1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "CGException.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Intrinsics.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 31 : BlockFunction(cgm, *this, Builder), CGM(cgm), 32 Target(CGM.getContext().Target), 33 Builder(cgm.getModule().getContext()), 34 NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1), 35 ExceptionSlot(0), DebugInfo(0), IndirectBranch(0), 36 SwitchInsn(0), CaseRangeBlock(0), 37 DidCallStackSave(false), UnreachableBlock(0), 38 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 39 ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0), 40 TrapBB(0) { 41 42 // Get some frequently used types. 43 LLVMPointerWidth = Target.getPointerWidth(0); 44 llvm::LLVMContext &LLVMContext = CGM.getLLVMContext(); 45 IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth); 46 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 47 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 48 49 Exceptions = getContext().getLangOptions().Exceptions; 50 CatchUndefined = getContext().getLangOptions().CatchUndefined; 51 CGM.getMangleContext().startNewFunction(); 52 } 53 54 ASTContext &CodeGenFunction::getContext() const { 55 return CGM.getContext(); 56 } 57 58 59 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 60 llvm::Value *Res = LocalDeclMap[VD]; 61 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 62 return Res; 63 } 64 65 llvm::Constant * 66 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 67 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 68 } 69 70 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 71 return CGM.getTypes().ConvertTypeForMem(T); 72 } 73 74 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 75 return CGM.getTypes().ConvertType(T); 76 } 77 78 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 79 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 80 T->isMemberFunctionPointerType(); 81 } 82 83 void CodeGenFunction::EmitReturnBlock() { 84 // For cleanliness, we try to avoid emitting the return block for 85 // simple cases. 86 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 87 88 if (CurBB) { 89 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 90 91 // We have a valid insert point, reuse it if it is empty or there are no 92 // explicit jumps to the return block. 93 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 94 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 95 delete ReturnBlock.getBlock(); 96 } else 97 EmitBlock(ReturnBlock.getBlock()); 98 return; 99 } 100 101 // Otherwise, if the return block is the target of a single direct 102 // branch then we can just put the code in that block instead. This 103 // cleans up functions which started with a unified return block. 104 if (ReturnBlock.getBlock()->hasOneUse()) { 105 llvm::BranchInst *BI = 106 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 107 if (BI && BI->isUnconditional() && 108 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 109 // Reset insertion point and delete the branch. 110 Builder.SetInsertPoint(BI->getParent()); 111 BI->eraseFromParent(); 112 delete ReturnBlock.getBlock(); 113 return; 114 } 115 } 116 117 // FIXME: We are at an unreachable point, there is no reason to emit the block 118 // unless it has uses. However, we still need a place to put the debug 119 // region.end for now. 120 121 EmitBlock(ReturnBlock.getBlock()); 122 } 123 124 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 125 if (!BB) return; 126 if (!BB->use_empty()) 127 return CGF.CurFn->getBasicBlockList().push_back(BB); 128 delete BB; 129 } 130 131 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 132 assert(BreakContinueStack.empty() && 133 "mismatched push/pop in break/continue stack!"); 134 135 // Emit function epilog (to return). 136 EmitReturnBlock(); 137 138 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 139 140 // Emit debug descriptor for function end. 141 if (CGDebugInfo *DI = getDebugInfo()) { 142 DI->setLocation(EndLoc); 143 DI->EmitFunctionEnd(Builder); 144 } 145 146 EmitFunctionEpilog(*CurFnInfo); 147 EmitEndEHSpec(CurCodeDecl); 148 149 assert(EHStack.empty() && 150 "did not remove all scopes from cleanup stack!"); 151 152 // If someone did an indirect goto, emit the indirect goto block at the end of 153 // the function. 154 if (IndirectBranch) { 155 EmitBlock(IndirectBranch->getParent()); 156 Builder.ClearInsertionPoint(); 157 } 158 159 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 160 llvm::Instruction *Ptr = AllocaInsertPt; 161 AllocaInsertPt = 0; 162 Ptr->eraseFromParent(); 163 164 // If someone took the address of a label but never did an indirect goto, we 165 // made a zero entry PHI node, which is illegal, zap it now. 166 if (IndirectBranch) { 167 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 168 if (PN->getNumIncomingValues() == 0) { 169 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 170 PN->eraseFromParent(); 171 } 172 } 173 174 EmitIfUsed(*this, RethrowBlock.getBlock()); 175 EmitIfUsed(*this, TerminateLandingPad); 176 EmitIfUsed(*this, TerminateHandler); 177 EmitIfUsed(*this, UnreachableBlock); 178 179 if (CGM.getCodeGenOpts().EmitDeclMetadata) 180 EmitDeclMetadata(); 181 } 182 183 /// ShouldInstrumentFunction - Return true if the current function should be 184 /// instrumented with __cyg_profile_func_* calls 185 bool CodeGenFunction::ShouldInstrumentFunction() { 186 if (!CGM.getCodeGenOpts().InstrumentFunctions) 187 return false; 188 if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 189 return false; 190 return true; 191 } 192 193 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 194 /// instrumentation function with the current function and the call site, if 195 /// function instrumentation is enabled. 196 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 197 if (!ShouldInstrumentFunction()) 198 return; 199 200 const llvm::PointerType *PointerTy; 201 const llvm::FunctionType *FunctionTy; 202 std::vector<const llvm::Type*> ProfileFuncArgs; 203 204 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 205 PointerTy = llvm::Type::getInt8PtrTy(VMContext); 206 ProfileFuncArgs.push_back(PointerTy); 207 ProfileFuncArgs.push_back(PointerTy); 208 FunctionTy = llvm::FunctionType::get( 209 llvm::Type::getVoidTy(VMContext), 210 ProfileFuncArgs, false); 211 212 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 213 llvm::CallInst *CallSite = Builder.CreateCall( 214 CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0), 215 llvm::ConstantInt::get(Int32Ty, 0), 216 "callsite"); 217 218 Builder.CreateCall2(F, 219 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 220 CallSite); 221 } 222 223 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 224 llvm::Function *Fn, 225 const FunctionArgList &Args, 226 SourceLocation StartLoc) { 227 const Decl *D = GD.getDecl(); 228 229 DidCallStackSave = false; 230 CurCodeDecl = CurFuncDecl = D; 231 FnRetTy = RetTy; 232 CurFn = Fn; 233 assert(CurFn->isDeclaration() && "Function already has body?"); 234 235 // Pass inline keyword to optimizer if it appears explicitly on any 236 // declaration. 237 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 238 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 239 RE = FD->redecls_end(); RI != RE; ++RI) 240 if (RI->isInlineSpecified()) { 241 Fn->addFnAttr(llvm::Attribute::InlineHint); 242 break; 243 } 244 245 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 246 247 // Create a marker to make it easy to insert allocas into the entryblock 248 // later. Don't create this with the builder, because we don't want it 249 // folded. 250 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 251 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 252 if (Builder.isNamePreserving()) 253 AllocaInsertPt->setName("allocapt"); 254 255 ReturnBlock = getJumpDestInCurrentScope("return"); 256 257 Builder.SetInsertPoint(EntryBB); 258 259 QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0, 260 false, false, 0, 0, 261 /*FIXME?*/ 262 FunctionType::ExtInfo()); 263 264 // Emit subprogram debug descriptor. 265 if (CGDebugInfo *DI = getDebugInfo()) { 266 DI->setLocation(StartLoc); 267 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 268 } 269 270 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 271 272 // FIXME: Leaked. 273 // CC info is ignored, hopefully? 274 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, 275 FunctionType::ExtInfo()); 276 277 if (RetTy->isVoidType()) { 278 // Void type; nothing to return. 279 ReturnValue = 0; 280 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 281 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 282 // Indirect aggregate return; emit returned value directly into sret slot. 283 // This reduces code size, and affects correctness in C++. 284 ReturnValue = CurFn->arg_begin(); 285 } else { 286 ReturnValue = CreateIRTemp(RetTy, "retval"); 287 } 288 289 EmitStartEHSpec(CurCodeDecl); 290 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 291 292 if (CXXThisDecl) 293 CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this"); 294 if (CXXVTTDecl) 295 CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt"); 296 297 // If any of the arguments have a variably modified type, make sure to 298 // emit the type size. 299 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 300 i != e; ++i) { 301 QualType Ty = i->second; 302 303 if (Ty->isVariablyModifiedType()) 304 EmitVLASize(Ty); 305 } 306 } 307 308 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 309 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 310 assert(FD->getBody()); 311 EmitStmt(FD->getBody()); 312 } 313 314 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { 315 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 316 317 // Check if we should generate debug info for this function. 318 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 319 DebugInfo = CGM.getDebugInfo(); 320 321 FunctionArgList Args; 322 323 CurGD = GD; 324 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 325 if (MD->isInstance()) { 326 // Create the implicit 'this' decl. 327 // FIXME: I'm not entirely sure I like using a fake decl just for code 328 // generation. Maybe we can come up with a better way? 329 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, 330 FD->getLocation(), 331 &getContext().Idents.get("this"), 332 MD->getThisType(getContext())); 333 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 334 335 // Check if we need a VTT parameter as well. 336 if (CodeGenVTables::needsVTTParameter(GD)) { 337 // FIXME: The comment about using a fake decl above applies here too. 338 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 339 CXXVTTDecl = 340 ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(), 341 &getContext().Idents.get("vtt"), T); 342 Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType())); 343 } 344 } 345 } 346 347 if (FD->getNumParams()) { 348 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 349 assert(FProto && "Function def must have prototype!"); 350 351 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 352 Args.push_back(std::make_pair(FD->getParamDecl(i), 353 FProto->getArgType(i))); 354 } 355 356 SourceRange BodyRange; 357 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 358 359 // Emit the standard function prologue. 360 StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin()); 361 362 // Generate the body of the function. 363 if (isa<CXXDestructorDecl>(FD)) 364 EmitDestructorBody(Args); 365 else if (isa<CXXConstructorDecl>(FD)) 366 EmitConstructorBody(Args); 367 else 368 EmitFunctionBody(Args); 369 370 // Emit the standard function epilogue. 371 FinishFunction(BodyRange.getEnd()); 372 373 // Destroy the 'this' declaration. 374 if (CXXThisDecl) 375 CXXThisDecl->Destroy(getContext()); 376 377 // Destroy the VTT declaration. 378 if (CXXVTTDecl) 379 CXXVTTDecl->Destroy(getContext()); 380 } 381 382 /// ContainsLabel - Return true if the statement contains a label in it. If 383 /// this statement is not executed normally, it not containing a label means 384 /// that we can just remove the code. 385 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 386 // Null statement, not a label! 387 if (S == 0) return false; 388 389 // If this is a label, we have to emit the code, consider something like: 390 // if (0) { ... foo: bar(); } goto foo; 391 if (isa<LabelStmt>(S)) 392 return true; 393 394 // If this is a case/default statement, and we haven't seen a switch, we have 395 // to emit the code. 396 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 397 return true; 398 399 // If this is a switch statement, we want to ignore cases below it. 400 if (isa<SwitchStmt>(S)) 401 IgnoreCaseStmts = true; 402 403 // Scan subexpressions for verboten labels. 404 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 405 I != E; ++I) 406 if (ContainsLabel(*I, IgnoreCaseStmts)) 407 return true; 408 409 return false; 410 } 411 412 413 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 414 /// a constant, or if it does but contains a label, return 0. If it constant 415 /// folds to 'true' and does not contain a label, return 1, if it constant folds 416 /// to 'false' and does not contain a label, return -1. 417 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 418 // FIXME: Rename and handle conversion of other evaluatable things 419 // to bool. 420 Expr::EvalResult Result; 421 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 422 Result.HasSideEffects) 423 return 0; // Not foldable, not integer or not fully evaluatable. 424 425 if (CodeGenFunction::ContainsLabel(Cond)) 426 return 0; // Contains a label. 427 428 return Result.Val.getInt().getBoolValue() ? 1 : -1; 429 } 430 431 432 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 433 /// statement) to the specified blocks. Based on the condition, this might try 434 /// to simplify the codegen of the conditional based on the branch. 435 /// 436 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 437 llvm::BasicBlock *TrueBlock, 438 llvm::BasicBlock *FalseBlock) { 439 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 440 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 441 442 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 443 // Handle X && Y in a condition. 444 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 445 // If we have "1 && X", simplify the code. "0 && X" would have constant 446 // folded if the case was simple enough. 447 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 448 // br(1 && X) -> br(X). 449 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 450 } 451 452 // If we have "X && 1", simplify the code to use an uncond branch. 453 // "X && 0" would have been constant folded to 0. 454 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 455 // br(X && 1) -> br(X). 456 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 457 } 458 459 // Emit the LHS as a conditional. If the LHS conditional is false, we 460 // want to jump to the FalseBlock. 461 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 462 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 463 EmitBlock(LHSTrue); 464 465 // Any temporaries created here are conditional. 466 BeginConditionalBranch(); 467 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 468 EndConditionalBranch(); 469 470 return; 471 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 472 // If we have "0 || X", simplify the code. "1 || X" would have constant 473 // folded if the case was simple enough. 474 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 475 // br(0 || X) -> br(X). 476 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 477 } 478 479 // If we have "X || 0", simplify the code to use an uncond branch. 480 // "X || 1" would have been constant folded to 1. 481 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 482 // br(X || 0) -> br(X). 483 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 484 } 485 486 // Emit the LHS as a conditional. If the LHS conditional is true, we 487 // want to jump to the TrueBlock. 488 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 489 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 490 EmitBlock(LHSFalse); 491 492 // Any temporaries created here are conditional. 493 BeginConditionalBranch(); 494 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 495 EndConditionalBranch(); 496 497 return; 498 } 499 } 500 501 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 502 // br(!x, t, f) -> br(x, f, t) 503 if (CondUOp->getOpcode() == UnaryOperator::LNot) 504 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 505 } 506 507 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 508 // Handle ?: operator. 509 510 // Just ignore GNU ?: extension. 511 if (CondOp->getLHS()) { 512 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 513 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 514 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 515 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 516 EmitBlock(LHSBlock); 517 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 518 EmitBlock(RHSBlock); 519 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 520 return; 521 } 522 } 523 524 // Emit the code with the fully general case. 525 llvm::Value *CondV = EvaluateExprAsBool(Cond); 526 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 527 } 528 529 /// ErrorUnsupported - Print out an error that codegen doesn't support the 530 /// specified stmt yet. 531 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 532 bool OmitOnError) { 533 CGM.ErrorUnsupported(S, Type, OmitOnError); 534 } 535 536 void 537 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 538 // If the type contains a pointer to data member we can't memset it to zero. 539 // Instead, create a null constant and copy it to the destination. 540 if (CGM.getTypes().ContainsPointerToDataMember(Ty)) { 541 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 542 543 llvm::GlobalVariable *NullVariable = 544 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 545 /*isConstant=*/true, 546 llvm::GlobalVariable::PrivateLinkage, 547 NullConstant, llvm::Twine()); 548 EmitAggregateCopy(DestPtr, NullVariable, Ty, /*isVolatile=*/false); 549 return; 550 } 551 552 553 // Ignore empty classes in C++. 554 if (getContext().getLangOptions().CPlusPlus) { 555 if (const RecordType *RT = Ty->getAs<RecordType>()) { 556 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 557 return; 558 } 559 } 560 561 // Otherwise, just memset the whole thing to zero. This is legal 562 // because in LLVM, all default initializers (other than the ones we just 563 // handled above) are guaranteed to have a bit pattern of all zeros. 564 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 565 if (DestPtr->getType() != BP) 566 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 567 568 // Get size and alignment info for this aggregate. 569 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 570 571 // Don't bother emitting a zero-byte memset. 572 if (TypeInfo.first == 0) 573 return; 574 575 // FIXME: Handle variable sized types. 576 Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr, 577 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)), 578 // TypeInfo.first describes size in bits. 579 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 580 llvm::ConstantInt::get(Int32Ty, TypeInfo.second/8), 581 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 582 0)); 583 } 584 585 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { 586 // Make sure that there is a block for the indirect goto. 587 if (IndirectBranch == 0) 588 GetIndirectGotoBlock(); 589 590 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 591 592 // Make sure the indirect branch includes all of the address-taken blocks. 593 IndirectBranch->addDestination(BB); 594 return llvm::BlockAddress::get(CurFn, BB); 595 } 596 597 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 598 // If we already made the indirect branch for indirect goto, return its block. 599 if (IndirectBranch) return IndirectBranch->getParent(); 600 601 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 602 603 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 604 605 // Create the PHI node that indirect gotos will add entries to. 606 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); 607 608 // Create the indirect branch instruction. 609 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 610 return IndirectBranch->getParent(); 611 } 612 613 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 614 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 615 616 assert(SizeEntry && "Did not emit size for type"); 617 return SizeEntry; 618 } 619 620 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 621 assert(Ty->isVariablyModifiedType() && 622 "Must pass variably modified type to EmitVLASizes!"); 623 624 EnsureInsertPoint(); 625 626 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 627 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 628 629 if (!SizeEntry) { 630 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 631 632 // Get the element size; 633 QualType ElemTy = VAT->getElementType(); 634 llvm::Value *ElemSize; 635 if (ElemTy->isVariableArrayType()) 636 ElemSize = EmitVLASize(ElemTy); 637 else 638 ElemSize = llvm::ConstantInt::get(SizeTy, 639 getContext().getTypeSizeInChars(ElemTy).getQuantity()); 640 641 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 642 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 643 644 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 645 } 646 647 return SizeEntry; 648 } 649 650 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 651 EmitVLASize(AT->getElementType()); 652 return 0; 653 } 654 655 const PointerType *PT = Ty->getAs<PointerType>(); 656 assert(PT && "unknown VM type!"); 657 EmitVLASize(PT->getPointeeType()); 658 return 0; 659 } 660 661 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 662 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) 663 return EmitScalarExpr(E); 664 return EmitLValue(E).getAddress(); 665 } 666 667 /// Pops cleanup blocks until the given savepoint is reached. 668 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { 669 assert(Old.isValid()); 670 671 while (EHStack.stable_begin() != Old) { 672 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 673 674 // As long as Old strictly encloses the scope's enclosing normal 675 // cleanup, we're going to emit another normal cleanup which 676 // fallthrough can propagate through. 677 bool FallThroughIsBranchThrough = 678 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 679 680 PopCleanupBlock(FallThroughIsBranchThrough); 681 } 682 } 683 684 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 685 EHCleanupScope &Scope) { 686 assert(Scope.isNormalCleanup()); 687 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 688 if (!Entry) { 689 Entry = CGF.createBasicBlock("cleanup"); 690 Scope.setNormalBlock(Entry); 691 } 692 return Entry; 693 } 694 695 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF, 696 EHCleanupScope &Scope) { 697 assert(Scope.isEHCleanup()); 698 llvm::BasicBlock *Entry = Scope.getEHBlock(); 699 if (!Entry) { 700 Entry = CGF.createBasicBlock("eh.cleanup"); 701 Scope.setEHBlock(Entry); 702 } 703 return Entry; 704 } 705 706 /// Transitions the terminator of the given exit-block of a cleanup to 707 /// be a cleanup switch. 708 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 709 llvm::BasicBlock *Block) { 710 // If it's a branch, turn it into a switch whose default 711 // destination is its original target. 712 llvm::TerminatorInst *Term = Block->getTerminator(); 713 assert(Term && "can't transition block without terminator"); 714 715 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 716 assert(Br->isUnconditional()); 717 llvm::LoadInst *Load = 718 new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); 719 llvm::SwitchInst *Switch = 720 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 721 Br->eraseFromParent(); 722 return Switch; 723 } else { 724 return cast<llvm::SwitchInst>(Term); 725 } 726 } 727 728 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 729 /// is basically llvm::MergeBlockIntoPredecessor, except 730 /// simplified/optimized for the tighter constraints on cleanup blocks. 731 /// 732 /// Returns the new block, whatever it is. 733 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 734 llvm::BasicBlock *Entry) { 735 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 736 if (!Pred) return Entry; 737 738 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 739 if (!Br || Br->isConditional()) return Entry; 740 assert(Br->getSuccessor(0) == Entry); 741 742 // If we were previously inserting at the end of the cleanup entry 743 // block, we'll need to continue inserting at the end of the 744 // predecessor. 745 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 746 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 747 748 // Kill the branch. 749 Br->eraseFromParent(); 750 751 // Merge the blocks. 752 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 753 754 // Kill the entry block. 755 Entry->eraseFromParent(); 756 757 if (WasInsertBlock) 758 CGF.Builder.SetInsertPoint(Pred); 759 760 return Pred; 761 } 762 763 static void EmitCleanup(CodeGenFunction &CGF, 764 EHScopeStack::Cleanup *Fn, 765 bool ForEH) { 766 if (ForEH) CGF.EHStack.pushTerminate(); 767 Fn->Emit(CGF, ForEH); 768 if (ForEH) CGF.EHStack.popTerminate(); 769 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 770 } 771 772 /// Pops a cleanup block. If the block includes a normal cleanup, the 773 /// current insertion point is threaded through the cleanup, as are 774 /// any branch fixups on the cleanup. 775 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 776 assert(!EHStack.empty() && "cleanup stack is empty!"); 777 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 778 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 779 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 780 781 // Check whether we need an EH cleanup. This is only true if we've 782 // generated a lazy EH cleanup block. 783 bool RequiresEHCleanup = Scope.hasEHBranches(); 784 785 // Check the three conditions which might require a normal cleanup: 786 787 // - whether there are branch fix-ups through this cleanup 788 unsigned FixupDepth = Scope.getFixupDepth(); 789 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 790 791 // - whether there are branch-throughs or branch-afters 792 bool HasExistingBranches = Scope.hasBranches(); 793 794 // - whether there's a fallthrough 795 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 796 bool HasFallthrough = (FallthroughSource != 0); 797 798 bool RequiresNormalCleanup = false; 799 if (Scope.isNormalCleanup() && 800 (HasFixups || HasExistingBranches || HasFallthrough)) { 801 RequiresNormalCleanup = true; 802 } 803 804 // If we don't need the cleanup at all, we're done. 805 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 806 EHStack.popCleanup(); // safe because there are no fixups 807 assert(EHStack.getNumBranchFixups() == 0 || 808 EHStack.hasNormalCleanups()); 809 return; 810 } 811 812 // Copy the cleanup emission data out. Note that SmallVector 813 // guarantees maximal alignment for its buffer regardless of its 814 // type parameter. 815 llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer; 816 CleanupBuffer.reserve(Scope.getCleanupSize()); 817 memcpy(CleanupBuffer.data(), 818 Scope.getCleanupBuffer(), Scope.getCleanupSize()); 819 CleanupBuffer.set_size(Scope.getCleanupSize()); 820 EHScopeStack::Cleanup *Fn = 821 reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data()); 822 823 // We want to emit the EH cleanup after the normal cleanup, but go 824 // ahead and do the setup for the EH cleanup while the scope is still 825 // alive. 826 llvm::BasicBlock *EHEntry = 0; 827 llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend; 828 if (RequiresEHCleanup) { 829 EHEntry = CreateEHEntry(*this, Scope); 830 831 // Figure out the branch-through dest if necessary. 832 llvm::BasicBlock *EHBranchThroughDest = 0; 833 if (Scope.hasEHBranchThroughs()) { 834 assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end()); 835 EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup()); 836 EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S)); 837 } 838 839 // If we have exactly one branch-after and no branch-throughs, we 840 // can dispatch it without a switch. 841 if (!Scope.hasBranchThroughs() && 842 Scope.getNumEHBranchAfters() == 1) { 843 assert(!EHBranchThroughDest); 844 845 // TODO: remove the spurious eh.cleanup.dest stores if this edge 846 // never went through any switches. 847 llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0); 848 EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest)); 849 850 // Otherwise, if we have any branch-afters, we need a switch. 851 } else if (Scope.getNumEHBranchAfters()) { 852 // The default of the switch belongs to the branch-throughs if 853 // they exist. 854 llvm::BasicBlock *Default = 855 (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock()); 856 857 const unsigned SwitchCapacity = Scope.getNumEHBranchAfters(); 858 859 llvm::LoadInst *Load = 860 new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest"); 861 llvm::SwitchInst *Switch = 862 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 863 864 EHInstsToAppend.push_back(Load); 865 EHInstsToAppend.push_back(Switch); 866 867 for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I) 868 Switch->addCase(Scope.getEHBranchAfterIndex(I), 869 Scope.getEHBranchAfterBlock(I)); 870 871 // Otherwise, we have only branch-throughs; jump to the next EH 872 // cleanup. 873 } else { 874 assert(EHBranchThroughDest); 875 EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest)); 876 } 877 } 878 879 if (!RequiresNormalCleanup) { 880 EHStack.popCleanup(); 881 } else { 882 // As a kindof crazy internal case, branch-through fall-throughs 883 // leave the insertion point set to the end of the last cleanup. 884 bool HasPrebranchedFallthrough = 885 (HasFallthrough && FallthroughSource->getTerminator()); 886 assert(!HasPrebranchedFallthrough || 887 FallthroughSource->getTerminator()->getSuccessor(0) 888 == Scope.getNormalBlock()); 889 890 // If we have a fallthrough and no other need for the cleanup, 891 // emit it directly. 892 if (HasFallthrough && !HasPrebranchedFallthrough && 893 !HasFixups && !HasExistingBranches) { 894 895 // Fixups can cause us to optimistically create a normal block, 896 // only to later have no real uses for it. Just delete it in 897 // this case. 898 // TODO: we can potentially simplify all the uses after this. 899 if (Scope.getNormalBlock()) { 900 Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock()); 901 delete Scope.getNormalBlock(); 902 } 903 904 EHStack.popCleanup(); 905 906 EmitCleanup(*this, Fn, /*ForEH*/ false); 907 908 // Otherwise, the best approach is to thread everything through 909 // the cleanup block and then try to clean up after ourselves. 910 } else { 911 // Force the entry block to exist. 912 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 913 914 // If there's a fallthrough, we need to store the cleanup 915 // destination index. For fall-throughs this is always zero. 916 if (HasFallthrough && !HasPrebranchedFallthrough) 917 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 918 919 // Emit the entry block. This implicitly branches to it if we 920 // have fallthrough. All the fixups and existing branches should 921 // already be branched to it. 922 EmitBlock(NormalEntry); 923 924 bool HasEnclosingCleanups = 925 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 926 927 // Compute the branch-through dest if we need it: 928 // - if there are branch-throughs threaded through the scope 929 // - if fall-through is a branch-through 930 // - if there are fixups that will be optimistically forwarded 931 // to the enclosing cleanup 932 llvm::BasicBlock *BranchThroughDest = 0; 933 if (Scope.hasBranchThroughs() || 934 (HasFallthrough && FallthroughIsBranchThrough) || 935 (HasFixups && HasEnclosingCleanups)) { 936 assert(HasEnclosingCleanups); 937 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 938 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 939 } 940 941 llvm::BasicBlock *FallthroughDest = 0; 942 llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend; 943 944 // If there's exactly one branch-after and no other threads, 945 // we can route it without a switch. 946 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 947 Scope.getNumBranchAfters() == 1) { 948 assert(!BranchThroughDest); 949 950 // TODO: clean up the possibly dead stores to the cleanup dest slot. 951 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 952 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 953 954 // Build a switch-out if we need it: 955 // - if there are branch-afters threaded through the scope 956 // - if fall-through is a branch-after 957 // - if there are fixups that have nowhere left to go and 958 // so must be immediately resolved 959 } else if (Scope.getNumBranchAfters() || 960 (HasFallthrough && !FallthroughIsBranchThrough) || 961 (HasFixups && !HasEnclosingCleanups)) { 962 963 llvm::BasicBlock *Default = 964 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 965 966 // TODO: base this on the number of branch-afters and fixups 967 const unsigned SwitchCapacity = 10; 968 969 llvm::LoadInst *Load = 970 new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest"); 971 llvm::SwitchInst *Switch = 972 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 973 974 InstsToAppend.push_back(Load); 975 InstsToAppend.push_back(Switch); 976 977 // Branch-after fallthrough. 978 if (HasFallthrough && !FallthroughIsBranchThrough) { 979 FallthroughDest = createBasicBlock("cleanup.cont"); 980 Switch->addCase(Builder.getInt32(0), FallthroughDest); 981 } 982 983 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 984 Switch->addCase(Scope.getBranchAfterIndex(I), 985 Scope.getBranchAfterBlock(I)); 986 } 987 988 if (HasFixups && !HasEnclosingCleanups) 989 ResolveAllBranchFixups(Switch); 990 } else { 991 // We should always have a branch-through destination in this case. 992 assert(BranchThroughDest); 993 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 994 } 995 996 // We're finally ready to pop the cleanup. 997 EHStack.popCleanup(); 998 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 999 1000 EmitCleanup(*this, Fn, /*ForEH*/ false); 1001 1002 // Append the prepared cleanup prologue from above. 1003 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 1004 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 1005 NormalExit->getInstList().push_back(InstsToAppend[I]); 1006 1007 // Optimistically hope that any fixups will continue falling through. 1008 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1009 I < E; ++I) { 1010 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 1011 if (!Fixup.Destination) continue; 1012 if (!Fixup.OptimisticBranchBlock) { 1013 new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex), 1014 getNormalCleanupDestSlot(), 1015 Fixup.InitialBranch); 1016 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 1017 } 1018 Fixup.OptimisticBranchBlock = NormalExit; 1019 } 1020 1021 if (FallthroughDest) 1022 EmitBlock(FallthroughDest); 1023 else if (!HasFallthrough) 1024 Builder.ClearInsertionPoint(); 1025 1026 // Check whether we can merge NormalEntry into a single predecessor. 1027 // This might invalidate (non-IR) pointers to NormalEntry. 1028 llvm::BasicBlock *NewNormalEntry = 1029 SimplifyCleanupEntry(*this, NormalEntry); 1030 1031 // If it did invalidate those pointers, and NormalEntry was the same 1032 // as NormalExit, go back and patch up the fixups. 1033 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 1034 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1035 I < E; ++I) 1036 CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 1037 } 1038 } 1039 1040 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 1041 1042 // Emit the EH cleanup if required. 1043 if (RequiresEHCleanup) { 1044 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1045 1046 EmitBlock(EHEntry); 1047 EmitCleanup(*this, Fn, /*ForEH*/ true); 1048 1049 // Append the prepared cleanup prologue from above. 1050 llvm::BasicBlock *EHExit = Builder.GetInsertBlock(); 1051 for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I) 1052 EHExit->getInstList().push_back(EHInstsToAppend[I]); 1053 1054 Builder.restoreIP(SavedIP); 1055 1056 SimplifyCleanupEntry(*this, EHEntry); 1057 } 1058 } 1059 1060 /// Terminate the current block by emitting a branch which might leave 1061 /// the current cleanup-protected scope. The target scope may not yet 1062 /// be known, in which case this will require a fixup. 1063 /// 1064 /// As a side-effect, this method clears the insertion point. 1065 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 1066 if (!HaveInsertPoint()) 1067 return; 1068 1069 // Create the branch. 1070 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1071 1072 // If we're not in a cleanup scope, or if the destination scope is 1073 // the current normal-cleanup scope, we don't need to worry about 1074 // fixups. 1075 if (!EHStack.hasNormalCleanups() || 1076 Dest.getScopeDepth() == EHStack.getInnermostNormalCleanup()) { 1077 Builder.ClearInsertionPoint(); 1078 return; 1079 } 1080 1081 // If we can't resolve the destination cleanup scope, just add this 1082 // to the current cleanup scope as a branch fixup. 1083 if (!Dest.getScopeDepth().isValid()) { 1084 BranchFixup &Fixup = EHStack.addBranchFixup(); 1085 Fixup.Destination = Dest.getBlock(); 1086 Fixup.DestinationIndex = Dest.getDestIndex(); 1087 Fixup.InitialBranch = BI; 1088 Fixup.OptimisticBranchBlock = 0; 1089 1090 Builder.ClearInsertionPoint(); 1091 return; 1092 } 1093 1094 // Otherwise, thread through all the normal cleanups in scope. 1095 1096 // Store the index at the start. 1097 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1098 new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI); 1099 1100 // Adjust BI to point to the first cleanup block. 1101 { 1102 EHCleanupScope &Scope = 1103 cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostNormalCleanup())); 1104 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 1105 } 1106 1107 // Add this destination to all the scopes involved. 1108 EHScopeStack::stable_iterator I = EHStack.getInnermostNormalCleanup(); 1109 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 1110 if (E.strictlyEncloses(I)) { 1111 while (true) { 1112 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1113 assert(Scope.isNormalCleanup()); 1114 I = Scope.getEnclosingNormalCleanup(); 1115 1116 // If this is the last cleanup we're propagating through, tell it 1117 // that there's a resolved jump moving through it. 1118 if (!E.strictlyEncloses(I)) { 1119 Scope.addBranchAfter(Index, Dest.getBlock()); 1120 break; 1121 } 1122 1123 // Otherwise, tell the scope that there's a jump propoagating 1124 // through it. If this isn't new information, all the rest of 1125 // the work has been done before. 1126 if (!Scope.addBranchThrough(Dest.getBlock())) 1127 break; 1128 } 1129 } 1130 1131 Builder.ClearInsertionPoint(); 1132 } 1133 1134 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) { 1135 // We should never get invalid scope depths for an UnwindDest; that 1136 // implies that the destination wasn't set up correctly. 1137 assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?"); 1138 1139 if (!HaveInsertPoint()) 1140 return; 1141 1142 // Create the branch. 1143 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1144 1145 // If the destination is in the same EH cleanup scope as us, we 1146 // don't need to thread through anything. 1147 if (Dest.getScopeDepth() == EHStack.getInnermostEHCleanup()) { 1148 Builder.ClearInsertionPoint(); 1149 return; 1150 } 1151 assert(EHStack.hasEHCleanups()); 1152 1153 // Store the index at the start. 1154 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1155 new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI); 1156 1157 // Adjust BI to point to the first cleanup block. 1158 { 1159 EHCleanupScope &Scope = 1160 cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostEHCleanup())); 1161 BI->setSuccessor(0, CreateEHEntry(*this, Scope)); 1162 } 1163 1164 // Add this destination to all the scopes involved. 1165 for (EHScopeStack::stable_iterator 1166 I = EHStack.getInnermostEHCleanup(), 1167 E = Dest.getScopeDepth(); ; ) { 1168 assert(E.strictlyEncloses(I)); 1169 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1170 assert(Scope.isEHCleanup()); 1171 I = Scope.getEnclosingEHCleanup(); 1172 1173 // If this is the last cleanup we're propagating through, add this 1174 // as a branch-after. 1175 if (I == E) { 1176 Scope.addEHBranchAfter(Index, Dest.getBlock()); 1177 break; 1178 } 1179 1180 // Otherwise, add it as a branch-through. If this isn't new 1181 // information, all the rest of the work has been done before. 1182 if (!Scope.addEHBranchThrough(Dest.getBlock())) 1183 break; 1184 } 1185 1186 Builder.ClearInsertionPoint(); 1187 } 1188 1189 /// All the branch fixups on the EH stack have propagated out past the 1190 /// outermost normal cleanup; resolve them all by adding cases to the 1191 /// given switch instruction. 1192 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) { 1193 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 1194 1195 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 1196 // Skip this fixup if its destination isn't set or if we've 1197 // already treated it. 1198 BranchFixup &Fixup = EHStack.getBranchFixup(I); 1199 if (Fixup.Destination == 0) continue; 1200 if (!CasesAdded.insert(Fixup.Destination)) continue; 1201 1202 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), 1203 Fixup.Destination); 1204 } 1205 1206 EHStack.clearFixups(); 1207 } 1208 1209 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 1210 assert(Block && "resolving a null target block"); 1211 if (!EHStack.getNumBranchFixups()) return; 1212 1213 assert(EHStack.hasNormalCleanups() && 1214 "branch fixups exist with no normal cleanups on stack"); 1215 1216 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 1217 bool ResolvedAny = false; 1218 1219 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 1220 // Skip this fixup if its destination doesn't match. 1221 BranchFixup &Fixup = EHStack.getBranchFixup(I); 1222 if (Fixup.Destination != Block) continue; 1223 1224 Fixup.Destination = 0; 1225 ResolvedAny = true; 1226 1227 // If it doesn't have an optimistic branch block, LatestBranch is 1228 // already pointing to the right place. 1229 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 1230 if (!BranchBB) 1231 continue; 1232 1233 // Don't process the same optimistic branch block twice. 1234 if (!ModifiedOptimisticBlocks.insert(BranchBB)) 1235 continue; 1236 1237 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 1238 1239 // Add a case to the switch. 1240 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 1241 } 1242 1243 if (ResolvedAny) 1244 EHStack.popNullFixups(); 1245 } 1246 1247 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() { 1248 if (!NormalCleanupDest) 1249 NormalCleanupDest = 1250 CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 1251 return NormalCleanupDest; 1252 } 1253 1254 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() { 1255 if (!EHCleanupDest) 1256 EHCleanupDest = 1257 CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot"); 1258 return EHCleanupDest; 1259 } 1260