = true;
2119 }
2120 
2121 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2122   CGF->IsSanitizerScope = false;
2123 }
2124 
2125 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2126                                    const llvm::Twine &Name,
2127                                    llvm::BasicBlock *BB,
2128                                    llvm::BasicBlock::iterator InsertPt) const {
2129   LoopStack.InsertHelper(I);
2130   if (IsSanitizerScope)
2131     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2132 }
2133 
2134 void CGBuilderInserter::InsertHelper(
2135     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2136     llvm::BasicBlock::iterator InsertPt) const {
2137   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2138   if (CGF)
2139     CGF->InsertHelper(I, Name, BB, InsertPt);
2140 }
2141 
2142 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2143                                 CodeGenModule &CGM, const FunctionDecl *FD,
2144                                 std::string &FirstMissing) {
2145   // If there aren't any required features listed then go ahead and return.
2146   if (ReqFeatures.empty())
2147     return false;
2148 
2149   // Now build up the set of caller features and verify that all the required
2150   // features are there.
2151   llvm::StringMap<bool> CallerFeatureMap;
2152   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2153 
2154   // If we have at least one of the features in the feature list return
2155   // true, otherwise return false.
2156   return std::all_of(
2157       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2158         SmallVector<StringRef, 1> OrFeatures;
2159         Feature.split(OrFeatures, '|');
2160         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2161           if (!CallerFeatureMap.lookup(Feature)) {
2162             FirstMissing = Feature.str();
2163             return false;
2164           }
2165           return true;
2166         });
2167       });
2168 }
2169 
2170 // Emits an error if we don't have a valid set of target features for the
2171 // called function.
2172 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2173                                           const FunctionDecl *TargetDecl) {
2174   // Early exit if this is an indirect call.
2175   if (!TargetDecl)
2176     return;
2177 
2178   // Get the current enclosing function if it exists. If it doesn't
2179   // we can't check the target features anyhow.
2180   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2181   if (!FD)
2182     return;
2183 
2184   // Grab the required features for the call. For a builtin this is listed in
2185   // the td file with the default cpu, for an always_inline function this is any
2186   // listed cpu and any listed features.
2187   unsigned BuiltinID = TargetDecl->getBuiltinID();
2188   std::string MissingFeature;
2189   if (BuiltinID) {
2190     SmallVector<StringRef, 1> ReqFeatures;
2191     const char *FeatureList =
2192         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2193     // Return if the builtin doesn't have any required features.
2194     if (!FeatureList || StringRef(FeatureList) == "")
2195       return;
2196     StringRef(FeatureList).split(ReqFeatures, ',');
2197     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2198       CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2199           << TargetDecl->getDeclName()
2200           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2201 
2202   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2203              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2204     // Get the required features for the callee.
2205 
2206     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2207     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2208 
2209     SmallVector<StringRef, 1> ReqFeatures;
2210     llvm::StringMap<bool> CalleeFeatureMap;
2211     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2212 
2213     for (const auto &F : ParsedAttr.Features) {
2214       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2215         ReqFeatures.push_back(StringRef(F).substr(1));
2216     }
2217 
2218     for (const auto &F : CalleeFeatureMap) {
2219       // Only positive features are "required".
2220       if (F.getValue())
2221         ReqFeatures.push_back(F.getKey());
2222     }
2223     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2224       CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2225           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2226   }
2227 }
2228 
2229 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2230   if (!CGM.getCodeGenOpts().SanitizeStats)
2231     return;
2232 
2233   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2234   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2235   CGM.getSanStats().create(IRB, SSK);
2236 }
2237 
2238 llvm::Value *
2239 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2240   llvm::Value *Condition = nullptr;
2241 
2242   if (!RO.Conditions.Architecture.empty())
2243     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2244 
2245   if (!RO.Conditions.Features.empty()) {
2246     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2247     Condition =
2248         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2249   }
2250   return Condition;
2251 }
2252 
2253 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2254                                              llvm::Function *Resolver,
2255                                              CGBuilderTy &Builder,
2256                                              llvm::Function *FuncToReturn,
2257                                              bool SupportsIFunc) {
2258   if (SupportsIFunc) {
2259     Builder.CreateRet(FuncToReturn);
2260     return;
2261   }
2262 
2263   llvm::SmallVector<llvm::Value *, 10> Args;
2264   llvm::for_each(Resolver->args(),
2265                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2266 
2267   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2268   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2269 
2270   if (Resolver->getReturnType()->isVoidTy())
2271     Builder.CreateRetVoid();
2272   else
2273     Builder.CreateRet(Result);
2274 }
2275 
2276 void CodeGenFunction::EmitMultiVersionResolver(
2277     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2278   assert((getContext().getTargetInfo().getTriple().getArch() ==
2279               llvm::Triple::x86 ||
2280           getContext().getTargetInfo().getTriple().getArch() ==
2281               llvm::Triple::x86_64) &&
2282          "Only implemented for x86 targets");
2283 
2284   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2285 
2286   // Main function's basic block.
2287   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2288   Builder.SetInsertPoint(CurBlock);
2289   EmitX86CpuInit();
2290 
2291   for (const MultiVersionResolverOption &RO : Options) {
2292     Builder.SetInsertPoint(CurBlock);
2293     llvm::Value *Condition = FormResolverCondition(RO);
2294 
2295     // The 'default' or 'generic' case.
2296     if (!Condition) {
2297       assert(&RO == Options.end() - 1 &&
2298              "Default or Generic case must be last");
2299       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2300                                        SupportsIFunc);
2301       return;
2302     }
2303 
2304     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2305     CGBuilderTy RetBuilder(*this, RetBlock);
2306     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2307                                      SupportsIFunc);
2308     CurBlock = createBasicBlock("resolver_else", Resolver);
2309     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2310   }
2311 
2312   // If no generic/default, emit an unreachable.
2313   Builder.SetInsertPoint(CurBlock);
2314   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2315   TrapCall->setDoesNotReturn();
2316   TrapCall->setDoesNotThrow();
2317   Builder.CreateUnreachable();
2318   Builder.ClearInsertionPoint();
2319 }
2320 
2321 // Loc - where the diagnostic will point, where in the source code this
2322 //  alignment has failed.
2323 // SecondaryLoc - if present (will be present if sufficiently different from
2324 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2325 //  It should be the location where the __attribute__((assume_aligned))
2326 //  was written e.g.
2327 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2328     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2329     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2330     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2331     llvm::Instruction *Assumption) {
2332   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2333          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2334              llvm::Intrinsic::getDeclaration(
2335                  Builder.GetInsertBlock()->getParent()->getParent(),
2336                  llvm::Intrinsic::assume) &&
2337          "Assumption should be a call to llvm.assume().");
2338   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2339          "Assumption should be the last instruction of the basic block, "
2340          "since the basic block is still being generated.");
2341 
2342   if (!SanOpts.has(SanitizerKind::Alignment))
2343     return;
2344 
2345   // Don't check pointers to volatile data. The behavior here is implementation-
2346   // defined.
2347   if (Ty->getPointeeType().isVolatileQualified())
2348     return;
2349 
2350   // We need to temorairly remove the assumption so we can insert the
2351   // sanitizer check before it, else the check will be dropped by optimizations.
2352   Assumption->removeFromParent();
2353 
2354   {
2355     SanitizerScope SanScope(this);
2356 
2357     if (!OffsetValue)
2358       OffsetValue = Builder.getInt1(0); // no offset.
2359 
2360     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2361                                     EmitCheckSourceLocation(SecondaryLoc),
2362                                     EmitCheckTypeDescriptor(Ty)};
2363     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2364                                   EmitCheckValue(Alignment),
2365                                   EmitCheckValue(OffsetValue)};
2366     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2367               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2368   }
2369 
2370   // We are now in the (new, empty) "cont" basic block.
2371   // Reintroduce the assumption.
2372   Builder.Insert(Assumption);
2373   // FIXME: Assumption still has it's original basic block as it's Parent.
2374 }
2375 
2376 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2377   if (CGDebugInfo *DI = getDebugInfo())
2378     return DI->SourceLocToDebugLoc(Location);
2379 
2380   return llvm::DebugLoc();
2381 }
2382