1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGException.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 32 llvm::SwitchInst *Switch, 33 llvm::BasicBlock *CleanupEntry); 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 36 : BlockFunction(cgm, *this, Builder), CGM(cgm), 37 Target(CGM.getContext().Target), 38 Builder(cgm.getModule().getContext()), 39 NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1), 40 ExceptionSlot(0), DebugInfo(0), IndirectBranch(0), 41 SwitchInsn(0), CaseRangeBlock(0), 42 DidCallStackSave(false), UnreachableBlock(0), 43 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 44 ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0), 45 TrapBB(0) { 46 47 // Get some frequently used types. 48 LLVMPointerWidth = Target.getPointerWidth(0); 49 llvm::LLVMContext &LLVMContext = CGM.getLLVMContext(); 50 IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth); 51 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 52 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 53 54 Exceptions = getContext().getLangOptions().Exceptions; 55 CatchUndefined = getContext().getLangOptions().CatchUndefined; 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 } 58 59 ASTContext &CodeGenFunction::getContext() const { 60 return CGM.getContext(); 61 } 62 63 64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 65 return CGM.getTypes().ConvertTypeForMem(T); 66 } 67 68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 69 return CGM.getTypes().ConvertType(T); 70 } 71 72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 73 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 74 T->isObjCObjectType(); 75 } 76 77 void CodeGenFunction::EmitReturnBlock() { 78 // For cleanliness, we try to avoid emitting the return block for 79 // simple cases. 80 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 81 82 if (CurBB) { 83 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 84 85 // We have a valid insert point, reuse it if it is empty or there are no 86 // explicit jumps to the return block. 87 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 88 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 89 delete ReturnBlock.getBlock(); 90 } else 91 EmitBlock(ReturnBlock.getBlock()); 92 return; 93 } 94 95 // Otherwise, if the return block is the target of a single direct 96 // branch then we can just put the code in that block instead. This 97 // cleans up functions which started with a unified return block. 98 if (ReturnBlock.getBlock()->hasOneUse()) { 99 llvm::BranchInst *BI = 100 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 101 if (BI && BI->isUnconditional() && 102 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 103 // Reset insertion point and delete the branch. 104 Builder.SetInsertPoint(BI->getParent()); 105 BI->eraseFromParent(); 106 delete ReturnBlock.getBlock(); 107 return; 108 } 109 } 110 111 // FIXME: We are at an unreachable point, there is no reason to emit the block 112 // unless it has uses. However, we still need a place to put the debug 113 // region.end for now. 114 115 EmitBlock(ReturnBlock.getBlock()); 116 } 117 118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 119 if (!BB) return; 120 if (!BB->use_empty()) 121 return CGF.CurFn->getBasicBlockList().push_back(BB); 122 delete BB; 123 } 124 125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 126 assert(BreakContinueStack.empty() && 127 "mismatched push/pop in break/continue stack!"); 128 129 // Emit function epilog (to return). 130 EmitReturnBlock(); 131 132 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 133 134 // Emit debug descriptor for function end. 135 if (CGDebugInfo *DI = getDebugInfo()) { 136 DI->setLocation(EndLoc); 137 DI->EmitFunctionEnd(Builder); 138 } 139 140 EmitFunctionEpilog(*CurFnInfo); 141 EmitEndEHSpec(CurCodeDecl); 142 143 assert(EHStack.empty() && 144 "did not remove all scopes from cleanup stack!"); 145 146 // If someone did an indirect goto, emit the indirect goto block at the end of 147 // the function. 148 if (IndirectBranch) { 149 EmitBlock(IndirectBranch->getParent()); 150 Builder.ClearInsertionPoint(); 151 } 152 153 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 154 llvm::Instruction *Ptr = AllocaInsertPt; 155 AllocaInsertPt = 0; 156 Ptr->eraseFromParent(); 157 158 // If someone took the address of a label but never did an indirect goto, we 159 // made a zero entry PHI node, which is illegal, zap it now. 160 if (IndirectBranch) { 161 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 162 if (PN->getNumIncomingValues() == 0) { 163 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 164 PN->eraseFromParent(); 165 } 166 } 167 168 EmitIfUsed(*this, RethrowBlock.getBlock()); 169 EmitIfUsed(*this, TerminateLandingPad); 170 EmitIfUsed(*this, TerminateHandler); 171 EmitIfUsed(*this, UnreachableBlock); 172 173 if (CGM.getCodeGenOpts().EmitDeclMetadata) 174 EmitDeclMetadata(); 175 } 176 177 /// ShouldInstrumentFunction - Return true if the current function should be 178 /// instrumented with __cyg_profile_func_* calls 179 bool CodeGenFunction::ShouldInstrumentFunction() { 180 if (!CGM.getCodeGenOpts().InstrumentFunctions) 181 return false; 182 if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 183 return false; 184 return true; 185 } 186 187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 188 /// instrumentation function with the current function and the call site, if 189 /// function instrumentation is enabled. 190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 191 if (!ShouldInstrumentFunction()) 192 return; 193 194 const llvm::PointerType *PointerTy; 195 const llvm::FunctionType *FunctionTy; 196 std::vector<const llvm::Type*> ProfileFuncArgs; 197 198 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 199 PointerTy = llvm::Type::getInt8PtrTy(VMContext); 200 ProfileFuncArgs.push_back(PointerTy); 201 ProfileFuncArgs.push_back(PointerTy); 202 FunctionTy = llvm::FunctionType::get( 203 llvm::Type::getVoidTy(VMContext), 204 ProfileFuncArgs, false); 205 206 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 207 llvm::CallInst *CallSite = Builder.CreateCall( 208 CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0), 209 llvm::ConstantInt::get(Int32Ty, 0), 210 "callsite"); 211 212 Builder.CreateCall2(F, 213 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 214 CallSite); 215 } 216 217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 218 llvm::Function *Fn, 219 const FunctionArgList &Args, 220 SourceLocation StartLoc) { 221 const Decl *D = GD.getDecl(); 222 223 DidCallStackSave = false; 224 CurCodeDecl = CurFuncDecl = D; 225 FnRetTy = RetTy; 226 CurFn = Fn; 227 assert(CurFn->isDeclaration() && "Function already has body?"); 228 229 // Pass inline keyword to optimizer if it appears explicitly on any 230 // declaration. 231 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 232 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 233 RE = FD->redecls_end(); RI != RE; ++RI) 234 if (RI->isInlineSpecified()) { 235 Fn->addFnAttr(llvm::Attribute::InlineHint); 236 break; 237 } 238 239 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 240 241 // Create a marker to make it easy to insert allocas into the entryblock 242 // later. Don't create this with the builder, because we don't want it 243 // folded. 244 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 245 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 246 if (Builder.isNamePreserving()) 247 AllocaInsertPt->setName("allocapt"); 248 249 ReturnBlock = getJumpDestInCurrentScope("return"); 250 251 Builder.SetInsertPoint(EntryBB); 252 253 // Emit subprogram debug descriptor. 254 if (CGDebugInfo *DI = getDebugInfo()) { 255 // FIXME: what is going on here and why does it ignore all these 256 // interesting type properties? 257 QualType FnType = 258 getContext().getFunctionType(RetTy, 0, 0, 259 FunctionProtoType::ExtProtoInfo()); 260 261 DI->setLocation(StartLoc); 262 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 263 } 264 265 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 266 267 // FIXME: Leaked. 268 // CC info is ignored, hopefully? 269 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, 270 FunctionType::ExtInfo()); 271 272 if (RetTy->isVoidType()) { 273 // Void type; nothing to return. 274 ReturnValue = 0; 275 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 276 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 277 // Indirect aggregate return; emit returned value directly into sret slot. 278 // This reduces code size, and affects correctness in C++. 279 ReturnValue = CurFn->arg_begin(); 280 } else { 281 ReturnValue = CreateIRTemp(RetTy, "retval"); 282 } 283 284 EmitStartEHSpec(CurCodeDecl); 285 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 286 287 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 288 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 289 290 // If any of the arguments have a variably modified type, make sure to 291 // emit the type size. 292 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 293 i != e; ++i) { 294 QualType Ty = i->second; 295 296 if (Ty->isVariablyModifiedType()) 297 EmitVLASize(Ty); 298 } 299 } 300 301 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 302 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 303 assert(FD->getBody()); 304 EmitStmt(FD->getBody()); 305 } 306 307 /// Tries to mark the given function nounwind based on the 308 /// non-existence of any throwing calls within it. We believe this is 309 /// lightweight enough to do at -O0. 310 static void TryMarkNoThrow(llvm::Function *F) { 311 // LLVM treats 'nounwind' on a function as part of the type, so we 312 // can't do this on functions that can be overwritten. 313 if (F->mayBeOverridden()) return; 314 315 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 316 for (llvm::BasicBlock::iterator 317 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 318 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) 319 if (!Call->doesNotThrow()) 320 return; 321 F->setDoesNotThrow(true); 322 } 323 324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { 325 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 326 327 // Check if we should generate debug info for this function. 328 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 329 DebugInfo = CGM.getDebugInfo(); 330 331 FunctionArgList Args; 332 QualType ResTy = FD->getResultType(); 333 334 CurGD = GD; 335 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 336 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 337 338 if (FD->getNumParams()) { 339 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 340 assert(FProto && "Function def must have prototype!"); 341 342 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 343 Args.push_back(std::make_pair(FD->getParamDecl(i), 344 FProto->getArgType(i))); 345 } 346 347 SourceRange BodyRange; 348 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 349 350 // Emit the standard function prologue. 351 StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin()); 352 353 // Generate the body of the function. 354 if (isa<CXXDestructorDecl>(FD)) 355 EmitDestructorBody(Args); 356 else if (isa<CXXConstructorDecl>(FD)) 357 EmitConstructorBody(Args); 358 else 359 EmitFunctionBody(Args); 360 361 // Emit the standard function epilogue. 362 FinishFunction(BodyRange.getEnd()); 363 364 // If we haven't marked the function nothrow through other means, do 365 // a quick pass now to see if we can. 366 if (!CurFn->doesNotThrow()) 367 TryMarkNoThrow(CurFn); 368 } 369 370 /// ContainsLabel - Return true if the statement contains a label in it. If 371 /// this statement is not executed normally, it not containing a label means 372 /// that we can just remove the code. 373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 374 // Null statement, not a label! 375 if (S == 0) return false; 376 377 // If this is a label, we have to emit the code, consider something like: 378 // if (0) { ... foo: bar(); } goto foo; 379 if (isa<LabelStmt>(S)) 380 return true; 381 382 // If this is a case/default statement, and we haven't seen a switch, we have 383 // to emit the code. 384 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 385 return true; 386 387 // If this is a switch statement, we want to ignore cases below it. 388 if (isa<SwitchStmt>(S)) 389 IgnoreCaseStmts = true; 390 391 // Scan subexpressions for verboten labels. 392 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 393 I != E; ++I) 394 if (ContainsLabel(*I, IgnoreCaseStmts)) 395 return true; 396 397 return false; 398 } 399 400 401 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 402 /// a constant, or if it does but contains a label, return 0. If it constant 403 /// folds to 'true' and does not contain a label, return 1, if it constant folds 404 /// to 'false' and does not contain a label, return -1. 405 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 406 // FIXME: Rename and handle conversion of other evaluatable things 407 // to bool. 408 Expr::EvalResult Result; 409 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 410 Result.HasSideEffects) 411 return 0; // Not foldable, not integer or not fully evaluatable. 412 413 if (CodeGenFunction::ContainsLabel(Cond)) 414 return 0; // Contains a label. 415 416 return Result.Val.getInt().getBoolValue() ? 1 : -1; 417 } 418 419 420 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 421 /// statement) to the specified blocks. Based on the condition, this might try 422 /// to simplify the codegen of the conditional based on the branch. 423 /// 424 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 425 llvm::BasicBlock *TrueBlock, 426 llvm::BasicBlock *FalseBlock) { 427 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 428 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 429 430 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 431 // Handle X && Y in a condition. 432 if (CondBOp->getOpcode() == BO_LAnd) { 433 // If we have "1 && X", simplify the code. "0 && X" would have constant 434 // folded if the case was simple enough. 435 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 436 // br(1 && X) -> br(X). 437 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 438 } 439 440 // If we have "X && 1", simplify the code to use an uncond branch. 441 // "X && 0" would have been constant folded to 0. 442 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 443 // br(X && 1) -> br(X). 444 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 445 } 446 447 // Emit the LHS as a conditional. If the LHS conditional is false, we 448 // want to jump to the FalseBlock. 449 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 450 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 451 EmitBlock(LHSTrue); 452 453 // Any temporaries created here are conditional. 454 BeginConditionalBranch(); 455 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 456 EndConditionalBranch(); 457 458 return; 459 } else if (CondBOp->getOpcode() == BO_LOr) { 460 // If we have "0 || X", simplify the code. "1 || X" would have constant 461 // folded if the case was simple enough. 462 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 463 // br(0 || X) -> br(X). 464 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 465 } 466 467 // If we have "X || 0", simplify the code to use an uncond branch. 468 // "X || 1" would have been constant folded to 1. 469 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 470 // br(X || 0) -> br(X). 471 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 472 } 473 474 // Emit the LHS as a conditional. If the LHS conditional is true, we 475 // want to jump to the TrueBlock. 476 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 477 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 478 EmitBlock(LHSFalse); 479 480 // Any temporaries created here are conditional. 481 BeginConditionalBranch(); 482 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 483 EndConditionalBranch(); 484 485 return; 486 } 487 } 488 489 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 490 // br(!x, t, f) -> br(x, f, t) 491 if (CondUOp->getOpcode() == UO_LNot) 492 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 493 } 494 495 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 496 // Handle ?: operator. 497 498 // Just ignore GNU ?: extension. 499 if (CondOp->getLHS()) { 500 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 501 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 502 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 503 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 504 EmitBlock(LHSBlock); 505 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 506 EmitBlock(RHSBlock); 507 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 508 return; 509 } 510 } 511 512 // Emit the code with the fully general case. 513 llvm::Value *CondV = EvaluateExprAsBool(Cond); 514 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 515 } 516 517 /// ErrorUnsupported - Print out an error that codegen doesn't support the 518 /// specified stmt yet. 519 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 520 bool OmitOnError) { 521 CGM.ErrorUnsupported(S, Type, OmitOnError); 522 } 523 524 void 525 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 526 // Ignore empty classes in C++. 527 if (getContext().getLangOptions().CPlusPlus) { 528 if (const RecordType *RT = Ty->getAs<RecordType>()) { 529 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 530 return; 531 } 532 } 533 534 // Cast the dest ptr to the appropriate i8 pointer type. 535 unsigned DestAS = 536 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 537 const llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 538 if (DestPtr->getType() != BP) 539 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 540 541 // Get size and alignment info for this aggregate. 542 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 543 uint64_t Size = TypeInfo.first / 8; 544 unsigned Align = TypeInfo.second / 8; 545 546 // Don't bother emitting a zero-byte memset. 547 if (Size == 0) 548 return; 549 550 llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size); 551 552 // If the type contains a pointer to data member we can't memset it to zero. 553 // Instead, create a null constant and copy it to the destination. 554 if (!CGM.getTypes().isZeroInitializable(Ty)) { 555 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 556 557 llvm::GlobalVariable *NullVariable = 558 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 559 /*isConstant=*/true, 560 llvm::GlobalVariable::PrivateLinkage, 561 NullConstant, llvm::Twine()); 562 llvm::Value *SrcPtr = 563 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 564 565 // FIXME: variable-size types? 566 567 // Get and call the appropriate llvm.memcpy overload. 568 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false); 569 return; 570 } 571 572 // Otherwise, just memset the whole thing to zero. This is legal 573 // because in LLVM, all default initializers (other than the ones we just 574 // handled above) are guaranteed to have a bit pattern of all zeros. 575 576 // FIXME: Handle variable sized types. 577 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false); 578 } 579 580 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { 581 // Make sure that there is a block for the indirect goto. 582 if (IndirectBranch == 0) 583 GetIndirectGotoBlock(); 584 585 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 586 587 // Make sure the indirect branch includes all of the address-taken blocks. 588 IndirectBranch->addDestination(BB); 589 return llvm::BlockAddress::get(CurFn, BB); 590 } 591 592 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 593 // If we already made the indirect branch for indirect goto, return its block. 594 if (IndirectBranch) return IndirectBranch->getParent(); 595 596 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 597 598 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 599 600 // Create the PHI node that indirect gotos will add entries to. 601 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); 602 603 // Create the indirect branch instruction. 604 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 605 return IndirectBranch->getParent(); 606 } 607 608 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 609 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 610 611 assert(SizeEntry && "Did not emit size for type"); 612 return SizeEntry; 613 } 614 615 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 616 assert(Ty->isVariablyModifiedType() && 617 "Must pass variably modified type to EmitVLASizes!"); 618 619 EnsureInsertPoint(); 620 621 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 622 // unknown size indication requires no size computation. 623 if (!VAT->getSizeExpr()) 624 return 0; 625 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 626 627 if (!SizeEntry) { 628 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 629 630 // Get the element size; 631 QualType ElemTy = VAT->getElementType(); 632 llvm::Value *ElemSize; 633 if (ElemTy->isVariableArrayType()) 634 ElemSize = EmitVLASize(ElemTy); 635 else 636 ElemSize = llvm::ConstantInt::get(SizeTy, 637 getContext().getTypeSizeInChars(ElemTy).getQuantity()); 638 639 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 640 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 641 642 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 643 } 644 645 return SizeEntry; 646 } 647 648 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 649 EmitVLASize(AT->getElementType()); 650 return 0; 651 } 652 653 if (const ParenType *PT = dyn_cast<ParenType>(Ty)) { 654 EmitVLASize(PT->getInnerType()); 655 return 0; 656 } 657 658 const PointerType *PT = Ty->getAs<PointerType>(); 659 assert(PT && "unknown VM type!"); 660 EmitVLASize(PT->getPointeeType()); 661 return 0; 662 } 663 664 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 665 if (getContext().getBuiltinVaListType()->isArrayType()) 666 return EmitScalarExpr(E); 667 return EmitLValue(E).getAddress(); 668 } 669 670 /// Pops cleanup blocks until the given savepoint is reached. 671 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { 672 assert(Old.isValid()); 673 674 while (EHStack.stable_begin() != Old) { 675 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 676 677 // As long as Old strictly encloses the scope's enclosing normal 678 // cleanup, we're going to emit another normal cleanup which 679 // fallthrough can propagate through. 680 bool FallThroughIsBranchThrough = 681 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 682 683 PopCleanupBlock(FallThroughIsBranchThrough); 684 } 685 } 686 687 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 688 EHCleanupScope &Scope) { 689 assert(Scope.isNormalCleanup()); 690 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 691 if (!Entry) { 692 Entry = CGF.createBasicBlock("cleanup"); 693 Scope.setNormalBlock(Entry); 694 } 695 return Entry; 696 } 697 698 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF, 699 EHCleanupScope &Scope) { 700 assert(Scope.isEHCleanup()); 701 llvm::BasicBlock *Entry = Scope.getEHBlock(); 702 if (!Entry) { 703 Entry = CGF.createBasicBlock("eh.cleanup"); 704 Scope.setEHBlock(Entry); 705 } 706 return Entry; 707 } 708 709 /// Transitions the terminator of the given exit-block of a cleanup to 710 /// be a cleanup switch. 711 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 712 llvm::BasicBlock *Block) { 713 // If it's a branch, turn it into a switch whose default 714 // destination is its original target. 715 llvm::TerminatorInst *Term = Block->getTerminator(); 716 assert(Term && "can't transition block without terminator"); 717 718 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 719 assert(Br->isUnconditional()); 720 llvm::LoadInst *Load = 721 new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); 722 llvm::SwitchInst *Switch = 723 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 724 Br->eraseFromParent(); 725 return Switch; 726 } else { 727 return cast<llvm::SwitchInst>(Term); 728 } 729 } 730 731 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 732 /// is basically llvm::MergeBlockIntoPredecessor, except 733 /// simplified/optimized for the tighter constraints on cleanup blocks. 734 /// 735 /// Returns the new block, whatever it is. 736 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 737 llvm::BasicBlock *Entry) { 738 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 739 if (!Pred) return Entry; 740 741 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 742 if (!Br || Br->isConditional()) return Entry; 743 assert(Br->getSuccessor(0) == Entry); 744 745 // If we were previously inserting at the end of the cleanup entry 746 // block, we'll need to continue inserting at the end of the 747 // predecessor. 748 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 749 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 750 751 // Kill the branch. 752 Br->eraseFromParent(); 753 754 // Merge the blocks. 755 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 756 757 // Kill the entry block. 758 Entry->eraseFromParent(); 759 760 if (WasInsertBlock) 761 CGF.Builder.SetInsertPoint(Pred); 762 763 return Pred; 764 } 765 766 static void EmitCleanup(CodeGenFunction &CGF, 767 EHScopeStack::Cleanup *Fn, 768 bool ForEH, 769 llvm::Value *ActiveFlag) { 770 // EH cleanups always occur within a terminate scope. 771 if (ForEH) CGF.EHStack.pushTerminate(); 772 773 // If there's an active flag, load it and skip the cleanup if it's 774 // false. 775 llvm::BasicBlock *ContBB = 0; 776 if (ActiveFlag) { 777 ContBB = CGF.createBasicBlock("cleanup.done"); 778 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); 779 llvm::Value *IsActive 780 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); 781 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); 782 CGF.EmitBlock(CleanupBB); 783 } 784 785 // Ask the cleanup to emit itself. 786 Fn->Emit(CGF, ForEH); 787 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 788 789 // Emit the continuation block if there was an active flag. 790 if (ActiveFlag) 791 CGF.EmitBlock(ContBB); 792 793 // Leave the terminate scope. 794 if (ForEH) CGF.EHStack.popTerminate(); 795 } 796 797 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, 798 llvm::BasicBlock *From, 799 llvm::BasicBlock *To) { 800 // Exit is the exit block of a cleanup, so it always terminates in 801 // an unconditional branch or a switch. 802 llvm::TerminatorInst *Term = Exit->getTerminator(); 803 804 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 805 assert(Br->isUnconditional() && Br->getSuccessor(0) == From); 806 Br->setSuccessor(0, To); 807 } else { 808 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); 809 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) 810 if (Switch->getSuccessor(I) == From) 811 Switch->setSuccessor(I, To); 812 } 813 } 814 815 /// Pops a cleanup block. If the block includes a normal cleanup, the 816 /// current insertion point is threaded through the cleanup, as are 817 /// any branch fixups on the cleanup. 818 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 819 assert(!EHStack.empty() && "cleanup stack is empty!"); 820 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 821 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 822 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 823 824 // Remember activation information. 825 bool IsActive = Scope.isActive(); 826 llvm::Value *NormalActiveFlag = 827 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0; 828 llvm::Value *EHActiveFlag = 829 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0; 830 831 // Check whether we need an EH cleanup. This is only true if we've 832 // generated a lazy EH cleanup block. 833 bool RequiresEHCleanup = Scope.hasEHBranches(); 834 835 // Check the three conditions which might require a normal cleanup: 836 837 // - whether there are branch fix-ups through this cleanup 838 unsigned FixupDepth = Scope.getFixupDepth(); 839 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 840 841 // - whether there are branch-throughs or branch-afters 842 bool HasExistingBranches = Scope.hasBranches(); 843 844 // - whether there's a fallthrough 845 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 846 bool HasFallthrough = (FallthroughSource != 0 && IsActive); 847 848 // Branch-through fall-throughs leave the insertion point set to the 849 // end of the last cleanup, which points to the current scope. The 850 // rest of IR gen doesn't need to worry about this; it only happens 851 // during the execution of PopCleanupBlocks(). 852 bool HasPrebranchedFallthrough = 853 (FallthroughSource && FallthroughSource->getTerminator()); 854 855 // If this is a normal cleanup, then having a prebranched 856 // fallthrough implies that the fallthrough source unconditionally 857 // jumps here. 858 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || 859 (Scope.getNormalBlock() && 860 FallthroughSource->getTerminator()->getSuccessor(0) 861 == Scope.getNormalBlock())); 862 863 bool RequiresNormalCleanup = false; 864 if (Scope.isNormalCleanup() && 865 (HasFixups || HasExistingBranches || HasFallthrough)) { 866 RequiresNormalCleanup = true; 867 } 868 869 // Even if we don't need the normal cleanup, we might still have 870 // prebranched fallthrough to worry about. 871 if (Scope.isNormalCleanup() && !RequiresNormalCleanup && 872 HasPrebranchedFallthrough) { 873 assert(!IsActive); 874 875 llvm::BasicBlock *NormalEntry = Scope.getNormalBlock(); 876 877 // If we're branching through this cleanup, just forward the 878 // prebranched fallthrough to the next cleanup, leaving the insert 879 // point in the old block. 880 if (FallthroughIsBranchThrough) { 881 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 882 llvm::BasicBlock *EnclosingEntry = 883 CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 884 885 ForwardPrebranchedFallthrough(FallthroughSource, 886 NormalEntry, EnclosingEntry); 887 assert(NormalEntry->use_empty() && 888 "uses of entry remain after forwarding?"); 889 delete NormalEntry; 890 891 // Otherwise, we're branching out; just emit the next block. 892 } else { 893 EmitBlock(NormalEntry); 894 SimplifyCleanupEntry(*this, NormalEntry); 895 } 896 } 897 898 // If we don't need the cleanup at all, we're done. 899 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 900 EHStack.popCleanup(); // safe because there are no fixups 901 assert(EHStack.getNumBranchFixups() == 0 || 902 EHStack.hasNormalCleanups()); 903 return; 904 } 905 906 // Copy the cleanup emission data out. Note that SmallVector 907 // guarantees maximal alignment for its buffer regardless of its 908 // type parameter. 909 llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer; 910 CleanupBuffer.reserve(Scope.getCleanupSize()); 911 memcpy(CleanupBuffer.data(), 912 Scope.getCleanupBuffer(), Scope.getCleanupSize()); 913 CleanupBuffer.set_size(Scope.getCleanupSize()); 914 EHScopeStack::Cleanup *Fn = 915 reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data()); 916 917 // We want to emit the EH cleanup after the normal cleanup, but go 918 // ahead and do the setup for the EH cleanup while the scope is still 919 // alive. 920 llvm::BasicBlock *EHEntry = 0; 921 llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend; 922 if (RequiresEHCleanup) { 923 EHEntry = CreateEHEntry(*this, Scope); 924 925 // Figure out the branch-through dest if necessary. 926 llvm::BasicBlock *EHBranchThroughDest = 0; 927 if (Scope.hasEHBranchThroughs()) { 928 assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end()); 929 EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup()); 930 EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S)); 931 } 932 933 // If we have exactly one branch-after and no branch-throughs, we 934 // can dispatch it without a switch. 935 if (!Scope.hasEHBranchThroughs() && 936 Scope.getNumEHBranchAfters() == 1) { 937 assert(!EHBranchThroughDest); 938 939 // TODO: remove the spurious eh.cleanup.dest stores if this edge 940 // never went through any switches. 941 llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0); 942 EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest)); 943 944 // Otherwise, if we have any branch-afters, we need a switch. 945 } else if (Scope.getNumEHBranchAfters()) { 946 // The default of the switch belongs to the branch-throughs if 947 // they exist. 948 llvm::BasicBlock *Default = 949 (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock()); 950 951 const unsigned SwitchCapacity = Scope.getNumEHBranchAfters(); 952 953 llvm::LoadInst *Load = 954 new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest"); 955 llvm::SwitchInst *Switch = 956 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 957 958 EHInstsToAppend.push_back(Load); 959 EHInstsToAppend.push_back(Switch); 960 961 for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I) 962 Switch->addCase(Scope.getEHBranchAfterIndex(I), 963 Scope.getEHBranchAfterBlock(I)); 964 965 // Otherwise, we have only branch-throughs; jump to the next EH 966 // cleanup. 967 } else { 968 assert(EHBranchThroughDest); 969 EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest)); 970 } 971 } 972 973 if (!RequiresNormalCleanup) { 974 EHStack.popCleanup(); 975 } else { 976 // If we have a fallthrough and no other need for the cleanup, 977 // emit it directly. 978 if (HasFallthrough && !HasPrebranchedFallthrough && 979 !HasFixups && !HasExistingBranches) { 980 981 // Fixups can cause us to optimistically create a normal block, 982 // only to later have no real uses for it. Just delete it in 983 // this case. 984 // TODO: we can potentially simplify all the uses after this. 985 if (Scope.getNormalBlock()) { 986 Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock()); 987 delete Scope.getNormalBlock(); 988 } 989 990 EHStack.popCleanup(); 991 992 EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); 993 994 // Otherwise, the best approach is to thread everything through 995 // the cleanup block and then try to clean up after ourselves. 996 } else { 997 // Force the entry block to exist. 998 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 999 1000 // I. Set up the fallthrough edge in. 1001 1002 // If there's a fallthrough, we need to store the cleanup 1003 // destination index. For fall-throughs this is always zero. 1004 if (HasFallthrough) { 1005 if (!HasPrebranchedFallthrough) 1006 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 1007 1008 // Otherwise, clear the IP if we don't have fallthrough because 1009 // the cleanup is inactive. We don't need to save it because 1010 // it's still just FallthroughSource. 1011 } else if (FallthroughSource) { 1012 assert(!IsActive && "source without fallthrough for active cleanup"); 1013 Builder.ClearInsertionPoint(); 1014 } 1015 1016 // II. Emit the entry block. This implicitly branches to it if 1017 // we have fallthrough. All the fixups and existing branches 1018 // should already be branched to it. 1019 EmitBlock(NormalEntry); 1020 1021 // III. Figure out where we're going and build the cleanup 1022 // epilogue. 1023 1024 bool HasEnclosingCleanups = 1025 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 1026 1027 // Compute the branch-through dest if we need it: 1028 // - if there are branch-throughs threaded through the scope 1029 // - if fall-through is a branch-through 1030 // - if there are fixups that will be optimistically forwarded 1031 // to the enclosing cleanup 1032 llvm::BasicBlock *BranchThroughDest = 0; 1033 if (Scope.hasBranchThroughs() || 1034 (FallthroughSource && FallthroughIsBranchThrough) || 1035 (HasFixups && HasEnclosingCleanups)) { 1036 assert(HasEnclosingCleanups); 1037 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 1038 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 1039 } 1040 1041 llvm::BasicBlock *FallthroughDest = 0; 1042 llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend; 1043 1044 // If there's exactly one branch-after and no other threads, 1045 // we can route it without a switch. 1046 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 1047 Scope.getNumBranchAfters() == 1) { 1048 assert(!BranchThroughDest || !IsActive); 1049 1050 // TODO: clean up the possibly dead stores to the cleanup dest slot. 1051 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 1052 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 1053 1054 // Build a switch-out if we need it: 1055 // - if there are branch-afters threaded through the scope 1056 // - if fall-through is a branch-after 1057 // - if there are fixups that have nowhere left to go and 1058 // so must be immediately resolved 1059 } else if (Scope.getNumBranchAfters() || 1060 (HasFallthrough && !FallthroughIsBranchThrough) || 1061 (HasFixups && !HasEnclosingCleanups)) { 1062 1063 llvm::BasicBlock *Default = 1064 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 1065 1066 // TODO: base this on the number of branch-afters and fixups 1067 const unsigned SwitchCapacity = 10; 1068 1069 llvm::LoadInst *Load = 1070 new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest"); 1071 llvm::SwitchInst *Switch = 1072 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 1073 1074 InstsToAppend.push_back(Load); 1075 InstsToAppend.push_back(Switch); 1076 1077 // Branch-after fallthrough. 1078 if (FallthroughSource && !FallthroughIsBranchThrough) { 1079 FallthroughDest = createBasicBlock("cleanup.cont"); 1080 if (HasFallthrough) 1081 Switch->addCase(Builder.getInt32(0), FallthroughDest); 1082 } 1083 1084 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 1085 Switch->addCase(Scope.getBranchAfterIndex(I), 1086 Scope.getBranchAfterBlock(I)); 1087 } 1088 1089 // If there aren't any enclosing cleanups, we can resolve all 1090 // the fixups now. 1091 if (HasFixups && !HasEnclosingCleanups) 1092 ResolveAllBranchFixups(*this, Switch, NormalEntry); 1093 } else { 1094 // We should always have a branch-through destination in this case. 1095 assert(BranchThroughDest); 1096 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 1097 } 1098 1099 // IV. Pop the cleanup and emit it. 1100 EHStack.popCleanup(); 1101 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 1102 1103 EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); 1104 1105 // Append the prepared cleanup prologue from above. 1106 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 1107 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 1108 NormalExit->getInstList().push_back(InstsToAppend[I]); 1109 1110 // Optimistically hope that any fixups will continue falling through. 1111 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1112 I < E; ++I) { 1113 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 1114 if (!Fixup.Destination) continue; 1115 if (!Fixup.OptimisticBranchBlock) { 1116 new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex), 1117 getNormalCleanupDestSlot(), 1118 Fixup.InitialBranch); 1119 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 1120 } 1121 Fixup.OptimisticBranchBlock = NormalExit; 1122 } 1123 1124 // V. Set up the fallthrough edge out. 1125 1126 // Case 1: a fallthrough source exists but shouldn't branch to 1127 // the cleanup because the cleanup is inactive. 1128 if (!HasFallthrough && FallthroughSource) { 1129 assert(!IsActive); 1130 1131 // If we have a prebranched fallthrough, that needs to be 1132 // forwarded to the right block. 1133 if (HasPrebranchedFallthrough) { 1134 llvm::BasicBlock *Next; 1135 if (FallthroughIsBranchThrough) { 1136 Next = BranchThroughDest; 1137 assert(!FallthroughDest); 1138 } else { 1139 Next = FallthroughDest; 1140 } 1141 1142 ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next); 1143 } 1144 Builder.SetInsertPoint(FallthroughSource); 1145 1146 // Case 2: a fallthrough source exists and should branch to the 1147 // cleanup, but we're not supposed to branch through to the next 1148 // cleanup. 1149 } else if (HasFallthrough && FallthroughDest) { 1150 assert(!FallthroughIsBranchThrough); 1151 EmitBlock(FallthroughDest); 1152 1153 // Case 3: a fallthrough source exists and should branch to the 1154 // cleanup and then through to the next. 1155 } else if (HasFallthrough) { 1156 // Everything is already set up for this. 1157 1158 // Case 4: no fallthrough source exists. 1159 } else { 1160 Builder.ClearInsertionPoint(); 1161 } 1162 1163 // VI. Assorted cleaning. 1164 1165 // Check whether we can merge NormalEntry into a single predecessor. 1166 // This might invalidate (non-IR) pointers to NormalEntry. 1167 llvm::BasicBlock *NewNormalEntry = 1168 SimplifyCleanupEntry(*this, NormalEntry); 1169 1170 // If it did invalidate those pointers, and NormalEntry was the same 1171 // as NormalExit, go back and patch up the fixups. 1172 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 1173 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1174 I < E; ++I) 1175 CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 1176 } 1177 } 1178 1179 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 1180 1181 // Emit the EH cleanup if required. 1182 if (RequiresEHCleanup) { 1183 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1184 1185 EmitBlock(EHEntry); 1186 EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag); 1187 1188 // Append the prepared cleanup prologue from above. 1189 llvm::BasicBlock *EHExit = Builder.GetInsertBlock(); 1190 for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I) 1191 EHExit->getInstList().push_back(EHInstsToAppend[I]); 1192 1193 Builder.restoreIP(SavedIP); 1194 1195 SimplifyCleanupEntry(*this, EHEntry); 1196 } 1197 } 1198 1199 /// Terminate the current block by emitting a branch which might leave 1200 /// the current cleanup-protected scope. The target scope may not yet 1201 /// be known, in which case this will require a fixup. 1202 /// 1203 /// As a side-effect, this method clears the insertion point. 1204 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 1205 assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup()) 1206 && "stale jump destination"); 1207 1208 if (!HaveInsertPoint()) 1209 return; 1210 1211 // Create the branch. 1212 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1213 1214 // Calculate the innermost active normal cleanup. 1215 EHScopeStack::stable_iterator 1216 TopCleanup = EHStack.getInnermostActiveNormalCleanup(); 1217 1218 // If we're not in an active normal cleanup scope, or if the 1219 // destination scope is within the innermost active normal cleanup 1220 // scope, we don't need to worry about fixups. 1221 if (TopCleanup == EHStack.stable_end() || 1222 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid 1223 Builder.ClearInsertionPoint(); 1224 return; 1225 } 1226 1227 // If we can't resolve the destination cleanup scope, just add this 1228 // to the current cleanup scope as a branch fixup. 1229 if (!Dest.getScopeDepth().isValid()) { 1230 BranchFixup &Fixup = EHStack.addBranchFixup(); 1231 Fixup.Destination = Dest.getBlock(); 1232 Fixup.DestinationIndex = Dest.getDestIndex(); 1233 Fixup.InitialBranch = BI; 1234 Fixup.OptimisticBranchBlock = 0; 1235 1236 Builder.ClearInsertionPoint(); 1237 return; 1238 } 1239 1240 // Otherwise, thread through all the normal cleanups in scope. 1241 1242 // Store the index at the start. 1243 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1244 new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI); 1245 1246 // Adjust BI to point to the first cleanup block. 1247 { 1248 EHCleanupScope &Scope = 1249 cast<EHCleanupScope>(*EHStack.find(TopCleanup)); 1250 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 1251 } 1252 1253 // Add this destination to all the scopes involved. 1254 EHScopeStack::stable_iterator I = TopCleanup; 1255 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 1256 if (E.strictlyEncloses(I)) { 1257 while (true) { 1258 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1259 assert(Scope.isNormalCleanup()); 1260 I = Scope.getEnclosingNormalCleanup(); 1261 1262 // If this is the last cleanup we're propagating through, tell it 1263 // that there's a resolved jump moving through it. 1264 if (!E.strictlyEncloses(I)) { 1265 Scope.addBranchAfter(Index, Dest.getBlock()); 1266 break; 1267 } 1268 1269 // Otherwise, tell the scope that there's a jump propoagating 1270 // through it. If this isn't new information, all the rest of 1271 // the work has been done before. 1272 if (!Scope.addBranchThrough(Dest.getBlock())) 1273 break; 1274 } 1275 } 1276 1277 Builder.ClearInsertionPoint(); 1278 } 1279 1280 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) { 1281 // We should never get invalid scope depths for an UnwindDest; that 1282 // implies that the destination wasn't set up correctly. 1283 assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?"); 1284 1285 if (!HaveInsertPoint()) 1286 return; 1287 1288 // Create the branch. 1289 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1290 1291 // Calculate the innermost active cleanup. 1292 EHScopeStack::stable_iterator 1293 InnermostCleanup = EHStack.getInnermostActiveEHCleanup(); 1294 1295 // If the destination is in the same EH cleanup scope as us, we 1296 // don't need to thread through anything. 1297 if (InnermostCleanup.encloses(Dest.getScopeDepth())) { 1298 Builder.ClearInsertionPoint(); 1299 return; 1300 } 1301 assert(InnermostCleanup != EHStack.stable_end()); 1302 1303 // Store the index at the start. 1304 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1305 new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI); 1306 1307 // Adjust BI to point to the first cleanup block. 1308 { 1309 EHCleanupScope &Scope = 1310 cast<EHCleanupScope>(*EHStack.find(InnermostCleanup)); 1311 BI->setSuccessor(0, CreateEHEntry(*this, Scope)); 1312 } 1313 1314 // Add this destination to all the scopes involved. 1315 for (EHScopeStack::stable_iterator 1316 I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) { 1317 assert(E.strictlyEncloses(I)); 1318 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1319 assert(Scope.isEHCleanup()); 1320 I = Scope.getEnclosingEHCleanup(); 1321 1322 // If this is the last cleanup we're propagating through, add this 1323 // as a branch-after. 1324 if (I == E) { 1325 Scope.addEHBranchAfter(Index, Dest.getBlock()); 1326 break; 1327 } 1328 1329 // Otherwise, add it as a branch-through. If this isn't new 1330 // information, all the rest of the work has been done before. 1331 if (!Scope.addEHBranchThrough(Dest.getBlock())) 1332 break; 1333 } 1334 1335 Builder.ClearInsertionPoint(); 1336 } 1337 1338 /// All the branch fixups on the EH stack have propagated out past the 1339 /// outermost normal cleanup; resolve them all by adding cases to the 1340 /// given switch instruction. 1341 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 1342 llvm::SwitchInst *Switch, 1343 llvm::BasicBlock *CleanupEntry) { 1344 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 1345 1346 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { 1347 // Skip this fixup if its destination isn't set. 1348 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 1349 if (Fixup.Destination == 0) continue; 1350 1351 // If there isn't an OptimisticBranchBlock, then InitialBranch is 1352 // still pointing directly to its destination; forward it to the 1353 // appropriate cleanup entry. This is required in the specific 1354 // case of 1355 // { std::string s; goto lbl; } 1356 // lbl: 1357 // i.e. where there's an unresolved fixup inside a single cleanup 1358 // entry which we're currently popping. 1359 if (Fixup.OptimisticBranchBlock == 0) { 1360 new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex), 1361 CGF.getNormalCleanupDestSlot(), 1362 Fixup.InitialBranch); 1363 Fixup.InitialBranch->setSuccessor(0, CleanupEntry); 1364 } 1365 1366 // Don't add this case to the switch statement twice. 1367 if (!CasesAdded.insert(Fixup.Destination)) continue; 1368 1369 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), 1370 Fixup.Destination); 1371 } 1372 1373 CGF.EHStack.clearFixups(); 1374 } 1375 1376 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 1377 assert(Block && "resolving a null target block"); 1378 if (!EHStack.getNumBranchFixups()) return; 1379 1380 assert(EHStack.hasNormalCleanups() && 1381 "branch fixups exist with no normal cleanups on stack"); 1382 1383 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 1384 bool ResolvedAny = false; 1385 1386 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 1387 // Skip this fixup if its destination doesn't match. 1388 BranchFixup &Fixup = EHStack.getBranchFixup(I); 1389 if (Fixup.Destination != Block) continue; 1390 1391 Fixup.Destination = 0; 1392 ResolvedAny = true; 1393 1394 // If it doesn't have an optimistic branch block, LatestBranch is 1395 // already pointing to the right place. 1396 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 1397 if (!BranchBB) 1398 continue; 1399 1400 // Don't process the same optimistic branch block twice. 1401 if (!ModifiedOptimisticBlocks.insert(BranchBB)) 1402 continue; 1403 1404 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 1405 1406 // Add a case to the switch. 1407 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 1408 } 1409 1410 if (ResolvedAny) 1411 EHStack.popNullFixups(); 1412 } 1413 1414 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, 1415 EHScopeStack::stable_iterator C) { 1416 // If we needed a normal block for any reason, that counts. 1417 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) 1418 return true; 1419 1420 // Check whether any enclosed cleanups were needed. 1421 for (EHScopeStack::stable_iterator 1422 I = EHStack.getInnermostNormalCleanup(); 1423 I != C; ) { 1424 assert(C.strictlyEncloses(I)); 1425 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1426 if (S.getNormalBlock()) return true; 1427 I = S.getEnclosingNormalCleanup(); 1428 } 1429 1430 return false; 1431 } 1432 1433 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, 1434 EHScopeStack::stable_iterator C) { 1435 // If we needed an EH block for any reason, that counts. 1436 if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock()) 1437 return true; 1438 1439 // Check whether any enclosed cleanups were needed. 1440 for (EHScopeStack::stable_iterator 1441 I = EHStack.getInnermostEHCleanup(); I != C; ) { 1442 assert(C.strictlyEncloses(I)); 1443 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1444 if (S.getEHBlock()) return true; 1445 I = S.getEnclosingEHCleanup(); 1446 } 1447 1448 return false; 1449 } 1450 1451 enum ForActivation_t { 1452 ForActivation, 1453 ForDeactivation 1454 }; 1455 1456 /// The given cleanup block is changing activation state. Configure a 1457 /// cleanup variable if necessary. 1458 /// 1459 /// It would be good if we had some way of determining if there were 1460 /// extra uses *after* the change-over point. 1461 static void SetupCleanupBlockActivation(CodeGenFunction &CGF, 1462 EHScopeStack::stable_iterator C, 1463 ForActivation_t Kind) { 1464 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); 1465 1466 // We always need the flag if we're activating the cleanup, because 1467 // we have to assume that the current location doesn't necessarily 1468 // dominate all future uses of the cleanup. 1469 bool NeedFlag = (Kind == ForActivation); 1470 1471 // Calculate whether the cleanup was used: 1472 1473 // - as a normal cleanup 1474 if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) { 1475 Scope.setTestFlagInNormalCleanup(); 1476 NeedFlag = true; 1477 } 1478 1479 // - as an EH cleanup 1480 if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) { 1481 Scope.setTestFlagInEHCleanup(); 1482 NeedFlag = true; 1483 } 1484 1485 // If it hasn't yet been used as either, we're done. 1486 if (!NeedFlag) return; 1487 1488 llvm::AllocaInst *Var = Scope.getActiveFlag(); 1489 if (!Var) { 1490 Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive"); 1491 Scope.setActiveFlag(Var); 1492 1493 // Initialize to true or false depending on whether it was 1494 // active up to this point. 1495 CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation)); 1496 } 1497 1498 CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var); 1499 } 1500 1501 /// Activate a cleanup that was created in an inactivated state. 1502 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) { 1503 assert(C != EHStack.stable_end() && "activating bottom of stack?"); 1504 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1505 assert(!Scope.isActive() && "double activation"); 1506 1507 SetupCleanupBlockActivation(*this, C, ForActivation); 1508 1509 Scope.setActive(true); 1510 } 1511 1512 /// Deactive a cleanup that was created in an active state. 1513 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) { 1514 assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); 1515 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1516 assert(Scope.isActive() && "double deactivation"); 1517 1518 // If it's the top of the stack, just pop it. 1519 if (C == EHStack.stable_begin()) { 1520 // If it's a normal cleanup, we need to pretend that the 1521 // fallthrough is unreachable. 1522 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1523 PopCleanupBlock(); 1524 Builder.restoreIP(SavedIP); 1525 return; 1526 } 1527 1528 // Otherwise, follow the general case. 1529 SetupCleanupBlockActivation(*this, C, ForDeactivation); 1530 1531 Scope.setActive(false); 1532 } 1533 1534 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() { 1535 if (!NormalCleanupDest) 1536 NormalCleanupDest = 1537 CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 1538 return NormalCleanupDest; 1539 } 1540 1541 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() { 1542 if (!EHCleanupDest) 1543 EHCleanupDest = 1544 CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot"); 1545 return EHCleanupDest; 1546 } 1547 1548 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1549 llvm::Constant *Init) { 1550 assert (Init && "Invalid DeclRefExpr initializer!"); 1551 if (CGDebugInfo *Dbg = getDebugInfo()) 1552 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1553 } 1554