1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "llvm/Target/TargetData.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 28 : BlockFunction(cgm, *this, Builder), CGM(cgm), 29 Target(CGM.getContext().Target), 30 Builder(cgm.getModule().getContext()), 31 DebugInfo(0), IndirectBranch(0), 32 SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), 33 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 34 ConditionalBranchLevel(0), TerminateHandler(0), TrapBB(0), 35 UniqueAggrDestructorCount(0) { 36 LLVMIntTy = ConvertType(getContext().IntTy); 37 LLVMPointerWidth = Target.getPointerWidth(0); 38 Exceptions = getContext().getLangOptions().Exceptions; 39 CatchUndefined = getContext().getLangOptions().CatchUndefined; 40 } 41 42 ASTContext &CodeGenFunction::getContext() const { 43 return CGM.getContext(); 44 } 45 46 47 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 48 llvm::BasicBlock *&BB = LabelMap[S]; 49 if (BB) return BB; 50 51 // Create, but don't insert, the new block. 52 return BB = createBasicBlock(S->getName()); 53 } 54 55 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 56 llvm::Value *Res = LocalDeclMap[VD]; 57 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 58 return Res; 59 } 60 61 llvm::Constant * 62 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 63 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 64 } 65 66 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 67 return CGM.getTypes().ConvertTypeForMem(T); 68 } 69 70 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 71 return CGM.getTypes().ConvertType(T); 72 } 73 74 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 75 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 76 T->isMemberFunctionPointerType(); 77 } 78 79 void CodeGenFunction::EmitReturnBlock() { 80 // For cleanliness, we try to avoid emitting the return block for 81 // simple cases. 82 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 83 84 if (CurBB) { 85 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 86 87 // We have a valid insert point, reuse it if it is empty or there are no 88 // explicit jumps to the return block. 89 if (CurBB->empty() || ReturnBlock->use_empty()) { 90 ReturnBlock->replaceAllUsesWith(CurBB); 91 delete ReturnBlock; 92 } else 93 EmitBlock(ReturnBlock); 94 return; 95 } 96 97 // Otherwise, if the return block is the target of a single direct 98 // branch then we can just put the code in that block instead. This 99 // cleans up functions which started with a unified return block. 100 if (ReturnBlock->hasOneUse()) { 101 llvm::BranchInst *BI = 102 dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin()); 103 if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) { 104 // Reset insertion point and delete the branch. 105 Builder.SetInsertPoint(BI->getParent()); 106 BI->eraseFromParent(); 107 delete ReturnBlock; 108 return; 109 } 110 } 111 112 // FIXME: We are at an unreachable point, there is no reason to emit the block 113 // unless it has uses. However, we still need a place to put the debug 114 // region.end for now. 115 116 EmitBlock(ReturnBlock); 117 } 118 119 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 120 assert(BreakContinueStack.empty() && 121 "mismatched push/pop in break/continue stack!"); 122 assert(BlockScopes.empty() && 123 "did not remove all blocks from block scope map!"); 124 assert(CleanupEntries.empty() && 125 "mismatched push/pop in cleanup stack!"); 126 127 // Emit function epilog (to return). 128 EmitReturnBlock(); 129 130 // Emit debug descriptor for function end. 131 if (CGDebugInfo *DI = getDebugInfo()) { 132 DI->setLocation(EndLoc); 133 DI->EmitRegionEnd(CurFn, Builder); 134 } 135 136 EmitFunctionEpilog(*CurFnInfo, ReturnValue); 137 EmitEndEHSpec(CurCodeDecl); 138 139 // If someone did an indirect goto, emit the indirect goto block at the end of 140 // the function. 141 if (IndirectBranch) { 142 EmitBlock(IndirectBranch->getParent()); 143 Builder.ClearInsertionPoint(); 144 } 145 146 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 147 llvm::Instruction *Ptr = AllocaInsertPt; 148 AllocaInsertPt = 0; 149 Ptr->eraseFromParent(); 150 151 // If someone took the address of a label but never did an indirect goto, we 152 // made a zero entry PHI node, which is illegal, zap it now. 153 if (IndirectBranch) { 154 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 155 if (PN->getNumIncomingValues() == 0) { 156 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 157 PN->eraseFromParent(); 158 } 159 } 160 } 161 162 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 163 llvm::Function *Fn, 164 const FunctionArgList &Args, 165 SourceLocation StartLoc) { 166 const Decl *D = GD.getDecl(); 167 168 DidCallStackSave = false; 169 CurCodeDecl = CurFuncDecl = D; 170 FnRetTy = RetTy; 171 CurFn = Fn; 172 assert(CurFn->isDeclaration() && "Function already has body?"); 173 174 // Pass inline keyword to optimizer if it appears explicitly on any 175 // declaration. 176 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 177 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 178 RE = FD->redecls_end(); RI != RE; ++RI) 179 if (RI->isInlineSpecified()) { 180 Fn->addFnAttr(llvm::Attribute::InlineHint); 181 break; 182 } 183 184 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 185 186 // Create a marker to make it easy to insert allocas into the entryblock 187 // later. Don't create this with the builder, because we don't want it 188 // folded. 189 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)); 190 AllocaInsertPt = new llvm::BitCastInst(Undef, 191 llvm::Type::getInt32Ty(VMContext), "", 192 EntryBB); 193 if (Builder.isNamePreserving()) 194 AllocaInsertPt->setName("allocapt"); 195 196 ReturnBlock = createBasicBlock("return"); 197 198 Builder.SetInsertPoint(EntryBB); 199 200 QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0, 201 false, false, 0, 0, 202 /*FIXME?*/ 203 FunctionType::ExtInfo()); 204 205 // Emit subprogram debug descriptor. 206 if (CGDebugInfo *DI = getDebugInfo()) { 207 DI->setLocation(StartLoc); 208 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 209 } 210 211 // FIXME: Leaked. 212 // CC info is ignored, hopefully? 213 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, 214 FunctionType::ExtInfo()); 215 216 if (RetTy->isVoidType()) { 217 // Void type; nothing to return. 218 ReturnValue = 0; 219 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 220 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 221 // Indirect aggregate return; emit returned value directly into sret slot. 222 // This reduces code size, and affects correctness in C++. 223 ReturnValue = CurFn->arg_begin(); 224 } else { 225 ReturnValue = CreateIRTemp(RetTy, "retval"); 226 } 227 228 EmitStartEHSpec(CurCodeDecl); 229 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 230 231 if (CXXThisDecl) 232 CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this"); 233 if (CXXVTTDecl) 234 CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt"); 235 236 // If any of the arguments have a variably modified type, make sure to 237 // emit the type size. 238 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 239 i != e; ++i) { 240 QualType Ty = i->second; 241 242 if (Ty->isVariablyModifiedType()) 243 EmitVLASize(Ty); 244 } 245 } 246 247 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 248 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 249 assert(FD->getBody()); 250 EmitStmt(FD->getBody()); 251 } 252 253 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { 254 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 255 256 // Check if we should generate debug info for this function. 257 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 258 DebugInfo = CGM.getDebugInfo(); 259 260 FunctionArgList Args; 261 262 CurGD = GD; 263 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 264 if (MD->isInstance()) { 265 // Create the implicit 'this' decl. 266 // FIXME: I'm not entirely sure I like using a fake decl just for code 267 // generation. Maybe we can come up with a better way? 268 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, 269 FD->getLocation(), 270 &getContext().Idents.get("this"), 271 MD->getThisType(getContext())); 272 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 273 274 // Check if we need a VTT parameter as well. 275 if (CodeGenVTables::needsVTTParameter(GD)) { 276 // FIXME: The comment about using a fake decl above applies here too. 277 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 278 CXXVTTDecl = 279 ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(), 280 &getContext().Idents.get("vtt"), T); 281 Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType())); 282 } 283 } 284 } 285 286 if (FD->getNumParams()) { 287 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 288 assert(FProto && "Function def must have prototype!"); 289 290 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 291 Args.push_back(std::make_pair(FD->getParamDecl(i), 292 FProto->getArgType(i))); 293 } 294 295 SourceRange BodyRange; 296 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 297 298 // Emit the standard function prologue. 299 StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin()); 300 301 // Generate the body of the function. 302 if (isa<CXXDestructorDecl>(FD)) 303 EmitDestructorBody(Args); 304 else if (isa<CXXConstructorDecl>(FD)) 305 EmitConstructorBody(Args); 306 else 307 EmitFunctionBody(Args); 308 309 // Emit the standard function epilogue. 310 FinishFunction(BodyRange.getEnd()); 311 312 // Destroy the 'this' declaration. 313 if (CXXThisDecl) 314 CXXThisDecl->Destroy(getContext()); 315 316 // Destroy the VTT declaration. 317 if (CXXVTTDecl) 318 CXXVTTDecl->Destroy(getContext()); 319 } 320 321 /// ContainsLabel - Return true if the statement contains a label in it. If 322 /// this statement is not executed normally, it not containing a label means 323 /// that we can just remove the code. 324 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 325 // Null statement, not a label! 326 if (S == 0) return false; 327 328 // If this is a label, we have to emit the code, consider something like: 329 // if (0) { ... foo: bar(); } goto foo; 330 if (isa<LabelStmt>(S)) 331 return true; 332 333 // If this is a case/default statement, and we haven't seen a switch, we have 334 // to emit the code. 335 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 336 return true; 337 338 // If this is a switch statement, we want to ignore cases below it. 339 if (isa<SwitchStmt>(S)) 340 IgnoreCaseStmts = true; 341 342 // Scan subexpressions for verboten labels. 343 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 344 I != E; ++I) 345 if (ContainsLabel(*I, IgnoreCaseStmts)) 346 return true; 347 348 return false; 349 } 350 351 352 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 353 /// a constant, or if it does but contains a label, return 0. If it constant 354 /// folds to 'true' and does not contain a label, return 1, if it constant folds 355 /// to 'false' and does not contain a label, return -1. 356 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 357 // FIXME: Rename and handle conversion of other evaluatable things 358 // to bool. 359 Expr::EvalResult Result; 360 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 361 Result.HasSideEffects) 362 return 0; // Not foldable, not integer or not fully evaluatable. 363 364 if (CodeGenFunction::ContainsLabel(Cond)) 365 return 0; // Contains a label. 366 367 return Result.Val.getInt().getBoolValue() ? 1 : -1; 368 } 369 370 371 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 372 /// statement) to the specified blocks. Based on the condition, this might try 373 /// to simplify the codegen of the conditional based on the branch. 374 /// 375 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 376 llvm::BasicBlock *TrueBlock, 377 llvm::BasicBlock *FalseBlock) { 378 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 379 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 380 381 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 382 // Handle X && Y in a condition. 383 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 384 // If we have "1 && X", simplify the code. "0 && X" would have constant 385 // folded if the case was simple enough. 386 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 387 // br(1 && X) -> br(X). 388 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 389 } 390 391 // If we have "X && 1", simplify the code to use an uncond branch. 392 // "X && 0" would have been constant folded to 0. 393 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 394 // br(X && 1) -> br(X). 395 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 396 } 397 398 // Emit the LHS as a conditional. If the LHS conditional is false, we 399 // want to jump to the FalseBlock. 400 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 401 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 402 EmitBlock(LHSTrue); 403 404 // Any temporaries created here are conditional. 405 BeginConditionalBranch(); 406 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 407 EndConditionalBranch(); 408 409 return; 410 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 411 // If we have "0 || X", simplify the code. "1 || X" would have constant 412 // folded if the case was simple enough. 413 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 414 // br(0 || X) -> br(X). 415 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 416 } 417 418 // If we have "X || 0", simplify the code to use an uncond branch. 419 // "X || 1" would have been constant folded to 1. 420 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 421 // br(X || 0) -> br(X). 422 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 423 } 424 425 // Emit the LHS as a conditional. If the LHS conditional is true, we 426 // want to jump to the TrueBlock. 427 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 428 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 429 EmitBlock(LHSFalse); 430 431 // Any temporaries created here are conditional. 432 BeginConditionalBranch(); 433 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 434 EndConditionalBranch(); 435 436 return; 437 } 438 } 439 440 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 441 // br(!x, t, f) -> br(x, f, t) 442 if (CondUOp->getOpcode() == UnaryOperator::LNot) 443 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 444 } 445 446 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 447 // Handle ?: operator. 448 449 // Just ignore GNU ?: extension. 450 if (CondOp->getLHS()) { 451 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 452 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 453 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 454 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 455 EmitBlock(LHSBlock); 456 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 457 EmitBlock(RHSBlock); 458 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 459 return; 460 } 461 } 462 463 // Emit the code with the fully general case. 464 llvm::Value *CondV = EvaluateExprAsBool(Cond); 465 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 466 } 467 468 /// ErrorUnsupported - Print out an error that codegen doesn't support the 469 /// specified stmt yet. 470 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 471 bool OmitOnError) { 472 CGM.ErrorUnsupported(S, Type, OmitOnError); 473 } 474 475 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) { 476 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 477 if (DestPtr->getType() != BP) 478 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 479 480 // Get size and alignment info for this aggregate. 481 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 482 483 // Don't bother emitting a zero-byte memset. 484 if (TypeInfo.first == 0) 485 return; 486 487 // FIXME: Handle variable sized types. 488 const llvm::Type *IntPtr = llvm::IntegerType::get(VMContext, 489 LLVMPointerWidth); 490 491 Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtr), DestPtr, 492 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)), 493 // TypeInfo.first describes size in bits. 494 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 495 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 496 TypeInfo.second/8), 497 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 498 0)); 499 } 500 501 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { 502 // Make sure that there is a block for the indirect goto. 503 if (IndirectBranch == 0) 504 GetIndirectGotoBlock(); 505 506 llvm::BasicBlock *BB = getBasicBlockForLabel(L); 507 508 // Make sure the indirect branch includes all of the address-taken blocks. 509 IndirectBranch->addDestination(BB); 510 return llvm::BlockAddress::get(CurFn, BB); 511 } 512 513 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 514 // If we already made the indirect branch for indirect goto, return its block. 515 if (IndirectBranch) return IndirectBranch->getParent(); 516 517 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 518 519 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 520 521 // Create the PHI node that indirect gotos will add entries to. 522 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); 523 524 // Create the indirect branch instruction. 525 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 526 return IndirectBranch->getParent(); 527 } 528 529 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 530 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 531 532 assert(SizeEntry && "Did not emit size for type"); 533 return SizeEntry; 534 } 535 536 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 537 assert(Ty->isVariablyModifiedType() && 538 "Must pass variably modified type to EmitVLASizes!"); 539 540 EnsureInsertPoint(); 541 542 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 543 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 544 545 if (!SizeEntry) { 546 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 547 548 // Get the element size; 549 QualType ElemTy = VAT->getElementType(); 550 llvm::Value *ElemSize; 551 if (ElemTy->isVariableArrayType()) 552 ElemSize = EmitVLASize(ElemTy); 553 else 554 ElemSize = llvm::ConstantInt::get(SizeTy, 555 getContext().getTypeSizeInChars(ElemTy).getQuantity()); 556 557 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 558 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 559 560 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 561 } 562 563 return SizeEntry; 564 } 565 566 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 567 EmitVLASize(AT->getElementType()); 568 return 0; 569 } 570 571 const PointerType *PT = Ty->getAs<PointerType>(); 572 assert(PT && "unknown VM type!"); 573 EmitVLASize(PT->getPointeeType()); 574 return 0; 575 } 576 577 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 578 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 579 return EmitScalarExpr(E); 580 } 581 return EmitLValue(E).getAddress(); 582 } 583 584 void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupEntryBlock, 585 llvm::BasicBlock *CleanupExitBlock, 586 llvm::BasicBlock *PreviousInvokeDest, 587 bool EHOnly) { 588 CleanupEntries.push_back(CleanupEntry(CleanupEntryBlock, CleanupExitBlock, 589 PreviousInvokeDest, EHOnly)); 590 } 591 592 void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize) { 593 assert(CleanupEntries.size() >= OldCleanupStackSize && 594 "Cleanup stack mismatch!"); 595 596 while (CleanupEntries.size() > OldCleanupStackSize) 597 EmitCleanupBlock(); 598 } 599 600 CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock() { 601 CleanupEntry &CE = CleanupEntries.back(); 602 603 llvm::BasicBlock *CleanupEntryBlock = CE.CleanupEntryBlock; 604 605 std::vector<llvm::BasicBlock *> Blocks; 606 std::swap(Blocks, CE.Blocks); 607 608 std::vector<llvm::BranchInst *> BranchFixups; 609 std::swap(BranchFixups, CE.BranchFixups); 610 611 bool EHOnly = CE.EHOnly; 612 613 setInvokeDest(CE.PreviousInvokeDest); 614 615 CleanupEntries.pop_back(); 616 617 // Check if any branch fixups pointed to the scope we just popped. If so, 618 // we can remove them. 619 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 620 llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0); 621 BlockScopeMap::iterator I = BlockScopes.find(Dest); 622 623 if (I == BlockScopes.end()) 624 continue; 625 626 assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!"); 627 628 if (I->second == CleanupEntries.size()) { 629 // We don't need to do this branch fixup. 630 BranchFixups[i] = BranchFixups.back(); 631 BranchFixups.pop_back(); 632 i--; 633 e--; 634 continue; 635 } 636 } 637 638 llvm::BasicBlock *SwitchBlock = CE.CleanupExitBlock; 639 llvm::BasicBlock *EndBlock = 0; 640 if (!BranchFixups.empty()) { 641 if (!SwitchBlock) 642 SwitchBlock = createBasicBlock("cleanup.switch"); 643 EndBlock = createBasicBlock("cleanup.end"); 644 645 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 646 647 Builder.SetInsertPoint(SwitchBlock); 648 649 llvm::Value *DestCodePtr 650 = CreateTempAlloca(llvm::Type::getInt32Ty(VMContext), 651 "cleanup.dst"); 652 llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); 653 654 // Create a switch instruction to determine where to jump next. 655 llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock, 656 BranchFixups.size()); 657 658 // Restore the current basic block (if any) 659 if (CurBB) { 660 Builder.SetInsertPoint(CurBB); 661 662 // If we had a current basic block, we also need to emit an instruction 663 // to initialize the cleanup destination. 664 Builder.CreateStore(llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)), 665 DestCodePtr); 666 } else 667 Builder.ClearInsertionPoint(); 668 669 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 670 llvm::BranchInst *BI = BranchFixups[i]; 671 llvm::BasicBlock *Dest = BI->getSuccessor(0); 672 673 // Fixup the branch instruction to point to the cleanup block. 674 BI->setSuccessor(0, CleanupEntryBlock); 675 676 if (CleanupEntries.empty()) { 677 llvm::ConstantInt *ID; 678 679 // Check if we already have a destination for this block. 680 if (Dest == SI->getDefaultDest()) 681 ID = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); 682 else { 683 ID = SI->findCaseDest(Dest); 684 if (!ID) { 685 // No code found, get a new unique one by using the number of 686 // switch successors. 687 ID = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 688 SI->getNumSuccessors()); 689 SI->addCase(ID, Dest); 690 } 691 } 692 693 // Store the jump destination before the branch instruction. 694 new llvm::StoreInst(ID, DestCodePtr, BI); 695 } else { 696 // We need to jump through another cleanup block. Create a pad block 697 // with a branch instruction that jumps to the final destination and add 698 // it as a branch fixup to the current cleanup scope. 699 700 // Create the pad block. 701 llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn); 702 703 // Create a unique case ID. 704 llvm::ConstantInt *ID 705 = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 706 SI->getNumSuccessors()); 707 708 // Store the jump destination before the branch instruction. 709 new llvm::StoreInst(ID, DestCodePtr, BI); 710 711 // Add it as the destination. 712 SI->addCase(ID, CleanupPad); 713 714 // Create the branch to the final destination. 715 llvm::BranchInst *BI = llvm::BranchInst::Create(Dest); 716 CleanupPad->getInstList().push_back(BI); 717 718 // And add it as a branch fixup. 719 CleanupEntries.back().BranchFixups.push_back(BI); 720 } 721 } 722 } 723 724 // Remove all blocks from the block scope map. 725 for (size_t i = 0, e = Blocks.size(); i != e; ++i) { 726 assert(BlockScopes.count(Blocks[i]) && 727 "Did not find block in scope map!"); 728 729 BlockScopes.erase(Blocks[i]); 730 } 731 732 return CleanupBlockInfo(CleanupEntryBlock, SwitchBlock, EndBlock, EHOnly); 733 } 734 735 void CodeGenFunction::EmitCleanupBlock() { 736 CleanupBlockInfo Info = PopCleanupBlock(); 737 738 if (Info.EHOnly) { 739 // FIXME: Add this to the exceptional edge 740 if (Info.CleanupBlock->getNumUses() == 0) 741 delete Info.CleanupBlock; 742 return; 743 } 744 745 // Scrub debug location info. 746 for (llvm::BasicBlock::iterator LBI = Info.CleanupBlock->begin(), 747 LBE = Info.CleanupBlock->end(); LBI != LBE; ++LBI) 748 Builder.SetInstDebugLocation(LBI); 749 750 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 751 if (CurBB && !CurBB->getTerminator() && 752 Info.CleanupBlock->getNumUses() == 0) { 753 CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList()); 754 delete Info.CleanupBlock; 755 } else 756 EmitBlock(Info.CleanupBlock); 757 758 if (Info.SwitchBlock) 759 EmitBlock(Info.SwitchBlock); 760 if (Info.EndBlock) 761 EmitBlock(Info.EndBlock); 762 } 763 764 void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI) { 765 assert(!CleanupEntries.empty() && 766 "Trying to add branch fixup without cleanup block!"); 767 768 // FIXME: We could be more clever here and check if there's already a branch 769 // fixup for this destination and recycle it. 770 CleanupEntries.back().BranchFixups.push_back(BI); 771 } 772 773 void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest) { 774 if (!HaveInsertPoint()) 775 return; 776 777 llvm::BranchInst* BI = Builder.CreateBr(Dest); 778 779 Builder.ClearInsertionPoint(); 780 781 // The stack is empty, no need to do any cleanup. 782 if (CleanupEntries.empty()) 783 return; 784 785 if (!Dest->getParent()) { 786 // We are trying to branch to a block that hasn't been inserted yet. 787 AddBranchFixup(BI); 788 return; 789 } 790 791 BlockScopeMap::iterator I = BlockScopes.find(Dest); 792 if (I == BlockScopes.end()) { 793 // We are trying to jump to a block that is outside of any cleanup scope. 794 AddBranchFixup(BI); 795 return; 796 } 797 798 assert(I->second < CleanupEntries.size() && 799 "Trying to branch into cleanup region"); 800 801 if (I->second == CleanupEntries.size() - 1) { 802 // We have a branch to a block in the same scope. 803 return; 804 } 805 806 AddBranchFixup(BI); 807 } 808