1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)), CapturedStmtInfo(nullptr),
40       SanOpts(&CGM.getLangOpts().Sanitize), AutoreleaseResult(false), BlockInfo(nullptr),
41       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
42       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
43       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
44       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
45       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
46       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
47       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
48       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
49       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
50       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
51       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
52       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
53       TerminateHandler(nullptr), TrapBB(nullptr) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
69 
70   // If there are any unclaimed block infos, go ahead and destroy them
71   // now.  This can happen if IR-gen gets clever and skips evaluating
72   // something.
73   if (FirstBlockInfo)
74     destroyBlockInfos(FirstBlockInfo);
75 
76   if (getLangOpts().OpenMP) {
77     CGM.getOpenMPRuntime().FunctionFinished(*this);
78   }
79 }
80 
81 
82 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
83   return CGM.getTypes().ConvertTypeForMem(T);
84 }
85 
86 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
87   return CGM.getTypes().ConvertType(T);
88 }
89 
90 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
91   type = type.getCanonicalType();
92   while (true) {
93     switch (type->getTypeClass()) {
94 #define TYPE(name, parent)
95 #define ABSTRACT_TYPE(name, parent)
96 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
97 #define DEPENDENT_TYPE(name, parent) case Type::name:
98 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
99 #include "clang/AST/TypeNodes.def"
100       llvm_unreachable("non-canonical or dependent type in IR-generation");
101 
102     case Type::Auto:
103       llvm_unreachable("undeduced auto type in IR-generation");
104 
105     // Various scalar types.
106     case Type::Builtin:
107     case Type::Pointer:
108     case Type::BlockPointer:
109     case Type::LValueReference:
110     case Type::RValueReference:
111     case Type::MemberPointer:
112     case Type::Vector:
113     case Type::ExtVector:
114     case Type::FunctionProto:
115     case Type::FunctionNoProto:
116     case Type::Enum:
117     case Type::ObjCObjectPointer:
118       return TEK_Scalar;
119 
120     // Complexes.
121     case Type::Complex:
122       return TEK_Complex;
123 
124     // Arrays, records, and Objective-C objects.
125     case Type::ConstantArray:
126     case Type::IncompleteArray:
127     case Type::VariableArray:
128     case Type::Record:
129     case Type::ObjCObject:
130     case Type::ObjCInterface:
131       return TEK_Aggregate;
132 
133     // We operate on atomic values according to their underlying type.
134     case Type::Atomic:
135       type = cast<AtomicType>(type)->getValueType();
136       continue;
137     }
138     llvm_unreachable("unknown type kind!");
139   }
140 }
141 
142 void CodeGenFunction::EmitReturnBlock() {
143   // For cleanliness, we try to avoid emitting the return block for
144   // simple cases.
145   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
146 
147   if (CurBB) {
148     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
149 
150     // We have a valid insert point, reuse it if it is empty or there are no
151     // explicit jumps to the return block.
152     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
153       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
154       delete ReturnBlock.getBlock();
155     } else
156       EmitBlock(ReturnBlock.getBlock());
157     return;
158   }
159 
160   // Otherwise, if the return block is the target of a single direct
161   // branch then we can just put the code in that block instead. This
162   // cleans up functions which started with a unified return block.
163   if (ReturnBlock.getBlock()->hasOneUse()) {
164     llvm::BranchInst *BI =
165       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
166     if (BI && BI->isUnconditional() &&
167         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
168       // Reset insertion point, including debug location, and delete the
169       // branch.  This is really subtle and only works because the next change
170       // in location will hit the caching in CGDebugInfo::EmitLocation and not
171       // override this.
172       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
173       Builder.SetInsertPoint(BI->getParent());
174       BI->eraseFromParent();
175       delete ReturnBlock.getBlock();
176       return;
177     }
178   }
179 
180   // FIXME: We are at an unreachable point, there is no reason to emit the block
181   // unless it has uses. However, we still need a place to put the debug
182   // region.end for now.
183 
184   EmitBlock(ReturnBlock.getBlock());
185 }
186 
187 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
188   if (!BB) return;
189   if (!BB->use_empty())
190     return CGF.CurFn->getBasicBlockList().push_back(BB);
191   delete BB;
192 }
193 
194 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
195   assert(BreakContinueStack.empty() &&
196          "mismatched push/pop in break/continue stack!");
197 
198   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
199     && NumSimpleReturnExprs == NumReturnExprs
200     && ReturnBlock.getBlock()->use_empty();
201   // Usually the return expression is evaluated before the cleanup
202   // code.  If the function contains only a simple return statement,
203   // such as a constant, the location before the cleanup code becomes
204   // the last useful breakpoint in the function, because the simple
205   // return expression will be evaluated after the cleanup code. To be
206   // safe, set the debug location for cleanup code to the location of
207   // the return statement.  Otherwise the cleanup code should be at the
208   // end of the function's lexical scope.
209   //
210   // If there are multiple branches to the return block, the branch
211   // instructions will get the location of the return statements and
212   // all will be fine.
213   if (CGDebugInfo *DI = getDebugInfo()) {
214     if (OnlySimpleReturnStmts)
215       DI->EmitLocation(Builder, LastStopPoint);
216     else
217       DI->EmitLocation(Builder, EndLoc);
218   }
219 
220   // Pop any cleanups that might have been associated with the
221   // parameters.  Do this in whatever block we're currently in; it's
222   // important to do this before we enter the return block or return
223   // edges will be *really* confused.
224   bool EmitRetDbgLoc = true;
225   if (EHStack.stable_begin() != PrologueCleanupDepth) {
226     PopCleanupBlocks(PrologueCleanupDepth);
227 
228     // Make sure the line table doesn't jump back into the body for
229     // the ret after it's been at EndLoc.
230     EmitRetDbgLoc = false;
231 
232     if (CGDebugInfo *DI = getDebugInfo())
233       if (OnlySimpleReturnStmts)
234         DI->EmitLocation(Builder, EndLoc);
235   }
236 
237   // Emit function epilog (to return).
238   EmitReturnBlock();
239 
240   if (ShouldInstrumentFunction())
241     EmitFunctionInstrumentation("__cyg_profile_func_exit");
242 
243   // Emit debug descriptor for function end.
244   if (CGDebugInfo *DI = getDebugInfo()) {
245     DI->EmitFunctionEnd(Builder);
246   }
247 
248   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
249   EmitEndEHSpec(CurCodeDecl);
250 
251   assert(EHStack.empty() &&
252          "did not remove all scopes from cleanup stack!");
253 
254   // If someone did an indirect goto, emit the indirect goto block at the end of
255   // the function.
256   if (IndirectBranch) {
257     EmitBlock(IndirectBranch->getParent());
258     Builder.ClearInsertionPoint();
259   }
260 
261   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
262   llvm::Instruction *Ptr = AllocaInsertPt;
263   AllocaInsertPt = nullptr;
264   Ptr->eraseFromParent();
265 
266   // If someone took the address of a label but never did an indirect goto, we
267   // made a zero entry PHI node, which is illegal, zap it now.
268   if (IndirectBranch) {
269     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
270     if (PN->getNumIncomingValues() == 0) {
271       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
272       PN->eraseFromParent();
273     }
274   }
275 
276   EmitIfUsed(*this, EHResumeBlock);
277   EmitIfUsed(*this, TerminateLandingPad);
278   EmitIfUsed(*this, TerminateHandler);
279   EmitIfUsed(*this, UnreachableBlock);
280 
281   if (CGM.getCodeGenOpts().EmitDeclMetadata)
282     EmitDeclMetadata();
283 
284   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
285            I = DeferredReplacements.begin(),
286            E = DeferredReplacements.end();
287        I != E; ++I) {
288     I->first->replaceAllUsesWith(I->second);
289     I->first->eraseFromParent();
290   }
291 }
292 
293 /// ShouldInstrumentFunction - Return true if the current function should be
294 /// instrumented with __cyg_profile_func_* calls
295 bool CodeGenFunction::ShouldInstrumentFunction() {
296   if (!CGM.getCodeGenOpts().InstrumentFunctions)
297     return false;
298   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
299     return false;
300   return true;
301 }
302 
303 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
304 /// instrumentation function with the current function and the call site, if
305 /// function instrumentation is enabled.
306 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
307   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
308   llvm::PointerType *PointerTy = Int8PtrTy;
309   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
310   llvm::FunctionType *FunctionTy =
311     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
312 
313   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
314   llvm::CallInst *CallSite = Builder.CreateCall(
315     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
316     llvm::ConstantInt::get(Int32Ty, 0),
317     "callsite");
318 
319   llvm::Value *args[] = {
320     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
321     CallSite
322   };
323 
324   EmitNounwindRuntimeCall(F, args);
325 }
326 
327 void CodeGenFunction::EmitMCountInstrumentation() {
328   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
329 
330   llvm::Constant *MCountFn =
331     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
332   EmitNounwindRuntimeCall(MCountFn);
333 }
334 
335 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
336 // information in the program executable. The argument information stored
337 // includes the argument name, its type, the address and access qualifiers used.
338 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
339                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
340                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
341                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
342   // Create MDNodes that represent the kernel arg metadata.
343   // Each MDNode is a list in the form of "key", N number of values which is
344   // the same number of values as their are kernel arguments.
345 
346   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
347 
348   // MDNode for the kernel argument address space qualifiers.
349   SmallVector<llvm::Value*, 8> addressQuals;
350   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
351 
352   // MDNode for the kernel argument access qualifiers (images only).
353   SmallVector<llvm::Value*, 8> accessQuals;
354   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
355 
356   // MDNode for the kernel argument type names.
357   SmallVector<llvm::Value*, 8> argTypeNames;
358   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
359 
360   // MDNode for the kernel argument type qualifiers.
361   SmallVector<llvm::Value*, 8> argTypeQuals;
362   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
363 
364   // MDNode for the kernel argument names.
365   SmallVector<llvm::Value*, 8> argNames;
366   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
367 
368   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
369     const ParmVarDecl *parm = FD->getParamDecl(i);
370     QualType ty = parm->getType();
371     std::string typeQuals;
372 
373     if (ty->isPointerType()) {
374       QualType pointeeTy = ty->getPointeeType();
375 
376       // Get address qualifier.
377       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
378         pointeeTy.getAddressSpace())));
379 
380       // Get argument type name.
381       std::string typeName =
382           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
383 
384       // Turn "unsigned type" to "utype"
385       std::string::size_type pos = typeName.find("unsigned");
386       if (pos != std::string::npos)
387         typeName.erase(pos+1, 8);
388 
389       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
390 
391       // Get argument type qualifiers:
392       if (ty.isRestrictQualified())
393         typeQuals = "restrict";
394       if (pointeeTy.isConstQualified() ||
395           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
396         typeQuals += typeQuals.empty() ? "const" : " const";
397       if (pointeeTy.isVolatileQualified())
398         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
399     } else {
400       uint32_t AddrSpc = 0;
401       if (ty->isImageType())
402         AddrSpc =
403           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
404 
405       addressQuals.push_back(Builder.getInt32(AddrSpc));
406 
407       // Get argument type name.
408       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
409 
410       // Turn "unsigned type" to "utype"
411       std::string::size_type pos = typeName.find("unsigned");
412       if (pos != std::string::npos)
413         typeName.erase(pos+1, 8);
414 
415       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
416 
417       // Get argument type qualifiers:
418       if (ty.isConstQualified())
419         typeQuals = "const";
420       if (ty.isVolatileQualified())
421         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
422     }
423 
424     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
425 
426     // Get image access qualifier:
427     if (ty->isImageType()) {
428       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
429       if (A && A->isWriteOnly())
430         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
431       else
432         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
433       // FIXME: what about read_write?
434     } else
435       accessQuals.push_back(llvm::MDString::get(Context, "none"));
436 
437     // Get argument name.
438     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
439   }
440 
441   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
442   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
443   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
444   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
445   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
446 }
447 
448 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
449                                                llvm::Function *Fn)
450 {
451   if (!FD->hasAttr<OpenCLKernelAttr>())
452     return;
453 
454   llvm::LLVMContext &Context = getLLVMContext();
455 
456   SmallVector <llvm::Value*, 5> kernelMDArgs;
457   kernelMDArgs.push_back(Fn);
458 
459   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
460     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
461                          Builder, getContext());
462 
463   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
464     QualType hintQTy = A->getTypeHint();
465     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
466     bool isSignedInteger =
467         hintQTy->isSignedIntegerType() ||
468         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
469     llvm::Value *attrMDArgs[] = {
470       llvm::MDString::get(Context, "vec_type_hint"),
471       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
472       llvm::ConstantInt::get(
473           llvm::IntegerType::get(Context, 32),
474           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
475     };
476     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
477   }
478 
479   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
480     llvm::Value *attrMDArgs[] = {
481       llvm::MDString::get(Context, "work_group_size_hint"),
482       Builder.getInt32(A->getXDim()),
483       Builder.getInt32(A->getYDim()),
484       Builder.getInt32(A->getZDim())
485     };
486     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
487   }
488 
489   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
490     llvm::Value *attrMDArgs[] = {
491       llvm::MDString::get(Context, "reqd_work_group_size"),
492       Builder.getInt32(A->getXDim()),
493       Builder.getInt32(A->getYDim()),
494       Builder.getInt32(A->getZDim())
495     };
496     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
497   }
498 
499   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
500   llvm::NamedMDNode *OpenCLKernelMetadata =
501     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
502   OpenCLKernelMetadata->addOperand(kernelMDNode);
503 }
504 
505 /// Determine whether the function F ends with a return stmt.
506 static bool endsWithReturn(const Decl* F) {
507   const Stmt *Body = nullptr;
508   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
509     Body = FD->getBody();
510   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
511     Body = OMD->getBody();
512 
513   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
514     auto LastStmt = CS->body_rbegin();
515     if (LastStmt != CS->body_rend())
516       return isa<ReturnStmt>(*LastStmt);
517   }
518   return false;
519 }
520 
521 void CodeGenFunction::StartFunction(GlobalDecl GD,
522                                     QualType RetTy,
523                                     llvm::Function *Fn,
524                                     const CGFunctionInfo &FnInfo,
525                                     const FunctionArgList &Args,
526                                     SourceLocation Loc,
527                                     SourceLocation StartLoc) {
528   const Decl *D = GD.getDecl();
529 
530   DidCallStackSave = false;
531   CurCodeDecl = D;
532   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
533   FnRetTy = RetTy;
534   CurFn = Fn;
535   CurFnInfo = &FnInfo;
536   assert(CurFn->isDeclaration() && "Function already has body?");
537 
538   if (CGM.getSanitizerBlacklist().isIn(*Fn))
539     SanOpts = &SanitizerOptions::Disabled;
540 
541   // Pass inline keyword to optimizer if it appears explicitly on any
542   // declaration. Also, in the case of -fno-inline attach NoInline
543   // attribute to all function that are not marked AlwaysInline.
544   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
545     if (!CGM.getCodeGenOpts().NoInline) {
546       for (auto RI : FD->redecls())
547         if (RI->isInlineSpecified()) {
548           Fn->addFnAttr(llvm::Attribute::InlineHint);
549           break;
550         }
551     } else if (!FD->hasAttr<AlwaysInlineAttr>())
552       Fn->addFnAttr(llvm::Attribute::NoInline);
553   }
554 
555   if (getLangOpts().OpenCL) {
556     // Add metadata for a kernel function.
557     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
558       EmitOpenCLKernelMetadata(FD, Fn);
559   }
560 
561   // If we are checking function types, emit a function type signature as
562   // prefix data.
563   if (getLangOpts().CPlusPlus && SanOpts->Function) {
564     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
565       if (llvm::Constant *PrefixSig =
566               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
567         llvm::Constant *FTRTTIConst =
568             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
569         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
570         llvm::Constant *PrefixStructConst =
571             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
572         Fn->setPrefixData(PrefixStructConst);
573       }
574     }
575   }
576 
577   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
578 
579   // Create a marker to make it easy to insert allocas into the entryblock
580   // later.  Don't create this with the builder, because we don't want it
581   // folded.
582   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
583   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
584   if (Builder.isNamePreserving())
585     AllocaInsertPt->setName("allocapt");
586 
587   ReturnBlock = getJumpDestInCurrentScope("return");
588 
589   Builder.SetInsertPoint(EntryBB);
590 
591   // Emit subprogram debug descriptor.
592   if (CGDebugInfo *DI = getDebugInfo()) {
593     SmallVector<QualType, 16> ArgTypes;
594     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
595 	 i != e; ++i) {
596       ArgTypes.push_back((*i)->getType());
597     }
598 
599     QualType FnType =
600       getContext().getFunctionType(RetTy, ArgTypes,
601                                    FunctionProtoType::ExtProtoInfo());
602     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
603   }
604 
605   if (ShouldInstrumentFunction())
606     EmitFunctionInstrumentation("__cyg_profile_func_enter");
607 
608   if (CGM.getCodeGenOpts().InstrumentForProfiling)
609     EmitMCountInstrumentation();
610 
611   if (RetTy->isVoidType()) {
612     // Void type; nothing to return.
613     ReturnValue = nullptr;
614 
615     // Count the implicit return.
616     if (!endsWithReturn(D))
617       ++NumReturnExprs;
618   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
619              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
620     // Indirect aggregate return; emit returned value directly into sret slot.
621     // This reduces code size, and affects correctness in C++.
622     auto AI = CurFn->arg_begin();
623     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
624       ++AI;
625     ReturnValue = AI;
626   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
627              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
628     // Load the sret pointer from the argument struct and return into that.
629     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
630     llvm::Function::arg_iterator EI = CurFn->arg_end();
631     --EI;
632     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
633     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
634   } else {
635     ReturnValue = CreateIRTemp(RetTy, "retval");
636 
637     // Tell the epilog emitter to autorelease the result.  We do this
638     // now so that various specialized functions can suppress it
639     // during their IR-generation.
640     if (getLangOpts().ObjCAutoRefCount &&
641         !CurFnInfo->isReturnsRetained() &&
642         RetTy->isObjCRetainableType())
643       AutoreleaseResult = true;
644   }
645 
646   EmitStartEHSpec(CurCodeDecl);
647 
648   PrologueCleanupDepth = EHStack.stable_begin();
649   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
650 
651   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
652     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
653     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
654     if (MD->getParent()->isLambda() &&
655         MD->getOverloadedOperator() == OO_Call) {
656       // We're in a lambda; figure out the captures.
657       MD->getParent()->getCaptureFields(LambdaCaptureFields,
658                                         LambdaThisCaptureField);
659       if (LambdaThisCaptureField) {
660         // If this lambda captures this, load it.
661         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
662         CXXThisValue = EmitLoadOfLValue(ThisLValue,
663                                         SourceLocation()).getScalarVal();
664       }
665     } else {
666       // Not in a lambda; just use 'this' from the method.
667       // FIXME: Should we generate a new load for each use of 'this'?  The
668       // fast register allocator would be happier...
669       CXXThisValue = CXXABIThisValue;
670     }
671   }
672 
673   // If any of the arguments have a variably modified type, make sure to
674   // emit the type size.
675   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
676        i != e; ++i) {
677     const VarDecl *VD = *i;
678 
679     // Dig out the type as written from ParmVarDecls; it's unclear whether
680     // the standard (C99 6.9.1p10) requires this, but we're following the
681     // precedent set by gcc.
682     QualType Ty;
683     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
684       Ty = PVD->getOriginalType();
685     else
686       Ty = VD->getType();
687 
688     if (Ty->isVariablyModifiedType())
689       EmitVariablyModifiedType(Ty);
690   }
691   // Emit a location at the end of the prologue.
692   if (CGDebugInfo *DI = getDebugInfo())
693     DI->EmitLocation(Builder, StartLoc);
694 }
695 
696 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
697                                        const Stmt *Body) {
698   RegionCounter Cnt = getPGORegionCounter(Body);
699   Cnt.beginRegion(Builder);
700   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
701     EmitCompoundStmtWithoutScope(*S);
702   else
703     EmitStmt(Body);
704 }
705 
706 /// When instrumenting to collect profile data, the counts for some blocks
707 /// such as switch cases need to not include the fall-through counts, so
708 /// emit a branch around the instrumentation code. When not instrumenting,
709 /// this just calls EmitBlock().
710 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
711                                                RegionCounter &Cnt) {
712   llvm::BasicBlock *SkipCountBB = nullptr;
713   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
714     // When instrumenting for profiling, the fallthrough to certain
715     // statements needs to skip over the instrumentation code so that we
716     // get an accurate count.
717     SkipCountBB = createBasicBlock("skipcount");
718     EmitBranch(SkipCountBB);
719   }
720   EmitBlock(BB);
721   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
722   if (SkipCountBB)
723     EmitBlock(SkipCountBB);
724 }
725 
726 /// Tries to mark the given function nounwind based on the
727 /// non-existence of any throwing calls within it.  We believe this is
728 /// lightweight enough to do at -O0.
729 static void TryMarkNoThrow(llvm::Function *F) {
730   // LLVM treats 'nounwind' on a function as part of the type, so we
731   // can't do this on functions that can be overwritten.
732   if (F->mayBeOverridden()) return;
733 
734   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
735     for (llvm::BasicBlock::iterator
736            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
737       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
738         if (!Call->doesNotThrow())
739           return;
740       } else if (isa<llvm::ResumeInst>(&*BI)) {
741         return;
742       }
743   F->setDoesNotThrow();
744 }
745 
746 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
747                                           const FunctionDecl *UnsizedDealloc) {
748   // This is a weak discardable definition of the sized deallocation function.
749   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
750 
751   // Call the unsized deallocation function and forward the first argument
752   // unchanged.
753   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
754   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
755 }
756 
757 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
758                                    const CGFunctionInfo &FnInfo) {
759   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
760 
761   // Check if we should generate debug info for this function.
762   if (FD->hasAttr<NoDebugAttr>())
763     DebugInfo = nullptr; // disable debug info indefinitely for this function
764 
765   FunctionArgList Args;
766   QualType ResTy = FD->getReturnType();
767 
768   CurGD = GD;
769   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
770   if (MD && MD->isInstance()) {
771     if (CGM.getCXXABI().HasThisReturn(GD))
772       ResTy = MD->getThisType(getContext());
773     CGM.getCXXABI().buildThisParam(*this, Args);
774   }
775 
776   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
777     Args.push_back(FD->getParamDecl(i));
778 
779   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
780     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
781 
782   SourceRange BodyRange;
783   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
784   CurEHLocation = BodyRange.getEnd();
785 
786   // Use the location of the start of the function to determine where
787   // the function definition is located. By default use the location
788   // of the declaration as the location for the subprogram. A function
789   // may lack a declaration in the source code if it is created by code
790   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
791   SourceLocation Loc;
792   if (FD) {
793     Loc = FD->getLocation();
794 
795     // If this is a function specialization then use the pattern body
796     // as the location for the function.
797     if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
798       if (SpecDecl->hasBody(SpecDecl))
799         Loc = SpecDecl->getLocation();
800   }
801 
802   // Emit the standard function prologue.
803   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
804 
805   // Generate the body of the function.
806   PGO.assignRegionCounters(GD.getDecl(), CurFn);
807   if (isa<CXXDestructorDecl>(FD))
808     EmitDestructorBody(Args);
809   else if (isa<CXXConstructorDecl>(FD))
810     EmitConstructorBody(Args);
811   else if (getLangOpts().CUDA &&
812            !CGM.getCodeGenOpts().CUDAIsDevice &&
813            FD->hasAttr<CUDAGlobalAttr>())
814     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
815   else if (isa<CXXConversionDecl>(FD) &&
816            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
817     // The lambda conversion to block pointer is special; the semantics can't be
818     // expressed in the AST, so IRGen needs to special-case it.
819     EmitLambdaToBlockPointerBody(Args);
820   } else if (isa<CXXMethodDecl>(FD) &&
821              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
822     // The lambda static invoker function is special, because it forwards or
823     // clones the body of the function call operator (but is actually static).
824     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
825   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
826              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
827               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
828     // Implicit copy-assignment gets the same special treatment as implicit
829     // copy-constructors.
830     emitImplicitAssignmentOperatorBody(Args);
831   } else if (Stmt *Body = FD->getBody()) {
832     EmitFunctionBody(Args, Body);
833   } else if (FunctionDecl *UnsizedDealloc =
834                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
835     // Global sized deallocation functions get an implicit weak definition if
836     // they don't have an explicit definition.
837     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
838   } else
839     llvm_unreachable("no definition for emitted function");
840 
841   // C++11 [stmt.return]p2:
842   //   Flowing off the end of a function [...] results in undefined behavior in
843   //   a value-returning function.
844   // C11 6.9.1p12:
845   //   If the '}' that terminates a function is reached, and the value of the
846   //   function call is used by the caller, the behavior is undefined.
847   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
848       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
849     if (SanOpts->Return)
850       EmitCheck(Builder.getFalse(), "missing_return",
851                 EmitCheckSourceLocation(FD->getLocation()),
852                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
853     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
854       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
855     Builder.CreateUnreachable();
856     Builder.ClearInsertionPoint();
857   }
858 
859   // Emit the standard function epilogue.
860   FinishFunction(BodyRange.getEnd());
861 
862   // If we haven't marked the function nothrow through other means, do
863   // a quick pass now to see if we can.
864   if (!CurFn->doesNotThrow())
865     TryMarkNoThrow(CurFn);
866 
867   PGO.emitInstrumentationData();
868   PGO.destroyRegionCounters();
869 }
870 
871 /// ContainsLabel - Return true if the statement contains a label in it.  If
872 /// this statement is not executed normally, it not containing a label means
873 /// that we can just remove the code.
874 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
875   // Null statement, not a label!
876   if (!S) return false;
877 
878   // If this is a label, we have to emit the code, consider something like:
879   // if (0) {  ...  foo:  bar(); }  goto foo;
880   //
881   // TODO: If anyone cared, we could track __label__'s, since we know that you
882   // can't jump to one from outside their declared region.
883   if (isa<LabelStmt>(S))
884     return true;
885 
886   // If this is a case/default statement, and we haven't seen a switch, we have
887   // to emit the code.
888   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
889     return true;
890 
891   // If this is a switch statement, we want to ignore cases below it.
892   if (isa<SwitchStmt>(S))
893     IgnoreCaseStmts = true;
894 
895   // Scan subexpressions for verboten labels.
896   for (Stmt::const_child_range I = S->children(); I; ++I)
897     if (ContainsLabel(*I, IgnoreCaseStmts))
898       return true;
899 
900   return false;
901 }
902 
903 /// containsBreak - Return true if the statement contains a break out of it.
904 /// If the statement (recursively) contains a switch or loop with a break
905 /// inside of it, this is fine.
906 bool CodeGenFunction::containsBreak(const Stmt *S) {
907   // Null statement, not a label!
908   if (!S) return false;
909 
910   // If this is a switch or loop that defines its own break scope, then we can
911   // include it and anything inside of it.
912   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
913       isa<ForStmt>(S))
914     return false;
915 
916   if (isa<BreakStmt>(S))
917     return true;
918 
919   // Scan subexpressions for verboten breaks.
920   for (Stmt::const_child_range I = S->children(); I; ++I)
921     if (containsBreak(*I))
922       return true;
923 
924   return false;
925 }
926 
927 
928 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
929 /// to a constant, or if it does but contains a label, return false.  If it
930 /// constant folds return true and set the boolean result in Result.
931 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
932                                                    bool &ResultBool) {
933   llvm::APSInt ResultInt;
934   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
935     return false;
936 
937   ResultBool = ResultInt.getBoolValue();
938   return true;
939 }
940 
941 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
942 /// to a constant, or if it does but contains a label, return false.  If it
943 /// constant folds return true and set the folded value.
944 bool CodeGenFunction::
945 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
946   // FIXME: Rename and handle conversion of other evaluatable things
947   // to bool.
948   llvm::APSInt Int;
949   if (!Cond->EvaluateAsInt(Int, getContext()))
950     return false;  // Not foldable, not integer or not fully evaluatable.
951 
952   if (CodeGenFunction::ContainsLabel(Cond))
953     return false;  // Contains a label.
954 
955   ResultInt = Int;
956   return true;
957 }
958 
959 
960 
961 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
962 /// statement) to the specified blocks.  Based on the condition, this might try
963 /// to simplify the codegen of the conditional based on the branch.
964 ///
965 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
966                                            llvm::BasicBlock *TrueBlock,
967                                            llvm::BasicBlock *FalseBlock,
968                                            uint64_t TrueCount) {
969   Cond = Cond->IgnoreParens();
970 
971   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
972 
973     // Handle X && Y in a condition.
974     if (CondBOp->getOpcode() == BO_LAnd) {
975       RegionCounter Cnt = getPGORegionCounter(CondBOp);
976 
977       // If we have "1 && X", simplify the code.  "0 && X" would have constant
978       // folded if the case was simple enough.
979       bool ConstantBool = false;
980       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
981           ConstantBool) {
982         // br(1 && X) -> br(X).
983         Cnt.beginRegion(Builder);
984         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
985                                     TrueCount);
986       }
987 
988       // If we have "X && 1", simplify the code to use an uncond branch.
989       // "X && 0" would have been constant folded to 0.
990       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
991           ConstantBool) {
992         // br(X && 1) -> br(X).
993         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
994                                     TrueCount);
995       }
996 
997       // Emit the LHS as a conditional.  If the LHS conditional is false, we
998       // want to jump to the FalseBlock.
999       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1000       // The counter tells us how often we evaluate RHS, and all of TrueCount
1001       // can be propagated to that branch.
1002       uint64_t RHSCount = Cnt.getCount();
1003 
1004       ConditionalEvaluation eval(*this);
1005       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1006       EmitBlock(LHSTrue);
1007 
1008       // Any temporaries created here are conditional.
1009       Cnt.beginRegion(Builder);
1010       eval.begin(*this);
1011       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1012       eval.end(*this);
1013 
1014       return;
1015     }
1016 
1017     if (CondBOp->getOpcode() == BO_LOr) {
1018       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1019 
1020       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1021       // folded if the case was simple enough.
1022       bool ConstantBool = false;
1023       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1024           !ConstantBool) {
1025         // br(0 || X) -> br(X).
1026         Cnt.beginRegion(Builder);
1027         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1028                                     TrueCount);
1029       }
1030 
1031       // If we have "X || 0", simplify the code to use an uncond branch.
1032       // "X || 1" would have been constant folded to 1.
1033       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1034           !ConstantBool) {
1035         // br(X || 0) -> br(X).
1036         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1037                                     TrueCount);
1038       }
1039 
1040       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1041       // want to jump to the TrueBlock.
1042       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1043       // We have the count for entry to the RHS and for the whole expression
1044       // being true, so we can divy up True count between the short circuit and
1045       // the RHS.
1046       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1047       uint64_t RHSCount = TrueCount - LHSCount;
1048 
1049       ConditionalEvaluation eval(*this);
1050       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1051       EmitBlock(LHSFalse);
1052 
1053       // Any temporaries created here are conditional.
1054       Cnt.beginRegion(Builder);
1055       eval.begin(*this);
1056       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1057 
1058       eval.end(*this);
1059 
1060       return;
1061     }
1062   }
1063 
1064   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1065     // br(!x, t, f) -> br(x, f, t)
1066     if (CondUOp->getOpcode() == UO_LNot) {
1067       // Negate the count.
1068       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1069       // Negate the condition and swap the destination blocks.
1070       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1071                                   FalseCount);
1072     }
1073   }
1074 
1075   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1076     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1077     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1078     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1079 
1080     RegionCounter Cnt = getPGORegionCounter(CondOp);
1081     ConditionalEvaluation cond(*this);
1082     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1083 
1084     // When computing PGO branch weights, we only know the overall count for
1085     // the true block. This code is essentially doing tail duplication of the
1086     // naive code-gen, introducing new edges for which counts are not
1087     // available. Divide the counts proportionally between the LHS and RHS of
1088     // the conditional operator.
1089     uint64_t LHSScaledTrueCount = 0;
1090     if (TrueCount) {
1091       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1092       LHSScaledTrueCount = TrueCount * LHSRatio;
1093     }
1094 
1095     cond.begin(*this);
1096     EmitBlock(LHSBlock);
1097     Cnt.beginRegion(Builder);
1098     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1099                          LHSScaledTrueCount);
1100     cond.end(*this);
1101 
1102     cond.begin(*this);
1103     EmitBlock(RHSBlock);
1104     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1105                          TrueCount - LHSScaledTrueCount);
1106     cond.end(*this);
1107 
1108     return;
1109   }
1110 
1111   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1112     // Conditional operator handling can give us a throw expression as a
1113     // condition for a case like:
1114     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1115     // Fold this to:
1116     //   br(c, throw x, br(y, t, f))
1117     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1118     return;
1119   }
1120 
1121   // Create branch weights based on the number of times we get here and the
1122   // number of times the condition should be true.
1123   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1124   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1125                                                   CurrentCount - TrueCount);
1126 
1127   // Emit the code with the fully general case.
1128   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1129   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1130 }
1131 
1132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1133 /// specified stmt yet.
1134 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1135   CGM.ErrorUnsupported(S, Type);
1136 }
1137 
1138 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1139 /// variable-length array whose elements have a non-zero bit-pattern.
1140 ///
1141 /// \param baseType the inner-most element type of the array
1142 /// \param src - a char* pointing to the bit-pattern for a single
1143 /// base element of the array
1144 /// \param sizeInChars - the total size of the VLA, in chars
1145 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1146                                llvm::Value *dest, llvm::Value *src,
1147                                llvm::Value *sizeInChars) {
1148   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1149     = CGF.getContext().getTypeInfoInChars(baseType);
1150 
1151   CGBuilderTy &Builder = CGF.Builder;
1152 
1153   llvm::Value *baseSizeInChars
1154     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1155 
1156   llvm::Type *i8p = Builder.getInt8PtrTy();
1157 
1158   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1159   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1160 
1161   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1162   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1163   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1164 
1165   // Make a loop over the VLA.  C99 guarantees that the VLA element
1166   // count must be nonzero.
1167   CGF.EmitBlock(loopBB);
1168 
1169   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1170   cur->addIncoming(begin, originBB);
1171 
1172   // memcpy the individual element bit-pattern.
1173   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1174                        baseSizeAndAlign.second.getQuantity(),
1175                        /*volatile*/ false);
1176 
1177   // Go to the next element.
1178   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1179 
1180   // Leave if that's the end of the VLA.
1181   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1182   Builder.CreateCondBr(done, contBB, loopBB);
1183   cur->addIncoming(next, loopBB);
1184 
1185   CGF.EmitBlock(contBB);
1186 }
1187 
1188 void
1189 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1190   // Ignore empty classes in C++.
1191   if (getLangOpts().CPlusPlus) {
1192     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1193       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1194         return;
1195     }
1196   }
1197 
1198   // Cast the dest ptr to the appropriate i8 pointer type.
1199   unsigned DestAS =
1200     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1201   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1202   if (DestPtr->getType() != BP)
1203     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1204 
1205   // Get size and alignment info for this aggregate.
1206   std::pair<CharUnits, CharUnits> TypeInfo =
1207     getContext().getTypeInfoInChars(Ty);
1208   CharUnits Size = TypeInfo.first;
1209   CharUnits Align = TypeInfo.second;
1210 
1211   llvm::Value *SizeVal;
1212   const VariableArrayType *vla;
1213 
1214   // Don't bother emitting a zero-byte memset.
1215   if (Size.isZero()) {
1216     // But note that getTypeInfo returns 0 for a VLA.
1217     if (const VariableArrayType *vlaType =
1218           dyn_cast_or_null<VariableArrayType>(
1219                                           getContext().getAsArrayType(Ty))) {
1220       QualType eltType;
1221       llvm::Value *numElts;
1222       std::tie(numElts, eltType) = getVLASize(vlaType);
1223 
1224       SizeVal = numElts;
1225       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1226       if (!eltSize.isOne())
1227         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1228       vla = vlaType;
1229     } else {
1230       return;
1231     }
1232   } else {
1233     SizeVal = CGM.getSize(Size);
1234     vla = nullptr;
1235   }
1236 
1237   // If the type contains a pointer to data member we can't memset it to zero.
1238   // Instead, create a null constant and copy it to the destination.
1239   // TODO: there are other patterns besides zero that we can usefully memset,
1240   // like -1, which happens to be the pattern used by member-pointers.
1241   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1242     // For a VLA, emit a single element, then splat that over the VLA.
1243     if (vla) Ty = getContext().getBaseElementType(vla);
1244 
1245     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1246 
1247     llvm::GlobalVariable *NullVariable =
1248       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1249                                /*isConstant=*/true,
1250                                llvm::GlobalVariable::PrivateLinkage,
1251                                NullConstant, Twine());
1252     llvm::Value *SrcPtr =
1253       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1254 
1255     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1256 
1257     // Get and call the appropriate llvm.memcpy overload.
1258     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1259     return;
1260   }
1261 
1262   // Otherwise, just memset the whole thing to zero.  This is legal
1263   // because in LLVM, all default initializers (other than the ones we just
1264   // handled above) are guaranteed to have a bit pattern of all zeros.
1265   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1266                        Align.getQuantity(), false);
1267 }
1268 
1269 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1270   // Make sure that there is a block for the indirect goto.
1271   if (!IndirectBranch)
1272     GetIndirectGotoBlock();
1273 
1274   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1275 
1276   // Make sure the indirect branch includes all of the address-taken blocks.
1277   IndirectBranch->addDestination(BB);
1278   return llvm::BlockAddress::get(CurFn, BB);
1279 }
1280 
1281 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1282   // If we already made the indirect branch for indirect goto, return its block.
1283   if (IndirectBranch) return IndirectBranch->getParent();
1284 
1285   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1286 
1287   // Create the PHI node that indirect gotos will add entries to.
1288   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1289                                               "indirect.goto.dest");
1290 
1291   // Create the indirect branch instruction.
1292   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1293   return IndirectBranch->getParent();
1294 }
1295 
1296 /// Computes the length of an array in elements, as well as the base
1297 /// element type and a properly-typed first element pointer.
1298 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1299                                               QualType &baseType,
1300                                               llvm::Value *&addr) {
1301   const ArrayType *arrayType = origArrayType;
1302 
1303   // If it's a VLA, we have to load the stored size.  Note that
1304   // this is the size of the VLA in bytes, not its size in elements.
1305   llvm::Value *numVLAElements = nullptr;
1306   if (isa<VariableArrayType>(arrayType)) {
1307     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1308 
1309     // Walk into all VLAs.  This doesn't require changes to addr,
1310     // which has type T* where T is the first non-VLA element type.
1311     do {
1312       QualType elementType = arrayType->getElementType();
1313       arrayType = getContext().getAsArrayType(elementType);
1314 
1315       // If we only have VLA components, 'addr' requires no adjustment.
1316       if (!arrayType) {
1317         baseType = elementType;
1318         return numVLAElements;
1319       }
1320     } while (isa<VariableArrayType>(arrayType));
1321 
1322     // We get out here only if we find a constant array type
1323     // inside the VLA.
1324   }
1325 
1326   // We have some number of constant-length arrays, so addr should
1327   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1328   // down to the first element of addr.
1329   SmallVector<llvm::Value*, 8> gepIndices;
1330 
1331   // GEP down to the array type.
1332   llvm::ConstantInt *zero = Builder.getInt32(0);
1333   gepIndices.push_back(zero);
1334 
1335   uint64_t countFromCLAs = 1;
1336   QualType eltType;
1337 
1338   llvm::ArrayType *llvmArrayType =
1339     dyn_cast<llvm::ArrayType>(
1340       cast<llvm::PointerType>(addr->getType())->getElementType());
1341   while (llvmArrayType) {
1342     assert(isa<ConstantArrayType>(arrayType));
1343     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1344              == llvmArrayType->getNumElements());
1345 
1346     gepIndices.push_back(zero);
1347     countFromCLAs *= llvmArrayType->getNumElements();
1348     eltType = arrayType->getElementType();
1349 
1350     llvmArrayType =
1351       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1352     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1353     assert((!llvmArrayType || arrayType) &&
1354            "LLVM and Clang types are out-of-synch");
1355   }
1356 
1357   if (arrayType) {
1358     // From this point onwards, the Clang array type has been emitted
1359     // as some other type (probably a packed struct). Compute the array
1360     // size, and just emit the 'begin' expression as a bitcast.
1361     while (arrayType) {
1362       countFromCLAs *=
1363           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1364       eltType = arrayType->getElementType();
1365       arrayType = getContext().getAsArrayType(eltType);
1366     }
1367 
1368     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1369     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1370     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1371   } else {
1372     // Create the actual GEP.
1373     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1374   }
1375 
1376   baseType = eltType;
1377 
1378   llvm::Value *numElements
1379     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1380 
1381   // If we had any VLA dimensions, factor them in.
1382   if (numVLAElements)
1383     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1384 
1385   return numElements;
1386 }
1387 
1388 std::pair<llvm::Value*, QualType>
1389 CodeGenFunction::getVLASize(QualType type) {
1390   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1391   assert(vla && "type was not a variable array type!");
1392   return getVLASize(vla);
1393 }
1394 
1395 std::pair<llvm::Value*, QualType>
1396 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1397   // The number of elements so far; always size_t.
1398   llvm::Value *numElements = nullptr;
1399 
1400   QualType elementType;
1401   do {
1402     elementType = type->getElementType();
1403     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1404     assert(vlaSize && "no size for VLA!");
1405     assert(vlaSize->getType() == SizeTy);
1406 
1407     if (!numElements) {
1408       numElements = vlaSize;
1409     } else {
1410       // It's undefined behavior if this wraps around, so mark it that way.
1411       // FIXME: Teach -fsanitize=undefined to trap this.
1412       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1413     }
1414   } while ((type = getContext().getAsVariableArrayType(elementType)));
1415 
1416   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1417 }
1418 
1419 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1420   assert(type->isVariablyModifiedType() &&
1421          "Must pass variably modified type to EmitVLASizes!");
1422 
1423   EnsureInsertPoint();
1424 
1425   // We're going to walk down into the type and look for VLA
1426   // expressions.
1427   do {
1428     assert(type->isVariablyModifiedType());
1429 
1430     const Type *ty = type.getTypePtr();
1431     switch (ty->getTypeClass()) {
1432 
1433 #define TYPE(Class, Base)
1434 #define ABSTRACT_TYPE(Class, Base)
1435 #define NON_CANONICAL_TYPE(Class, Base)
1436 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1437 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1438 #include "clang/AST/TypeNodes.def"
1439       llvm_unreachable("unexpected dependent type!");
1440 
1441     // These types are never variably-modified.
1442     case Type::Builtin:
1443     case Type::Complex:
1444     case Type::Vector:
1445     case Type::ExtVector:
1446     case Type::Record:
1447     case Type::Enum:
1448     case Type::Elaborated:
1449     case Type::TemplateSpecialization:
1450     case Type::ObjCObject:
1451     case Type::ObjCInterface:
1452     case Type::ObjCObjectPointer:
1453       llvm_unreachable("type class is never variably-modified!");
1454 
1455     case Type::Adjusted:
1456       type = cast<AdjustedType>(ty)->getAdjustedType();
1457       break;
1458 
1459     case Type::Decayed:
1460       type = cast<DecayedType>(ty)->getPointeeType();
1461       break;
1462 
1463     case Type::Pointer:
1464       type = cast<PointerType>(ty)->getPointeeType();
1465       break;
1466 
1467     case Type::BlockPointer:
1468       type = cast<BlockPointerType>(ty)->getPointeeType();
1469       break;
1470 
1471     case Type::LValueReference:
1472     case Type::RValueReference:
1473       type = cast<ReferenceType>(ty)->getPointeeType();
1474       break;
1475 
1476     case Type::MemberPointer:
1477       type = cast<MemberPointerType>(ty)->getPointeeType();
1478       break;
1479 
1480     case Type::ConstantArray:
1481     case Type::IncompleteArray:
1482       // Losing element qualification here is fine.
1483       type = cast<ArrayType>(ty)->getElementType();
1484       break;
1485 
1486     case Type::VariableArray: {
1487       // Losing element qualification here is fine.
1488       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1489 
1490       // Unknown size indication requires no size computation.
1491       // Otherwise, evaluate and record it.
1492       if (const Expr *size = vat->getSizeExpr()) {
1493         // It's possible that we might have emitted this already,
1494         // e.g. with a typedef and a pointer to it.
1495         llvm::Value *&entry = VLASizeMap[size];
1496         if (!entry) {
1497           llvm::Value *Size = EmitScalarExpr(size);
1498 
1499           // C11 6.7.6.2p5:
1500           //   If the size is an expression that is not an integer constant
1501           //   expression [...] each time it is evaluated it shall have a value
1502           //   greater than zero.
1503           if (SanOpts->VLABound &&
1504               size->getType()->isSignedIntegerType()) {
1505             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1506             llvm::Constant *StaticArgs[] = {
1507               EmitCheckSourceLocation(size->getLocStart()),
1508               EmitCheckTypeDescriptor(size->getType())
1509             };
1510             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1511                       "vla_bound_not_positive", StaticArgs, Size,
1512                       CRK_Recoverable);
1513           }
1514 
1515           // Always zexting here would be wrong if it weren't
1516           // undefined behavior to have a negative bound.
1517           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1518         }
1519       }
1520       type = vat->getElementType();
1521       break;
1522     }
1523 
1524     case Type::FunctionProto:
1525     case Type::FunctionNoProto:
1526       type = cast<FunctionType>(ty)->getReturnType();
1527       break;
1528 
1529     case Type::Paren:
1530     case Type::TypeOf:
1531     case Type::UnaryTransform:
1532     case Type::Attributed:
1533     case Type::SubstTemplateTypeParm:
1534     case Type::PackExpansion:
1535       // Keep walking after single level desugaring.
1536       type = type.getSingleStepDesugaredType(getContext());
1537       break;
1538 
1539     case Type::Typedef:
1540     case Type::Decltype:
1541     case Type::Auto:
1542       // Stop walking: nothing to do.
1543       return;
1544 
1545     case Type::TypeOfExpr:
1546       // Stop walking: emit typeof expression.
1547       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1548       return;
1549 
1550     case Type::Atomic:
1551       type = cast<AtomicType>(ty)->getValueType();
1552       break;
1553     }
1554   } while (type->isVariablyModifiedType());
1555 }
1556 
1557 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1558   if (getContext().getBuiltinVaListType()->isArrayType())
1559     return EmitScalarExpr(E);
1560   return EmitLValue(E).getAddress();
1561 }
1562 
1563 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1564                                               llvm::Constant *Init) {
1565   assert (Init && "Invalid DeclRefExpr initializer!");
1566   if (CGDebugInfo *Dbg = getDebugInfo())
1567     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1568       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1569 }
1570 
1571 CodeGenFunction::PeepholeProtection
1572 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1573   // At the moment, the only aggressive peephole we do in IR gen
1574   // is trunc(zext) folding, but if we add more, we can easily
1575   // extend this protection.
1576 
1577   if (!rvalue.isScalar()) return PeepholeProtection();
1578   llvm::Value *value = rvalue.getScalarVal();
1579   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1580 
1581   // Just make an extra bitcast.
1582   assert(HaveInsertPoint());
1583   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1584                                                   Builder.GetInsertBlock());
1585 
1586   PeepholeProtection protection;
1587   protection.Inst = inst;
1588   return protection;
1589 }
1590 
1591 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1592   if (!protection.Inst) return;
1593 
1594   // In theory, we could try to duplicate the peepholes now, but whatever.
1595   protection.Inst->eraseFromParent();
1596 }
1597 
1598 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1599                                                  llvm::Value *AnnotatedVal,
1600                                                  StringRef AnnotationStr,
1601                                                  SourceLocation Location) {
1602   llvm::Value *Args[4] = {
1603     AnnotatedVal,
1604     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1605     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1606     CGM.EmitAnnotationLineNo(Location)
1607   };
1608   return Builder.CreateCall(AnnotationFn, Args);
1609 }
1610 
1611 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1612   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1613   // FIXME We create a new bitcast for every annotation because that's what
1614   // llvm-gcc was doing.
1615   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1616     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1617                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1618                        I->getAnnotation(), D->getLocation());
1619 }
1620 
1621 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1622                                                    llvm::Value *V) {
1623   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1624   llvm::Type *VTy = V->getType();
1625   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1626                                     CGM.Int8PtrTy);
1627 
1628   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1629     // FIXME Always emit the cast inst so we can differentiate between
1630     // annotation on the first field of a struct and annotation on the struct
1631     // itself.
1632     if (VTy != CGM.Int8PtrTy)
1633       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1634     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1635     V = Builder.CreateBitCast(V, VTy);
1636   }
1637 
1638   return V;
1639 }
1640 
1641 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1642 
1643 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1644                                    const llvm::Twine &Name,
1645                                    llvm::BasicBlock *BB,
1646                                    llvm::BasicBlock::iterator InsertPt) const {
1647   LoopStack.InsertHelper(I);
1648 }
1649 
1650 template <bool PreserveNames>
1651 void CGBuilderInserter<PreserveNames>::InsertHelper(
1652     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1653     llvm::BasicBlock::iterator InsertPt) const {
1654   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1655                                                               InsertPt);
1656   if (CGF)
1657     CGF->InsertHelper(I, Name, BB, InsertPt);
1658 }
1659 
1660 #ifdef NDEBUG
1661 #define PreserveNames false
1662 #else
1663 #define PreserveNames true
1664 #endif
1665 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1666     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1667     llvm::BasicBlock::iterator InsertPt) const;
1668 #undef PreserveNames
1669