1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/FPEnv.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/CRC.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 using namespace clang; 47 using namespace CodeGen; 48 49 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 50 /// markers. 51 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 52 const LangOptions &LangOpts) { 53 if (CGOpts.DisableLifetimeMarkers) 54 return false; 55 56 // Sanitizers may use markers. 57 if (CGOpts.SanitizeAddressUseAfterScope || 58 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 59 LangOpts.Sanitize.has(SanitizerKind::Memory)) 60 return true; 61 62 // For now, only in optimized builds. 63 return CGOpts.OptimizationLevel != 0; 64 } 65 66 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 67 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 68 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 69 CGBuilderInserterTy(this)), 70 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 71 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 72 ShouldEmitLifetimeMarkers( 73 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 74 if (!suppressNewContext) 75 CGM.getCXXABI().getMangleContext().startNewFunction(); 76 77 SetFastMathFlags(CurFPFeatures); 78 SetFPModel(); 79 } 80 81 CodeGenFunction::~CodeGenFunction() { 82 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 83 84 if (getLangOpts().OpenMP && CurFn) 85 CGM.getOpenMPRuntime().functionFinished(*this); 86 87 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 88 // outlining etc) at some point. Doing it once the function codegen is done 89 // seems to be a reasonable spot. We do it here, as opposed to the deletion 90 // time of the CodeGenModule, because we have to ensure the IR has not yet 91 // been "emitted" to the outside, thus, modifications are still sensible. 92 if (CGM.getLangOpts().OpenMPIRBuilder) 93 CGM.getOpenMPRuntime().getOMPBuilder().finalize(); 94 } 95 96 // Map the LangOption for exception behavior into 97 // the corresponding enum in the IR. 98 llvm::fp::ExceptionBehavior 99 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 100 101 switch (Kind) { 102 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 103 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 104 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 105 } 106 llvm_unreachable("Unsupported FP Exception Behavior"); 107 } 108 109 void CodeGenFunction::SetFPModel() { 110 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 111 auto fpExceptionBehavior = ToConstrainedExceptMD( 112 getLangOpts().getFPExceptionMode()); 113 114 Builder.setDefaultConstrainedRounding(RM); 115 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 116 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 117 RM != llvm::RoundingMode::NearestTiesToEven); 118 } 119 120 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 121 llvm::FastMathFlags FMF; 122 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 123 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 124 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 125 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 126 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 127 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 128 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 129 Builder.setFastMathFlags(FMF); 130 } 131 132 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 133 FPOptions FPFeatures) 134 : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) { 135 CGF.CurFPFeatures = FPFeatures; 136 137 if (OldFPFeatures == FPFeatures) 138 return; 139 140 FMFGuard.emplace(CGF.Builder); 141 142 llvm::RoundingMode NewRoundingBehavior = 143 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 144 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 145 auto NewExceptionBehavior = 146 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 147 FPFeatures.getFPExceptionMode())); 148 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 149 150 CGF.SetFastMathFlags(FPFeatures); 151 152 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 153 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 154 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 155 (NewExceptionBehavior == llvm::fp::ebIgnore && 156 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 157 "FPConstrained should be enabled on entire function"); 158 159 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 160 auto OldValue = 161 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 162 auto NewValue = OldValue & Value; 163 if (OldValue != NewValue) 164 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 165 }; 166 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 167 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 168 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 169 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 170 FPFeatures.getAllowReciprocal() && 171 FPFeatures.getAllowApproxFunc() && 172 FPFeatures.getNoSignedZero()); 173 } 174 175 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 176 CGF.CurFPFeatures = OldFPFeatures; 177 } 178 179 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 180 LValueBaseInfo BaseInfo; 181 TBAAAccessInfo TBAAInfo; 182 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 183 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 184 TBAAInfo); 185 } 186 187 /// Given a value of type T* that may not be to a complete object, 188 /// construct an l-value with the natural pointee alignment of T. 189 LValue 190 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 191 LValueBaseInfo BaseInfo; 192 TBAAAccessInfo TBAAInfo; 193 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 194 /* forPointeeType= */ true); 195 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 196 } 197 198 199 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 200 return CGM.getTypes().ConvertTypeForMem(T); 201 } 202 203 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 204 return CGM.getTypes().ConvertType(T); 205 } 206 207 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 208 type = type.getCanonicalType(); 209 while (true) { 210 switch (type->getTypeClass()) { 211 #define TYPE(name, parent) 212 #define ABSTRACT_TYPE(name, parent) 213 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 214 #define DEPENDENT_TYPE(name, parent) case Type::name: 215 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 216 #include "clang/AST/TypeNodes.inc" 217 llvm_unreachable("non-canonical or dependent type in IR-generation"); 218 219 case Type::Auto: 220 case Type::DeducedTemplateSpecialization: 221 llvm_unreachable("undeduced type in IR-generation"); 222 223 // Various scalar types. 224 case Type::Builtin: 225 case Type::Pointer: 226 case Type::BlockPointer: 227 case Type::LValueReference: 228 case Type::RValueReference: 229 case Type::MemberPointer: 230 case Type::Vector: 231 case Type::ExtVector: 232 case Type::ConstantMatrix: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 case Type::ExtInt: 239 return TEK_Scalar; 240 241 // Complexes. 242 case Type::Complex: 243 return TEK_Complex; 244 245 // Arrays, records, and Objective-C objects. 246 case Type::ConstantArray: 247 case Type::IncompleteArray: 248 case Type::VariableArray: 249 case Type::Record: 250 case Type::ObjCObject: 251 case Type::ObjCInterface: 252 return TEK_Aggregate; 253 254 // We operate on atomic values according to their underlying type. 255 case Type::Atomic: 256 type = cast<AtomicType>(type)->getValueType(); 257 continue; 258 } 259 llvm_unreachable("unknown type kind!"); 260 } 261 } 262 263 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 264 // For cleanliness, we try to avoid emitting the return block for 265 // simple cases. 266 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 267 268 if (CurBB) { 269 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 270 271 // We have a valid insert point, reuse it if it is empty or there are no 272 // explicit jumps to the return block. 273 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 274 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 275 delete ReturnBlock.getBlock(); 276 ReturnBlock = JumpDest(); 277 } else 278 EmitBlock(ReturnBlock.getBlock()); 279 return llvm::DebugLoc(); 280 } 281 282 // Otherwise, if the return block is the target of a single direct 283 // branch then we can just put the code in that block instead. This 284 // cleans up functions which started with a unified return block. 285 if (ReturnBlock.getBlock()->hasOneUse()) { 286 llvm::BranchInst *BI = 287 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 288 if (BI && BI->isUnconditional() && 289 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 290 // Record/return the DebugLoc of the simple 'return' expression to be used 291 // later by the actual 'ret' instruction. 292 llvm::DebugLoc Loc = BI->getDebugLoc(); 293 Builder.SetInsertPoint(BI->getParent()); 294 BI->eraseFromParent(); 295 delete ReturnBlock.getBlock(); 296 ReturnBlock = JumpDest(); 297 return Loc; 298 } 299 } 300 301 // FIXME: We are at an unreachable point, there is no reason to emit the block 302 // unless it has uses. However, we still need a place to put the debug 303 // region.end for now. 304 305 EmitBlock(ReturnBlock.getBlock()); 306 return llvm::DebugLoc(); 307 } 308 309 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 310 if (!BB) return; 311 if (!BB->use_empty()) 312 return CGF.CurFn->getBasicBlockList().push_back(BB); 313 delete BB; 314 } 315 316 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 317 assert(BreakContinueStack.empty() && 318 "mismatched push/pop in break/continue stack!"); 319 320 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 321 && NumSimpleReturnExprs == NumReturnExprs 322 && ReturnBlock.getBlock()->use_empty(); 323 // Usually the return expression is evaluated before the cleanup 324 // code. If the function contains only a simple return statement, 325 // such as a constant, the location before the cleanup code becomes 326 // the last useful breakpoint in the function, because the simple 327 // return expression will be evaluated after the cleanup code. To be 328 // safe, set the debug location for cleanup code to the location of 329 // the return statement. Otherwise the cleanup code should be at the 330 // end of the function's lexical scope. 331 // 332 // If there are multiple branches to the return block, the branch 333 // instructions will get the location of the return statements and 334 // all will be fine. 335 if (CGDebugInfo *DI = getDebugInfo()) { 336 if (OnlySimpleReturnStmts) 337 DI->EmitLocation(Builder, LastStopPoint); 338 else 339 DI->EmitLocation(Builder, EndLoc); 340 } 341 342 // Pop any cleanups that might have been associated with the 343 // parameters. Do this in whatever block we're currently in; it's 344 // important to do this before we enter the return block or return 345 // edges will be *really* confused. 346 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 347 bool HasOnlyLifetimeMarkers = 348 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 349 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 350 if (HasCleanups) { 351 // Make sure the line table doesn't jump back into the body for 352 // the ret after it's been at EndLoc. 353 Optional<ApplyDebugLocation> AL; 354 if (CGDebugInfo *DI = getDebugInfo()) { 355 if (OnlySimpleReturnStmts) 356 DI->EmitLocation(Builder, EndLoc); 357 else 358 // We may not have a valid end location. Try to apply it anyway, and 359 // fall back to an artificial location if needed. 360 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 361 } 362 363 PopCleanupBlocks(PrologueCleanupDepth); 364 } 365 366 // Emit function epilog (to return). 367 llvm::DebugLoc Loc = EmitReturnBlock(); 368 369 if (ShouldInstrumentFunction()) { 370 if (CGM.getCodeGenOpts().InstrumentFunctions) 371 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 372 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 373 CurFn->addFnAttr("instrument-function-exit-inlined", 374 "__cyg_profile_func_exit"); 375 } 376 377 // Emit debug descriptor for function end. 378 if (CGDebugInfo *DI = getDebugInfo()) 379 DI->EmitFunctionEnd(Builder, CurFn); 380 381 // Reset the debug location to that of the simple 'return' expression, if any 382 // rather than that of the end of the function's scope '}'. 383 ApplyDebugLocation AL(*this, Loc); 384 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 385 EmitEndEHSpec(CurCodeDecl); 386 387 assert(EHStack.empty() && 388 "did not remove all scopes from cleanup stack!"); 389 390 // If someone did an indirect goto, emit the indirect goto block at the end of 391 // the function. 392 if (IndirectBranch) { 393 EmitBlock(IndirectBranch->getParent()); 394 Builder.ClearInsertionPoint(); 395 } 396 397 // If some of our locals escaped, insert a call to llvm.localescape in the 398 // entry block. 399 if (!EscapedLocals.empty()) { 400 // Invert the map from local to index into a simple vector. There should be 401 // no holes. 402 SmallVector<llvm::Value *, 4> EscapeArgs; 403 EscapeArgs.resize(EscapedLocals.size()); 404 for (auto &Pair : EscapedLocals) 405 EscapeArgs[Pair.second] = Pair.first; 406 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 407 &CGM.getModule(), llvm::Intrinsic::localescape); 408 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 409 } 410 411 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 412 llvm::Instruction *Ptr = AllocaInsertPt; 413 AllocaInsertPt = nullptr; 414 Ptr->eraseFromParent(); 415 416 // If someone took the address of a label but never did an indirect goto, we 417 // made a zero entry PHI node, which is illegal, zap it now. 418 if (IndirectBranch) { 419 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 420 if (PN->getNumIncomingValues() == 0) { 421 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 422 PN->eraseFromParent(); 423 } 424 } 425 426 EmitIfUsed(*this, EHResumeBlock); 427 EmitIfUsed(*this, TerminateLandingPad); 428 EmitIfUsed(*this, TerminateHandler); 429 EmitIfUsed(*this, UnreachableBlock); 430 431 for (const auto &FuncletAndParent : TerminateFunclets) 432 EmitIfUsed(*this, FuncletAndParent.second); 433 434 if (CGM.getCodeGenOpts().EmitDeclMetadata) 435 EmitDeclMetadata(); 436 437 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 438 I = DeferredReplacements.begin(), 439 E = DeferredReplacements.end(); 440 I != E; ++I) { 441 I->first->replaceAllUsesWith(I->second); 442 I->first->eraseFromParent(); 443 } 444 445 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 446 // PHIs if the current function is a coroutine. We don't do it for all 447 // functions as it may result in slight increase in numbers of instructions 448 // if compiled with no optimizations. We do it for coroutine as the lifetime 449 // of CleanupDestSlot alloca make correct coroutine frame building very 450 // difficult. 451 if (NormalCleanupDest.isValid() && isCoroutine()) { 452 llvm::DominatorTree DT(*CurFn); 453 llvm::PromoteMemToReg( 454 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 455 NormalCleanupDest = Address::invalid(); 456 } 457 458 // Scan function arguments for vector width. 459 for (llvm::Argument &A : CurFn->args()) 460 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 461 LargestVectorWidth = 462 std::max((uint64_t)LargestVectorWidth, 463 VT->getPrimitiveSizeInBits().getKnownMinSize()); 464 465 // Update vector width based on return type. 466 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 467 LargestVectorWidth = 468 std::max((uint64_t)LargestVectorWidth, 469 VT->getPrimitiveSizeInBits().getKnownMinSize()); 470 471 // Add the required-vector-width attribute. This contains the max width from: 472 // 1. min-vector-width attribute used in the source program. 473 // 2. Any builtins used that have a vector width specified. 474 // 3. Values passed in and out of inline assembly. 475 // 4. Width of vector arguments and return types for this function. 476 // 5. Width of vector aguments and return types for functions called by this 477 // function. 478 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 479 480 // If we generated an unreachable return block, delete it now. 481 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 482 Builder.ClearInsertionPoint(); 483 ReturnBlock.getBlock()->eraseFromParent(); 484 } 485 if (ReturnValue.isValid()) { 486 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 487 if (RetAlloca && RetAlloca->use_empty()) { 488 RetAlloca->eraseFromParent(); 489 ReturnValue = Address::invalid(); 490 } 491 } 492 } 493 494 /// ShouldInstrumentFunction - Return true if the current function should be 495 /// instrumented with __cyg_profile_func_* calls 496 bool CodeGenFunction::ShouldInstrumentFunction() { 497 if (!CGM.getCodeGenOpts().InstrumentFunctions && 498 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 499 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 500 return false; 501 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 502 return false; 503 return true; 504 } 505 506 /// ShouldXRayInstrument - Return true if the current function should be 507 /// instrumented with XRay nop sleds. 508 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 509 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 510 } 511 512 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 513 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 514 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 515 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 516 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 517 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 518 XRayInstrKind::Custom); 519 } 520 521 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 522 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 523 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 524 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 525 XRayInstrKind::Typed); 526 } 527 528 llvm::Constant * 529 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 530 llvm::Constant *Addr) { 531 // Addresses stored in prologue data can't require run-time fixups and must 532 // be PC-relative. Run-time fixups are undesirable because they necessitate 533 // writable text segments, which are unsafe. And absolute addresses are 534 // undesirable because they break PIE mode. 535 536 // Add a layer of indirection through a private global. Taking its address 537 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 538 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 539 /*isConstant=*/true, 540 llvm::GlobalValue::PrivateLinkage, Addr); 541 542 // Create a PC-relative address. 543 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 544 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 545 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 546 return (IntPtrTy == Int32Ty) 547 ? PCRelAsInt 548 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 549 } 550 551 llvm::Value * 552 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 553 llvm::Value *EncodedAddr) { 554 // Reconstruct the address of the global. 555 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 556 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 557 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 558 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 559 560 // Load the original pointer through the global. 561 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 562 "decoded_addr"); 563 } 564 565 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 566 llvm::Function *Fn) 567 { 568 if (!FD->hasAttr<OpenCLKernelAttr>()) 569 return; 570 571 llvm::LLVMContext &Context = getLLVMContext(); 572 573 CGM.GenOpenCLArgMetadata(Fn, FD, this); 574 575 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 576 QualType HintQTy = A->getTypeHint(); 577 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 578 bool IsSignedInteger = 579 HintQTy->isSignedIntegerType() || 580 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 581 llvm::Metadata *AttrMDArgs[] = { 582 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 583 CGM.getTypes().ConvertType(A->getTypeHint()))), 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 llvm::IntegerType::get(Context, 32), 586 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 587 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 588 } 589 590 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 591 llvm::Metadata *AttrMDArgs[] = { 592 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 593 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 594 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 595 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 596 } 597 598 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 599 llvm::Metadata *AttrMDArgs[] = { 600 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 601 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 602 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 603 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 604 } 605 606 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 607 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 608 llvm::Metadata *AttrMDArgs[] = { 609 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 610 Fn->setMetadata("intel_reqd_sub_group_size", 611 llvm::MDNode::get(Context, AttrMDArgs)); 612 } 613 } 614 615 /// Determine whether the function F ends with a return stmt. 616 static bool endsWithReturn(const Decl* F) { 617 const Stmt *Body = nullptr; 618 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 619 Body = FD->getBody(); 620 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 621 Body = OMD->getBody(); 622 623 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 624 auto LastStmt = CS->body_rbegin(); 625 if (LastStmt != CS->body_rend()) 626 return isa<ReturnStmt>(*LastStmt); 627 } 628 return false; 629 } 630 631 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 632 if (SanOpts.has(SanitizerKind::Thread)) { 633 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 634 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 635 } 636 } 637 638 /// Check if the return value of this function requires sanitization. 639 bool CodeGenFunction::requiresReturnValueCheck() const { 640 return requiresReturnValueNullabilityCheck() || 641 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 642 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 643 } 644 645 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 646 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 647 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 648 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 649 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 650 return false; 651 652 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 653 return false; 654 655 if (MD->getNumParams() == 2) { 656 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 657 if (!PT || !PT->isVoidPointerType() || 658 !PT->getPointeeType().isConstQualified()) 659 return false; 660 } 661 662 return true; 663 } 664 665 /// Return the UBSan prologue signature for \p FD if one is available. 666 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 667 const FunctionDecl *FD) { 668 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 669 if (!MD->isStatic()) 670 return nullptr; 671 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 672 } 673 674 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 675 llvm::Function *Fn, 676 const CGFunctionInfo &FnInfo, 677 const FunctionArgList &Args, 678 SourceLocation Loc, 679 SourceLocation StartLoc) { 680 assert(!CurFn && 681 "Do not use a CodeGenFunction object for more than one function"); 682 683 const Decl *D = GD.getDecl(); 684 685 DidCallStackSave = false; 686 CurCodeDecl = D; 687 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 688 if (FD->usesSEHTry()) 689 CurSEHParent = FD; 690 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 691 FnRetTy = RetTy; 692 CurFn = Fn; 693 CurFnInfo = &FnInfo; 694 assert(CurFn->isDeclaration() && "Function already has body?"); 695 696 // If this function has been blacklisted for any of the enabled sanitizers, 697 // disable the sanitizer for the function. 698 do { 699 #define SANITIZER(NAME, ID) \ 700 if (SanOpts.empty()) \ 701 break; \ 702 if (SanOpts.has(SanitizerKind::ID)) \ 703 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 704 SanOpts.set(SanitizerKind::ID, false); 705 706 #include "clang/Basic/Sanitizers.def" 707 #undef SANITIZER 708 } while (0); 709 710 if (D) { 711 // Apply the no_sanitize* attributes to SanOpts. 712 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 713 SanitizerMask mask = Attr->getMask(); 714 SanOpts.Mask &= ~mask; 715 if (mask & SanitizerKind::Address) 716 SanOpts.set(SanitizerKind::KernelAddress, false); 717 if (mask & SanitizerKind::KernelAddress) 718 SanOpts.set(SanitizerKind::Address, false); 719 if (mask & SanitizerKind::HWAddress) 720 SanOpts.set(SanitizerKind::KernelHWAddress, false); 721 if (mask & SanitizerKind::KernelHWAddress) 722 SanOpts.set(SanitizerKind::HWAddress, false); 723 } 724 } 725 726 // Apply sanitizer attributes to the function. 727 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 728 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 729 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 730 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 731 if (SanOpts.has(SanitizerKind::MemTag)) 732 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 733 if (SanOpts.has(SanitizerKind::Thread)) 734 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 735 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 736 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 737 if (SanOpts.has(SanitizerKind::SafeStack)) 738 Fn->addFnAttr(llvm::Attribute::SafeStack); 739 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 740 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 741 742 // Apply fuzzing attribute to the function. 743 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 744 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 745 746 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 747 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 748 if (SanOpts.has(SanitizerKind::Thread)) { 749 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 750 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 751 if (OMD->getMethodFamily() == OMF_dealloc || 752 OMD->getMethodFamily() == OMF_initialize || 753 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 754 markAsIgnoreThreadCheckingAtRuntime(Fn); 755 } 756 } 757 } 758 759 // Ignore unrelated casts in STL allocate() since the allocator must cast 760 // from void* to T* before object initialization completes. Don't match on the 761 // namespace because not all allocators are in std:: 762 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 763 if (matchesStlAllocatorFn(D, getContext())) 764 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 765 } 766 767 // Ignore null checks in coroutine functions since the coroutines passes 768 // are not aware of how to move the extra UBSan instructions across the split 769 // coroutine boundaries. 770 if (D && SanOpts.has(SanitizerKind::Null)) 771 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 772 if (FD->getBody() && 773 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 774 SanOpts.Mask &= ~SanitizerKind::Null; 775 776 // Apply xray attributes to the function (as a string, for now) 777 bool AlwaysXRayAttr = false; 778 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 779 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 780 XRayInstrKind::FunctionEntry) || 781 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 782 XRayInstrKind::FunctionExit)) { 783 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 784 Fn->addFnAttr("function-instrument", "xray-always"); 785 AlwaysXRayAttr = true; 786 } 787 if (XRayAttr->neverXRayInstrument()) 788 Fn->addFnAttr("function-instrument", "xray-never"); 789 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 790 if (ShouldXRayInstrumentFunction()) 791 Fn->addFnAttr("xray-log-args", 792 llvm::utostr(LogArgs->getArgumentCount())); 793 } 794 } else { 795 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 796 Fn->addFnAttr( 797 "xray-instruction-threshold", 798 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 799 } 800 801 if (ShouldXRayInstrumentFunction()) { 802 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 803 Fn->addFnAttr("xray-ignore-loops"); 804 805 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::FunctionExit)) 807 Fn->addFnAttr("xray-skip-exit"); 808 809 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 810 XRayInstrKind::FunctionEntry)) 811 Fn->addFnAttr("xray-skip-entry"); 812 813 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 814 if (FuncGroups > 1) { 815 auto FuncName = llvm::makeArrayRef<uint8_t>( 816 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 817 auto Group = crc32(FuncName) % FuncGroups; 818 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 819 !AlwaysXRayAttr) 820 Fn->addFnAttr("function-instrument", "xray-never"); 821 } 822 } 823 824 unsigned Count, Offset; 825 if (const auto *Attr = 826 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 827 Count = Attr->getCount(); 828 Offset = Attr->getOffset(); 829 } else { 830 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 831 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 832 } 833 if (Count && Offset <= Count) { 834 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 835 if (Offset) 836 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 837 } 838 839 // Add no-jump-tables value. 840 Fn->addFnAttr("no-jump-tables", 841 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 842 843 // Add no-inline-line-tables value. 844 if (CGM.getCodeGenOpts().NoInlineLineTables) 845 Fn->addFnAttr("no-inline-line-tables"); 846 847 // Add profile-sample-accurate value. 848 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 849 Fn->addFnAttr("profile-sample-accurate"); 850 851 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 852 Fn->addFnAttr("use-sample-profile"); 853 854 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 855 Fn->addFnAttr("cfi-canonical-jump-table"); 856 857 if (getLangOpts().OpenCL) { 858 // Add metadata for a kernel function. 859 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 860 EmitOpenCLKernelMetadata(FD, Fn); 861 } 862 863 // If we are checking function types, emit a function type signature as 864 // prologue data. 865 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 866 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 867 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 868 // Remove any (C++17) exception specifications, to allow calling e.g. a 869 // noexcept function through a non-noexcept pointer. 870 auto ProtoTy = 871 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 872 EST_None); 873 llvm::Constant *FTRTTIConst = 874 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 875 llvm::Constant *FTRTTIConstEncoded = 876 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 877 llvm::Constant *PrologueStructElems[] = {PrologueSig, 878 FTRTTIConstEncoded}; 879 llvm::Constant *PrologueStructConst = 880 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 881 Fn->setPrologueData(PrologueStructConst); 882 } 883 } 884 } 885 886 // If we're checking nullability, we need to know whether we can check the 887 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 888 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 889 auto Nullability = FnRetTy->getNullability(getContext()); 890 if (Nullability && *Nullability == NullabilityKind::NonNull) { 891 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 892 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 893 RetValNullabilityPrecondition = 894 llvm::ConstantInt::getTrue(getLLVMContext()); 895 } 896 } 897 898 // If we're in C++ mode and the function name is "main", it is guaranteed 899 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 900 // used within a program"). 901 // 902 // OpenCL C 2.0 v2.2-11 s6.9.i: 903 // Recursion is not supported. 904 // 905 // SYCL v1.2.1 s3.10: 906 // kernels cannot include RTTI information, exception classes, 907 // recursive code, virtual functions or make use of C++ libraries that 908 // are not compiled for the device. 909 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 910 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 911 getLangOpts().SYCLIsDevice || 912 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 913 Fn->addFnAttr(llvm::Attribute::NoRecurse); 914 } 915 916 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 917 Builder.setIsFPConstrained(FD->usesFPIntrin()); 918 if (FD->usesFPIntrin()) 919 Fn->addFnAttr(llvm::Attribute::StrictFP); 920 } 921 922 // If a custom alignment is used, force realigning to this alignment on 923 // any main function which certainly will need it. 924 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 925 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 926 CGM.getCodeGenOpts().StackAlignment) 927 Fn->addFnAttr("stackrealign"); 928 929 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 930 931 // Create a marker to make it easy to insert allocas into the entryblock 932 // later. Don't create this with the builder, because we don't want it 933 // folded. 934 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 935 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 936 937 ReturnBlock = getJumpDestInCurrentScope("return"); 938 939 Builder.SetInsertPoint(EntryBB); 940 941 // If we're checking the return value, allocate space for a pointer to a 942 // precise source location of the checked return statement. 943 if (requiresReturnValueCheck()) { 944 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 945 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 946 } 947 948 // Emit subprogram debug descriptor. 949 if (CGDebugInfo *DI = getDebugInfo()) { 950 // Reconstruct the type from the argument list so that implicit parameters, 951 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 952 // convention. 953 CallingConv CC = CallingConv::CC_C; 954 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 955 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 956 CC = SrcFnTy->getCallConv(); 957 SmallVector<QualType, 16> ArgTypes; 958 for (const VarDecl *VD : Args) 959 ArgTypes.push_back(VD->getType()); 960 QualType FnType = getContext().getFunctionType( 961 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 962 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 963 Builder); 964 } 965 966 if (ShouldInstrumentFunction()) { 967 if (CGM.getCodeGenOpts().InstrumentFunctions) 968 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 969 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 970 CurFn->addFnAttr("instrument-function-entry-inlined", 971 "__cyg_profile_func_enter"); 972 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 973 CurFn->addFnAttr("instrument-function-entry-inlined", 974 "__cyg_profile_func_enter_bare"); 975 } 976 977 // Since emitting the mcount call here impacts optimizations such as function 978 // inlining, we just add an attribute to insert a mcount call in backend. 979 // The attribute "counting-function" is set to mcount function name which is 980 // architecture dependent. 981 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 982 // Calls to fentry/mcount should not be generated if function has 983 // the no_instrument_function attribute. 984 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 985 if (CGM.getCodeGenOpts().CallFEntry) 986 Fn->addFnAttr("fentry-call", "true"); 987 else { 988 Fn->addFnAttr("instrument-function-entry-inlined", 989 getTarget().getMCountName()); 990 } 991 if (CGM.getCodeGenOpts().MNopMCount) { 992 if (!CGM.getCodeGenOpts().CallFEntry) 993 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 994 << "-mnop-mcount" << "-mfentry"; 995 Fn->addFnAttr("mnop-mcount"); 996 } 997 998 if (CGM.getCodeGenOpts().RecordMCount) { 999 if (!CGM.getCodeGenOpts().CallFEntry) 1000 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1001 << "-mrecord-mcount" << "-mfentry"; 1002 Fn->addFnAttr("mrecord-mcount"); 1003 } 1004 } 1005 } 1006 1007 if (CGM.getCodeGenOpts().PackedStack) { 1008 if (getContext().getTargetInfo().getTriple().getArch() != 1009 llvm::Triple::systemz) 1010 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1011 << "-mpacked-stack"; 1012 Fn->addFnAttr("packed-stack"); 1013 } 1014 1015 if (RetTy->isVoidType()) { 1016 // Void type; nothing to return. 1017 ReturnValue = Address::invalid(); 1018 1019 // Count the implicit return. 1020 if (!endsWithReturn(D)) 1021 ++NumReturnExprs; 1022 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1023 // Indirect return; emit returned value directly into sret slot. 1024 // This reduces code size, and affects correctness in C++. 1025 auto AI = CurFn->arg_begin(); 1026 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1027 ++AI; 1028 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1029 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1030 ReturnValuePointer = 1031 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1032 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1033 ReturnValue.getPointer(), Int8PtrTy), 1034 ReturnValuePointer); 1035 } 1036 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1037 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1038 // Load the sret pointer from the argument struct and return into that. 1039 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1040 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1041 --EI; 1042 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1043 ReturnValuePointer = Address(Addr, getPointerAlign()); 1044 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1045 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1046 } else { 1047 ReturnValue = CreateIRTemp(RetTy, "retval"); 1048 1049 // Tell the epilog emitter to autorelease the result. We do this 1050 // now so that various specialized functions can suppress it 1051 // during their IR-generation. 1052 if (getLangOpts().ObjCAutoRefCount && 1053 !CurFnInfo->isReturnsRetained() && 1054 RetTy->isObjCRetainableType()) 1055 AutoreleaseResult = true; 1056 } 1057 1058 EmitStartEHSpec(CurCodeDecl); 1059 1060 PrologueCleanupDepth = EHStack.stable_begin(); 1061 1062 // Emit OpenMP specific initialization of the device functions. 1063 if (getLangOpts().OpenMP && CurCodeDecl) 1064 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1065 1066 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1067 1068 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1069 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1070 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1071 if (MD->getParent()->isLambda() && 1072 MD->getOverloadedOperator() == OO_Call) { 1073 // We're in a lambda; figure out the captures. 1074 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1075 LambdaThisCaptureField); 1076 if (LambdaThisCaptureField) { 1077 // If the lambda captures the object referred to by '*this' - either by 1078 // value or by reference, make sure CXXThisValue points to the correct 1079 // object. 1080 1081 // Get the lvalue for the field (which is a copy of the enclosing object 1082 // or contains the address of the enclosing object). 1083 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1084 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1085 // If the enclosing object was captured by value, just use its address. 1086 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1087 } else { 1088 // Load the lvalue pointed to by the field, since '*this' was captured 1089 // by reference. 1090 CXXThisValue = 1091 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1092 } 1093 } 1094 for (auto *FD : MD->getParent()->fields()) { 1095 if (FD->hasCapturedVLAType()) { 1096 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1097 SourceLocation()).getScalarVal(); 1098 auto VAT = FD->getCapturedVLAType(); 1099 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1100 } 1101 } 1102 } else { 1103 // Not in a lambda; just use 'this' from the method. 1104 // FIXME: Should we generate a new load for each use of 'this'? The 1105 // fast register allocator would be happier... 1106 CXXThisValue = CXXABIThisValue; 1107 } 1108 1109 // Check the 'this' pointer once per function, if it's available. 1110 if (CXXABIThisValue) { 1111 SanitizerSet SkippedChecks; 1112 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1113 QualType ThisTy = MD->getThisType(); 1114 1115 // If this is the call operator of a lambda with no capture-default, it 1116 // may have a static invoker function, which may call this operator with 1117 // a null 'this' pointer. 1118 if (isLambdaCallOperator(MD) && 1119 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1120 SkippedChecks.set(SanitizerKind::Null, true); 1121 1122 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1123 : TCK_MemberCall, 1124 Loc, CXXABIThisValue, ThisTy, 1125 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1126 SkippedChecks); 1127 } 1128 } 1129 1130 // If any of the arguments have a variably modified type, make sure to 1131 // emit the type size. 1132 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1133 i != e; ++i) { 1134 const VarDecl *VD = *i; 1135 1136 // Dig out the type as written from ParmVarDecls; it's unclear whether 1137 // the standard (C99 6.9.1p10) requires this, but we're following the 1138 // precedent set by gcc. 1139 QualType Ty; 1140 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1141 Ty = PVD->getOriginalType(); 1142 else 1143 Ty = VD->getType(); 1144 1145 if (Ty->isVariablyModifiedType()) 1146 EmitVariablyModifiedType(Ty); 1147 } 1148 // Emit a location at the end of the prologue. 1149 if (CGDebugInfo *DI = getDebugInfo()) 1150 DI->EmitLocation(Builder, StartLoc); 1151 1152 // TODO: Do we need to handle this in two places like we do with 1153 // target-features/target-cpu? 1154 if (CurFuncDecl) 1155 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1156 LargestVectorWidth = VecWidth->getVectorWidth(); 1157 } 1158 1159 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1160 incrementProfileCounter(Body); 1161 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1162 EmitCompoundStmtWithoutScope(*S); 1163 else 1164 EmitStmt(Body); 1165 } 1166 1167 /// When instrumenting to collect profile data, the counts for some blocks 1168 /// such as switch cases need to not include the fall-through counts, so 1169 /// emit a branch around the instrumentation code. When not instrumenting, 1170 /// this just calls EmitBlock(). 1171 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1172 const Stmt *S) { 1173 llvm::BasicBlock *SkipCountBB = nullptr; 1174 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1175 // When instrumenting for profiling, the fallthrough to certain 1176 // statements needs to skip over the instrumentation code so that we 1177 // get an accurate count. 1178 SkipCountBB = createBasicBlock("skipcount"); 1179 EmitBranch(SkipCountBB); 1180 } 1181 EmitBlock(BB); 1182 uint64_t CurrentCount = getCurrentProfileCount(); 1183 incrementProfileCounter(S); 1184 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1185 if (SkipCountBB) 1186 EmitBlock(SkipCountBB); 1187 } 1188 1189 /// Tries to mark the given function nounwind based on the 1190 /// non-existence of any throwing calls within it. We believe this is 1191 /// lightweight enough to do at -O0. 1192 static void TryMarkNoThrow(llvm::Function *F) { 1193 // LLVM treats 'nounwind' on a function as part of the type, so we 1194 // can't do this on functions that can be overwritten. 1195 if (F->isInterposable()) return; 1196 1197 for (llvm::BasicBlock &BB : *F) 1198 for (llvm::Instruction &I : BB) 1199 if (I.mayThrow()) 1200 return; 1201 1202 F->setDoesNotThrow(); 1203 } 1204 1205 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1206 FunctionArgList &Args) { 1207 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1208 QualType ResTy = FD->getReturnType(); 1209 1210 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1211 if (MD && MD->isInstance()) { 1212 if (CGM.getCXXABI().HasThisReturn(GD)) 1213 ResTy = MD->getThisType(); 1214 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1215 ResTy = CGM.getContext().VoidPtrTy; 1216 CGM.getCXXABI().buildThisParam(*this, Args); 1217 } 1218 1219 // The base version of an inheriting constructor whose constructed base is a 1220 // virtual base is not passed any arguments (because it doesn't actually call 1221 // the inherited constructor). 1222 bool PassedParams = true; 1223 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1224 if (auto Inherited = CD->getInheritedConstructor()) 1225 PassedParams = 1226 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1227 1228 if (PassedParams) { 1229 for (auto *Param : FD->parameters()) { 1230 Args.push_back(Param); 1231 if (!Param->hasAttr<PassObjectSizeAttr>()) 1232 continue; 1233 1234 auto *Implicit = ImplicitParamDecl::Create( 1235 getContext(), Param->getDeclContext(), Param->getLocation(), 1236 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1237 SizeArguments[Param] = Implicit; 1238 Args.push_back(Implicit); 1239 } 1240 } 1241 1242 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1243 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1244 1245 return ResTy; 1246 } 1247 1248 static bool 1249 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1250 const ASTContext &Context) { 1251 QualType T = FD->getReturnType(); 1252 // Avoid the optimization for functions that return a record type with a 1253 // trivial destructor or another trivially copyable type. 1254 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1255 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1256 return !ClassDecl->hasTrivialDestructor(); 1257 } 1258 return !T.isTriviallyCopyableType(Context); 1259 } 1260 1261 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1262 const CGFunctionInfo &FnInfo) { 1263 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1264 CurGD = GD; 1265 1266 FunctionArgList Args; 1267 QualType ResTy = BuildFunctionArgList(GD, Args); 1268 1269 // Check if we should generate debug info for this function. 1270 if (FD->hasAttr<NoDebugAttr>()) 1271 DebugInfo = nullptr; // disable debug info indefinitely for this function 1272 1273 // The function might not have a body if we're generating thunks for a 1274 // function declaration. 1275 SourceRange BodyRange; 1276 if (Stmt *Body = FD->getBody()) 1277 BodyRange = Body->getSourceRange(); 1278 else 1279 BodyRange = FD->getLocation(); 1280 CurEHLocation = BodyRange.getEnd(); 1281 1282 // Use the location of the start of the function to determine where 1283 // the function definition is located. By default use the location 1284 // of the declaration as the location for the subprogram. A function 1285 // may lack a declaration in the source code if it is created by code 1286 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1287 SourceLocation Loc = FD->getLocation(); 1288 1289 // If this is a function specialization then use the pattern body 1290 // as the location for the function. 1291 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1292 if (SpecDecl->hasBody(SpecDecl)) 1293 Loc = SpecDecl->getLocation(); 1294 1295 Stmt *Body = FD->getBody(); 1296 1297 // Initialize helper which will detect jumps which can cause invalid lifetime 1298 // markers. 1299 if (Body && ShouldEmitLifetimeMarkers) 1300 Bypasses.Init(Body); 1301 1302 // Emit the standard function prologue. 1303 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1304 1305 // Generate the body of the function. 1306 PGO.assignRegionCounters(GD, CurFn); 1307 if (isa<CXXDestructorDecl>(FD)) 1308 EmitDestructorBody(Args); 1309 else if (isa<CXXConstructorDecl>(FD)) 1310 EmitConstructorBody(Args); 1311 else if (getLangOpts().CUDA && 1312 !getLangOpts().CUDAIsDevice && 1313 FD->hasAttr<CUDAGlobalAttr>()) 1314 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1315 else if (isa<CXXMethodDecl>(FD) && 1316 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1317 // The lambda static invoker function is special, because it forwards or 1318 // clones the body of the function call operator (but is actually static). 1319 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1320 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1321 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1322 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1323 // Implicit copy-assignment gets the same special treatment as implicit 1324 // copy-constructors. 1325 emitImplicitAssignmentOperatorBody(Args); 1326 } else if (Body) { 1327 EmitFunctionBody(Body); 1328 } else 1329 llvm_unreachable("no definition for emitted function"); 1330 1331 // C++11 [stmt.return]p2: 1332 // Flowing off the end of a function [...] results in undefined behavior in 1333 // a value-returning function. 1334 // C11 6.9.1p12: 1335 // If the '}' that terminates a function is reached, and the value of the 1336 // function call is used by the caller, the behavior is undefined. 1337 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1338 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1339 bool ShouldEmitUnreachable = 1340 CGM.getCodeGenOpts().StrictReturn || 1341 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1342 if (SanOpts.has(SanitizerKind::Return)) { 1343 SanitizerScope SanScope(this); 1344 llvm::Value *IsFalse = Builder.getFalse(); 1345 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1346 SanitizerHandler::MissingReturn, 1347 EmitCheckSourceLocation(FD->getLocation()), None); 1348 } else if (ShouldEmitUnreachable) { 1349 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1350 EmitTrapCall(llvm::Intrinsic::trap); 1351 } 1352 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1353 Builder.CreateUnreachable(); 1354 Builder.ClearInsertionPoint(); 1355 } 1356 } 1357 1358 // Emit the standard function epilogue. 1359 FinishFunction(BodyRange.getEnd()); 1360 1361 // If we haven't marked the function nothrow through other means, do 1362 // a quick pass now to see if we can. 1363 if (!CurFn->doesNotThrow()) 1364 TryMarkNoThrow(CurFn); 1365 } 1366 1367 /// ContainsLabel - Return true if the statement contains a label in it. If 1368 /// this statement is not executed normally, it not containing a label means 1369 /// that we can just remove the code. 1370 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1371 // Null statement, not a label! 1372 if (!S) return false; 1373 1374 // If this is a label, we have to emit the code, consider something like: 1375 // if (0) { ... foo: bar(); } goto foo; 1376 // 1377 // TODO: If anyone cared, we could track __label__'s, since we know that you 1378 // can't jump to one from outside their declared region. 1379 if (isa<LabelStmt>(S)) 1380 return true; 1381 1382 // If this is a case/default statement, and we haven't seen a switch, we have 1383 // to emit the code. 1384 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1385 return true; 1386 1387 // If this is a switch statement, we want to ignore cases below it. 1388 if (isa<SwitchStmt>(S)) 1389 IgnoreCaseStmts = true; 1390 1391 // Scan subexpressions for verboten labels. 1392 for (const Stmt *SubStmt : S->children()) 1393 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1394 return true; 1395 1396 return false; 1397 } 1398 1399 /// containsBreak - Return true if the statement contains a break out of it. 1400 /// If the statement (recursively) contains a switch or loop with a break 1401 /// inside of it, this is fine. 1402 bool CodeGenFunction::containsBreak(const Stmt *S) { 1403 // Null statement, not a label! 1404 if (!S) return false; 1405 1406 // If this is a switch or loop that defines its own break scope, then we can 1407 // include it and anything inside of it. 1408 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1409 isa<ForStmt>(S)) 1410 return false; 1411 1412 if (isa<BreakStmt>(S)) 1413 return true; 1414 1415 // Scan subexpressions for verboten breaks. 1416 for (const Stmt *SubStmt : S->children()) 1417 if (containsBreak(SubStmt)) 1418 return true; 1419 1420 return false; 1421 } 1422 1423 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1424 if (!S) return false; 1425 1426 // Some statement kinds add a scope and thus never add a decl to the current 1427 // scope. Note, this list is longer than the list of statements that might 1428 // have an unscoped decl nested within them, but this way is conservatively 1429 // correct even if more statement kinds are added. 1430 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1431 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1432 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1433 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1434 return false; 1435 1436 if (isa<DeclStmt>(S)) 1437 return true; 1438 1439 for (const Stmt *SubStmt : S->children()) 1440 if (mightAddDeclToScope(SubStmt)) 1441 return true; 1442 1443 return false; 1444 } 1445 1446 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1447 /// to a constant, or if it does but contains a label, return false. If it 1448 /// constant folds return true and set the boolean result in Result. 1449 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1450 bool &ResultBool, 1451 bool AllowLabels) { 1452 llvm::APSInt ResultInt; 1453 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1454 return false; 1455 1456 ResultBool = ResultInt.getBoolValue(); 1457 return true; 1458 } 1459 1460 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1461 /// to a constant, or if it does but contains a label, return false. If it 1462 /// constant folds return true and set the folded value. 1463 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1464 llvm::APSInt &ResultInt, 1465 bool AllowLabels) { 1466 // FIXME: Rename and handle conversion of other evaluatable things 1467 // to bool. 1468 Expr::EvalResult Result; 1469 if (!Cond->EvaluateAsInt(Result, getContext())) 1470 return false; // Not foldable, not integer or not fully evaluatable. 1471 1472 llvm::APSInt Int = Result.Val.getInt(); 1473 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1474 return false; // Contains a label. 1475 1476 ResultInt = Int; 1477 return true; 1478 } 1479 1480 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1481 /// statement) to the specified blocks. Based on the condition, this might try 1482 /// to simplify the codegen of the conditional based on the branch. 1483 /// \param Weights The weights determined by the likelihood attributes. 1484 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1485 llvm::BasicBlock *TrueBlock, 1486 llvm::BasicBlock *FalseBlock, 1487 uint64_t TrueCount, 1488 llvm::MDNode *Weights) { 1489 Cond = Cond->IgnoreParens(); 1490 1491 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1492 1493 // Handle X && Y in a condition. 1494 if (CondBOp->getOpcode() == BO_LAnd) { 1495 // If we have "1 && X", simplify the code. "0 && X" would have constant 1496 // folded if the case was simple enough. 1497 bool ConstantBool = false; 1498 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1499 ConstantBool) { 1500 // br(1 && X) -> br(X). 1501 incrementProfileCounter(CondBOp); 1502 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1503 TrueCount, Weights); 1504 } 1505 1506 // If we have "X && 1", simplify the code to use an uncond branch. 1507 // "X && 0" would have been constant folded to 0. 1508 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1509 ConstantBool) { 1510 // br(X && 1) -> br(X). 1511 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1512 TrueCount, Weights); 1513 } 1514 1515 // Emit the LHS as a conditional. If the LHS conditional is false, we 1516 // want to jump to the FalseBlock. 1517 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1518 // The counter tells us how often we evaluate RHS, and all of TrueCount 1519 // can be propagated to that branch. 1520 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1521 1522 ConditionalEvaluation eval(*this); 1523 { 1524 ApplyDebugLocation DL(*this, Cond); 1525 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1526 Weights); 1527 EmitBlock(LHSTrue); 1528 } 1529 1530 incrementProfileCounter(CondBOp); 1531 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1532 1533 // Any temporaries created here are conditional. 1534 eval.begin(*this); 1535 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount, 1536 Weights); 1537 eval.end(*this); 1538 1539 return; 1540 } 1541 1542 if (CondBOp->getOpcode() == BO_LOr) { 1543 // If we have "0 || X", simplify the code. "1 || X" would have constant 1544 // folded if the case was simple enough. 1545 bool ConstantBool = false; 1546 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1547 !ConstantBool) { 1548 // br(0 || X) -> br(X). 1549 incrementProfileCounter(CondBOp); 1550 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1551 TrueCount, Weights); 1552 } 1553 1554 // If we have "X || 0", simplify the code to use an uncond branch. 1555 // "X || 1" would have been constant folded to 1. 1556 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1557 !ConstantBool) { 1558 // br(X || 0) -> br(X). 1559 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1560 TrueCount, Weights); 1561 } 1562 1563 // Emit the LHS as a conditional. If the LHS conditional is true, we 1564 // want to jump to the TrueBlock. 1565 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1566 // We have the count for entry to the RHS and for the whole expression 1567 // being true, so we can divy up True count between the short circuit and 1568 // the RHS. 1569 uint64_t LHSCount = 1570 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1571 uint64_t RHSCount = TrueCount - LHSCount; 1572 1573 ConditionalEvaluation eval(*this); 1574 { 1575 ApplyDebugLocation DL(*this, Cond); 1576 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1577 Weights); 1578 EmitBlock(LHSFalse); 1579 } 1580 1581 incrementProfileCounter(CondBOp); 1582 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1583 1584 // Any temporaries created here are conditional. 1585 eval.begin(*this); 1586 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount, 1587 Weights); 1588 1589 eval.end(*this); 1590 1591 return; 1592 } 1593 } 1594 1595 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1596 // br(!x, t, f) -> br(x, f, t) 1597 if (CondUOp->getOpcode() == UO_LNot) { 1598 // Negate the count. 1599 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1600 // Negate the condition and swap the destination blocks. 1601 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1602 FalseCount, Weights); 1603 } 1604 } 1605 1606 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1607 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1608 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1609 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1610 1611 ConditionalEvaluation cond(*this); 1612 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1613 getProfileCount(CondOp), Weights); 1614 1615 // When computing PGO branch weights, we only know the overall count for 1616 // the true block. This code is essentially doing tail duplication of the 1617 // naive code-gen, introducing new edges for which counts are not 1618 // available. Divide the counts proportionally between the LHS and RHS of 1619 // the conditional operator. 1620 uint64_t LHSScaledTrueCount = 0; 1621 if (TrueCount) { 1622 double LHSRatio = 1623 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1624 LHSScaledTrueCount = TrueCount * LHSRatio; 1625 } 1626 1627 cond.begin(*this); 1628 EmitBlock(LHSBlock); 1629 incrementProfileCounter(CondOp); 1630 { 1631 ApplyDebugLocation DL(*this, Cond); 1632 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1633 LHSScaledTrueCount, Weights); 1634 } 1635 cond.end(*this); 1636 1637 cond.begin(*this); 1638 EmitBlock(RHSBlock); 1639 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1640 TrueCount - LHSScaledTrueCount, Weights); 1641 cond.end(*this); 1642 1643 return; 1644 } 1645 1646 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1647 // Conditional operator handling can give us a throw expression as a 1648 // condition for a case like: 1649 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1650 // Fold this to: 1651 // br(c, throw x, br(y, t, f)) 1652 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1653 return; 1654 } 1655 1656 // If the branch has a condition wrapped by __builtin_unpredictable, 1657 // create metadata that specifies that the branch is unpredictable. 1658 // Don't bother if not optimizing because that metadata would not be used. 1659 llvm::MDNode *Unpredictable = nullptr; 1660 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1661 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1662 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1663 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1664 llvm::MDBuilder MDHelper(getLLVMContext()); 1665 Unpredictable = MDHelper.createUnpredictable(); 1666 } 1667 } 1668 1669 // Create branch weights based on the number of times we get here and the 1670 // number of times the condition should be true. 1671 if (!Weights) { 1672 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1673 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1674 } 1675 1676 // Emit the code with the fully general case. 1677 llvm::Value *CondV; 1678 { 1679 ApplyDebugLocation DL(*this, Cond); 1680 CondV = EvaluateExprAsBool(Cond); 1681 } 1682 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1683 } 1684 1685 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1686 /// specified stmt yet. 1687 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1688 CGM.ErrorUnsupported(S, Type); 1689 } 1690 1691 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1692 /// variable-length array whose elements have a non-zero bit-pattern. 1693 /// 1694 /// \param baseType the inner-most element type of the array 1695 /// \param src - a char* pointing to the bit-pattern for a single 1696 /// base element of the array 1697 /// \param sizeInChars - the total size of the VLA, in chars 1698 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1699 Address dest, Address src, 1700 llvm::Value *sizeInChars) { 1701 CGBuilderTy &Builder = CGF.Builder; 1702 1703 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1704 llvm::Value *baseSizeInChars 1705 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1706 1707 Address begin = 1708 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1709 llvm::Value *end = 1710 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1711 1712 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1713 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1714 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1715 1716 // Make a loop over the VLA. C99 guarantees that the VLA element 1717 // count must be nonzero. 1718 CGF.EmitBlock(loopBB); 1719 1720 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1721 cur->addIncoming(begin.getPointer(), originBB); 1722 1723 CharUnits curAlign = 1724 dest.getAlignment().alignmentOfArrayElement(baseSize); 1725 1726 // memcpy the individual element bit-pattern. 1727 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1728 /*volatile*/ false); 1729 1730 // Go to the next element. 1731 llvm::Value *next = 1732 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1733 1734 // Leave if that's the end of the VLA. 1735 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1736 Builder.CreateCondBr(done, contBB, loopBB); 1737 cur->addIncoming(next, loopBB); 1738 1739 CGF.EmitBlock(contBB); 1740 } 1741 1742 void 1743 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1744 // Ignore empty classes in C++. 1745 if (getLangOpts().CPlusPlus) { 1746 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1747 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1748 return; 1749 } 1750 } 1751 1752 // Cast the dest ptr to the appropriate i8 pointer type. 1753 if (DestPtr.getElementType() != Int8Ty) 1754 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1755 1756 // Get size and alignment info for this aggregate. 1757 CharUnits size = getContext().getTypeSizeInChars(Ty); 1758 1759 llvm::Value *SizeVal; 1760 const VariableArrayType *vla; 1761 1762 // Don't bother emitting a zero-byte memset. 1763 if (size.isZero()) { 1764 // But note that getTypeInfo returns 0 for a VLA. 1765 if (const VariableArrayType *vlaType = 1766 dyn_cast_or_null<VariableArrayType>( 1767 getContext().getAsArrayType(Ty))) { 1768 auto VlaSize = getVLASize(vlaType); 1769 SizeVal = VlaSize.NumElts; 1770 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1771 if (!eltSize.isOne()) 1772 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1773 vla = vlaType; 1774 } else { 1775 return; 1776 } 1777 } else { 1778 SizeVal = CGM.getSize(size); 1779 vla = nullptr; 1780 } 1781 1782 // If the type contains a pointer to data member we can't memset it to zero. 1783 // Instead, create a null constant and copy it to the destination. 1784 // TODO: there are other patterns besides zero that we can usefully memset, 1785 // like -1, which happens to be the pattern used by member-pointers. 1786 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1787 // For a VLA, emit a single element, then splat that over the VLA. 1788 if (vla) Ty = getContext().getBaseElementType(vla); 1789 1790 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1791 1792 llvm::GlobalVariable *NullVariable = 1793 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1794 /*isConstant=*/true, 1795 llvm::GlobalVariable::PrivateLinkage, 1796 NullConstant, Twine()); 1797 CharUnits NullAlign = DestPtr.getAlignment(); 1798 NullVariable->setAlignment(NullAlign.getAsAlign()); 1799 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1800 NullAlign); 1801 1802 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1803 1804 // Get and call the appropriate llvm.memcpy overload. 1805 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1806 return; 1807 } 1808 1809 // Otherwise, just memset the whole thing to zero. This is legal 1810 // because in LLVM, all default initializers (other than the ones we just 1811 // handled above) are guaranteed to have a bit pattern of all zeros. 1812 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1813 } 1814 1815 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1816 // Make sure that there is a block for the indirect goto. 1817 if (!IndirectBranch) 1818 GetIndirectGotoBlock(); 1819 1820 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1821 1822 // Make sure the indirect branch includes all of the address-taken blocks. 1823 IndirectBranch->addDestination(BB); 1824 return llvm::BlockAddress::get(CurFn, BB); 1825 } 1826 1827 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1828 // If we already made the indirect branch for indirect goto, return its block. 1829 if (IndirectBranch) return IndirectBranch->getParent(); 1830 1831 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1832 1833 // Create the PHI node that indirect gotos will add entries to. 1834 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1835 "indirect.goto.dest"); 1836 1837 // Create the indirect branch instruction. 1838 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1839 return IndirectBranch->getParent(); 1840 } 1841 1842 /// Computes the length of an array in elements, as well as the base 1843 /// element type and a properly-typed first element pointer. 1844 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1845 QualType &baseType, 1846 Address &addr) { 1847 const ArrayType *arrayType = origArrayType; 1848 1849 // If it's a VLA, we have to load the stored size. Note that 1850 // this is the size of the VLA in bytes, not its size in elements. 1851 llvm::Value *numVLAElements = nullptr; 1852 if (isa<VariableArrayType>(arrayType)) { 1853 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1854 1855 // Walk into all VLAs. This doesn't require changes to addr, 1856 // which has type T* where T is the first non-VLA element type. 1857 do { 1858 QualType elementType = arrayType->getElementType(); 1859 arrayType = getContext().getAsArrayType(elementType); 1860 1861 // If we only have VLA components, 'addr' requires no adjustment. 1862 if (!arrayType) { 1863 baseType = elementType; 1864 return numVLAElements; 1865 } 1866 } while (isa<VariableArrayType>(arrayType)); 1867 1868 // We get out here only if we find a constant array type 1869 // inside the VLA. 1870 } 1871 1872 // We have some number of constant-length arrays, so addr should 1873 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1874 // down to the first element of addr. 1875 SmallVector<llvm::Value*, 8> gepIndices; 1876 1877 // GEP down to the array type. 1878 llvm::ConstantInt *zero = Builder.getInt32(0); 1879 gepIndices.push_back(zero); 1880 1881 uint64_t countFromCLAs = 1; 1882 QualType eltType; 1883 1884 llvm::ArrayType *llvmArrayType = 1885 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1886 while (llvmArrayType) { 1887 assert(isa<ConstantArrayType>(arrayType)); 1888 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1889 == llvmArrayType->getNumElements()); 1890 1891 gepIndices.push_back(zero); 1892 countFromCLAs *= llvmArrayType->getNumElements(); 1893 eltType = arrayType->getElementType(); 1894 1895 llvmArrayType = 1896 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1897 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1898 assert((!llvmArrayType || arrayType) && 1899 "LLVM and Clang types are out-of-synch"); 1900 } 1901 1902 if (arrayType) { 1903 // From this point onwards, the Clang array type has been emitted 1904 // as some other type (probably a packed struct). Compute the array 1905 // size, and just emit the 'begin' expression as a bitcast. 1906 while (arrayType) { 1907 countFromCLAs *= 1908 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1909 eltType = arrayType->getElementType(); 1910 arrayType = getContext().getAsArrayType(eltType); 1911 } 1912 1913 llvm::Type *baseType = ConvertType(eltType); 1914 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1915 } else { 1916 // Create the actual GEP. 1917 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1918 gepIndices, "array.begin"), 1919 addr.getAlignment()); 1920 } 1921 1922 baseType = eltType; 1923 1924 llvm::Value *numElements 1925 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1926 1927 // If we had any VLA dimensions, factor them in. 1928 if (numVLAElements) 1929 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1930 1931 return numElements; 1932 } 1933 1934 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1935 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1936 assert(vla && "type was not a variable array type!"); 1937 return getVLASize(vla); 1938 } 1939 1940 CodeGenFunction::VlaSizePair 1941 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1942 // The number of elements so far; always size_t. 1943 llvm::Value *numElements = nullptr; 1944 1945 QualType elementType; 1946 do { 1947 elementType = type->getElementType(); 1948 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1949 assert(vlaSize && "no size for VLA!"); 1950 assert(vlaSize->getType() == SizeTy); 1951 1952 if (!numElements) { 1953 numElements = vlaSize; 1954 } else { 1955 // It's undefined behavior if this wraps around, so mark it that way. 1956 // FIXME: Teach -fsanitize=undefined to trap this. 1957 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1958 } 1959 } while ((type = getContext().getAsVariableArrayType(elementType))); 1960 1961 return { numElements, elementType }; 1962 } 1963 1964 CodeGenFunction::VlaSizePair 1965 CodeGenFunction::getVLAElements1D(QualType type) { 1966 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1967 assert(vla && "type was not a variable array type!"); 1968 return getVLAElements1D(vla); 1969 } 1970 1971 CodeGenFunction::VlaSizePair 1972 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1973 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1974 assert(VlaSize && "no size for VLA!"); 1975 assert(VlaSize->getType() == SizeTy); 1976 return { VlaSize, Vla->getElementType() }; 1977 } 1978 1979 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1980 assert(type->isVariablyModifiedType() && 1981 "Must pass variably modified type to EmitVLASizes!"); 1982 1983 EnsureInsertPoint(); 1984 1985 // We're going to walk down into the type and look for VLA 1986 // expressions. 1987 do { 1988 assert(type->isVariablyModifiedType()); 1989 1990 const Type *ty = type.getTypePtr(); 1991 switch (ty->getTypeClass()) { 1992 1993 #define TYPE(Class, Base) 1994 #define ABSTRACT_TYPE(Class, Base) 1995 #define NON_CANONICAL_TYPE(Class, Base) 1996 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1997 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1998 #include "clang/AST/TypeNodes.inc" 1999 llvm_unreachable("unexpected dependent type!"); 2000 2001 // These types are never variably-modified. 2002 case Type::Builtin: 2003 case Type::Complex: 2004 case Type::Vector: 2005 case Type::ExtVector: 2006 case Type::ConstantMatrix: 2007 case Type::Record: 2008 case Type::Enum: 2009 case Type::Elaborated: 2010 case Type::TemplateSpecialization: 2011 case Type::ObjCTypeParam: 2012 case Type::ObjCObject: 2013 case Type::ObjCInterface: 2014 case Type::ObjCObjectPointer: 2015 case Type::ExtInt: 2016 llvm_unreachable("type class is never variably-modified!"); 2017 2018 case Type::Adjusted: 2019 type = cast<AdjustedType>(ty)->getAdjustedType(); 2020 break; 2021 2022 case Type::Decayed: 2023 type = cast<DecayedType>(ty)->getPointeeType(); 2024 break; 2025 2026 case Type::Pointer: 2027 type = cast<PointerType>(ty)->getPointeeType(); 2028 break; 2029 2030 case Type::BlockPointer: 2031 type = cast<BlockPointerType>(ty)->getPointeeType(); 2032 break; 2033 2034 case Type::LValueReference: 2035 case Type::RValueReference: 2036 type = cast<ReferenceType>(ty)->getPointeeType(); 2037 break; 2038 2039 case Type::MemberPointer: 2040 type = cast<MemberPointerType>(ty)->getPointeeType(); 2041 break; 2042 2043 case Type::ConstantArray: 2044 case Type::IncompleteArray: 2045 // Losing element qualification here is fine. 2046 type = cast<ArrayType>(ty)->getElementType(); 2047 break; 2048 2049 case Type::VariableArray: { 2050 // Losing element qualification here is fine. 2051 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2052 2053 // Unknown size indication requires no size computation. 2054 // Otherwise, evaluate and record it. 2055 if (const Expr *size = vat->getSizeExpr()) { 2056 // It's possible that we might have emitted this already, 2057 // e.g. with a typedef and a pointer to it. 2058 llvm::Value *&entry = VLASizeMap[size]; 2059 if (!entry) { 2060 llvm::Value *Size = EmitScalarExpr(size); 2061 2062 // C11 6.7.6.2p5: 2063 // If the size is an expression that is not an integer constant 2064 // expression [...] each time it is evaluated it shall have a value 2065 // greater than zero. 2066 if (SanOpts.has(SanitizerKind::VLABound) && 2067 size->getType()->isSignedIntegerType()) { 2068 SanitizerScope SanScope(this); 2069 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2070 llvm::Constant *StaticArgs[] = { 2071 EmitCheckSourceLocation(size->getBeginLoc()), 2072 EmitCheckTypeDescriptor(size->getType())}; 2073 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2074 SanitizerKind::VLABound), 2075 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2076 } 2077 2078 // Always zexting here would be wrong if it weren't 2079 // undefined behavior to have a negative bound. 2080 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2081 } 2082 } 2083 type = vat->getElementType(); 2084 break; 2085 } 2086 2087 case Type::FunctionProto: 2088 case Type::FunctionNoProto: 2089 type = cast<FunctionType>(ty)->getReturnType(); 2090 break; 2091 2092 case Type::Paren: 2093 case Type::TypeOf: 2094 case Type::UnaryTransform: 2095 case Type::Attributed: 2096 case Type::SubstTemplateTypeParm: 2097 case Type::MacroQualified: 2098 // Keep walking after single level desugaring. 2099 type = type.getSingleStepDesugaredType(getContext()); 2100 break; 2101 2102 case Type::Typedef: 2103 case Type::Decltype: 2104 case Type::Auto: 2105 case Type::DeducedTemplateSpecialization: 2106 // Stop walking: nothing to do. 2107 return; 2108 2109 case Type::TypeOfExpr: 2110 // Stop walking: emit typeof expression. 2111 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2112 return; 2113 2114 case Type::Atomic: 2115 type = cast<AtomicType>(ty)->getValueType(); 2116 break; 2117 2118 case Type::Pipe: 2119 type = cast<PipeType>(ty)->getElementType(); 2120 break; 2121 } 2122 } while (type->isVariablyModifiedType()); 2123 } 2124 2125 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2126 if (getContext().getBuiltinVaListType()->isArrayType()) 2127 return EmitPointerWithAlignment(E); 2128 return EmitLValue(E).getAddress(*this); 2129 } 2130 2131 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2132 return EmitLValue(E).getAddress(*this); 2133 } 2134 2135 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2136 const APValue &Init) { 2137 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2138 if (CGDebugInfo *Dbg = getDebugInfo()) 2139 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2140 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2141 } 2142 2143 CodeGenFunction::PeepholeProtection 2144 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2145 // At the moment, the only aggressive peephole we do in IR gen 2146 // is trunc(zext) folding, but if we add more, we can easily 2147 // extend this protection. 2148 2149 if (!rvalue.isScalar()) return PeepholeProtection(); 2150 llvm::Value *value = rvalue.getScalarVal(); 2151 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2152 2153 // Just make an extra bitcast. 2154 assert(HaveInsertPoint()); 2155 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2156 Builder.GetInsertBlock()); 2157 2158 PeepholeProtection protection; 2159 protection.Inst = inst; 2160 return protection; 2161 } 2162 2163 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2164 if (!protection.Inst) return; 2165 2166 // In theory, we could try to duplicate the peepholes now, but whatever. 2167 protection.Inst->eraseFromParent(); 2168 } 2169 2170 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2171 QualType Ty, SourceLocation Loc, 2172 SourceLocation AssumptionLoc, 2173 llvm::Value *Alignment, 2174 llvm::Value *OffsetValue) { 2175 if (Alignment->getType() != IntPtrTy) 2176 Alignment = 2177 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2178 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2179 OffsetValue = 2180 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2181 llvm::Value *TheCheck = nullptr; 2182 if (SanOpts.has(SanitizerKind::Alignment)) { 2183 llvm::Value *PtrIntValue = 2184 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2185 2186 if (OffsetValue) { 2187 bool IsOffsetZero = false; 2188 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2189 IsOffsetZero = CI->isZero(); 2190 2191 if (!IsOffsetZero) 2192 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2193 } 2194 2195 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2196 llvm::Value *Mask = 2197 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2198 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2199 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2200 } 2201 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2202 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2203 2204 if (!SanOpts.has(SanitizerKind::Alignment)) 2205 return; 2206 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2207 OffsetValue, TheCheck, Assumption); 2208 } 2209 2210 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2211 const Expr *E, 2212 SourceLocation AssumptionLoc, 2213 llvm::Value *Alignment, 2214 llvm::Value *OffsetValue) { 2215 if (auto *CE = dyn_cast<CastExpr>(E)) 2216 E = CE->getSubExprAsWritten(); 2217 QualType Ty = E->getType(); 2218 SourceLocation Loc = E->getExprLoc(); 2219 2220 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2221 OffsetValue); 2222 } 2223 2224 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2225 llvm::Value *AnnotatedVal, 2226 StringRef AnnotationStr, 2227 SourceLocation Location) { 2228 llvm::Value *Args[4] = { 2229 AnnotatedVal, 2230 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2231 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2232 CGM.EmitAnnotationLineNo(Location) 2233 }; 2234 return Builder.CreateCall(AnnotationFn, Args); 2235 } 2236 2237 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2238 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2239 // FIXME We create a new bitcast for every annotation because that's what 2240 // llvm-gcc was doing. 2241 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2242 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2243 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2244 I->getAnnotation(), D->getLocation()); 2245 } 2246 2247 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2248 Address Addr) { 2249 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2250 llvm::Value *V = Addr.getPointer(); 2251 llvm::Type *VTy = V->getType(); 2252 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2253 CGM.Int8PtrTy); 2254 2255 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2256 // FIXME Always emit the cast inst so we can differentiate between 2257 // annotation on the first field of a struct and annotation on the struct 2258 // itself. 2259 if (VTy != CGM.Int8PtrTy) 2260 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2261 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2262 V = Builder.CreateBitCast(V, VTy); 2263 } 2264 2265 return Address(V, Addr.getAlignment()); 2266 } 2267 2268 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2269 2270 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2271 : CGF(CGF) { 2272 assert(!CGF->IsSanitizerScope); 2273 CGF->IsSanitizerScope = true; 2274 } 2275 2276 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2277 CGF->IsSanitizerScope = false; 2278 } 2279 2280 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2281 const llvm::Twine &Name, 2282 llvm::BasicBlock *BB, 2283 llvm::BasicBlock::iterator InsertPt) const { 2284 LoopStack.InsertHelper(I); 2285 if (IsSanitizerScope) 2286 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2287 } 2288 2289 void CGBuilderInserter::InsertHelper( 2290 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2291 llvm::BasicBlock::iterator InsertPt) const { 2292 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2293 if (CGF) 2294 CGF->InsertHelper(I, Name, BB, InsertPt); 2295 } 2296 2297 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2298 CodeGenModule &CGM, const FunctionDecl *FD, 2299 std::string &FirstMissing) { 2300 // If there aren't any required features listed then go ahead and return. 2301 if (ReqFeatures.empty()) 2302 return false; 2303 2304 // Now build up the set of caller features and verify that all the required 2305 // features are there. 2306 llvm::StringMap<bool> CallerFeatureMap; 2307 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2308 2309 // If we have at least one of the features in the feature list return 2310 // true, otherwise return false. 2311 return std::all_of( 2312 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2313 SmallVector<StringRef, 1> OrFeatures; 2314 Feature.split(OrFeatures, '|'); 2315 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2316 if (!CallerFeatureMap.lookup(Feature)) { 2317 FirstMissing = Feature.str(); 2318 return false; 2319 } 2320 return true; 2321 }); 2322 }); 2323 } 2324 2325 // Emits an error if we don't have a valid set of target features for the 2326 // called function. 2327 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2328 const FunctionDecl *TargetDecl) { 2329 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2330 } 2331 2332 // Emits an error if we don't have a valid set of target features for the 2333 // called function. 2334 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2335 const FunctionDecl *TargetDecl) { 2336 // Early exit if this is an indirect call. 2337 if (!TargetDecl) 2338 return; 2339 2340 // Get the current enclosing function if it exists. If it doesn't 2341 // we can't check the target features anyhow. 2342 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2343 if (!FD) 2344 return; 2345 2346 // Grab the required features for the call. For a builtin this is listed in 2347 // the td file with the default cpu, for an always_inline function this is any 2348 // listed cpu and any listed features. 2349 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2350 std::string MissingFeature; 2351 if (BuiltinID) { 2352 SmallVector<StringRef, 1> ReqFeatures; 2353 const char *FeatureList = 2354 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2355 // Return if the builtin doesn't have any required features. 2356 if (!FeatureList || StringRef(FeatureList) == "") 2357 return; 2358 StringRef(FeatureList).split(ReqFeatures, ','); 2359 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2360 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2361 << TargetDecl->getDeclName() 2362 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2363 2364 } else if (!TargetDecl->isMultiVersion() && 2365 TargetDecl->hasAttr<TargetAttr>()) { 2366 // Get the required features for the callee. 2367 2368 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2369 ParsedTargetAttr ParsedAttr = 2370 CGM.getContext().filterFunctionTargetAttrs(TD); 2371 2372 SmallVector<StringRef, 1> ReqFeatures; 2373 llvm::StringMap<bool> CalleeFeatureMap; 2374 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2375 2376 for (const auto &F : ParsedAttr.Features) { 2377 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2378 ReqFeatures.push_back(StringRef(F).substr(1)); 2379 } 2380 2381 for (const auto &F : CalleeFeatureMap) { 2382 // Only positive features are "required". 2383 if (F.getValue()) 2384 ReqFeatures.push_back(F.getKey()); 2385 } 2386 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2387 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2388 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2389 } 2390 } 2391 2392 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2393 if (!CGM.getCodeGenOpts().SanitizeStats) 2394 return; 2395 2396 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2397 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2398 CGM.getSanStats().create(IRB, SSK); 2399 } 2400 2401 llvm::Value * 2402 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2403 llvm::Value *Condition = nullptr; 2404 2405 if (!RO.Conditions.Architecture.empty()) 2406 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2407 2408 if (!RO.Conditions.Features.empty()) { 2409 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2410 Condition = 2411 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2412 } 2413 return Condition; 2414 } 2415 2416 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2417 llvm::Function *Resolver, 2418 CGBuilderTy &Builder, 2419 llvm::Function *FuncToReturn, 2420 bool SupportsIFunc) { 2421 if (SupportsIFunc) { 2422 Builder.CreateRet(FuncToReturn); 2423 return; 2424 } 2425 2426 llvm::SmallVector<llvm::Value *, 10> Args; 2427 llvm::for_each(Resolver->args(), 2428 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2429 2430 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2431 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2432 2433 if (Resolver->getReturnType()->isVoidTy()) 2434 Builder.CreateRetVoid(); 2435 else 2436 Builder.CreateRet(Result); 2437 } 2438 2439 void CodeGenFunction::EmitMultiVersionResolver( 2440 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2441 assert(getContext().getTargetInfo().getTriple().isX86() && 2442 "Only implemented for x86 targets"); 2443 2444 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2445 2446 // Main function's basic block. 2447 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2448 Builder.SetInsertPoint(CurBlock); 2449 EmitX86CpuInit(); 2450 2451 for (const MultiVersionResolverOption &RO : Options) { 2452 Builder.SetInsertPoint(CurBlock); 2453 llvm::Value *Condition = FormResolverCondition(RO); 2454 2455 // The 'default' or 'generic' case. 2456 if (!Condition) { 2457 assert(&RO == Options.end() - 1 && 2458 "Default or Generic case must be last"); 2459 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2460 SupportsIFunc); 2461 return; 2462 } 2463 2464 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2465 CGBuilderTy RetBuilder(*this, RetBlock); 2466 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2467 SupportsIFunc); 2468 CurBlock = createBasicBlock("resolver_else", Resolver); 2469 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2470 } 2471 2472 // If no generic/default, emit an unreachable. 2473 Builder.SetInsertPoint(CurBlock); 2474 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2475 TrapCall->setDoesNotReturn(); 2476 TrapCall->setDoesNotThrow(); 2477 Builder.CreateUnreachable(); 2478 Builder.ClearInsertionPoint(); 2479 } 2480 2481 // Loc - where the diagnostic will point, where in the source code this 2482 // alignment has failed. 2483 // SecondaryLoc - if present (will be present if sufficiently different from 2484 // Loc), the diagnostic will additionally point a "Note:" to this location. 2485 // It should be the location where the __attribute__((assume_aligned)) 2486 // was written e.g. 2487 void CodeGenFunction::emitAlignmentAssumptionCheck( 2488 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2489 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2490 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2491 llvm::Instruction *Assumption) { 2492 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2493 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2494 llvm::Intrinsic::getDeclaration( 2495 Builder.GetInsertBlock()->getParent()->getParent(), 2496 llvm::Intrinsic::assume) && 2497 "Assumption should be a call to llvm.assume()."); 2498 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2499 "Assumption should be the last instruction of the basic block, " 2500 "since the basic block is still being generated."); 2501 2502 if (!SanOpts.has(SanitizerKind::Alignment)) 2503 return; 2504 2505 // Don't check pointers to volatile data. The behavior here is implementation- 2506 // defined. 2507 if (Ty->getPointeeType().isVolatileQualified()) 2508 return; 2509 2510 // We need to temorairly remove the assumption so we can insert the 2511 // sanitizer check before it, else the check will be dropped by optimizations. 2512 Assumption->removeFromParent(); 2513 2514 { 2515 SanitizerScope SanScope(this); 2516 2517 if (!OffsetValue) 2518 OffsetValue = Builder.getInt1(0); // no offset. 2519 2520 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2521 EmitCheckSourceLocation(SecondaryLoc), 2522 EmitCheckTypeDescriptor(Ty)}; 2523 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2524 EmitCheckValue(Alignment), 2525 EmitCheckValue(OffsetValue)}; 2526 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2527 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2528 } 2529 2530 // We are now in the (new, empty) "cont" basic block. 2531 // Reintroduce the assumption. 2532 Builder.Insert(Assumption); 2533 // FIXME: Assumption still has it's original basic block as it's Parent. 2534 } 2535 2536 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2537 if (CGDebugInfo *DI = getDebugInfo()) 2538 return DI->SourceLocToDebugLoc(Location); 2539 2540 return llvm::DebugLoc(); 2541 } 2542