1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), CapturedStmtInfo(nullptr), 40 SanOpts(&CGM.getLangOpts().Sanitize), AutoreleaseResult(false), BlockInfo(nullptr), 41 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 42 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 43 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 44 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 45 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 46 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 47 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 48 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 49 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 50 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 51 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 52 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 53 TerminateHandler(nullptr), TrapBB(nullptr) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 76 if (getLangOpts().OpenMP) { 77 CGM.getOpenMPRuntime().FunctionFinished(*this); 78 } 79 } 80 81 82 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 83 return CGM.getTypes().ConvertTypeForMem(T); 84 } 85 86 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 87 return CGM.getTypes().ConvertType(T); 88 } 89 90 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 91 type = type.getCanonicalType(); 92 while (true) { 93 switch (type->getTypeClass()) { 94 #define TYPE(name, parent) 95 #define ABSTRACT_TYPE(name, parent) 96 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 97 #define DEPENDENT_TYPE(name, parent) case Type::name: 98 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 99 #include "clang/AST/TypeNodes.def" 100 llvm_unreachable("non-canonical or dependent type in IR-generation"); 101 102 case Type::Auto: 103 llvm_unreachable("undeduced auto type in IR-generation"); 104 105 // Various scalar types. 106 case Type::Builtin: 107 case Type::Pointer: 108 case Type::BlockPointer: 109 case Type::LValueReference: 110 case Type::RValueReference: 111 case Type::MemberPointer: 112 case Type::Vector: 113 case Type::ExtVector: 114 case Type::FunctionProto: 115 case Type::FunctionNoProto: 116 case Type::Enum: 117 case Type::ObjCObjectPointer: 118 return TEK_Scalar; 119 120 // Complexes. 121 case Type::Complex: 122 return TEK_Complex; 123 124 // Arrays, records, and Objective-C objects. 125 case Type::ConstantArray: 126 case Type::IncompleteArray: 127 case Type::VariableArray: 128 case Type::Record: 129 case Type::ObjCObject: 130 case Type::ObjCInterface: 131 return TEK_Aggregate; 132 133 // We operate on atomic values according to their underlying type. 134 case Type::Atomic: 135 type = cast<AtomicType>(type)->getValueType(); 136 continue; 137 } 138 llvm_unreachable("unknown type kind!"); 139 } 140 } 141 142 void CodeGenFunction::EmitReturnBlock() { 143 // For cleanliness, we try to avoid emitting the return block for 144 // simple cases. 145 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 146 147 if (CurBB) { 148 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 149 150 // We have a valid insert point, reuse it if it is empty or there are no 151 // explicit jumps to the return block. 152 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 153 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 154 delete ReturnBlock.getBlock(); 155 } else 156 EmitBlock(ReturnBlock.getBlock()); 157 return; 158 } 159 160 // Otherwise, if the return block is the target of a single direct 161 // branch then we can just put the code in that block instead. This 162 // cleans up functions which started with a unified return block. 163 if (ReturnBlock.getBlock()->hasOneUse()) { 164 llvm::BranchInst *BI = 165 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 166 if (BI && BI->isUnconditional() && 167 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 168 // Reset insertion point, including debug location, and delete the 169 // branch. This is really subtle and only works because the next change 170 // in location will hit the caching in CGDebugInfo::EmitLocation and not 171 // override this. 172 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 173 Builder.SetInsertPoint(BI->getParent()); 174 BI->eraseFromParent(); 175 delete ReturnBlock.getBlock(); 176 return; 177 } 178 } 179 180 // FIXME: We are at an unreachable point, there is no reason to emit the block 181 // unless it has uses. However, we still need a place to put the debug 182 // region.end for now. 183 184 EmitBlock(ReturnBlock.getBlock()); 185 } 186 187 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 188 if (!BB) return; 189 if (!BB->use_empty()) 190 return CGF.CurFn->getBasicBlockList().push_back(BB); 191 delete BB; 192 } 193 194 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 195 assert(BreakContinueStack.empty() && 196 "mismatched push/pop in break/continue stack!"); 197 198 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 199 && NumSimpleReturnExprs == NumReturnExprs 200 && ReturnBlock.getBlock()->use_empty(); 201 // Usually the return expression is evaluated before the cleanup 202 // code. If the function contains only a simple return statement, 203 // such as a constant, the location before the cleanup code becomes 204 // the last useful breakpoint in the function, because the simple 205 // return expression will be evaluated after the cleanup code. To be 206 // safe, set the debug location for cleanup code to the location of 207 // the return statement. Otherwise the cleanup code should be at the 208 // end of the function's lexical scope. 209 // 210 // If there are multiple branches to the return block, the branch 211 // instructions will get the location of the return statements and 212 // all will be fine. 213 if (CGDebugInfo *DI = getDebugInfo()) { 214 if (OnlySimpleReturnStmts) 215 DI->EmitLocation(Builder, LastStopPoint); 216 else 217 DI->EmitLocation(Builder, EndLoc); 218 } 219 220 // Pop any cleanups that might have been associated with the 221 // parameters. Do this in whatever block we're currently in; it's 222 // important to do this before we enter the return block or return 223 // edges will be *really* confused. 224 bool EmitRetDbgLoc = true; 225 if (EHStack.stable_begin() != PrologueCleanupDepth) { 226 PopCleanupBlocks(PrologueCleanupDepth); 227 228 // Make sure the line table doesn't jump back into the body for 229 // the ret after it's been at EndLoc. 230 EmitRetDbgLoc = false; 231 232 if (CGDebugInfo *DI = getDebugInfo()) 233 if (OnlySimpleReturnStmts) 234 DI->EmitLocation(Builder, EndLoc); 235 } 236 237 // Emit function epilog (to return). 238 EmitReturnBlock(); 239 240 if (ShouldInstrumentFunction()) 241 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 242 243 // Emit debug descriptor for function end. 244 if (CGDebugInfo *DI = getDebugInfo()) { 245 DI->EmitFunctionEnd(Builder); 246 } 247 248 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 249 EmitEndEHSpec(CurCodeDecl); 250 251 assert(EHStack.empty() && 252 "did not remove all scopes from cleanup stack!"); 253 254 // If someone did an indirect goto, emit the indirect goto block at the end of 255 // the function. 256 if (IndirectBranch) { 257 EmitBlock(IndirectBranch->getParent()); 258 Builder.ClearInsertionPoint(); 259 } 260 261 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 262 llvm::Instruction *Ptr = AllocaInsertPt; 263 AllocaInsertPt = nullptr; 264 Ptr->eraseFromParent(); 265 266 // If someone took the address of a label but never did an indirect goto, we 267 // made a zero entry PHI node, which is illegal, zap it now. 268 if (IndirectBranch) { 269 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 270 if (PN->getNumIncomingValues() == 0) { 271 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 272 PN->eraseFromParent(); 273 } 274 } 275 276 EmitIfUsed(*this, EHResumeBlock); 277 EmitIfUsed(*this, TerminateLandingPad); 278 EmitIfUsed(*this, TerminateHandler); 279 EmitIfUsed(*this, UnreachableBlock); 280 281 if (CGM.getCodeGenOpts().EmitDeclMetadata) 282 EmitDeclMetadata(); 283 284 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 285 I = DeferredReplacements.begin(), 286 E = DeferredReplacements.end(); 287 I != E; ++I) { 288 I->first->replaceAllUsesWith(I->second); 289 I->first->eraseFromParent(); 290 } 291 } 292 293 /// ShouldInstrumentFunction - Return true if the current function should be 294 /// instrumented with __cyg_profile_func_* calls 295 bool CodeGenFunction::ShouldInstrumentFunction() { 296 if (!CGM.getCodeGenOpts().InstrumentFunctions) 297 return false; 298 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 299 return false; 300 return true; 301 } 302 303 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 304 /// instrumentation function with the current function and the call site, if 305 /// function instrumentation is enabled. 306 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 307 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 308 llvm::PointerType *PointerTy = Int8PtrTy; 309 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 310 llvm::FunctionType *FunctionTy = 311 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 312 313 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 314 llvm::CallInst *CallSite = Builder.CreateCall( 315 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 316 llvm::ConstantInt::get(Int32Ty, 0), 317 "callsite"); 318 319 llvm::Value *args[] = { 320 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 321 CallSite 322 }; 323 324 EmitNounwindRuntimeCall(F, args); 325 } 326 327 void CodeGenFunction::EmitMCountInstrumentation() { 328 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 329 330 llvm::Constant *MCountFn = 331 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 332 EmitNounwindRuntimeCall(MCountFn); 333 } 334 335 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 336 // information in the program executable. The argument information stored 337 // includes the argument name, its type, the address and access qualifiers used. 338 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 339 CodeGenModule &CGM,llvm::LLVMContext &Context, 340 SmallVector <llvm::Value*, 5> &kernelMDArgs, 341 CGBuilderTy& Builder, ASTContext &ASTCtx) { 342 // Create MDNodes that represent the kernel arg metadata. 343 // Each MDNode is a list in the form of "key", N number of values which is 344 // the same number of values as their are kernel arguments. 345 346 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 347 348 // MDNode for the kernel argument address space qualifiers. 349 SmallVector<llvm::Value*, 8> addressQuals; 350 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 351 352 // MDNode for the kernel argument access qualifiers (images only). 353 SmallVector<llvm::Value*, 8> accessQuals; 354 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 355 356 // MDNode for the kernel argument type names. 357 SmallVector<llvm::Value*, 8> argTypeNames; 358 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 359 360 // MDNode for the kernel argument type qualifiers. 361 SmallVector<llvm::Value*, 8> argTypeQuals; 362 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 363 364 // MDNode for the kernel argument names. 365 SmallVector<llvm::Value*, 8> argNames; 366 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 367 368 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 369 const ParmVarDecl *parm = FD->getParamDecl(i); 370 QualType ty = parm->getType(); 371 std::string typeQuals; 372 373 if (ty->isPointerType()) { 374 QualType pointeeTy = ty->getPointeeType(); 375 376 // Get address qualifier. 377 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 378 pointeeTy.getAddressSpace()))); 379 380 // Get argument type name. 381 std::string typeName = 382 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 383 384 // Turn "unsigned type" to "utype" 385 std::string::size_type pos = typeName.find("unsigned"); 386 if (pos != std::string::npos) 387 typeName.erase(pos+1, 8); 388 389 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 390 391 // Get argument type qualifiers: 392 if (ty.isRestrictQualified()) 393 typeQuals = "restrict"; 394 if (pointeeTy.isConstQualified() || 395 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 396 typeQuals += typeQuals.empty() ? "const" : " const"; 397 if (pointeeTy.isVolatileQualified()) 398 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 399 } else { 400 uint32_t AddrSpc = 0; 401 if (ty->isImageType()) 402 AddrSpc = 403 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 404 405 addressQuals.push_back(Builder.getInt32(AddrSpc)); 406 407 // Get argument type name. 408 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 409 410 // Turn "unsigned type" to "utype" 411 std::string::size_type pos = typeName.find("unsigned"); 412 if (pos != std::string::npos) 413 typeName.erase(pos+1, 8); 414 415 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 416 417 // Get argument type qualifiers: 418 if (ty.isConstQualified()) 419 typeQuals = "const"; 420 if (ty.isVolatileQualified()) 421 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 422 } 423 424 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 425 426 // Get image access qualifier: 427 if (ty->isImageType()) { 428 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 429 if (A && A->isWriteOnly()) 430 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 431 else 432 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 433 // FIXME: what about read_write? 434 } else 435 accessQuals.push_back(llvm::MDString::get(Context, "none")); 436 437 // Get argument name. 438 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 439 } 440 441 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 442 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 443 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 444 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 445 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 446 } 447 448 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 449 llvm::Function *Fn) 450 { 451 if (!FD->hasAttr<OpenCLKernelAttr>()) 452 return; 453 454 llvm::LLVMContext &Context = getLLVMContext(); 455 456 SmallVector <llvm::Value*, 5> kernelMDArgs; 457 kernelMDArgs.push_back(Fn); 458 459 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 460 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 461 Builder, getContext()); 462 463 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 464 QualType hintQTy = A->getTypeHint(); 465 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 466 bool isSignedInteger = 467 hintQTy->isSignedIntegerType() || 468 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 469 llvm::Value *attrMDArgs[] = { 470 llvm::MDString::get(Context, "vec_type_hint"), 471 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 472 llvm::ConstantInt::get( 473 llvm::IntegerType::get(Context, 32), 474 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 475 }; 476 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 477 } 478 479 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 480 llvm::Value *attrMDArgs[] = { 481 llvm::MDString::get(Context, "work_group_size_hint"), 482 Builder.getInt32(A->getXDim()), 483 Builder.getInt32(A->getYDim()), 484 Builder.getInt32(A->getZDim()) 485 }; 486 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 487 } 488 489 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 490 llvm::Value *attrMDArgs[] = { 491 llvm::MDString::get(Context, "reqd_work_group_size"), 492 Builder.getInt32(A->getXDim()), 493 Builder.getInt32(A->getYDim()), 494 Builder.getInt32(A->getZDim()) 495 }; 496 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 497 } 498 499 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 500 llvm::NamedMDNode *OpenCLKernelMetadata = 501 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 502 OpenCLKernelMetadata->addOperand(kernelMDNode); 503 } 504 505 /// Determine whether the function F ends with a return stmt. 506 static bool endsWithReturn(const Decl* F) { 507 const Stmt *Body = nullptr; 508 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 509 Body = FD->getBody(); 510 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 511 Body = OMD->getBody(); 512 513 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 514 auto LastStmt = CS->body_rbegin(); 515 if (LastStmt != CS->body_rend()) 516 return isa<ReturnStmt>(*LastStmt); 517 } 518 return false; 519 } 520 521 void CodeGenFunction::StartFunction(GlobalDecl GD, 522 QualType RetTy, 523 llvm::Function *Fn, 524 const CGFunctionInfo &FnInfo, 525 const FunctionArgList &Args, 526 SourceLocation Loc, 527 SourceLocation StartLoc) { 528 const Decl *D = GD.getDecl(); 529 530 DidCallStackSave = false; 531 CurCodeDecl = D; 532 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 533 FnRetTy = RetTy; 534 CurFn = Fn; 535 CurFnInfo = &FnInfo; 536 assert(CurFn->isDeclaration() && "Function already has body?"); 537 538 if (CGM.getSanitizerBlacklist().isIn(*Fn)) 539 SanOpts = &SanitizerOptions::Disabled; 540 541 // Pass inline keyword to optimizer if it appears explicitly on any 542 // declaration. Also, in the case of -fno-inline attach NoInline 543 // attribute to all function that are not marked AlwaysInline. 544 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 545 if (!CGM.getCodeGenOpts().NoInline) { 546 for (auto RI : FD->redecls()) 547 if (RI->isInlineSpecified()) { 548 Fn->addFnAttr(llvm::Attribute::InlineHint); 549 break; 550 } 551 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 552 Fn->addFnAttr(llvm::Attribute::NoInline); 553 } 554 555 if (getLangOpts().OpenCL) { 556 // Add metadata for a kernel function. 557 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 558 EmitOpenCLKernelMetadata(FD, Fn); 559 } 560 561 // If we are checking function types, emit a function type signature as 562 // prefix data. 563 if (getLangOpts().CPlusPlus && SanOpts->Function) { 564 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 565 if (llvm::Constant *PrefixSig = 566 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 567 llvm::Constant *FTRTTIConst = 568 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 569 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 570 llvm::Constant *PrefixStructConst = 571 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 572 Fn->setPrefixData(PrefixStructConst); 573 } 574 } 575 } 576 577 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 578 579 // Create a marker to make it easy to insert allocas into the entryblock 580 // later. Don't create this with the builder, because we don't want it 581 // folded. 582 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 583 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 584 if (Builder.isNamePreserving()) 585 AllocaInsertPt->setName("allocapt"); 586 587 ReturnBlock = getJumpDestInCurrentScope("return"); 588 589 Builder.SetInsertPoint(EntryBB); 590 591 // Emit subprogram debug descriptor. 592 if (CGDebugInfo *DI = getDebugInfo()) { 593 SmallVector<QualType, 16> ArgTypes; 594 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 595 i != e; ++i) { 596 ArgTypes.push_back((*i)->getType()); 597 } 598 599 QualType FnType = 600 getContext().getFunctionType(RetTy, ArgTypes, 601 FunctionProtoType::ExtProtoInfo()); 602 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 603 } 604 605 if (ShouldInstrumentFunction()) 606 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 607 608 if (CGM.getCodeGenOpts().InstrumentForProfiling) 609 EmitMCountInstrumentation(); 610 611 if (RetTy->isVoidType()) { 612 // Void type; nothing to return. 613 ReturnValue = nullptr; 614 615 // Count the implicit return. 616 if (!endsWithReturn(D)) 617 ++NumReturnExprs; 618 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 619 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 620 // Indirect aggregate return; emit returned value directly into sret slot. 621 // This reduces code size, and affects correctness in C++. 622 auto AI = CurFn->arg_begin(); 623 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 624 ++AI; 625 ReturnValue = AI; 626 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 627 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 628 // Load the sret pointer from the argument struct and return into that. 629 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 630 llvm::Function::arg_iterator EI = CurFn->arg_end(); 631 --EI; 632 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 633 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 634 } else { 635 ReturnValue = CreateIRTemp(RetTy, "retval"); 636 637 // Tell the epilog emitter to autorelease the result. We do this 638 // now so that various specialized functions can suppress it 639 // during their IR-generation. 640 if (getLangOpts().ObjCAutoRefCount && 641 !CurFnInfo->isReturnsRetained() && 642 RetTy->isObjCRetainableType()) 643 AutoreleaseResult = true; 644 } 645 646 EmitStartEHSpec(CurCodeDecl); 647 648 PrologueCleanupDepth = EHStack.stable_begin(); 649 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 650 651 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 652 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 653 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 654 if (MD->getParent()->isLambda() && 655 MD->getOverloadedOperator() == OO_Call) { 656 // We're in a lambda; figure out the captures. 657 MD->getParent()->getCaptureFields(LambdaCaptureFields, 658 LambdaThisCaptureField); 659 if (LambdaThisCaptureField) { 660 // If this lambda captures this, load it. 661 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 662 CXXThisValue = EmitLoadOfLValue(ThisLValue, 663 SourceLocation()).getScalarVal(); 664 } 665 } else { 666 // Not in a lambda; just use 'this' from the method. 667 // FIXME: Should we generate a new load for each use of 'this'? The 668 // fast register allocator would be happier... 669 CXXThisValue = CXXABIThisValue; 670 } 671 } 672 673 // If any of the arguments have a variably modified type, make sure to 674 // emit the type size. 675 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 676 i != e; ++i) { 677 const VarDecl *VD = *i; 678 679 // Dig out the type as written from ParmVarDecls; it's unclear whether 680 // the standard (C99 6.9.1p10) requires this, but we're following the 681 // precedent set by gcc. 682 QualType Ty; 683 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 684 Ty = PVD->getOriginalType(); 685 else 686 Ty = VD->getType(); 687 688 if (Ty->isVariablyModifiedType()) 689 EmitVariablyModifiedType(Ty); 690 } 691 // Emit a location at the end of the prologue. 692 if (CGDebugInfo *DI = getDebugInfo()) 693 DI->EmitLocation(Builder, StartLoc); 694 } 695 696 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 697 const Stmt *Body) { 698 RegionCounter Cnt = getPGORegionCounter(Body); 699 Cnt.beginRegion(Builder); 700 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 701 EmitCompoundStmtWithoutScope(*S); 702 else 703 EmitStmt(Body); 704 } 705 706 /// When instrumenting to collect profile data, the counts for some blocks 707 /// such as switch cases need to not include the fall-through counts, so 708 /// emit a branch around the instrumentation code. When not instrumenting, 709 /// this just calls EmitBlock(). 710 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 711 RegionCounter &Cnt) { 712 llvm::BasicBlock *SkipCountBB = nullptr; 713 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 714 // When instrumenting for profiling, the fallthrough to certain 715 // statements needs to skip over the instrumentation code so that we 716 // get an accurate count. 717 SkipCountBB = createBasicBlock("skipcount"); 718 EmitBranch(SkipCountBB); 719 } 720 EmitBlock(BB); 721 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 722 if (SkipCountBB) 723 EmitBlock(SkipCountBB); 724 } 725 726 /// Tries to mark the given function nounwind based on the 727 /// non-existence of any throwing calls within it. We believe this is 728 /// lightweight enough to do at -O0. 729 static void TryMarkNoThrow(llvm::Function *F) { 730 // LLVM treats 'nounwind' on a function as part of the type, so we 731 // can't do this on functions that can be overwritten. 732 if (F->mayBeOverridden()) return; 733 734 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 735 for (llvm::BasicBlock::iterator 736 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 737 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 738 if (!Call->doesNotThrow()) 739 return; 740 } else if (isa<llvm::ResumeInst>(&*BI)) { 741 return; 742 } 743 F->setDoesNotThrow(); 744 } 745 746 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 747 const FunctionDecl *UnsizedDealloc) { 748 // This is a weak discardable definition of the sized deallocation function. 749 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 750 751 // Call the unsized deallocation function and forward the first argument 752 // unchanged. 753 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 754 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 755 } 756 757 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 758 const CGFunctionInfo &FnInfo) { 759 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 760 761 // Check if we should generate debug info for this function. 762 if (FD->hasAttr<NoDebugAttr>()) 763 DebugInfo = nullptr; // disable debug info indefinitely for this function 764 765 FunctionArgList Args; 766 QualType ResTy = FD->getReturnType(); 767 768 CurGD = GD; 769 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 770 if (MD && MD->isInstance()) { 771 if (CGM.getCXXABI().HasThisReturn(GD)) 772 ResTy = MD->getThisType(getContext()); 773 CGM.getCXXABI().buildThisParam(*this, Args); 774 } 775 776 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 777 Args.push_back(FD->getParamDecl(i)); 778 779 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 780 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 781 782 SourceRange BodyRange; 783 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 784 CurEHLocation = BodyRange.getEnd(); 785 786 // Use the location of the start of the function to determine where 787 // the function definition is located. By default use the location 788 // of the declaration as the location for the subprogram. A function 789 // may lack a declaration in the source code if it is created by code 790 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 791 SourceLocation Loc; 792 if (FD) { 793 Loc = FD->getLocation(); 794 795 // If this is a function specialization then use the pattern body 796 // as the location for the function. 797 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 798 if (SpecDecl->hasBody(SpecDecl)) 799 Loc = SpecDecl->getLocation(); 800 } 801 802 // Emit the standard function prologue. 803 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 804 805 // Generate the body of the function. 806 PGO.assignRegionCounters(GD.getDecl(), CurFn); 807 if (isa<CXXDestructorDecl>(FD)) 808 EmitDestructorBody(Args); 809 else if (isa<CXXConstructorDecl>(FD)) 810 EmitConstructorBody(Args); 811 else if (getLangOpts().CUDA && 812 !CGM.getCodeGenOpts().CUDAIsDevice && 813 FD->hasAttr<CUDAGlobalAttr>()) 814 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 815 else if (isa<CXXConversionDecl>(FD) && 816 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 817 // The lambda conversion to block pointer is special; the semantics can't be 818 // expressed in the AST, so IRGen needs to special-case it. 819 EmitLambdaToBlockPointerBody(Args); 820 } else if (isa<CXXMethodDecl>(FD) && 821 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 822 // The lambda static invoker function is special, because it forwards or 823 // clones the body of the function call operator (but is actually static). 824 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 825 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 826 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 827 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 828 // Implicit copy-assignment gets the same special treatment as implicit 829 // copy-constructors. 830 emitImplicitAssignmentOperatorBody(Args); 831 } else if (Stmt *Body = FD->getBody()) { 832 EmitFunctionBody(Args, Body); 833 } else if (FunctionDecl *UnsizedDealloc = 834 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 835 // Global sized deallocation functions get an implicit weak definition if 836 // they don't have an explicit definition. 837 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 838 } else 839 llvm_unreachable("no definition for emitted function"); 840 841 // C++11 [stmt.return]p2: 842 // Flowing off the end of a function [...] results in undefined behavior in 843 // a value-returning function. 844 // C11 6.9.1p12: 845 // If the '}' that terminates a function is reached, and the value of the 846 // function call is used by the caller, the behavior is undefined. 847 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 848 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 849 if (SanOpts->Return) 850 EmitCheck(Builder.getFalse(), "missing_return", 851 EmitCheckSourceLocation(FD->getLocation()), 852 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 853 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 854 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 855 Builder.CreateUnreachable(); 856 Builder.ClearInsertionPoint(); 857 } 858 859 // Emit the standard function epilogue. 860 FinishFunction(BodyRange.getEnd()); 861 862 // If we haven't marked the function nothrow through other means, do 863 // a quick pass now to see if we can. 864 if (!CurFn->doesNotThrow()) 865 TryMarkNoThrow(CurFn); 866 867 PGO.emitInstrumentationData(); 868 PGO.destroyRegionCounters(); 869 } 870 871 /// ContainsLabel - Return true if the statement contains a label in it. If 872 /// this statement is not executed normally, it not containing a label means 873 /// that we can just remove the code. 874 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 875 // Null statement, not a label! 876 if (!S) return false; 877 878 // If this is a label, we have to emit the code, consider something like: 879 // if (0) { ... foo: bar(); } goto foo; 880 // 881 // TODO: If anyone cared, we could track __label__'s, since we know that you 882 // can't jump to one from outside their declared region. 883 if (isa<LabelStmt>(S)) 884 return true; 885 886 // If this is a case/default statement, and we haven't seen a switch, we have 887 // to emit the code. 888 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 889 return true; 890 891 // If this is a switch statement, we want to ignore cases below it. 892 if (isa<SwitchStmt>(S)) 893 IgnoreCaseStmts = true; 894 895 // Scan subexpressions for verboten labels. 896 for (Stmt::const_child_range I = S->children(); I; ++I) 897 if (ContainsLabel(*I, IgnoreCaseStmts)) 898 return true; 899 900 return false; 901 } 902 903 /// containsBreak - Return true if the statement contains a break out of it. 904 /// If the statement (recursively) contains a switch or loop with a break 905 /// inside of it, this is fine. 906 bool CodeGenFunction::containsBreak(const Stmt *S) { 907 // Null statement, not a label! 908 if (!S) return false; 909 910 // If this is a switch or loop that defines its own break scope, then we can 911 // include it and anything inside of it. 912 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 913 isa<ForStmt>(S)) 914 return false; 915 916 if (isa<BreakStmt>(S)) 917 return true; 918 919 // Scan subexpressions for verboten breaks. 920 for (Stmt::const_child_range I = S->children(); I; ++I) 921 if (containsBreak(*I)) 922 return true; 923 924 return false; 925 } 926 927 928 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 929 /// to a constant, or if it does but contains a label, return false. If it 930 /// constant folds return true and set the boolean result in Result. 931 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 932 bool &ResultBool) { 933 llvm::APSInt ResultInt; 934 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 935 return false; 936 937 ResultBool = ResultInt.getBoolValue(); 938 return true; 939 } 940 941 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 942 /// to a constant, or if it does but contains a label, return false. If it 943 /// constant folds return true and set the folded value. 944 bool CodeGenFunction:: 945 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 946 // FIXME: Rename and handle conversion of other evaluatable things 947 // to bool. 948 llvm::APSInt Int; 949 if (!Cond->EvaluateAsInt(Int, getContext())) 950 return false; // Not foldable, not integer or not fully evaluatable. 951 952 if (CodeGenFunction::ContainsLabel(Cond)) 953 return false; // Contains a label. 954 955 ResultInt = Int; 956 return true; 957 } 958 959 960 961 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 962 /// statement) to the specified blocks. Based on the condition, this might try 963 /// to simplify the codegen of the conditional based on the branch. 964 /// 965 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 966 llvm::BasicBlock *TrueBlock, 967 llvm::BasicBlock *FalseBlock, 968 uint64_t TrueCount) { 969 Cond = Cond->IgnoreParens(); 970 971 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 972 973 // Handle X && Y in a condition. 974 if (CondBOp->getOpcode() == BO_LAnd) { 975 RegionCounter Cnt = getPGORegionCounter(CondBOp); 976 977 // If we have "1 && X", simplify the code. "0 && X" would have constant 978 // folded if the case was simple enough. 979 bool ConstantBool = false; 980 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 981 ConstantBool) { 982 // br(1 && X) -> br(X). 983 Cnt.beginRegion(Builder); 984 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 985 TrueCount); 986 } 987 988 // If we have "X && 1", simplify the code to use an uncond branch. 989 // "X && 0" would have been constant folded to 0. 990 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 991 ConstantBool) { 992 // br(X && 1) -> br(X). 993 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 994 TrueCount); 995 } 996 997 // Emit the LHS as a conditional. If the LHS conditional is false, we 998 // want to jump to the FalseBlock. 999 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1000 // The counter tells us how often we evaluate RHS, and all of TrueCount 1001 // can be propagated to that branch. 1002 uint64_t RHSCount = Cnt.getCount(); 1003 1004 ConditionalEvaluation eval(*this); 1005 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1006 EmitBlock(LHSTrue); 1007 1008 // Any temporaries created here are conditional. 1009 Cnt.beginRegion(Builder); 1010 eval.begin(*this); 1011 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1012 eval.end(*this); 1013 1014 return; 1015 } 1016 1017 if (CondBOp->getOpcode() == BO_LOr) { 1018 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1019 1020 // If we have "0 || X", simplify the code. "1 || X" would have constant 1021 // folded if the case was simple enough. 1022 bool ConstantBool = false; 1023 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1024 !ConstantBool) { 1025 // br(0 || X) -> br(X). 1026 Cnt.beginRegion(Builder); 1027 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1028 TrueCount); 1029 } 1030 1031 // If we have "X || 0", simplify the code to use an uncond branch. 1032 // "X || 1" would have been constant folded to 1. 1033 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1034 !ConstantBool) { 1035 // br(X || 0) -> br(X). 1036 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1037 TrueCount); 1038 } 1039 1040 // Emit the LHS as a conditional. If the LHS conditional is true, we 1041 // want to jump to the TrueBlock. 1042 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1043 // We have the count for entry to the RHS and for the whole expression 1044 // being true, so we can divy up True count between the short circuit and 1045 // the RHS. 1046 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1047 uint64_t RHSCount = TrueCount - LHSCount; 1048 1049 ConditionalEvaluation eval(*this); 1050 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1051 EmitBlock(LHSFalse); 1052 1053 // Any temporaries created here are conditional. 1054 Cnt.beginRegion(Builder); 1055 eval.begin(*this); 1056 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1057 1058 eval.end(*this); 1059 1060 return; 1061 } 1062 } 1063 1064 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1065 // br(!x, t, f) -> br(x, f, t) 1066 if (CondUOp->getOpcode() == UO_LNot) { 1067 // Negate the count. 1068 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1069 // Negate the condition and swap the destination blocks. 1070 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1071 FalseCount); 1072 } 1073 } 1074 1075 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1076 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1077 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1078 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1079 1080 RegionCounter Cnt = getPGORegionCounter(CondOp); 1081 ConditionalEvaluation cond(*this); 1082 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1083 1084 // When computing PGO branch weights, we only know the overall count for 1085 // the true block. This code is essentially doing tail duplication of the 1086 // naive code-gen, introducing new edges for which counts are not 1087 // available. Divide the counts proportionally between the LHS and RHS of 1088 // the conditional operator. 1089 uint64_t LHSScaledTrueCount = 0; 1090 if (TrueCount) { 1091 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1092 LHSScaledTrueCount = TrueCount * LHSRatio; 1093 } 1094 1095 cond.begin(*this); 1096 EmitBlock(LHSBlock); 1097 Cnt.beginRegion(Builder); 1098 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1099 LHSScaledTrueCount); 1100 cond.end(*this); 1101 1102 cond.begin(*this); 1103 EmitBlock(RHSBlock); 1104 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1105 TrueCount - LHSScaledTrueCount); 1106 cond.end(*this); 1107 1108 return; 1109 } 1110 1111 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1112 // Conditional operator handling can give us a throw expression as a 1113 // condition for a case like: 1114 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1115 // Fold this to: 1116 // br(c, throw x, br(y, t, f)) 1117 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1118 return; 1119 } 1120 1121 // Create branch weights based on the number of times we get here and the 1122 // number of times the condition should be true. 1123 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1124 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1125 CurrentCount - TrueCount); 1126 1127 // Emit the code with the fully general case. 1128 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1129 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1130 } 1131 1132 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1133 /// specified stmt yet. 1134 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1135 CGM.ErrorUnsupported(S, Type); 1136 } 1137 1138 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1139 /// variable-length array whose elements have a non-zero bit-pattern. 1140 /// 1141 /// \param baseType the inner-most element type of the array 1142 /// \param src - a char* pointing to the bit-pattern for a single 1143 /// base element of the array 1144 /// \param sizeInChars - the total size of the VLA, in chars 1145 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1146 llvm::Value *dest, llvm::Value *src, 1147 llvm::Value *sizeInChars) { 1148 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1149 = CGF.getContext().getTypeInfoInChars(baseType); 1150 1151 CGBuilderTy &Builder = CGF.Builder; 1152 1153 llvm::Value *baseSizeInChars 1154 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1155 1156 llvm::Type *i8p = Builder.getInt8PtrTy(); 1157 1158 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1159 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1160 1161 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1162 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1163 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1164 1165 // Make a loop over the VLA. C99 guarantees that the VLA element 1166 // count must be nonzero. 1167 CGF.EmitBlock(loopBB); 1168 1169 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1170 cur->addIncoming(begin, originBB); 1171 1172 // memcpy the individual element bit-pattern. 1173 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1174 baseSizeAndAlign.second.getQuantity(), 1175 /*volatile*/ false); 1176 1177 // Go to the next element. 1178 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1179 1180 // Leave if that's the end of the VLA. 1181 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1182 Builder.CreateCondBr(done, contBB, loopBB); 1183 cur->addIncoming(next, loopBB); 1184 1185 CGF.EmitBlock(contBB); 1186 } 1187 1188 void 1189 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1190 // Ignore empty classes in C++. 1191 if (getLangOpts().CPlusPlus) { 1192 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1193 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1194 return; 1195 } 1196 } 1197 1198 // Cast the dest ptr to the appropriate i8 pointer type. 1199 unsigned DestAS = 1200 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1201 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1202 if (DestPtr->getType() != BP) 1203 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1204 1205 // Get size and alignment info for this aggregate. 1206 std::pair<CharUnits, CharUnits> TypeInfo = 1207 getContext().getTypeInfoInChars(Ty); 1208 CharUnits Size = TypeInfo.first; 1209 CharUnits Align = TypeInfo.second; 1210 1211 llvm::Value *SizeVal; 1212 const VariableArrayType *vla; 1213 1214 // Don't bother emitting a zero-byte memset. 1215 if (Size.isZero()) { 1216 // But note that getTypeInfo returns 0 for a VLA. 1217 if (const VariableArrayType *vlaType = 1218 dyn_cast_or_null<VariableArrayType>( 1219 getContext().getAsArrayType(Ty))) { 1220 QualType eltType; 1221 llvm::Value *numElts; 1222 std::tie(numElts, eltType) = getVLASize(vlaType); 1223 1224 SizeVal = numElts; 1225 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1226 if (!eltSize.isOne()) 1227 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1228 vla = vlaType; 1229 } else { 1230 return; 1231 } 1232 } else { 1233 SizeVal = CGM.getSize(Size); 1234 vla = nullptr; 1235 } 1236 1237 // If the type contains a pointer to data member we can't memset it to zero. 1238 // Instead, create a null constant and copy it to the destination. 1239 // TODO: there are other patterns besides zero that we can usefully memset, 1240 // like -1, which happens to be the pattern used by member-pointers. 1241 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1242 // For a VLA, emit a single element, then splat that over the VLA. 1243 if (vla) Ty = getContext().getBaseElementType(vla); 1244 1245 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1246 1247 llvm::GlobalVariable *NullVariable = 1248 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1249 /*isConstant=*/true, 1250 llvm::GlobalVariable::PrivateLinkage, 1251 NullConstant, Twine()); 1252 llvm::Value *SrcPtr = 1253 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1254 1255 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1256 1257 // Get and call the appropriate llvm.memcpy overload. 1258 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1259 return; 1260 } 1261 1262 // Otherwise, just memset the whole thing to zero. This is legal 1263 // because in LLVM, all default initializers (other than the ones we just 1264 // handled above) are guaranteed to have a bit pattern of all zeros. 1265 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1266 Align.getQuantity(), false); 1267 } 1268 1269 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1270 // Make sure that there is a block for the indirect goto. 1271 if (!IndirectBranch) 1272 GetIndirectGotoBlock(); 1273 1274 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1275 1276 // Make sure the indirect branch includes all of the address-taken blocks. 1277 IndirectBranch->addDestination(BB); 1278 return llvm::BlockAddress::get(CurFn, BB); 1279 } 1280 1281 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1282 // If we already made the indirect branch for indirect goto, return its block. 1283 if (IndirectBranch) return IndirectBranch->getParent(); 1284 1285 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1286 1287 // Create the PHI node that indirect gotos will add entries to. 1288 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1289 "indirect.goto.dest"); 1290 1291 // Create the indirect branch instruction. 1292 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1293 return IndirectBranch->getParent(); 1294 } 1295 1296 /// Computes the length of an array in elements, as well as the base 1297 /// element type and a properly-typed first element pointer. 1298 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1299 QualType &baseType, 1300 llvm::Value *&addr) { 1301 const ArrayType *arrayType = origArrayType; 1302 1303 // If it's a VLA, we have to load the stored size. Note that 1304 // this is the size of the VLA in bytes, not its size in elements. 1305 llvm::Value *numVLAElements = nullptr; 1306 if (isa<VariableArrayType>(arrayType)) { 1307 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1308 1309 // Walk into all VLAs. This doesn't require changes to addr, 1310 // which has type T* where T is the first non-VLA element type. 1311 do { 1312 QualType elementType = arrayType->getElementType(); 1313 arrayType = getContext().getAsArrayType(elementType); 1314 1315 // If we only have VLA components, 'addr' requires no adjustment. 1316 if (!arrayType) { 1317 baseType = elementType; 1318 return numVLAElements; 1319 } 1320 } while (isa<VariableArrayType>(arrayType)); 1321 1322 // We get out here only if we find a constant array type 1323 // inside the VLA. 1324 } 1325 1326 // We have some number of constant-length arrays, so addr should 1327 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1328 // down to the first element of addr. 1329 SmallVector<llvm::Value*, 8> gepIndices; 1330 1331 // GEP down to the array type. 1332 llvm::ConstantInt *zero = Builder.getInt32(0); 1333 gepIndices.push_back(zero); 1334 1335 uint64_t countFromCLAs = 1; 1336 QualType eltType; 1337 1338 llvm::ArrayType *llvmArrayType = 1339 dyn_cast<llvm::ArrayType>( 1340 cast<llvm::PointerType>(addr->getType())->getElementType()); 1341 while (llvmArrayType) { 1342 assert(isa<ConstantArrayType>(arrayType)); 1343 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1344 == llvmArrayType->getNumElements()); 1345 1346 gepIndices.push_back(zero); 1347 countFromCLAs *= llvmArrayType->getNumElements(); 1348 eltType = arrayType->getElementType(); 1349 1350 llvmArrayType = 1351 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1352 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1353 assert((!llvmArrayType || arrayType) && 1354 "LLVM and Clang types are out-of-synch"); 1355 } 1356 1357 if (arrayType) { 1358 // From this point onwards, the Clang array type has been emitted 1359 // as some other type (probably a packed struct). Compute the array 1360 // size, and just emit the 'begin' expression as a bitcast. 1361 while (arrayType) { 1362 countFromCLAs *= 1363 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1364 eltType = arrayType->getElementType(); 1365 arrayType = getContext().getAsArrayType(eltType); 1366 } 1367 1368 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1369 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1370 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1371 } else { 1372 // Create the actual GEP. 1373 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1374 } 1375 1376 baseType = eltType; 1377 1378 llvm::Value *numElements 1379 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1380 1381 // If we had any VLA dimensions, factor them in. 1382 if (numVLAElements) 1383 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1384 1385 return numElements; 1386 } 1387 1388 std::pair<llvm::Value*, QualType> 1389 CodeGenFunction::getVLASize(QualType type) { 1390 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1391 assert(vla && "type was not a variable array type!"); 1392 return getVLASize(vla); 1393 } 1394 1395 std::pair<llvm::Value*, QualType> 1396 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1397 // The number of elements so far; always size_t. 1398 llvm::Value *numElements = nullptr; 1399 1400 QualType elementType; 1401 do { 1402 elementType = type->getElementType(); 1403 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1404 assert(vlaSize && "no size for VLA!"); 1405 assert(vlaSize->getType() == SizeTy); 1406 1407 if (!numElements) { 1408 numElements = vlaSize; 1409 } else { 1410 // It's undefined behavior if this wraps around, so mark it that way. 1411 // FIXME: Teach -fsanitize=undefined to trap this. 1412 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1413 } 1414 } while ((type = getContext().getAsVariableArrayType(elementType))); 1415 1416 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1417 } 1418 1419 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1420 assert(type->isVariablyModifiedType() && 1421 "Must pass variably modified type to EmitVLASizes!"); 1422 1423 EnsureInsertPoint(); 1424 1425 // We're going to walk down into the type and look for VLA 1426 // expressions. 1427 do { 1428 assert(type->isVariablyModifiedType()); 1429 1430 const Type *ty = type.getTypePtr(); 1431 switch (ty->getTypeClass()) { 1432 1433 #define TYPE(Class, Base) 1434 #define ABSTRACT_TYPE(Class, Base) 1435 #define NON_CANONICAL_TYPE(Class, Base) 1436 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1437 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1438 #include "clang/AST/TypeNodes.def" 1439 llvm_unreachable("unexpected dependent type!"); 1440 1441 // These types are never variably-modified. 1442 case Type::Builtin: 1443 case Type::Complex: 1444 case Type::Vector: 1445 case Type::ExtVector: 1446 case Type::Record: 1447 case Type::Enum: 1448 case Type::Elaborated: 1449 case Type::TemplateSpecialization: 1450 case Type::ObjCObject: 1451 case Type::ObjCInterface: 1452 case Type::ObjCObjectPointer: 1453 llvm_unreachable("type class is never variably-modified!"); 1454 1455 case Type::Adjusted: 1456 type = cast<AdjustedType>(ty)->getAdjustedType(); 1457 break; 1458 1459 case Type::Decayed: 1460 type = cast<DecayedType>(ty)->getPointeeType(); 1461 break; 1462 1463 case Type::Pointer: 1464 type = cast<PointerType>(ty)->getPointeeType(); 1465 break; 1466 1467 case Type::BlockPointer: 1468 type = cast<BlockPointerType>(ty)->getPointeeType(); 1469 break; 1470 1471 case Type::LValueReference: 1472 case Type::RValueReference: 1473 type = cast<ReferenceType>(ty)->getPointeeType(); 1474 break; 1475 1476 case Type::MemberPointer: 1477 type = cast<MemberPointerType>(ty)->getPointeeType(); 1478 break; 1479 1480 case Type::ConstantArray: 1481 case Type::IncompleteArray: 1482 // Losing element qualification here is fine. 1483 type = cast<ArrayType>(ty)->getElementType(); 1484 break; 1485 1486 case Type::VariableArray: { 1487 // Losing element qualification here is fine. 1488 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1489 1490 // Unknown size indication requires no size computation. 1491 // Otherwise, evaluate and record it. 1492 if (const Expr *size = vat->getSizeExpr()) { 1493 // It's possible that we might have emitted this already, 1494 // e.g. with a typedef and a pointer to it. 1495 llvm::Value *&entry = VLASizeMap[size]; 1496 if (!entry) { 1497 llvm::Value *Size = EmitScalarExpr(size); 1498 1499 // C11 6.7.6.2p5: 1500 // If the size is an expression that is not an integer constant 1501 // expression [...] each time it is evaluated it shall have a value 1502 // greater than zero. 1503 if (SanOpts->VLABound && 1504 size->getType()->isSignedIntegerType()) { 1505 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1506 llvm::Constant *StaticArgs[] = { 1507 EmitCheckSourceLocation(size->getLocStart()), 1508 EmitCheckTypeDescriptor(size->getType()) 1509 }; 1510 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1511 "vla_bound_not_positive", StaticArgs, Size, 1512 CRK_Recoverable); 1513 } 1514 1515 // Always zexting here would be wrong if it weren't 1516 // undefined behavior to have a negative bound. 1517 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1518 } 1519 } 1520 type = vat->getElementType(); 1521 break; 1522 } 1523 1524 case Type::FunctionProto: 1525 case Type::FunctionNoProto: 1526 type = cast<FunctionType>(ty)->getReturnType(); 1527 break; 1528 1529 case Type::Paren: 1530 case Type::TypeOf: 1531 case Type::UnaryTransform: 1532 case Type::Attributed: 1533 case Type::SubstTemplateTypeParm: 1534 case Type::PackExpansion: 1535 // Keep walking after single level desugaring. 1536 type = type.getSingleStepDesugaredType(getContext()); 1537 break; 1538 1539 case Type::Typedef: 1540 case Type::Decltype: 1541 case Type::Auto: 1542 // Stop walking: nothing to do. 1543 return; 1544 1545 case Type::TypeOfExpr: 1546 // Stop walking: emit typeof expression. 1547 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1548 return; 1549 1550 case Type::Atomic: 1551 type = cast<AtomicType>(ty)->getValueType(); 1552 break; 1553 } 1554 } while (type->isVariablyModifiedType()); 1555 } 1556 1557 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1558 if (getContext().getBuiltinVaListType()->isArrayType()) 1559 return EmitScalarExpr(E); 1560 return EmitLValue(E).getAddress(); 1561 } 1562 1563 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1564 llvm::Constant *Init) { 1565 assert (Init && "Invalid DeclRefExpr initializer!"); 1566 if (CGDebugInfo *Dbg = getDebugInfo()) 1567 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1568 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1569 } 1570 1571 CodeGenFunction::PeepholeProtection 1572 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1573 // At the moment, the only aggressive peephole we do in IR gen 1574 // is trunc(zext) folding, but if we add more, we can easily 1575 // extend this protection. 1576 1577 if (!rvalue.isScalar()) return PeepholeProtection(); 1578 llvm::Value *value = rvalue.getScalarVal(); 1579 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1580 1581 // Just make an extra bitcast. 1582 assert(HaveInsertPoint()); 1583 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1584 Builder.GetInsertBlock()); 1585 1586 PeepholeProtection protection; 1587 protection.Inst = inst; 1588 return protection; 1589 } 1590 1591 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1592 if (!protection.Inst) return; 1593 1594 // In theory, we could try to duplicate the peepholes now, but whatever. 1595 protection.Inst->eraseFromParent(); 1596 } 1597 1598 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1599 llvm::Value *AnnotatedVal, 1600 StringRef AnnotationStr, 1601 SourceLocation Location) { 1602 llvm::Value *Args[4] = { 1603 AnnotatedVal, 1604 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1605 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1606 CGM.EmitAnnotationLineNo(Location) 1607 }; 1608 return Builder.CreateCall(AnnotationFn, Args); 1609 } 1610 1611 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1612 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1613 // FIXME We create a new bitcast for every annotation because that's what 1614 // llvm-gcc was doing. 1615 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1616 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1617 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1618 I->getAnnotation(), D->getLocation()); 1619 } 1620 1621 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1622 llvm::Value *V) { 1623 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1624 llvm::Type *VTy = V->getType(); 1625 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1626 CGM.Int8PtrTy); 1627 1628 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1629 // FIXME Always emit the cast inst so we can differentiate between 1630 // annotation on the first field of a struct and annotation on the struct 1631 // itself. 1632 if (VTy != CGM.Int8PtrTy) 1633 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1634 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1635 V = Builder.CreateBitCast(V, VTy); 1636 } 1637 1638 return V; 1639 } 1640 1641 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1642 1643 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1644 const llvm::Twine &Name, 1645 llvm::BasicBlock *BB, 1646 llvm::BasicBlock::iterator InsertPt) const { 1647 LoopStack.InsertHelper(I); 1648 } 1649 1650 template <bool PreserveNames> 1651 void CGBuilderInserter<PreserveNames>::InsertHelper( 1652 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1653 llvm::BasicBlock::iterator InsertPt) const { 1654 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1655 InsertPt); 1656 if (CGF) 1657 CGF->InsertHelper(I, Name, BB, InsertPt); 1658 } 1659 1660 #ifdef NDEBUG 1661 #define PreserveNames false 1662 #else 1663 #define PreserveNames true 1664 #endif 1665 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1666 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1667 llvm::BasicBlock::iterator InsertPt) const; 1668 #undef PreserveNames 1669