1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Operator.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()),
35     Builder(cgm.getModule().getContext()),
36     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
37                              CGM.getSanOpts().Alignment |
38                              CGM.getSanOpts().ObjectSize |
39                              CGM.getSanOpts().Vptr),
40     SanOpts(&CGM.getSanOpts()),
41     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
42     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
43     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
44     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
45     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
46     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
47     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
48     OutermostConditional(0), TerminateLandingPad(0),
49     TerminateHandler(0), TrapBB(0) {
50   if (!suppressNewContext)
51     CGM.getCXXABI().getMangleContext().startNewFunction();
52 
53   llvm::FastMathFlags FMF;
54   if (CGM.getLangOpts().FastMath)
55     FMF.setUnsafeAlgebra();
56   if (CGM.getLangOpts().FiniteMathOnly) {
57     FMF.setNoNaNs();
58     FMF.setNoInfs();
59   }
60   Builder.SetFastMathFlags(FMF);
61 }
62 
63 CodeGenFunction::~CodeGenFunction() {
64   // If there are any unclaimed block infos, go ahead and destroy them
65   // now.  This can happen if IR-gen gets clever and skips evaluating
66   // something.
67   if (FirstBlockInfo)
68     destroyBlockInfos(FirstBlockInfo);
69 }
70 
71 
72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
73   return CGM.getTypes().ConvertTypeForMem(T);
74 }
75 
76 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
77   return CGM.getTypes().ConvertType(T);
78 }
79 
80 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
81   type = type.getCanonicalType();
82   while (true) {
83     switch (type->getTypeClass()) {
84 #define TYPE(name, parent)
85 #define ABSTRACT_TYPE(name, parent)
86 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
87 #define DEPENDENT_TYPE(name, parent) case Type::name:
88 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
89 #include "clang/AST/TypeNodes.def"
90       llvm_unreachable("non-canonical or dependent type in IR-generation");
91 
92     // Various scalar types.
93     case Type::Builtin:
94     case Type::Pointer:
95     case Type::BlockPointer:
96     case Type::LValueReference:
97     case Type::RValueReference:
98     case Type::MemberPointer:
99     case Type::Vector:
100     case Type::ExtVector:
101     case Type::FunctionProto:
102     case Type::FunctionNoProto:
103     case Type::Enum:
104     case Type::ObjCObjectPointer:
105       return TEK_Scalar;
106 
107     // Complexes.
108     case Type::Complex:
109       return TEK_Complex;
110 
111     // Arrays, records, and Objective-C objects.
112     case Type::ConstantArray:
113     case Type::IncompleteArray:
114     case Type::VariableArray:
115     case Type::Record:
116     case Type::ObjCObject:
117     case Type::ObjCInterface:
118       return TEK_Aggregate;
119 
120     // We operate on atomic values according to their underlying type.
121     case Type::Atomic:
122       type = cast<AtomicType>(type)->getValueType();
123       continue;
124     }
125     llvm_unreachable("unknown type kind!");
126   }
127 }
128 
129 void CodeGenFunction::EmitReturnBlock() {
130   // For cleanliness, we try to avoid emitting the return block for
131   // simple cases.
132   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
133 
134   if (CurBB) {
135     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
136 
137     // We have a valid insert point, reuse it if it is empty or there are no
138     // explicit jumps to the return block.
139     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
140       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
141       delete ReturnBlock.getBlock();
142     } else
143       EmitBlock(ReturnBlock.getBlock());
144     return;
145   }
146 
147   // Otherwise, if the return block is the target of a single direct
148   // branch then we can just put the code in that block instead. This
149   // cleans up functions which started with a unified return block.
150   if (ReturnBlock.getBlock()->hasOneUse()) {
151     llvm::BranchInst *BI =
152       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
153     if (BI && BI->isUnconditional() &&
154         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
155       // Reset insertion point, including debug location, and delete the
156       // branch.  This is really subtle and only works because the next change
157       // in location will hit the caching in CGDebugInfo::EmitLocation and not
158       // override this.
159       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
160       Builder.SetInsertPoint(BI->getParent());
161       BI->eraseFromParent();
162       delete ReturnBlock.getBlock();
163       return;
164     }
165   }
166 
167   // FIXME: We are at an unreachable point, there is no reason to emit the block
168   // unless it has uses. However, we still need a place to put the debug
169   // region.end for now.
170 
171   EmitBlock(ReturnBlock.getBlock());
172 }
173 
174 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
175   if (!BB) return;
176   if (!BB->use_empty())
177     return CGF.CurFn->getBasicBlockList().push_back(BB);
178   delete BB;
179 }
180 
181 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
182   assert(BreakContinueStack.empty() &&
183          "mismatched push/pop in break/continue stack!");
184 
185   if (CGDebugInfo *DI = getDebugInfo())
186     DI->EmitLocation(Builder, EndLoc);
187 
188   // Pop any cleanups that might have been associated with the
189   // parameters.  Do this in whatever block we're currently in; it's
190   // important to do this before we enter the return block or return
191   // edges will be *really* confused.
192   if (EHStack.stable_begin() != PrologueCleanupDepth)
193     PopCleanupBlocks(PrologueCleanupDepth);
194 
195   // Emit function epilog (to return).
196   EmitReturnBlock();
197 
198   if (ShouldInstrumentFunction())
199     EmitFunctionInstrumentation("__cyg_profile_func_exit");
200 
201   // Emit debug descriptor for function end.
202   if (CGDebugInfo *DI = getDebugInfo()) {
203     DI->EmitFunctionEnd(Builder);
204   }
205 
206   EmitFunctionEpilog(*CurFnInfo);
207   EmitEndEHSpec(CurCodeDecl);
208 
209   assert(EHStack.empty() &&
210          "did not remove all scopes from cleanup stack!");
211 
212   // If someone did an indirect goto, emit the indirect goto block at the end of
213   // the function.
214   if (IndirectBranch) {
215     EmitBlock(IndirectBranch->getParent());
216     Builder.ClearInsertionPoint();
217   }
218 
219   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
220   llvm::Instruction *Ptr = AllocaInsertPt;
221   AllocaInsertPt = 0;
222   Ptr->eraseFromParent();
223 
224   // If someone took the address of a label but never did an indirect goto, we
225   // made a zero entry PHI node, which is illegal, zap it now.
226   if (IndirectBranch) {
227     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
228     if (PN->getNumIncomingValues() == 0) {
229       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
230       PN->eraseFromParent();
231     }
232   }
233 
234   EmitIfUsed(*this, EHResumeBlock);
235   EmitIfUsed(*this, TerminateLandingPad);
236   EmitIfUsed(*this, TerminateHandler);
237   EmitIfUsed(*this, UnreachableBlock);
238 
239   if (CGM.getCodeGenOpts().EmitDeclMetadata)
240     EmitDeclMetadata();
241 }
242 
243 /// ShouldInstrumentFunction - Return true if the current function should be
244 /// instrumented with __cyg_profile_func_* calls
245 bool CodeGenFunction::ShouldInstrumentFunction() {
246   if (!CGM.getCodeGenOpts().InstrumentFunctions)
247     return false;
248   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
249     return false;
250   return true;
251 }
252 
253 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
254 /// instrumentation function with the current function and the call site, if
255 /// function instrumentation is enabled.
256 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
257   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
258   llvm::PointerType *PointerTy = Int8PtrTy;
259   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
260   llvm::FunctionType *FunctionTy =
261     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
262 
263   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
264   llvm::CallInst *CallSite = Builder.CreateCall(
265     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
266     llvm::ConstantInt::get(Int32Ty, 0),
267     "callsite");
268 
269   llvm::Value *args[] = {
270     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
271     CallSite
272   };
273 
274   EmitNounwindRuntimeCall(F, args);
275 }
276 
277 void CodeGenFunction::EmitMCountInstrumentation() {
278   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
279 
280   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
281                                                        Target.getMCountName());
282   EmitNounwindRuntimeCall(MCountFn);
283 }
284 
285 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
286 // information in the program executable. The argument information stored
287 // includes the argument name, its type, the address and access qualifiers used.
288 // FIXME: Add type, address, and access qualifiers.
289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
290                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
291                                  SmallVector <llvm::Value*, 5> &kernelMDArgs) {
292 
293   // Create MDNodes that represents the kernel arg metadata.
294   // Each MDNode is a list in the form of "key", N number of values which is
295   // the same number of values as their are kernel arguments.
296 
297   // MDNode for the kernel argument names.
298   SmallVector<llvm::Value*, 8> argNames;
299   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
300 
301   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
302     const ParmVarDecl *parm = FD->getParamDecl(i);
303 
304     // Get argument name.
305     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
306 
307   }
308   // Add MDNode to the list of all metadata.
309   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
310 }
311 
312 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
313                                                llvm::Function *Fn)
314 {
315   if (!FD->hasAttr<OpenCLKernelAttr>())
316     return;
317 
318   llvm::LLVMContext &Context = getLLVMContext();
319 
320   SmallVector <llvm::Value*, 5> kernelMDArgs;
321   kernelMDArgs.push_back(Fn);
322 
323   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
324     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
325 
326   if (FD->hasAttr<VecTypeHintAttr>()) {
327     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
328     QualType hintQTy = attr->getTypeHint();
329     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
330     bool isSignedInteger =
331         hintQTy->isSignedIntegerType() ||
332         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
333     llvm::Value *attrMDArgs[] = {
334       llvm::MDString::get(Context, "vec_type_hint"),
335       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
336       llvm::ConstantInt::get(
337           llvm::IntegerType::get(Context, 32),
338           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
339     };
340     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
341   }
342 
343   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
344     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
345     llvm::Value *attrMDArgs[] = {
346       llvm::MDString::get(Context, "work_group_size_hint"),
347       Builder.getInt32(attr->getXDim()),
348       Builder.getInt32(attr->getYDim()),
349       Builder.getInt32(attr->getZDim())
350     };
351     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
352   }
353 
354   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
355     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
356     llvm::Value *attrMDArgs[] = {
357       llvm::MDString::get(Context, "reqd_work_group_size"),
358       Builder.getInt32(attr->getXDim()),
359       Builder.getInt32(attr->getYDim()),
360       Builder.getInt32(attr->getZDim())
361     };
362     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
363   }
364 
365   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
366   llvm::NamedMDNode *OpenCLKernelMetadata =
367     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
368   OpenCLKernelMetadata->addOperand(kernelMDNode);
369 }
370 
371 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
372                                     llvm::Function *Fn,
373                                     const CGFunctionInfo &FnInfo,
374                                     const FunctionArgList &Args,
375                                     SourceLocation StartLoc) {
376   const Decl *D = GD.getDecl();
377 
378   DidCallStackSave = false;
379   CurCodeDecl = CurFuncDecl = D;
380   FnRetTy = RetTy;
381   CurFn = Fn;
382   CurFnInfo = &FnInfo;
383   assert(CurFn->isDeclaration() && "Function already has body?");
384 
385   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
386     SanOpts = &SanitizerOptions::Disabled;
387     SanitizePerformTypeCheck = false;
388   }
389 
390   // Pass inline keyword to optimizer if it appears explicitly on any
391   // declaration.
392   if (!CGM.getCodeGenOpts().NoInline)
393     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
394       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
395              RE = FD->redecls_end(); RI != RE; ++RI)
396         if (RI->isInlineSpecified()) {
397           Fn->addFnAttr(llvm::Attribute::InlineHint);
398           break;
399         }
400 
401   if (getLangOpts().OpenCL) {
402     // Add metadata for a kernel function.
403     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
404       EmitOpenCLKernelMetadata(FD, Fn);
405   }
406 
407   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
408 
409   // Create a marker to make it easy to insert allocas into the entryblock
410   // later.  Don't create this with the builder, because we don't want it
411   // folded.
412   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
413   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
414   if (Builder.isNamePreserving())
415     AllocaInsertPt->setName("allocapt");
416 
417   ReturnBlock = getJumpDestInCurrentScope("return");
418 
419   Builder.SetInsertPoint(EntryBB);
420 
421   // Emit subprogram debug descriptor.
422   if (CGDebugInfo *DI = getDebugInfo()) {
423     unsigned NumArgs = 0;
424     QualType *ArgsArray = new QualType[Args.size()];
425     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
426 	 i != e; ++i) {
427       ArgsArray[NumArgs++] = (*i)->getType();
428     }
429 
430     QualType FnType =
431       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
432                                    FunctionProtoType::ExtProtoInfo());
433 
434     delete[] ArgsArray;
435 
436     DI->setLocation(StartLoc);
437     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
438   }
439 
440   if (ShouldInstrumentFunction())
441     EmitFunctionInstrumentation("__cyg_profile_func_enter");
442 
443   if (CGM.getCodeGenOpts().InstrumentForProfiling)
444     EmitMCountInstrumentation();
445 
446   if (RetTy->isVoidType()) {
447     // Void type; nothing to return.
448     ReturnValue = 0;
449   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
450              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
451     // Indirect aggregate return; emit returned value directly into sret slot.
452     // This reduces code size, and affects correctness in C++.
453     ReturnValue = CurFn->arg_begin();
454   } else {
455     ReturnValue = CreateIRTemp(RetTy, "retval");
456 
457     // Tell the epilog emitter to autorelease the result.  We do this
458     // now so that various specialized functions can suppress it
459     // during their IR-generation.
460     if (getLangOpts().ObjCAutoRefCount &&
461         !CurFnInfo->isReturnsRetained() &&
462         RetTy->isObjCRetainableType())
463       AutoreleaseResult = true;
464   }
465 
466   EmitStartEHSpec(CurCodeDecl);
467 
468   PrologueCleanupDepth = EHStack.stable_begin();
469   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
470 
471   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
472     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
473     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
474     if (MD->getParent()->isLambda() &&
475         MD->getOverloadedOperator() == OO_Call) {
476       // We're in a lambda; figure out the captures.
477       MD->getParent()->getCaptureFields(LambdaCaptureFields,
478                                         LambdaThisCaptureField);
479       if (LambdaThisCaptureField) {
480         // If this lambda captures this, load it.
481         QualType LambdaTagType =
482             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
483         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
484                                                      LambdaTagType);
485         LValue ThisLValue = EmitLValueForField(LambdaLV,
486                                                LambdaThisCaptureField);
487         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
488       }
489     } else {
490       // Not in a lambda; just use 'this' from the method.
491       // FIXME: Should we generate a new load for each use of 'this'?  The
492       // fast register allocator would be happier...
493       CXXThisValue = CXXABIThisValue;
494     }
495   }
496 
497   // If any of the arguments have a variably modified type, make sure to
498   // emit the type size.
499   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
500        i != e; ++i) {
501     const VarDecl *VD = *i;
502 
503     // Dig out the type as written from ParmVarDecls; it's unclear whether
504     // the standard (C99 6.9.1p10) requires this, but we're following the
505     // precedent set by gcc.
506     QualType Ty;
507     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
508       Ty = PVD->getOriginalType();
509     else
510       Ty = VD->getType();
511 
512     if (Ty->isVariablyModifiedType())
513       EmitVariablyModifiedType(Ty);
514   }
515   // Emit a location at the end of the prologue.
516   if (CGDebugInfo *DI = getDebugInfo())
517     DI->EmitLocation(Builder, StartLoc);
518 }
519 
520 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
521   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
522   assert(FD->getBody());
523   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
524     EmitCompoundStmtWithoutScope(*S);
525   else
526     EmitStmt(FD->getBody());
527 }
528 
529 /// Tries to mark the given function nounwind based on the
530 /// non-existence of any throwing calls within it.  We believe this is
531 /// lightweight enough to do at -O0.
532 static void TryMarkNoThrow(llvm::Function *F) {
533   // LLVM treats 'nounwind' on a function as part of the type, so we
534   // can't do this on functions that can be overwritten.
535   if (F->mayBeOverridden()) return;
536 
537   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
538     for (llvm::BasicBlock::iterator
539            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
540       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
541         if (!Call->doesNotThrow())
542           return;
543       } else if (isa<llvm::ResumeInst>(&*BI)) {
544         return;
545       }
546   F->setDoesNotThrow();
547 }
548 
549 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
550                                    const CGFunctionInfo &FnInfo) {
551   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
552 
553   // Check if we should generate debug info for this function.
554   if (!FD->hasAttr<NoDebugAttr>())
555     maybeInitializeDebugInfo();
556 
557   FunctionArgList Args;
558   QualType ResTy = FD->getResultType();
559 
560   CurGD = GD;
561   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
562     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
563 
564   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
565     Args.push_back(FD->getParamDecl(i));
566 
567   SourceRange BodyRange;
568   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
569 
570   // Emit the standard function prologue.
571   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
572 
573   // Generate the body of the function.
574   if (isa<CXXDestructorDecl>(FD))
575     EmitDestructorBody(Args);
576   else if (isa<CXXConstructorDecl>(FD))
577     EmitConstructorBody(Args);
578   else if (getLangOpts().CUDA &&
579            !CGM.getCodeGenOpts().CUDAIsDevice &&
580            FD->hasAttr<CUDAGlobalAttr>())
581     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
582   else if (isa<CXXConversionDecl>(FD) &&
583            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
584     // The lambda conversion to block pointer is special; the semantics can't be
585     // expressed in the AST, so IRGen needs to special-case it.
586     EmitLambdaToBlockPointerBody(Args);
587   } else if (isa<CXXMethodDecl>(FD) &&
588              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
589     // The lambda "__invoke" function is special, because it forwards or
590     // clones the body of the function call operator (but is actually static).
591     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
592   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
593              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
594     // Implicit copy-assignment gets the same special treatment as implicit
595     // copy-constructors.
596     emitImplicitAssignmentOperatorBody(Args);
597   }
598   else
599     EmitFunctionBody(Args);
600 
601   // C++11 [stmt.return]p2:
602   //   Flowing off the end of a function [...] results in undefined behavior in
603   //   a value-returning function.
604   // C11 6.9.1p12:
605   //   If the '}' that terminates a function is reached, and the value of the
606   //   function call is used by the caller, the behavior is undefined.
607   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
608       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
609     if (SanOpts->Return)
610       EmitCheck(Builder.getFalse(), "missing_return",
611                 EmitCheckSourceLocation(FD->getLocation()),
612                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
613     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
614       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
615     Builder.CreateUnreachable();
616     Builder.ClearInsertionPoint();
617   }
618 
619   // Emit the standard function epilogue.
620   FinishFunction(BodyRange.getEnd());
621 
622   // If we haven't marked the function nothrow through other means, do
623   // a quick pass now to see if we can.
624   if (!CurFn->doesNotThrow())
625     TryMarkNoThrow(CurFn);
626 }
627 
628 /// ContainsLabel - Return true if the statement contains a label in it.  If
629 /// this statement is not executed normally, it not containing a label means
630 /// that we can just remove the code.
631 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
632   // Null statement, not a label!
633   if (S == 0) return false;
634 
635   // If this is a label, we have to emit the code, consider something like:
636   // if (0) {  ...  foo:  bar(); }  goto foo;
637   //
638   // TODO: If anyone cared, we could track __label__'s, since we know that you
639   // can't jump to one from outside their declared region.
640   if (isa<LabelStmt>(S))
641     return true;
642 
643   // If this is a case/default statement, and we haven't seen a switch, we have
644   // to emit the code.
645   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
646     return true;
647 
648   // If this is a switch statement, we want to ignore cases below it.
649   if (isa<SwitchStmt>(S))
650     IgnoreCaseStmts = true;
651 
652   // Scan subexpressions for verboten labels.
653   for (Stmt::const_child_range I = S->children(); I; ++I)
654     if (ContainsLabel(*I, IgnoreCaseStmts))
655       return true;
656 
657   return false;
658 }
659 
660 /// containsBreak - Return true if the statement contains a break out of it.
661 /// If the statement (recursively) contains a switch or loop with a break
662 /// inside of it, this is fine.
663 bool CodeGenFunction::containsBreak(const Stmt *S) {
664   // Null statement, not a label!
665   if (S == 0) return false;
666 
667   // If this is a switch or loop that defines its own break scope, then we can
668   // include it and anything inside of it.
669   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
670       isa<ForStmt>(S))
671     return false;
672 
673   if (isa<BreakStmt>(S))
674     return true;
675 
676   // Scan subexpressions for verboten breaks.
677   for (Stmt::const_child_range I = S->children(); I; ++I)
678     if (containsBreak(*I))
679       return true;
680 
681   return false;
682 }
683 
684 
685 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
686 /// to a constant, or if it does but contains a label, return false.  If it
687 /// constant folds return true and set the boolean result in Result.
688 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
689                                                    bool &ResultBool) {
690   llvm::APSInt ResultInt;
691   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
692     return false;
693 
694   ResultBool = ResultInt.getBoolValue();
695   return true;
696 }
697 
698 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
699 /// to a constant, or if it does but contains a label, return false.  If it
700 /// constant folds return true and set the folded value.
701 bool CodeGenFunction::
702 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
703   // FIXME: Rename and handle conversion of other evaluatable things
704   // to bool.
705   llvm::APSInt Int;
706   if (!Cond->EvaluateAsInt(Int, getContext()))
707     return false;  // Not foldable, not integer or not fully evaluatable.
708 
709   if (CodeGenFunction::ContainsLabel(Cond))
710     return false;  // Contains a label.
711 
712   ResultInt = Int;
713   return true;
714 }
715 
716 
717 
718 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
719 /// statement) to the specified blocks.  Based on the condition, this might try
720 /// to simplify the codegen of the conditional based on the branch.
721 ///
722 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
723                                            llvm::BasicBlock *TrueBlock,
724                                            llvm::BasicBlock *FalseBlock) {
725   Cond = Cond->IgnoreParens();
726 
727   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
728     // Handle X && Y in a condition.
729     if (CondBOp->getOpcode() == BO_LAnd) {
730       // If we have "1 && X", simplify the code.  "0 && X" would have constant
731       // folded if the case was simple enough.
732       bool ConstantBool = false;
733       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
734           ConstantBool) {
735         // br(1 && X) -> br(X).
736         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
737       }
738 
739       // If we have "X && 1", simplify the code to use an uncond branch.
740       // "X && 0" would have been constant folded to 0.
741       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
742           ConstantBool) {
743         // br(X && 1) -> br(X).
744         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
745       }
746 
747       // Emit the LHS as a conditional.  If the LHS conditional is false, we
748       // want to jump to the FalseBlock.
749       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
750 
751       ConditionalEvaluation eval(*this);
752       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
753       EmitBlock(LHSTrue);
754 
755       // Any temporaries created here are conditional.
756       eval.begin(*this);
757       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
758       eval.end(*this);
759 
760       return;
761     }
762 
763     if (CondBOp->getOpcode() == BO_LOr) {
764       // If we have "0 || X", simplify the code.  "1 || X" would have constant
765       // folded if the case was simple enough.
766       bool ConstantBool = false;
767       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
768           !ConstantBool) {
769         // br(0 || X) -> br(X).
770         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
771       }
772 
773       // If we have "X || 0", simplify the code to use an uncond branch.
774       // "X || 1" would have been constant folded to 1.
775       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
776           !ConstantBool) {
777         // br(X || 0) -> br(X).
778         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
779       }
780 
781       // Emit the LHS as a conditional.  If the LHS conditional is true, we
782       // want to jump to the TrueBlock.
783       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
784 
785       ConditionalEvaluation eval(*this);
786       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
787       EmitBlock(LHSFalse);
788 
789       // Any temporaries created here are conditional.
790       eval.begin(*this);
791       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
792       eval.end(*this);
793 
794       return;
795     }
796   }
797 
798   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
799     // br(!x, t, f) -> br(x, f, t)
800     if (CondUOp->getOpcode() == UO_LNot)
801       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
802   }
803 
804   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
805     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
806     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
807     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
808 
809     ConditionalEvaluation cond(*this);
810     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
811 
812     cond.begin(*this);
813     EmitBlock(LHSBlock);
814     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
815     cond.end(*this);
816 
817     cond.begin(*this);
818     EmitBlock(RHSBlock);
819     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
820     cond.end(*this);
821 
822     return;
823   }
824 
825   // Emit the code with the fully general case.
826   llvm::Value *CondV = EvaluateExprAsBool(Cond);
827   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
828 }
829 
830 /// ErrorUnsupported - Print out an error that codegen doesn't support the
831 /// specified stmt yet.
832 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
833                                        bool OmitOnError) {
834   CGM.ErrorUnsupported(S, Type, OmitOnError);
835 }
836 
837 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
838 /// variable-length array whose elements have a non-zero bit-pattern.
839 ///
840 /// \param baseType the inner-most element type of the array
841 /// \param src - a char* pointing to the bit-pattern for a single
842 /// base element of the array
843 /// \param sizeInChars - the total size of the VLA, in chars
844 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
845                                llvm::Value *dest, llvm::Value *src,
846                                llvm::Value *sizeInChars) {
847   std::pair<CharUnits,CharUnits> baseSizeAndAlign
848     = CGF.getContext().getTypeInfoInChars(baseType);
849 
850   CGBuilderTy &Builder = CGF.Builder;
851 
852   llvm::Value *baseSizeInChars
853     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
854 
855   llvm::Type *i8p = Builder.getInt8PtrTy();
856 
857   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
858   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
859 
860   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
861   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
862   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
863 
864   // Make a loop over the VLA.  C99 guarantees that the VLA element
865   // count must be nonzero.
866   CGF.EmitBlock(loopBB);
867 
868   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
869   cur->addIncoming(begin, originBB);
870 
871   // memcpy the individual element bit-pattern.
872   Builder.CreateMemCpy(cur, src, baseSizeInChars,
873                        baseSizeAndAlign.second.getQuantity(),
874                        /*volatile*/ false);
875 
876   // Go to the next element.
877   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
878 
879   // Leave if that's the end of the VLA.
880   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
881   Builder.CreateCondBr(done, contBB, loopBB);
882   cur->addIncoming(next, loopBB);
883 
884   CGF.EmitBlock(contBB);
885 }
886 
887 void
888 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
889   // Ignore empty classes in C++.
890   if (getLangOpts().CPlusPlus) {
891     if (const RecordType *RT = Ty->getAs<RecordType>()) {
892       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
893         return;
894     }
895   }
896 
897   // Cast the dest ptr to the appropriate i8 pointer type.
898   unsigned DestAS =
899     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
900   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
901   if (DestPtr->getType() != BP)
902     DestPtr = Builder.CreateBitCast(DestPtr, BP);
903 
904   // Get size and alignment info for this aggregate.
905   std::pair<CharUnits, CharUnits> TypeInfo =
906     getContext().getTypeInfoInChars(Ty);
907   CharUnits Size = TypeInfo.first;
908   CharUnits Align = TypeInfo.second;
909 
910   llvm::Value *SizeVal;
911   const VariableArrayType *vla;
912 
913   // Don't bother emitting a zero-byte memset.
914   if (Size.isZero()) {
915     // But note that getTypeInfo returns 0 for a VLA.
916     if (const VariableArrayType *vlaType =
917           dyn_cast_or_null<VariableArrayType>(
918                                           getContext().getAsArrayType(Ty))) {
919       QualType eltType;
920       llvm::Value *numElts;
921       llvm::tie(numElts, eltType) = getVLASize(vlaType);
922 
923       SizeVal = numElts;
924       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
925       if (!eltSize.isOne())
926         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
927       vla = vlaType;
928     } else {
929       return;
930     }
931   } else {
932     SizeVal = CGM.getSize(Size);
933     vla = 0;
934   }
935 
936   // If the type contains a pointer to data member we can't memset it to zero.
937   // Instead, create a null constant and copy it to the destination.
938   // TODO: there are other patterns besides zero that we can usefully memset,
939   // like -1, which happens to be the pattern used by member-pointers.
940   if (!CGM.getTypes().isZeroInitializable(Ty)) {
941     // For a VLA, emit a single element, then splat that over the VLA.
942     if (vla) Ty = getContext().getBaseElementType(vla);
943 
944     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
945 
946     llvm::GlobalVariable *NullVariable =
947       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
948                                /*isConstant=*/true,
949                                llvm::GlobalVariable::PrivateLinkage,
950                                NullConstant, Twine());
951     llvm::Value *SrcPtr =
952       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
953 
954     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
955 
956     // Get and call the appropriate llvm.memcpy overload.
957     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
958     return;
959   }
960 
961   // Otherwise, just memset the whole thing to zero.  This is legal
962   // because in LLVM, all default initializers (other than the ones we just
963   // handled above) are guaranteed to have a bit pattern of all zeros.
964   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
965                        Align.getQuantity(), false);
966 }
967 
968 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
969   // Make sure that there is a block for the indirect goto.
970   if (IndirectBranch == 0)
971     GetIndirectGotoBlock();
972 
973   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
974 
975   // Make sure the indirect branch includes all of the address-taken blocks.
976   IndirectBranch->addDestination(BB);
977   return llvm::BlockAddress::get(CurFn, BB);
978 }
979 
980 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
981   // If we already made the indirect branch for indirect goto, return its block.
982   if (IndirectBranch) return IndirectBranch->getParent();
983 
984   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
985 
986   // Create the PHI node that indirect gotos will add entries to.
987   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
988                                               "indirect.goto.dest");
989 
990   // Create the indirect branch instruction.
991   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
992   return IndirectBranch->getParent();
993 }
994 
995 /// Computes the length of an array in elements, as well as the base
996 /// element type and a properly-typed first element pointer.
997 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
998                                               QualType &baseType,
999                                               llvm::Value *&addr) {
1000   const ArrayType *arrayType = origArrayType;
1001 
1002   // If it's a VLA, we have to load the stored size.  Note that
1003   // this is the size of the VLA in bytes, not its size in elements.
1004   llvm::Value *numVLAElements = 0;
1005   if (isa<VariableArrayType>(arrayType)) {
1006     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1007 
1008     // Walk into all VLAs.  This doesn't require changes to addr,
1009     // which has type T* where T is the first non-VLA element type.
1010     do {
1011       QualType elementType = arrayType->getElementType();
1012       arrayType = getContext().getAsArrayType(elementType);
1013 
1014       // If we only have VLA components, 'addr' requires no adjustment.
1015       if (!arrayType) {
1016         baseType = elementType;
1017         return numVLAElements;
1018       }
1019     } while (isa<VariableArrayType>(arrayType));
1020 
1021     // We get out here only if we find a constant array type
1022     // inside the VLA.
1023   }
1024 
1025   // We have some number of constant-length arrays, so addr should
1026   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1027   // down to the first element of addr.
1028   SmallVector<llvm::Value*, 8> gepIndices;
1029 
1030   // GEP down to the array type.
1031   llvm::ConstantInt *zero = Builder.getInt32(0);
1032   gepIndices.push_back(zero);
1033 
1034   uint64_t countFromCLAs = 1;
1035   QualType eltType;
1036 
1037   llvm::ArrayType *llvmArrayType =
1038     dyn_cast<llvm::ArrayType>(
1039       cast<llvm::PointerType>(addr->getType())->getElementType());
1040   while (llvmArrayType) {
1041     assert(isa<ConstantArrayType>(arrayType));
1042     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1043              == llvmArrayType->getNumElements());
1044 
1045     gepIndices.push_back(zero);
1046     countFromCLAs *= llvmArrayType->getNumElements();
1047     eltType = arrayType->getElementType();
1048 
1049     llvmArrayType =
1050       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1051     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1052     assert((!llvmArrayType || arrayType) &&
1053            "LLVM and Clang types are out-of-synch");
1054   }
1055 
1056   if (arrayType) {
1057     // From this point onwards, the Clang array type has been emitted
1058     // as some other type (probably a packed struct). Compute the array
1059     // size, and just emit the 'begin' expression as a bitcast.
1060     while (arrayType) {
1061       countFromCLAs *=
1062           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1063       eltType = arrayType->getElementType();
1064       arrayType = getContext().getAsArrayType(eltType);
1065     }
1066 
1067     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1068     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1069     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1070   } else {
1071     // Create the actual GEP.
1072     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1073   }
1074 
1075   baseType = eltType;
1076 
1077   llvm::Value *numElements
1078     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1079 
1080   // If we had any VLA dimensions, factor them in.
1081   if (numVLAElements)
1082     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1083 
1084   return numElements;
1085 }
1086 
1087 std::pair<llvm::Value*, QualType>
1088 CodeGenFunction::getVLASize(QualType type) {
1089   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1090   assert(vla && "type was not a variable array type!");
1091   return getVLASize(vla);
1092 }
1093 
1094 std::pair<llvm::Value*, QualType>
1095 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1096   // The number of elements so far; always size_t.
1097   llvm::Value *numElements = 0;
1098 
1099   QualType elementType;
1100   do {
1101     elementType = type->getElementType();
1102     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1103     assert(vlaSize && "no size for VLA!");
1104     assert(vlaSize->getType() == SizeTy);
1105 
1106     if (!numElements) {
1107       numElements = vlaSize;
1108     } else {
1109       // It's undefined behavior if this wraps around, so mark it that way.
1110       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1111       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1112     }
1113   } while ((type = getContext().getAsVariableArrayType(elementType)));
1114 
1115   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1116 }
1117 
1118 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1119   assert(type->isVariablyModifiedType() &&
1120          "Must pass variably modified type to EmitVLASizes!");
1121 
1122   EnsureInsertPoint();
1123 
1124   // We're going to walk down into the type and look for VLA
1125   // expressions.
1126   do {
1127     assert(type->isVariablyModifiedType());
1128 
1129     const Type *ty = type.getTypePtr();
1130     switch (ty->getTypeClass()) {
1131 
1132 #define TYPE(Class, Base)
1133 #define ABSTRACT_TYPE(Class, Base)
1134 #define NON_CANONICAL_TYPE(Class, Base)
1135 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1136 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1137 #include "clang/AST/TypeNodes.def"
1138       llvm_unreachable("unexpected dependent type!");
1139 
1140     // These types are never variably-modified.
1141     case Type::Builtin:
1142     case Type::Complex:
1143     case Type::Vector:
1144     case Type::ExtVector:
1145     case Type::Record:
1146     case Type::Enum:
1147     case Type::Elaborated:
1148     case Type::TemplateSpecialization:
1149     case Type::ObjCObject:
1150     case Type::ObjCInterface:
1151     case Type::ObjCObjectPointer:
1152       llvm_unreachable("type class is never variably-modified!");
1153 
1154     case Type::Pointer:
1155       type = cast<PointerType>(ty)->getPointeeType();
1156       break;
1157 
1158     case Type::BlockPointer:
1159       type = cast<BlockPointerType>(ty)->getPointeeType();
1160       break;
1161 
1162     case Type::LValueReference:
1163     case Type::RValueReference:
1164       type = cast<ReferenceType>(ty)->getPointeeType();
1165       break;
1166 
1167     case Type::MemberPointer:
1168       type = cast<MemberPointerType>(ty)->getPointeeType();
1169       break;
1170 
1171     case Type::ConstantArray:
1172     case Type::IncompleteArray:
1173       // Losing element qualification here is fine.
1174       type = cast<ArrayType>(ty)->getElementType();
1175       break;
1176 
1177     case Type::VariableArray: {
1178       // Losing element qualification here is fine.
1179       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1180 
1181       // Unknown size indication requires no size computation.
1182       // Otherwise, evaluate and record it.
1183       if (const Expr *size = vat->getSizeExpr()) {
1184         // It's possible that we might have emitted this already,
1185         // e.g. with a typedef and a pointer to it.
1186         llvm::Value *&entry = VLASizeMap[size];
1187         if (!entry) {
1188           llvm::Value *Size = EmitScalarExpr(size);
1189 
1190           // C11 6.7.6.2p5:
1191           //   If the size is an expression that is not an integer constant
1192           //   expression [...] each time it is evaluated it shall have a value
1193           //   greater than zero.
1194           if (SanOpts->VLABound &&
1195               size->getType()->isSignedIntegerType()) {
1196             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1197             llvm::Constant *StaticArgs[] = {
1198               EmitCheckSourceLocation(size->getLocStart()),
1199               EmitCheckTypeDescriptor(size->getType())
1200             };
1201             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1202                       "vla_bound_not_positive", StaticArgs, Size,
1203                       CRK_Recoverable);
1204           }
1205 
1206           // Always zexting here would be wrong if it weren't
1207           // undefined behavior to have a negative bound.
1208           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1209         }
1210       }
1211       type = vat->getElementType();
1212       break;
1213     }
1214 
1215     case Type::FunctionProto:
1216     case Type::FunctionNoProto:
1217       type = cast<FunctionType>(ty)->getResultType();
1218       break;
1219 
1220     case Type::Paren:
1221     case Type::TypeOf:
1222     case Type::UnaryTransform:
1223     case Type::Attributed:
1224     case Type::SubstTemplateTypeParm:
1225       // Keep walking after single level desugaring.
1226       type = type.getSingleStepDesugaredType(getContext());
1227       break;
1228 
1229     case Type::Typedef:
1230     case Type::Decltype:
1231     case Type::Auto:
1232       // Stop walking: nothing to do.
1233       return;
1234 
1235     case Type::TypeOfExpr:
1236       // Stop walking: emit typeof expression.
1237       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1238       return;
1239 
1240     case Type::Atomic:
1241       type = cast<AtomicType>(ty)->getValueType();
1242       break;
1243     }
1244   } while (type->isVariablyModifiedType());
1245 }
1246 
1247 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1248   if (getContext().getBuiltinVaListType()->isArrayType())
1249     return EmitScalarExpr(E);
1250   return EmitLValue(E).getAddress();
1251 }
1252 
1253 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1254                                               llvm::Constant *Init) {
1255   assert (Init && "Invalid DeclRefExpr initializer!");
1256   if (CGDebugInfo *Dbg = getDebugInfo())
1257     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1258       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1259 }
1260 
1261 CodeGenFunction::PeepholeProtection
1262 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1263   // At the moment, the only aggressive peephole we do in IR gen
1264   // is trunc(zext) folding, but if we add more, we can easily
1265   // extend this protection.
1266 
1267   if (!rvalue.isScalar()) return PeepholeProtection();
1268   llvm::Value *value = rvalue.getScalarVal();
1269   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1270 
1271   // Just make an extra bitcast.
1272   assert(HaveInsertPoint());
1273   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1274                                                   Builder.GetInsertBlock());
1275 
1276   PeepholeProtection protection;
1277   protection.Inst = inst;
1278   return protection;
1279 }
1280 
1281 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1282   if (!protection.Inst) return;
1283 
1284   // In theory, we could try to duplicate the peepholes now, but whatever.
1285   protection.Inst->eraseFromParent();
1286 }
1287 
1288 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1289                                                  llvm::Value *AnnotatedVal,
1290                                                  StringRef AnnotationStr,
1291                                                  SourceLocation Location) {
1292   llvm::Value *Args[4] = {
1293     AnnotatedVal,
1294     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1295     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1296     CGM.EmitAnnotationLineNo(Location)
1297   };
1298   return Builder.CreateCall(AnnotationFn, Args);
1299 }
1300 
1301 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1302   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1303   // FIXME We create a new bitcast for every annotation because that's what
1304   // llvm-gcc was doing.
1305   for (specific_attr_iterator<AnnotateAttr>
1306        ai = D->specific_attr_begin<AnnotateAttr>(),
1307        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1308     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1309                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1310                        (*ai)->getAnnotation(), D->getLocation());
1311 }
1312 
1313 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1314                                                    llvm::Value *V) {
1315   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1316   llvm::Type *VTy = V->getType();
1317   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1318                                     CGM.Int8PtrTy);
1319 
1320   for (specific_attr_iterator<AnnotateAttr>
1321        ai = D->specific_attr_begin<AnnotateAttr>(),
1322        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1323     // FIXME Always emit the cast inst so we can differentiate between
1324     // annotation on the first field of a struct and annotation on the struct
1325     // itself.
1326     if (VTy != CGM.Int8PtrTy)
1327       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1328     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1329     V = Builder.CreateBitCast(V, VTy);
1330   }
1331 
1332   return V;
1333 }
1334