1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Sanitizers may use markers. 52 if (CGOpts.SanitizeAddressUseAfterScope || 53 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 54 LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 66 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 67 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 68 if (!suppressNewContext) 69 CGM.getCXXABI().getMangleContext().startNewFunction(); 70 71 llvm::FastMathFlags FMF; 72 if (CGM.getLangOpts().FastMath) 73 FMF.setFast(); 74 if (CGM.getLangOpts().FiniteMathOnly) { 75 FMF.setNoNaNs(); 76 FMF.setNoInfs(); 77 } 78 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 79 FMF.setNoNaNs(); 80 } 81 if (CGM.getCodeGenOpts().NoSignedZeros) { 82 FMF.setNoSignedZeros(); 83 } 84 if (CGM.getCodeGenOpts().ReciprocalMath) { 85 FMF.setAllowReciprocal(); 86 } 87 if (CGM.getCodeGenOpts().Reassociate) { 88 FMF.setAllowReassoc(); 89 } 90 Builder.setFastMathFlags(FMF); 91 SetFPModel(); 92 } 93 94 CodeGenFunction::~CodeGenFunction() { 95 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 96 97 // If there are any unclaimed block infos, go ahead and destroy them 98 // now. This can happen if IR-gen gets clever and skips evaluating 99 // something. 100 if (FirstBlockInfo) 101 destroyBlockInfos(FirstBlockInfo); 102 103 if (getLangOpts().OpenMP && CurFn) 104 CGM.getOpenMPRuntime().functionFinished(*this); 105 } 106 107 // Map the LangOption for rounding mode into 108 // the corresponding enum in the IR. 109 static llvm::ConstrainedFPIntrinsic::RoundingMode ToConstrainedRoundingMD( 110 LangOptions::FPRoundingModeKind Kind) { 111 112 switch (Kind) { 113 case LangOptions::FPR_ToNearest: 114 return llvm::ConstrainedFPIntrinsic::rmToNearest; 115 case LangOptions::FPR_Downward: 116 return llvm::ConstrainedFPIntrinsic::rmDownward; 117 case LangOptions::FPR_Upward: 118 return llvm::ConstrainedFPIntrinsic::rmUpward; 119 case LangOptions::FPR_TowardZero: 120 return llvm::ConstrainedFPIntrinsic::rmTowardZero; 121 case LangOptions::FPR_Dynamic: 122 return llvm::ConstrainedFPIntrinsic::rmDynamic; 123 } 124 llvm_unreachable("Unsupported FP RoundingMode"); 125 } 126 127 // Map the LangOption for exception behavior into 128 // the corresponding enum in the IR. 129 static llvm::ConstrainedFPIntrinsic::ExceptionBehavior ToConstrainedExceptMD( 130 LangOptions::FPExceptionModeKind Kind) { 131 132 switch (Kind) { 133 case LangOptions::FPE_Ignore: 134 return llvm::ConstrainedFPIntrinsic::ebIgnore; 135 case LangOptions::FPE_MayTrap: 136 return llvm::ConstrainedFPIntrinsic::ebMayTrap; 137 case LangOptions::FPE_Strict: 138 return llvm::ConstrainedFPIntrinsic::ebStrict; 139 } 140 llvm_unreachable("Unsupported FP Exception Behavior"); 141 } 142 143 void CodeGenFunction::SetFPModel() { 144 auto fpRoundingMode = ToConstrainedRoundingMD( 145 getLangOpts().getFPRoundingMode()); 146 auto fpExceptionBehavior = ToConstrainedExceptMD( 147 getLangOpts().getFPExceptionMode()); 148 149 if (fpExceptionBehavior == llvm::ConstrainedFPIntrinsic::ebIgnore && 150 fpRoundingMode == llvm::ConstrainedFPIntrinsic::rmToNearest) 151 // Constrained intrinsics are not used. 152 ; 153 else { 154 Builder.setIsFPConstrained(true); 155 Builder.setDefaultConstrainedRounding(fpRoundingMode); 156 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 157 } 158 } 159 160 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 161 LValueBaseInfo *BaseInfo, 162 TBAAAccessInfo *TBAAInfo) { 163 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 164 /* forPointeeType= */ true); 165 } 166 167 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 168 LValueBaseInfo *BaseInfo, 169 TBAAAccessInfo *TBAAInfo, 170 bool forPointeeType) { 171 if (TBAAInfo) 172 *TBAAInfo = CGM.getTBAAAccessInfo(T); 173 174 // Honor alignment typedef attributes even on incomplete types. 175 // We also honor them straight for C++ class types, even as pointees; 176 // there's an expressivity gap here. 177 if (auto TT = T->getAs<TypedefType>()) { 178 if (auto Align = TT->getDecl()->getMaxAlignment()) { 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 181 return getContext().toCharUnitsFromBits(Align); 182 } 183 } 184 185 if (BaseInfo) 186 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 187 188 CharUnits Alignment; 189 if (T->isIncompleteType()) { 190 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 191 } else { 192 // For C++ class pointees, we don't know whether we're pointing at a 193 // base or a complete object, so we generally need to use the 194 // non-virtual alignment. 195 const CXXRecordDecl *RD; 196 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 197 Alignment = CGM.getClassPointerAlignment(RD); 198 } else { 199 Alignment = getContext().getTypeAlignInChars(T); 200 if (T.getQualifiers().hasUnaligned()) 201 Alignment = CharUnits::One(); 202 } 203 204 // Cap to the global maximum type alignment unless the alignment 205 // was somehow explicit on the type. 206 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 207 if (Alignment.getQuantity() > MaxAlign && 208 !getContext().isAlignmentRequired(T)) 209 Alignment = CharUnits::fromQuantity(MaxAlign); 210 } 211 } 212 return Alignment; 213 } 214 215 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 216 LValueBaseInfo BaseInfo; 217 TBAAAccessInfo TBAAInfo; 218 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 219 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 220 TBAAInfo); 221 } 222 223 /// Given a value of type T* that may not be to a complete object, 224 /// construct an l-value with the natural pointee alignment of T. 225 LValue 226 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 227 LValueBaseInfo BaseInfo; 228 TBAAAccessInfo TBAAInfo; 229 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 230 /* forPointeeType= */ true); 231 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 232 } 233 234 235 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 236 return CGM.getTypes().ConvertTypeForMem(T); 237 } 238 239 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 240 return CGM.getTypes().ConvertType(T); 241 } 242 243 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 244 type = type.getCanonicalType(); 245 while (true) { 246 switch (type->getTypeClass()) { 247 #define TYPE(name, parent) 248 #define ABSTRACT_TYPE(name, parent) 249 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 250 #define DEPENDENT_TYPE(name, parent) case Type::name: 251 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 252 #include "clang/AST/TypeNodes.inc" 253 llvm_unreachable("non-canonical or dependent type in IR-generation"); 254 255 case Type::Auto: 256 case Type::DeducedTemplateSpecialization: 257 llvm_unreachable("undeduced type in IR-generation"); 258 259 // Various scalar types. 260 case Type::Builtin: 261 case Type::Pointer: 262 case Type::BlockPointer: 263 case Type::LValueReference: 264 case Type::RValueReference: 265 case Type::MemberPointer: 266 case Type::Vector: 267 case Type::ExtVector: 268 case Type::FunctionProto: 269 case Type::FunctionNoProto: 270 case Type::Enum: 271 case Type::ObjCObjectPointer: 272 case Type::Pipe: 273 return TEK_Scalar; 274 275 // Complexes. 276 case Type::Complex: 277 return TEK_Complex; 278 279 // Arrays, records, and Objective-C objects. 280 case Type::ConstantArray: 281 case Type::IncompleteArray: 282 case Type::VariableArray: 283 case Type::Record: 284 case Type::ObjCObject: 285 case Type::ObjCInterface: 286 return TEK_Aggregate; 287 288 // We operate on atomic values according to their underlying type. 289 case Type::Atomic: 290 type = cast<AtomicType>(type)->getValueType(); 291 continue; 292 } 293 llvm_unreachable("unknown type kind!"); 294 } 295 } 296 297 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 298 // For cleanliness, we try to avoid emitting the return block for 299 // simple cases. 300 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 301 302 if (CurBB) { 303 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 304 305 // We have a valid insert point, reuse it if it is empty or there are no 306 // explicit jumps to the return block. 307 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 308 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 309 delete ReturnBlock.getBlock(); 310 ReturnBlock = JumpDest(); 311 } else 312 EmitBlock(ReturnBlock.getBlock()); 313 return llvm::DebugLoc(); 314 } 315 316 // Otherwise, if the return block is the target of a single direct 317 // branch then we can just put the code in that block instead. This 318 // cleans up functions which started with a unified return block. 319 if (ReturnBlock.getBlock()->hasOneUse()) { 320 llvm::BranchInst *BI = 321 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 322 if (BI && BI->isUnconditional() && 323 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 324 // Record/return the DebugLoc of the simple 'return' expression to be used 325 // later by the actual 'ret' instruction. 326 llvm::DebugLoc Loc = BI->getDebugLoc(); 327 Builder.SetInsertPoint(BI->getParent()); 328 BI->eraseFromParent(); 329 delete ReturnBlock.getBlock(); 330 ReturnBlock = JumpDest(); 331 return Loc; 332 } 333 } 334 335 // FIXME: We are at an unreachable point, there is no reason to emit the block 336 // unless it has uses. However, we still need a place to put the debug 337 // region.end for now. 338 339 EmitBlock(ReturnBlock.getBlock()); 340 return llvm::DebugLoc(); 341 } 342 343 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 344 if (!BB) return; 345 if (!BB->use_empty()) 346 return CGF.CurFn->getBasicBlockList().push_back(BB); 347 delete BB; 348 } 349 350 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 351 assert(BreakContinueStack.empty() && 352 "mismatched push/pop in break/continue stack!"); 353 354 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 355 && NumSimpleReturnExprs == NumReturnExprs 356 && ReturnBlock.getBlock()->use_empty(); 357 // Usually the return expression is evaluated before the cleanup 358 // code. If the function contains only a simple return statement, 359 // such as a constant, the location before the cleanup code becomes 360 // the last useful breakpoint in the function, because the simple 361 // return expression will be evaluated after the cleanup code. To be 362 // safe, set the debug location for cleanup code to the location of 363 // the return statement. Otherwise the cleanup code should be at the 364 // end of the function's lexical scope. 365 // 366 // If there are multiple branches to the return block, the branch 367 // instructions will get the location of the return statements and 368 // all will be fine. 369 if (CGDebugInfo *DI = getDebugInfo()) { 370 if (OnlySimpleReturnStmts) 371 DI->EmitLocation(Builder, LastStopPoint); 372 else 373 DI->EmitLocation(Builder, EndLoc); 374 } 375 376 // Pop any cleanups that might have been associated with the 377 // parameters. Do this in whatever block we're currently in; it's 378 // important to do this before we enter the return block or return 379 // edges will be *really* confused. 380 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 381 bool HasOnlyLifetimeMarkers = 382 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 383 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 384 if (HasCleanups) { 385 // Make sure the line table doesn't jump back into the body for 386 // the ret after it's been at EndLoc. 387 if (CGDebugInfo *DI = getDebugInfo()) 388 if (OnlySimpleReturnStmts) 389 DI->EmitLocation(Builder, EndLoc); 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 665 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 666 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 667 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 668 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 669 return false; 670 671 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 672 return false; 673 674 if (MD->getNumParams() == 2) { 675 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 676 if (!PT || !PT->isVoidPointerType() || 677 !PT->getPointeeType().isConstQualified()) 678 return false; 679 } 680 681 return true; 682 } 683 684 /// Return the UBSan prologue signature for \p FD if one is available. 685 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 686 const FunctionDecl *FD) { 687 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 688 if (!MD->isStatic()) 689 return nullptr; 690 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 691 } 692 693 void CodeGenFunction::StartFunction(GlobalDecl GD, 694 QualType RetTy, 695 llvm::Function *Fn, 696 const CGFunctionInfo &FnInfo, 697 const FunctionArgList &Args, 698 SourceLocation Loc, 699 SourceLocation StartLoc) { 700 assert(!CurFn && 701 "Do not use a CodeGenFunction object for more than one function"); 702 703 const Decl *D = GD.getDecl(); 704 705 DidCallStackSave = false; 706 CurCodeDecl = D; 707 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 708 if (FD->usesSEHTry()) 709 CurSEHParent = FD; 710 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 711 FnRetTy = RetTy; 712 CurFn = Fn; 713 CurFnInfo = &FnInfo; 714 assert(CurFn->isDeclaration() && "Function already has body?"); 715 716 // If this function has been blacklisted for any of the enabled sanitizers, 717 // disable the sanitizer for the function. 718 do { 719 #define SANITIZER(NAME, ID) \ 720 if (SanOpts.empty()) \ 721 break; \ 722 if (SanOpts.has(SanitizerKind::ID)) \ 723 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 724 SanOpts.set(SanitizerKind::ID, false); 725 726 #include "clang/Basic/Sanitizers.def" 727 #undef SANITIZER 728 } while (0); 729 730 if (D) { 731 // Apply the no_sanitize* attributes to SanOpts. 732 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 733 SanitizerMask mask = Attr->getMask(); 734 SanOpts.Mask &= ~mask; 735 if (mask & SanitizerKind::Address) 736 SanOpts.set(SanitizerKind::KernelAddress, false); 737 if (mask & SanitizerKind::KernelAddress) 738 SanOpts.set(SanitizerKind::Address, false); 739 if (mask & SanitizerKind::HWAddress) 740 SanOpts.set(SanitizerKind::KernelHWAddress, false); 741 if (mask & SanitizerKind::KernelHWAddress) 742 SanOpts.set(SanitizerKind::HWAddress, false); 743 } 744 } 745 746 // Apply sanitizer attributes to the function. 747 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 748 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 749 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 750 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 751 if (SanOpts.has(SanitizerKind::MemTag)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 753 if (SanOpts.has(SanitizerKind::Thread)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 755 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 757 if (SanOpts.has(SanitizerKind::SafeStack)) 758 Fn->addFnAttr(llvm::Attribute::SafeStack); 759 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 760 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 761 762 // Apply fuzzing attribute to the function. 763 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 764 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 765 766 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 767 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 768 if (SanOpts.has(SanitizerKind::Thread)) { 769 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 770 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 771 if (OMD->getMethodFamily() == OMF_dealloc || 772 OMD->getMethodFamily() == OMF_initialize || 773 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 774 markAsIgnoreThreadCheckingAtRuntime(Fn); 775 } 776 } 777 } 778 779 // Ignore unrelated casts in STL allocate() since the allocator must cast 780 // from void* to T* before object initialization completes. Don't match on the 781 // namespace because not all allocators are in std:: 782 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 783 if (matchesStlAllocatorFn(D, getContext())) 784 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 785 } 786 787 // Ignore null checks in coroutine functions since the coroutines passes 788 // are not aware of how to move the extra UBSan instructions across the split 789 // coroutine boundaries. 790 if (D && SanOpts.has(SanitizerKind::Null)) 791 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 792 if (FD->getBody() && 793 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 794 SanOpts.Mask &= ~SanitizerKind::Null; 795 796 // Apply xray attributes to the function (as a string, for now) 797 if (D) { 798 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 799 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 800 XRayInstrKind::Function)) { 801 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 802 Fn->addFnAttr("function-instrument", "xray-always"); 803 if (XRayAttr->neverXRayInstrument()) 804 Fn->addFnAttr("function-instrument", "xray-never"); 805 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 806 if (ShouldXRayInstrumentFunction()) 807 Fn->addFnAttr("xray-log-args", 808 llvm::utostr(LogArgs->getArgumentCount())); 809 } 810 } else { 811 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 812 Fn->addFnAttr( 813 "xray-instruction-threshold", 814 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 815 } 816 } 817 818 // Add no-jump-tables value. 819 Fn->addFnAttr("no-jump-tables", 820 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 821 822 // Add no-inline-line-tables value. 823 if (CGM.getCodeGenOpts().NoInlineLineTables) 824 Fn->addFnAttr("no-inline-line-tables"); 825 826 // Add profile-sample-accurate value. 827 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 828 Fn->addFnAttr("profile-sample-accurate"); 829 830 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 831 Fn->addFnAttr("cfi-canonical-jump-table"); 832 833 if (getLangOpts().OpenCL) { 834 // Add metadata for a kernel function. 835 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 836 EmitOpenCLKernelMetadata(FD, Fn); 837 } 838 839 // If we are checking function types, emit a function type signature as 840 // prologue data. 841 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 842 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 843 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 844 // Remove any (C++17) exception specifications, to allow calling e.g. a 845 // noexcept function through a non-noexcept pointer. 846 auto ProtoTy = 847 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 848 EST_None); 849 llvm::Constant *FTRTTIConst = 850 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 851 llvm::Constant *FTRTTIConstEncoded = 852 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 853 llvm::Constant *PrologueStructElems[] = {PrologueSig, 854 FTRTTIConstEncoded}; 855 llvm::Constant *PrologueStructConst = 856 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 857 Fn->setPrologueData(PrologueStructConst); 858 } 859 } 860 } 861 862 // If we're checking nullability, we need to know whether we can check the 863 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 864 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 865 auto Nullability = FnRetTy->getNullability(getContext()); 866 if (Nullability && *Nullability == NullabilityKind::NonNull) { 867 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 868 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 869 RetValNullabilityPrecondition = 870 llvm::ConstantInt::getTrue(getLLVMContext()); 871 } 872 } 873 874 // If we're in C++ mode and the function name is "main", it is guaranteed 875 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 876 // used within a program"). 877 if (getLangOpts().CPlusPlus) 878 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 879 if (FD->isMain()) 880 Fn->addFnAttr(llvm::Attribute::NoRecurse); 881 882 // If a custom alignment is used, force realigning to this alignment on 883 // any main function which certainly will need it. 884 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 885 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 886 CGM.getCodeGenOpts().StackAlignment) 887 Fn->addFnAttr("stackrealign"); 888 889 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 890 891 // Create a marker to make it easy to insert allocas into the entryblock 892 // later. Don't create this with the builder, because we don't want it 893 // folded. 894 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 895 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 896 897 ReturnBlock = getJumpDestInCurrentScope("return"); 898 899 Builder.SetInsertPoint(EntryBB); 900 901 // If we're checking the return value, allocate space for a pointer to a 902 // precise source location of the checked return statement. 903 if (requiresReturnValueCheck()) { 904 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 905 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 906 } 907 908 // Emit subprogram debug descriptor. 909 if (CGDebugInfo *DI = getDebugInfo()) { 910 // Reconstruct the type from the argument list so that implicit parameters, 911 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 912 // convention. 913 CallingConv CC = CallingConv::CC_C; 914 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 915 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 916 CC = SrcFnTy->getCallConv(); 917 SmallVector<QualType, 16> ArgTypes; 918 for (const VarDecl *VD : Args) 919 ArgTypes.push_back(VD->getType()); 920 QualType FnType = getContext().getFunctionType( 921 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 922 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 923 Builder); 924 } 925 926 if (ShouldInstrumentFunction()) { 927 if (CGM.getCodeGenOpts().InstrumentFunctions) 928 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 929 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 930 CurFn->addFnAttr("instrument-function-entry-inlined", 931 "__cyg_profile_func_enter"); 932 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 933 CurFn->addFnAttr("instrument-function-entry-inlined", 934 "__cyg_profile_func_enter_bare"); 935 } 936 937 // Since emitting the mcount call here impacts optimizations such as function 938 // inlining, we just add an attribute to insert a mcount call in backend. 939 // The attribute "counting-function" is set to mcount function name which is 940 // architecture dependent. 941 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 942 // Calls to fentry/mcount should not be generated if function has 943 // the no_instrument_function attribute. 944 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 945 if (CGM.getCodeGenOpts().CallFEntry) 946 Fn->addFnAttr("fentry-call", "true"); 947 else { 948 Fn->addFnAttr("instrument-function-entry-inlined", 949 getTarget().getMCountName()); 950 } 951 if (CGM.getCodeGenOpts().MNopMCount) { 952 if (getContext().getTargetInfo().getTriple().getArch() != 953 llvm::Triple::systemz) 954 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 955 << "-mnop-mcount"; 956 if (!CGM.getCodeGenOpts().CallFEntry) 957 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 958 << "-mnop-mcount" << "-mfentry"; 959 Fn->addFnAttr("mnop-mcount", "true"); 960 } 961 } 962 } 963 964 if (RetTy->isVoidType()) { 965 // Void type; nothing to return. 966 ReturnValue = Address::invalid(); 967 968 // Count the implicit return. 969 if (!endsWithReturn(D)) 970 ++NumReturnExprs; 971 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 972 // Indirect return; emit returned value directly into sret slot. 973 // This reduces code size, and affects correctness in C++. 974 auto AI = CurFn->arg_begin(); 975 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 976 ++AI; 977 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 978 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 979 ReturnValuePointer = 980 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 981 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 982 ReturnValue.getPointer(), Int8PtrTy), 983 ReturnValuePointer); 984 } 985 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 986 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 987 // Load the sret pointer from the argument struct and return into that. 988 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 989 llvm::Function::arg_iterator EI = CurFn->arg_end(); 990 --EI; 991 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 992 ReturnValuePointer = Address(Addr, getPointerAlign()); 993 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 994 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 995 } else { 996 ReturnValue = CreateIRTemp(RetTy, "retval"); 997 998 // Tell the epilog emitter to autorelease the result. We do this 999 // now so that various specialized functions can suppress it 1000 // during their IR-generation. 1001 if (getLangOpts().ObjCAutoRefCount && 1002 !CurFnInfo->isReturnsRetained() && 1003 RetTy->isObjCRetainableType()) 1004 AutoreleaseResult = true; 1005 } 1006 1007 EmitStartEHSpec(CurCodeDecl); 1008 1009 PrologueCleanupDepth = EHStack.stable_begin(); 1010 1011 // Emit OpenMP specific initialization of the device functions. 1012 if (getLangOpts().OpenMP && CurCodeDecl) 1013 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1014 1015 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1016 1017 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1018 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1019 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1020 if (MD->getParent()->isLambda() && 1021 MD->getOverloadedOperator() == OO_Call) { 1022 // We're in a lambda; figure out the captures. 1023 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1024 LambdaThisCaptureField); 1025 if (LambdaThisCaptureField) { 1026 // If the lambda captures the object referred to by '*this' - either by 1027 // value or by reference, make sure CXXThisValue points to the correct 1028 // object. 1029 1030 // Get the lvalue for the field (which is a copy of the enclosing object 1031 // or contains the address of the enclosing object). 1032 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1033 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1034 // If the enclosing object was captured by value, just use its address. 1035 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1036 } else { 1037 // Load the lvalue pointed to by the field, since '*this' was captured 1038 // by reference. 1039 CXXThisValue = 1040 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1041 } 1042 } 1043 for (auto *FD : MD->getParent()->fields()) { 1044 if (FD->hasCapturedVLAType()) { 1045 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1046 SourceLocation()).getScalarVal(); 1047 auto VAT = FD->getCapturedVLAType(); 1048 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1049 } 1050 } 1051 } else { 1052 // Not in a lambda; just use 'this' from the method. 1053 // FIXME: Should we generate a new load for each use of 'this'? The 1054 // fast register allocator would be happier... 1055 CXXThisValue = CXXABIThisValue; 1056 } 1057 1058 // Check the 'this' pointer once per function, if it's available. 1059 if (CXXABIThisValue) { 1060 SanitizerSet SkippedChecks; 1061 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1062 QualType ThisTy = MD->getThisType(); 1063 1064 // If this is the call operator of a lambda with no capture-default, it 1065 // may have a static invoker function, which may call this operator with 1066 // a null 'this' pointer. 1067 if (isLambdaCallOperator(MD) && 1068 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1069 SkippedChecks.set(SanitizerKind::Null, true); 1070 1071 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1072 : TCK_MemberCall, 1073 Loc, CXXABIThisValue, ThisTy, 1074 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1075 SkippedChecks); 1076 } 1077 } 1078 1079 // If any of the arguments have a variably modified type, make sure to 1080 // emit the type size. 1081 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1082 i != e; ++i) { 1083 const VarDecl *VD = *i; 1084 1085 // Dig out the type as written from ParmVarDecls; it's unclear whether 1086 // the standard (C99 6.9.1p10) requires this, but we're following the 1087 // precedent set by gcc. 1088 QualType Ty; 1089 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1090 Ty = PVD->getOriginalType(); 1091 else 1092 Ty = VD->getType(); 1093 1094 if (Ty->isVariablyModifiedType()) 1095 EmitVariablyModifiedType(Ty); 1096 } 1097 // Emit a location at the end of the prologue. 1098 if (CGDebugInfo *DI = getDebugInfo()) 1099 DI->EmitLocation(Builder, StartLoc); 1100 1101 // TODO: Do we need to handle this in two places like we do with 1102 // target-features/target-cpu? 1103 if (CurFuncDecl) 1104 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1105 LargestVectorWidth = VecWidth->getVectorWidth(); 1106 } 1107 1108 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1109 incrementProfileCounter(Body); 1110 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1111 EmitCompoundStmtWithoutScope(*S); 1112 else 1113 EmitStmt(Body); 1114 } 1115 1116 /// When instrumenting to collect profile data, the counts for some blocks 1117 /// such as switch cases need to not include the fall-through counts, so 1118 /// emit a branch around the instrumentation code. When not instrumenting, 1119 /// this just calls EmitBlock(). 1120 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1121 const Stmt *S) { 1122 llvm::BasicBlock *SkipCountBB = nullptr; 1123 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1124 // When instrumenting for profiling, the fallthrough to certain 1125 // statements needs to skip over the instrumentation code so that we 1126 // get an accurate count. 1127 SkipCountBB = createBasicBlock("skipcount"); 1128 EmitBranch(SkipCountBB); 1129 } 1130 EmitBlock(BB); 1131 uint64_t CurrentCount = getCurrentProfileCount(); 1132 incrementProfileCounter(S); 1133 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1134 if (SkipCountBB) 1135 EmitBlock(SkipCountBB); 1136 } 1137 1138 /// Tries to mark the given function nounwind based on the 1139 /// non-existence of any throwing calls within it. We believe this is 1140 /// lightweight enough to do at -O0. 1141 static void TryMarkNoThrow(llvm::Function *F) { 1142 // LLVM treats 'nounwind' on a function as part of the type, so we 1143 // can't do this on functions that can be overwritten. 1144 if (F->isInterposable()) return; 1145 1146 for (llvm::BasicBlock &BB : *F) 1147 for (llvm::Instruction &I : BB) 1148 if (I.mayThrow()) 1149 return; 1150 1151 F->setDoesNotThrow(); 1152 } 1153 1154 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1155 FunctionArgList &Args) { 1156 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1157 QualType ResTy = FD->getReturnType(); 1158 1159 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1160 if (MD && MD->isInstance()) { 1161 if (CGM.getCXXABI().HasThisReturn(GD)) 1162 ResTy = MD->getThisType(); 1163 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1164 ResTy = CGM.getContext().VoidPtrTy; 1165 CGM.getCXXABI().buildThisParam(*this, Args); 1166 } 1167 1168 // The base version of an inheriting constructor whose constructed base is a 1169 // virtual base is not passed any arguments (because it doesn't actually call 1170 // the inherited constructor). 1171 bool PassedParams = true; 1172 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1173 if (auto Inherited = CD->getInheritedConstructor()) 1174 PassedParams = 1175 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1176 1177 if (PassedParams) { 1178 for (auto *Param : FD->parameters()) { 1179 Args.push_back(Param); 1180 if (!Param->hasAttr<PassObjectSizeAttr>()) 1181 continue; 1182 1183 auto *Implicit = ImplicitParamDecl::Create( 1184 getContext(), Param->getDeclContext(), Param->getLocation(), 1185 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1186 SizeArguments[Param] = Implicit; 1187 Args.push_back(Implicit); 1188 } 1189 } 1190 1191 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1192 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1193 1194 return ResTy; 1195 } 1196 1197 static bool 1198 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1199 const ASTContext &Context) { 1200 QualType T = FD->getReturnType(); 1201 // Avoid the optimization for functions that return a record type with a 1202 // trivial destructor or another trivially copyable type. 1203 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1204 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1205 return !ClassDecl->hasTrivialDestructor(); 1206 } 1207 return !T.isTriviallyCopyableType(Context); 1208 } 1209 1210 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1211 const CGFunctionInfo &FnInfo) { 1212 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1213 CurGD = GD; 1214 1215 FunctionArgList Args; 1216 QualType ResTy = BuildFunctionArgList(GD, Args); 1217 1218 // Check if we should generate debug info for this function. 1219 if (FD->hasAttr<NoDebugAttr>()) 1220 DebugInfo = nullptr; // disable debug info indefinitely for this function 1221 1222 // The function might not have a body if we're generating thunks for a 1223 // function declaration. 1224 SourceRange BodyRange; 1225 if (Stmt *Body = FD->getBody()) 1226 BodyRange = Body->getSourceRange(); 1227 else 1228 BodyRange = FD->getLocation(); 1229 CurEHLocation = BodyRange.getEnd(); 1230 1231 // Use the location of the start of the function to determine where 1232 // the function definition is located. By default use the location 1233 // of the declaration as the location for the subprogram. A function 1234 // may lack a declaration in the source code if it is created by code 1235 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1236 SourceLocation Loc = FD->getLocation(); 1237 1238 // If this is a function specialization then use the pattern body 1239 // as the location for the function. 1240 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1241 if (SpecDecl->hasBody(SpecDecl)) 1242 Loc = SpecDecl->getLocation(); 1243 1244 Stmt *Body = FD->getBody(); 1245 1246 // Initialize helper which will detect jumps which can cause invalid lifetime 1247 // markers. 1248 if (Body && ShouldEmitLifetimeMarkers) 1249 Bypasses.Init(Body); 1250 1251 // Emit the standard function prologue. 1252 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1253 1254 // Generate the body of the function. 1255 PGO.assignRegionCounters(GD, CurFn); 1256 if (isa<CXXDestructorDecl>(FD)) 1257 EmitDestructorBody(Args); 1258 else if (isa<CXXConstructorDecl>(FD)) 1259 EmitConstructorBody(Args); 1260 else if (getLangOpts().CUDA && 1261 !getLangOpts().CUDAIsDevice && 1262 FD->hasAttr<CUDAGlobalAttr>()) 1263 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1264 else if (isa<CXXMethodDecl>(FD) && 1265 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1266 // The lambda static invoker function is special, because it forwards or 1267 // clones the body of the function call operator (but is actually static). 1268 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1269 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1270 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1271 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1272 // Implicit copy-assignment gets the same special treatment as implicit 1273 // copy-constructors. 1274 emitImplicitAssignmentOperatorBody(Args); 1275 } else if (Body) { 1276 EmitFunctionBody(Body); 1277 } else 1278 llvm_unreachable("no definition for emitted function"); 1279 1280 // C++11 [stmt.return]p2: 1281 // Flowing off the end of a function [...] results in undefined behavior in 1282 // a value-returning function. 1283 // C11 6.9.1p12: 1284 // If the '}' that terminates a function is reached, and the value of the 1285 // function call is used by the caller, the behavior is undefined. 1286 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1287 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1288 bool ShouldEmitUnreachable = 1289 CGM.getCodeGenOpts().StrictReturn || 1290 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1291 if (SanOpts.has(SanitizerKind::Return)) { 1292 SanitizerScope SanScope(this); 1293 llvm::Value *IsFalse = Builder.getFalse(); 1294 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1295 SanitizerHandler::MissingReturn, 1296 EmitCheckSourceLocation(FD->getLocation()), None); 1297 } else if (ShouldEmitUnreachable) { 1298 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1299 EmitTrapCall(llvm::Intrinsic::trap); 1300 } 1301 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1302 Builder.CreateUnreachable(); 1303 Builder.ClearInsertionPoint(); 1304 } 1305 } 1306 1307 // Emit the standard function epilogue. 1308 FinishFunction(BodyRange.getEnd()); 1309 1310 // If we haven't marked the function nothrow through other means, do 1311 // a quick pass now to see if we can. 1312 if (!CurFn->doesNotThrow()) 1313 TryMarkNoThrow(CurFn); 1314 } 1315 1316 /// ContainsLabel - Return true if the statement contains a label in it. If 1317 /// this statement is not executed normally, it not containing a label means 1318 /// that we can just remove the code. 1319 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1320 // Null statement, not a label! 1321 if (!S) return false; 1322 1323 // If this is a label, we have to emit the code, consider something like: 1324 // if (0) { ... foo: bar(); } goto foo; 1325 // 1326 // TODO: If anyone cared, we could track __label__'s, since we know that you 1327 // can't jump to one from outside their declared region. 1328 if (isa<LabelStmt>(S)) 1329 return true; 1330 1331 // If this is a case/default statement, and we haven't seen a switch, we have 1332 // to emit the code. 1333 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1334 return true; 1335 1336 // If this is a switch statement, we want to ignore cases below it. 1337 if (isa<SwitchStmt>(S)) 1338 IgnoreCaseStmts = true; 1339 1340 // Scan subexpressions for verboten labels. 1341 for (const Stmt *SubStmt : S->children()) 1342 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1343 return true; 1344 1345 return false; 1346 } 1347 1348 /// containsBreak - Return true if the statement contains a break out of it. 1349 /// If the statement (recursively) contains a switch or loop with a break 1350 /// inside of it, this is fine. 1351 bool CodeGenFunction::containsBreak(const Stmt *S) { 1352 // Null statement, not a label! 1353 if (!S) return false; 1354 1355 // If this is a switch or loop that defines its own break scope, then we can 1356 // include it and anything inside of it. 1357 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1358 isa<ForStmt>(S)) 1359 return false; 1360 1361 if (isa<BreakStmt>(S)) 1362 return true; 1363 1364 // Scan subexpressions for verboten breaks. 1365 for (const Stmt *SubStmt : S->children()) 1366 if (containsBreak(SubStmt)) 1367 return true; 1368 1369 return false; 1370 } 1371 1372 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1373 if (!S) return false; 1374 1375 // Some statement kinds add a scope and thus never add a decl to the current 1376 // scope. Note, this list is longer than the list of statements that might 1377 // have an unscoped decl nested within them, but this way is conservatively 1378 // correct even if more statement kinds are added. 1379 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1380 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1381 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1382 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1383 return false; 1384 1385 if (isa<DeclStmt>(S)) 1386 return true; 1387 1388 for (const Stmt *SubStmt : S->children()) 1389 if (mightAddDeclToScope(SubStmt)) 1390 return true; 1391 1392 return false; 1393 } 1394 1395 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1396 /// to a constant, or if it does but contains a label, return false. If it 1397 /// constant folds return true and set the boolean result in Result. 1398 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1399 bool &ResultBool, 1400 bool AllowLabels) { 1401 llvm::APSInt ResultInt; 1402 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1403 return false; 1404 1405 ResultBool = ResultInt.getBoolValue(); 1406 return true; 1407 } 1408 1409 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1410 /// to a constant, or if it does but contains a label, return false. If it 1411 /// constant folds return true and set the folded value. 1412 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1413 llvm::APSInt &ResultInt, 1414 bool AllowLabels) { 1415 // FIXME: Rename and handle conversion of other evaluatable things 1416 // to bool. 1417 Expr::EvalResult Result; 1418 if (!Cond->EvaluateAsInt(Result, getContext())) 1419 return false; // Not foldable, not integer or not fully evaluatable. 1420 1421 llvm::APSInt Int = Result.Val.getInt(); 1422 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1423 return false; // Contains a label. 1424 1425 ResultInt = Int; 1426 return true; 1427 } 1428 1429 1430 1431 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1432 /// statement) to the specified blocks. Based on the condition, this might try 1433 /// to simplify the codegen of the conditional based on the branch. 1434 /// 1435 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1436 llvm::BasicBlock *TrueBlock, 1437 llvm::BasicBlock *FalseBlock, 1438 uint64_t TrueCount) { 1439 Cond = Cond->IgnoreParens(); 1440 1441 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1442 1443 // Handle X && Y in a condition. 1444 if (CondBOp->getOpcode() == BO_LAnd) { 1445 // If we have "1 && X", simplify the code. "0 && X" would have constant 1446 // folded if the case was simple enough. 1447 bool ConstantBool = false; 1448 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1449 ConstantBool) { 1450 // br(1 && X) -> br(X). 1451 incrementProfileCounter(CondBOp); 1452 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1453 TrueCount); 1454 } 1455 1456 // If we have "X && 1", simplify the code to use an uncond branch. 1457 // "X && 0" would have been constant folded to 0. 1458 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1459 ConstantBool) { 1460 // br(X && 1) -> br(X). 1461 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1462 TrueCount); 1463 } 1464 1465 // Emit the LHS as a conditional. If the LHS conditional is false, we 1466 // want to jump to the FalseBlock. 1467 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1468 // The counter tells us how often we evaluate RHS, and all of TrueCount 1469 // can be propagated to that branch. 1470 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1471 1472 ConditionalEvaluation eval(*this); 1473 { 1474 ApplyDebugLocation DL(*this, Cond); 1475 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1476 EmitBlock(LHSTrue); 1477 } 1478 1479 incrementProfileCounter(CondBOp); 1480 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1481 1482 // Any temporaries created here are conditional. 1483 eval.begin(*this); 1484 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1485 eval.end(*this); 1486 1487 return; 1488 } 1489 1490 if (CondBOp->getOpcode() == BO_LOr) { 1491 // If we have "0 || X", simplify the code. "1 || X" would have constant 1492 // folded if the case was simple enough. 1493 bool ConstantBool = false; 1494 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1495 !ConstantBool) { 1496 // br(0 || X) -> br(X). 1497 incrementProfileCounter(CondBOp); 1498 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1499 TrueCount); 1500 } 1501 1502 // If we have "X || 0", simplify the code to use an uncond branch. 1503 // "X || 1" would have been constant folded to 1. 1504 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1505 !ConstantBool) { 1506 // br(X || 0) -> br(X). 1507 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1508 TrueCount); 1509 } 1510 1511 // Emit the LHS as a conditional. If the LHS conditional is true, we 1512 // want to jump to the TrueBlock. 1513 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1514 // We have the count for entry to the RHS and for the whole expression 1515 // being true, so we can divy up True count between the short circuit and 1516 // the RHS. 1517 uint64_t LHSCount = 1518 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1519 uint64_t RHSCount = TrueCount - LHSCount; 1520 1521 ConditionalEvaluation eval(*this); 1522 { 1523 ApplyDebugLocation DL(*this, Cond); 1524 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1525 EmitBlock(LHSFalse); 1526 } 1527 1528 incrementProfileCounter(CondBOp); 1529 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1530 1531 // Any temporaries created here are conditional. 1532 eval.begin(*this); 1533 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1534 1535 eval.end(*this); 1536 1537 return; 1538 } 1539 } 1540 1541 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1542 // br(!x, t, f) -> br(x, f, t) 1543 if (CondUOp->getOpcode() == UO_LNot) { 1544 // Negate the count. 1545 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1546 // Negate the condition and swap the destination blocks. 1547 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1548 FalseCount); 1549 } 1550 } 1551 1552 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1553 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1554 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1555 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1556 1557 ConditionalEvaluation cond(*this); 1558 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1559 getProfileCount(CondOp)); 1560 1561 // When computing PGO branch weights, we only know the overall count for 1562 // the true block. This code is essentially doing tail duplication of the 1563 // naive code-gen, introducing new edges for which counts are not 1564 // available. Divide the counts proportionally between the LHS and RHS of 1565 // the conditional operator. 1566 uint64_t LHSScaledTrueCount = 0; 1567 if (TrueCount) { 1568 double LHSRatio = 1569 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1570 LHSScaledTrueCount = TrueCount * LHSRatio; 1571 } 1572 1573 cond.begin(*this); 1574 EmitBlock(LHSBlock); 1575 incrementProfileCounter(CondOp); 1576 { 1577 ApplyDebugLocation DL(*this, Cond); 1578 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1579 LHSScaledTrueCount); 1580 } 1581 cond.end(*this); 1582 1583 cond.begin(*this); 1584 EmitBlock(RHSBlock); 1585 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1586 TrueCount - LHSScaledTrueCount); 1587 cond.end(*this); 1588 1589 return; 1590 } 1591 1592 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1593 // Conditional operator handling can give us a throw expression as a 1594 // condition for a case like: 1595 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1596 // Fold this to: 1597 // br(c, throw x, br(y, t, f)) 1598 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1599 return; 1600 } 1601 1602 // If the branch has a condition wrapped by __builtin_unpredictable, 1603 // create metadata that specifies that the branch is unpredictable. 1604 // Don't bother if not optimizing because that metadata would not be used. 1605 llvm::MDNode *Unpredictable = nullptr; 1606 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1607 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1608 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1609 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1610 llvm::MDBuilder MDHelper(getLLVMContext()); 1611 Unpredictable = MDHelper.createUnpredictable(); 1612 } 1613 } 1614 1615 // Create branch weights based on the number of times we get here and the 1616 // number of times the condition should be true. 1617 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1618 llvm::MDNode *Weights = 1619 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1620 1621 // Emit the code with the fully general case. 1622 llvm::Value *CondV; 1623 { 1624 ApplyDebugLocation DL(*this, Cond); 1625 CondV = EvaluateExprAsBool(Cond); 1626 } 1627 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1628 } 1629 1630 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1631 /// specified stmt yet. 1632 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1633 CGM.ErrorUnsupported(S, Type); 1634 } 1635 1636 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1637 /// variable-length array whose elements have a non-zero bit-pattern. 1638 /// 1639 /// \param baseType the inner-most element type of the array 1640 /// \param src - a char* pointing to the bit-pattern for a single 1641 /// base element of the array 1642 /// \param sizeInChars - the total size of the VLA, in chars 1643 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1644 Address dest, Address src, 1645 llvm::Value *sizeInChars) { 1646 CGBuilderTy &Builder = CGF.Builder; 1647 1648 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1649 llvm::Value *baseSizeInChars 1650 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1651 1652 Address begin = 1653 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1654 llvm::Value *end = 1655 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1656 1657 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1658 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1659 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1660 1661 // Make a loop over the VLA. C99 guarantees that the VLA element 1662 // count must be nonzero. 1663 CGF.EmitBlock(loopBB); 1664 1665 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1666 cur->addIncoming(begin.getPointer(), originBB); 1667 1668 CharUnits curAlign = 1669 dest.getAlignment().alignmentOfArrayElement(baseSize); 1670 1671 // memcpy the individual element bit-pattern. 1672 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1673 /*volatile*/ false); 1674 1675 // Go to the next element. 1676 llvm::Value *next = 1677 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1678 1679 // Leave if that's the end of the VLA. 1680 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1681 Builder.CreateCondBr(done, contBB, loopBB); 1682 cur->addIncoming(next, loopBB); 1683 1684 CGF.EmitBlock(contBB); 1685 } 1686 1687 void 1688 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1689 // Ignore empty classes in C++. 1690 if (getLangOpts().CPlusPlus) { 1691 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1692 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1693 return; 1694 } 1695 } 1696 1697 // Cast the dest ptr to the appropriate i8 pointer type. 1698 if (DestPtr.getElementType() != Int8Ty) 1699 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1700 1701 // Get size and alignment info for this aggregate. 1702 CharUnits size = getContext().getTypeSizeInChars(Ty); 1703 1704 llvm::Value *SizeVal; 1705 const VariableArrayType *vla; 1706 1707 // Don't bother emitting a zero-byte memset. 1708 if (size.isZero()) { 1709 // But note that getTypeInfo returns 0 for a VLA. 1710 if (const VariableArrayType *vlaType = 1711 dyn_cast_or_null<VariableArrayType>( 1712 getContext().getAsArrayType(Ty))) { 1713 auto VlaSize = getVLASize(vlaType); 1714 SizeVal = VlaSize.NumElts; 1715 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1716 if (!eltSize.isOne()) 1717 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1718 vla = vlaType; 1719 } else { 1720 return; 1721 } 1722 } else { 1723 SizeVal = CGM.getSize(size); 1724 vla = nullptr; 1725 } 1726 1727 // If the type contains a pointer to data member we can't memset it to zero. 1728 // Instead, create a null constant and copy it to the destination. 1729 // TODO: there are other patterns besides zero that we can usefully memset, 1730 // like -1, which happens to be the pattern used by member-pointers. 1731 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1732 // For a VLA, emit a single element, then splat that over the VLA. 1733 if (vla) Ty = getContext().getBaseElementType(vla); 1734 1735 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1736 1737 llvm::GlobalVariable *NullVariable = 1738 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1739 /*isConstant=*/true, 1740 llvm::GlobalVariable::PrivateLinkage, 1741 NullConstant, Twine()); 1742 CharUnits NullAlign = DestPtr.getAlignment(); 1743 NullVariable->setAlignment(NullAlign.getAsAlign()); 1744 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1745 NullAlign); 1746 1747 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1748 1749 // Get and call the appropriate llvm.memcpy overload. 1750 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1751 return; 1752 } 1753 1754 // Otherwise, just memset the whole thing to zero. This is legal 1755 // because in LLVM, all default initializers (other than the ones we just 1756 // handled above) are guaranteed to have a bit pattern of all zeros. 1757 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1758 } 1759 1760 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1761 // Make sure that there is a block for the indirect goto. 1762 if (!IndirectBranch) 1763 GetIndirectGotoBlock(); 1764 1765 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1766 1767 // Make sure the indirect branch includes all of the address-taken blocks. 1768 IndirectBranch->addDestination(BB); 1769 return llvm::BlockAddress::get(CurFn, BB); 1770 } 1771 1772 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1773 // If we already made the indirect branch for indirect goto, return its block. 1774 if (IndirectBranch) return IndirectBranch->getParent(); 1775 1776 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1777 1778 // Create the PHI node that indirect gotos will add entries to. 1779 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1780 "indirect.goto.dest"); 1781 1782 // Create the indirect branch instruction. 1783 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1784 return IndirectBranch->getParent(); 1785 } 1786 1787 /// Computes the length of an array in elements, as well as the base 1788 /// element type and a properly-typed first element pointer. 1789 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1790 QualType &baseType, 1791 Address &addr) { 1792 const ArrayType *arrayType = origArrayType; 1793 1794 // If it's a VLA, we have to load the stored size. Note that 1795 // this is the size of the VLA in bytes, not its size in elements. 1796 llvm::Value *numVLAElements = nullptr; 1797 if (isa<VariableArrayType>(arrayType)) { 1798 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1799 1800 // Walk into all VLAs. This doesn't require changes to addr, 1801 // which has type T* where T is the first non-VLA element type. 1802 do { 1803 QualType elementType = arrayType->getElementType(); 1804 arrayType = getContext().getAsArrayType(elementType); 1805 1806 // If we only have VLA components, 'addr' requires no adjustment. 1807 if (!arrayType) { 1808 baseType = elementType; 1809 return numVLAElements; 1810 } 1811 } while (isa<VariableArrayType>(arrayType)); 1812 1813 // We get out here only if we find a constant array type 1814 // inside the VLA. 1815 } 1816 1817 // We have some number of constant-length arrays, so addr should 1818 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1819 // down to the first element of addr. 1820 SmallVector<llvm::Value*, 8> gepIndices; 1821 1822 // GEP down to the array type. 1823 llvm::ConstantInt *zero = Builder.getInt32(0); 1824 gepIndices.push_back(zero); 1825 1826 uint64_t countFromCLAs = 1; 1827 QualType eltType; 1828 1829 llvm::ArrayType *llvmArrayType = 1830 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1831 while (llvmArrayType) { 1832 assert(isa<ConstantArrayType>(arrayType)); 1833 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1834 == llvmArrayType->getNumElements()); 1835 1836 gepIndices.push_back(zero); 1837 countFromCLAs *= llvmArrayType->getNumElements(); 1838 eltType = arrayType->getElementType(); 1839 1840 llvmArrayType = 1841 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1842 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1843 assert((!llvmArrayType || arrayType) && 1844 "LLVM and Clang types are out-of-synch"); 1845 } 1846 1847 if (arrayType) { 1848 // From this point onwards, the Clang array type has been emitted 1849 // as some other type (probably a packed struct). Compute the array 1850 // size, and just emit the 'begin' expression as a bitcast. 1851 while (arrayType) { 1852 countFromCLAs *= 1853 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1854 eltType = arrayType->getElementType(); 1855 arrayType = getContext().getAsArrayType(eltType); 1856 } 1857 1858 llvm::Type *baseType = ConvertType(eltType); 1859 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1860 } else { 1861 // Create the actual GEP. 1862 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1863 gepIndices, "array.begin"), 1864 addr.getAlignment()); 1865 } 1866 1867 baseType = eltType; 1868 1869 llvm::Value *numElements 1870 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1871 1872 // If we had any VLA dimensions, factor them in. 1873 if (numVLAElements) 1874 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1875 1876 return numElements; 1877 } 1878 1879 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1880 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1881 assert(vla && "type was not a variable array type!"); 1882 return getVLASize(vla); 1883 } 1884 1885 CodeGenFunction::VlaSizePair 1886 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1887 // The number of elements so far; always size_t. 1888 llvm::Value *numElements = nullptr; 1889 1890 QualType elementType; 1891 do { 1892 elementType = type->getElementType(); 1893 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1894 assert(vlaSize && "no size for VLA!"); 1895 assert(vlaSize->getType() == SizeTy); 1896 1897 if (!numElements) { 1898 numElements = vlaSize; 1899 } else { 1900 // It's undefined behavior if this wraps around, so mark it that way. 1901 // FIXME: Teach -fsanitize=undefined to trap this. 1902 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1903 } 1904 } while ((type = getContext().getAsVariableArrayType(elementType))); 1905 1906 return { numElements, elementType }; 1907 } 1908 1909 CodeGenFunction::VlaSizePair 1910 CodeGenFunction::getVLAElements1D(QualType type) { 1911 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1912 assert(vla && "type was not a variable array type!"); 1913 return getVLAElements1D(vla); 1914 } 1915 1916 CodeGenFunction::VlaSizePair 1917 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1918 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1919 assert(VlaSize && "no size for VLA!"); 1920 assert(VlaSize->getType() == SizeTy); 1921 return { VlaSize, Vla->getElementType() }; 1922 } 1923 1924 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1925 assert(type->isVariablyModifiedType() && 1926 "Must pass variably modified type to EmitVLASizes!"); 1927 1928 EnsureInsertPoint(); 1929 1930 // We're going to walk down into the type and look for VLA 1931 // expressions. 1932 do { 1933 assert(type->isVariablyModifiedType()); 1934 1935 const Type *ty = type.getTypePtr(); 1936 switch (ty->getTypeClass()) { 1937 1938 #define TYPE(Class, Base) 1939 #define ABSTRACT_TYPE(Class, Base) 1940 #define NON_CANONICAL_TYPE(Class, Base) 1941 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1942 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1943 #include "clang/AST/TypeNodes.inc" 1944 llvm_unreachable("unexpected dependent type!"); 1945 1946 // These types are never variably-modified. 1947 case Type::Builtin: 1948 case Type::Complex: 1949 case Type::Vector: 1950 case Type::ExtVector: 1951 case Type::Record: 1952 case Type::Enum: 1953 case Type::Elaborated: 1954 case Type::TemplateSpecialization: 1955 case Type::ObjCTypeParam: 1956 case Type::ObjCObject: 1957 case Type::ObjCInterface: 1958 case Type::ObjCObjectPointer: 1959 llvm_unreachable("type class is never variably-modified!"); 1960 1961 case Type::Adjusted: 1962 type = cast<AdjustedType>(ty)->getAdjustedType(); 1963 break; 1964 1965 case Type::Decayed: 1966 type = cast<DecayedType>(ty)->getPointeeType(); 1967 break; 1968 1969 case Type::Pointer: 1970 type = cast<PointerType>(ty)->getPointeeType(); 1971 break; 1972 1973 case Type::BlockPointer: 1974 type = cast<BlockPointerType>(ty)->getPointeeType(); 1975 break; 1976 1977 case Type::LValueReference: 1978 case Type::RValueReference: 1979 type = cast<ReferenceType>(ty)->getPointeeType(); 1980 break; 1981 1982 case Type::MemberPointer: 1983 type = cast<MemberPointerType>(ty)->getPointeeType(); 1984 break; 1985 1986 case Type::ConstantArray: 1987 case Type::IncompleteArray: 1988 // Losing element qualification here is fine. 1989 type = cast<ArrayType>(ty)->getElementType(); 1990 break; 1991 1992 case Type::VariableArray: { 1993 // Losing element qualification here is fine. 1994 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1995 1996 // Unknown size indication requires no size computation. 1997 // Otherwise, evaluate and record it. 1998 if (const Expr *size = vat->getSizeExpr()) { 1999 // It's possible that we might have emitted this already, 2000 // e.g. with a typedef and a pointer to it. 2001 llvm::Value *&entry = VLASizeMap[size]; 2002 if (!entry) { 2003 llvm::Value *Size = EmitScalarExpr(size); 2004 2005 // C11 6.7.6.2p5: 2006 // If the size is an expression that is not an integer constant 2007 // expression [...] each time it is evaluated it shall have a value 2008 // greater than zero. 2009 if (SanOpts.has(SanitizerKind::VLABound) && 2010 size->getType()->isSignedIntegerType()) { 2011 SanitizerScope SanScope(this); 2012 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2013 llvm::Constant *StaticArgs[] = { 2014 EmitCheckSourceLocation(size->getBeginLoc()), 2015 EmitCheckTypeDescriptor(size->getType())}; 2016 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2017 SanitizerKind::VLABound), 2018 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2019 } 2020 2021 // Always zexting here would be wrong if it weren't 2022 // undefined behavior to have a negative bound. 2023 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2024 } 2025 } 2026 type = vat->getElementType(); 2027 break; 2028 } 2029 2030 case Type::FunctionProto: 2031 case Type::FunctionNoProto: 2032 type = cast<FunctionType>(ty)->getReturnType(); 2033 break; 2034 2035 case Type::Paren: 2036 case Type::TypeOf: 2037 case Type::UnaryTransform: 2038 case Type::Attributed: 2039 case Type::SubstTemplateTypeParm: 2040 case Type::PackExpansion: 2041 case Type::MacroQualified: 2042 // Keep walking after single level desugaring. 2043 type = type.getSingleStepDesugaredType(getContext()); 2044 break; 2045 2046 case Type::Typedef: 2047 case Type::Decltype: 2048 case Type::Auto: 2049 case Type::DeducedTemplateSpecialization: 2050 // Stop walking: nothing to do. 2051 return; 2052 2053 case Type::TypeOfExpr: 2054 // Stop walking: emit typeof expression. 2055 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2056 return; 2057 2058 case Type::Atomic: 2059 type = cast<AtomicType>(ty)->getValueType(); 2060 break; 2061 2062 case Type::Pipe: 2063 type = cast<PipeType>(ty)->getElementType(); 2064 break; 2065 } 2066 } while (type->isVariablyModifiedType()); 2067 } 2068 2069 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2070 if (getContext().getBuiltinVaListType()->isArrayType()) 2071 return EmitPointerWithAlignment(E); 2072 return EmitLValue(E).getAddress(); 2073 } 2074 2075 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2076 return EmitLValue(E).getAddress(); 2077 } 2078 2079 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2080 const APValue &Init) { 2081 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2082 if (CGDebugInfo *Dbg = getDebugInfo()) 2083 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2084 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2085 } 2086 2087 CodeGenFunction::PeepholeProtection 2088 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2089 // At the moment, the only aggressive peephole we do in IR gen 2090 // is trunc(zext) folding, but if we add more, we can easily 2091 // extend this protection. 2092 2093 if (!rvalue.isScalar()) return PeepholeProtection(); 2094 llvm::Value *value = rvalue.getScalarVal(); 2095 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2096 2097 // Just make an extra bitcast. 2098 assert(HaveInsertPoint()); 2099 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2100 Builder.GetInsertBlock()); 2101 2102 PeepholeProtection protection; 2103 protection.Inst = inst; 2104 return protection; 2105 } 2106 2107 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2108 if (!protection.Inst) return; 2109 2110 // In theory, we could try to duplicate the peepholes now, but whatever. 2111 protection.Inst->eraseFromParent(); 2112 } 2113 2114 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2115 QualType Ty, SourceLocation Loc, 2116 SourceLocation AssumptionLoc, 2117 llvm::Value *Alignment, 2118 llvm::Value *OffsetValue) { 2119 llvm::Value *TheCheck; 2120 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2121 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2122 if (SanOpts.has(SanitizerKind::Alignment)) { 2123 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2124 OffsetValue, TheCheck, Assumption); 2125 } 2126 } 2127 2128 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2129 const Expr *E, 2130 SourceLocation AssumptionLoc, 2131 llvm::Value *Alignment, 2132 llvm::Value *OffsetValue) { 2133 if (auto *CE = dyn_cast<CastExpr>(E)) 2134 E = CE->getSubExprAsWritten(); 2135 QualType Ty = E->getType(); 2136 SourceLocation Loc = E->getExprLoc(); 2137 2138 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2139 OffsetValue); 2140 } 2141 2142 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2143 llvm::Value *AnnotatedVal, 2144 StringRef AnnotationStr, 2145 SourceLocation Location) { 2146 llvm::Value *Args[4] = { 2147 AnnotatedVal, 2148 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2149 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2150 CGM.EmitAnnotationLineNo(Location) 2151 }; 2152 return Builder.CreateCall(AnnotationFn, Args); 2153 } 2154 2155 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2156 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2157 // FIXME We create a new bitcast for every annotation because that's what 2158 // llvm-gcc was doing. 2159 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2160 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2161 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2162 I->getAnnotation(), D->getLocation()); 2163 } 2164 2165 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2166 Address Addr) { 2167 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2168 llvm::Value *V = Addr.getPointer(); 2169 llvm::Type *VTy = V->getType(); 2170 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2171 CGM.Int8PtrTy); 2172 2173 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2174 // FIXME Always emit the cast inst so we can differentiate between 2175 // annotation on the first field of a struct and annotation on the struct 2176 // itself. 2177 if (VTy != CGM.Int8PtrTy) 2178 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2179 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2180 V = Builder.CreateBitCast(V, VTy); 2181 } 2182 2183 return Address(V, Addr.getAlignment()); 2184 } 2185 2186 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2187 2188 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2189 : CGF(CGF) { 2190 assert(!CGF->IsSanitizerScope); 2191 CGF->IsSanitizerScope = true; 2192 } 2193 2194 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2195 CGF->IsSanitizerScope = false; 2196 } 2197 2198 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2199 const llvm::Twine &Name, 2200 llvm::BasicBlock *BB, 2201 llvm::BasicBlock::iterator InsertPt) const { 2202 LoopStack.InsertHelper(I); 2203 if (IsSanitizerScope) 2204 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2205 } 2206 2207 void CGBuilderInserter::InsertHelper( 2208 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2209 llvm::BasicBlock::iterator InsertPt) const { 2210 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2211 if (CGF) 2212 CGF->InsertHelper(I, Name, BB, InsertPt); 2213 } 2214 2215 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2216 CodeGenModule &CGM, const FunctionDecl *FD, 2217 std::string &FirstMissing) { 2218 // If there aren't any required features listed then go ahead and return. 2219 if (ReqFeatures.empty()) 2220 return false; 2221 2222 // Now build up the set of caller features and verify that all the required 2223 // features are there. 2224 llvm::StringMap<bool> CallerFeatureMap; 2225 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2226 2227 // If we have at least one of the features in the feature list return 2228 // true, otherwise return false. 2229 return std::all_of( 2230 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2231 SmallVector<StringRef, 1> OrFeatures; 2232 Feature.split(OrFeatures, '|'); 2233 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2234 if (!CallerFeatureMap.lookup(Feature)) { 2235 FirstMissing = Feature.str(); 2236 return false; 2237 } 2238 return true; 2239 }); 2240 }); 2241 } 2242 2243 // Emits an error if we don't have a valid set of target features for the 2244 // called function. 2245 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2246 const FunctionDecl *TargetDecl) { 2247 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2248 } 2249 2250 // Emits an error if we don't have a valid set of target features for the 2251 // called function. 2252 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2253 const FunctionDecl *TargetDecl) { 2254 // Early exit if this is an indirect call. 2255 if (!TargetDecl) 2256 return; 2257 2258 // Get the current enclosing function if it exists. If it doesn't 2259 // we can't check the target features anyhow. 2260 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2261 if (!FD) 2262 return; 2263 2264 // Grab the required features for the call. For a builtin this is listed in 2265 // the td file with the default cpu, for an always_inline function this is any 2266 // listed cpu and any listed features. 2267 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2268 std::string MissingFeature; 2269 if (BuiltinID) { 2270 SmallVector<StringRef, 1> ReqFeatures; 2271 const char *FeatureList = 2272 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2273 // Return if the builtin doesn't have any required features. 2274 if (!FeatureList || StringRef(FeatureList) == "") 2275 return; 2276 StringRef(FeatureList).split(ReqFeatures, ','); 2277 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2278 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2279 << TargetDecl->getDeclName() 2280 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2281 2282 } else if (TargetDecl->hasAttr<TargetAttr>() || 2283 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2284 // Get the required features for the callee. 2285 2286 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2287 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2288 2289 SmallVector<StringRef, 1> ReqFeatures; 2290 llvm::StringMap<bool> CalleeFeatureMap; 2291 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2292 2293 for (const auto &F : ParsedAttr.Features) { 2294 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2295 ReqFeatures.push_back(StringRef(F).substr(1)); 2296 } 2297 2298 for (const auto &F : CalleeFeatureMap) { 2299 // Only positive features are "required". 2300 if (F.getValue()) 2301 ReqFeatures.push_back(F.getKey()); 2302 } 2303 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2304 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2305 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2306 } 2307 } 2308 2309 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2310 if (!CGM.getCodeGenOpts().SanitizeStats) 2311 return; 2312 2313 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2314 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2315 CGM.getSanStats().create(IRB, SSK); 2316 } 2317 2318 llvm::Value * 2319 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2320 llvm::Value *Condition = nullptr; 2321 2322 if (!RO.Conditions.Architecture.empty()) 2323 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2324 2325 if (!RO.Conditions.Features.empty()) { 2326 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2327 Condition = 2328 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2329 } 2330 return Condition; 2331 } 2332 2333 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2334 llvm::Function *Resolver, 2335 CGBuilderTy &Builder, 2336 llvm::Function *FuncToReturn, 2337 bool SupportsIFunc) { 2338 if (SupportsIFunc) { 2339 Builder.CreateRet(FuncToReturn); 2340 return; 2341 } 2342 2343 llvm::SmallVector<llvm::Value *, 10> Args; 2344 llvm::for_each(Resolver->args(), 2345 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2346 2347 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2348 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2349 2350 if (Resolver->getReturnType()->isVoidTy()) 2351 Builder.CreateRetVoid(); 2352 else 2353 Builder.CreateRet(Result); 2354 } 2355 2356 void CodeGenFunction::EmitMultiVersionResolver( 2357 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2358 assert((getContext().getTargetInfo().getTriple().getArch() == 2359 llvm::Triple::x86 || 2360 getContext().getTargetInfo().getTriple().getArch() == 2361 llvm::Triple::x86_64) && 2362 "Only implemented for x86 targets"); 2363 2364 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2365 2366 // Main function's basic block. 2367 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2368 Builder.SetInsertPoint(CurBlock); 2369 EmitX86CpuInit(); 2370 2371 for (const MultiVersionResolverOption &RO : Options) { 2372 Builder.SetInsertPoint(CurBlock); 2373 llvm::Value *Condition = FormResolverCondition(RO); 2374 2375 // The 'default' or 'generic' case. 2376 if (!Condition) { 2377 assert(&RO == Options.end() - 1 && 2378 "Default or Generic case must be last"); 2379 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2380 SupportsIFunc); 2381 return; 2382 } 2383 2384 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2385 CGBuilderTy RetBuilder(*this, RetBlock); 2386 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2387 SupportsIFunc); 2388 CurBlock = createBasicBlock("resolver_else", Resolver); 2389 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2390 } 2391 2392 // If no generic/default, emit an unreachable. 2393 Builder.SetInsertPoint(CurBlock); 2394 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2395 TrapCall->setDoesNotReturn(); 2396 TrapCall->setDoesNotThrow(); 2397 Builder.CreateUnreachable(); 2398 Builder.ClearInsertionPoint(); 2399 } 2400 2401 // Loc - where the diagnostic will point, where in the source code this 2402 // alignment has failed. 2403 // SecondaryLoc - if present (will be present if sufficiently different from 2404 // Loc), the diagnostic will additionally point a "Note:" to this location. 2405 // It should be the location where the __attribute__((assume_aligned)) 2406 // was written e.g. 2407 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2408 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2409 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2410 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2411 llvm::Instruction *Assumption) { 2412 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2413 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2414 llvm::Intrinsic::getDeclaration( 2415 Builder.GetInsertBlock()->getParent()->getParent(), 2416 llvm::Intrinsic::assume) && 2417 "Assumption should be a call to llvm.assume()."); 2418 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2419 "Assumption should be the last instruction of the basic block, " 2420 "since the basic block is still being generated."); 2421 2422 if (!SanOpts.has(SanitizerKind::Alignment)) 2423 return; 2424 2425 // Don't check pointers to volatile data. The behavior here is implementation- 2426 // defined. 2427 if (Ty->getPointeeType().isVolatileQualified()) 2428 return; 2429 2430 // We need to temorairly remove the assumption so we can insert the 2431 // sanitizer check before it, else the check will be dropped by optimizations. 2432 Assumption->removeFromParent(); 2433 2434 { 2435 SanitizerScope SanScope(this); 2436 2437 if (!OffsetValue) 2438 OffsetValue = Builder.getInt1(0); // no offset. 2439 2440 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2441 EmitCheckSourceLocation(SecondaryLoc), 2442 EmitCheckTypeDescriptor(Ty)}; 2443 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2444 EmitCheckValue(Alignment), 2445 EmitCheckValue(OffsetValue)}; 2446 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2447 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2448 } 2449 2450 // We are now in the (new, empty) "cont" basic block. 2451 // Reintroduce the assumption. 2452 Builder.Insert(Assumption); 2453 // FIXME: Assumption still has it's original basic block as it's Parent. 2454 } 2455 2456 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2457 if (CGDebugInfo *DI = getDebugInfo()) 2458 return DI->SourceLocToDebugLoc(Location); 2459 2460 return llvm::DebugLoc(); 2461 } 2462