1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Disable lifetime markers in msan builds. 49 // FIXME: Remove this when msan works with lifetime markers. 50 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 51 return false; 52 53 // Asan uses markers for use-after-scope checks. 54 if (CGOpts.SanitizeAddressUseAfterScope) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 LValueBaseInfo *BaseInfo) { 121 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (BaseInfo) 140 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 141 142 CharUnits Alignment; 143 if (T->isIncompleteType()) { 144 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 145 } else { 146 // For C++ class pointees, we don't know whether we're pointing at a 147 // base or a complete object, so we generally need to use the 148 // non-virtual alignment. 149 const CXXRecordDecl *RD; 150 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 151 Alignment = CGM.getClassPointerAlignment(RD); 152 } else { 153 Alignment = getContext().getTypeAlignInChars(T); 154 if (T.getQualifiers().hasUnaligned()) 155 Alignment = CharUnits::One(); 156 } 157 158 // Cap to the global maximum type alignment unless the alignment 159 // was somehow explicit on the type. 160 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 161 if (Alignment.getQuantity() > MaxAlign && 162 !getContext().isAlignmentRequired(T)) 163 Alignment = CharUnits::fromQuantity(MaxAlign); 164 } 165 } 166 return Alignment; 167 } 168 169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 170 LValueBaseInfo BaseInfo; 171 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 172 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 173 CGM.getTBAAInfo(T)); 174 } 175 176 /// Given a value of type T* that may not be to a complete object, 177 /// construct an l-value with the natural pointee alignment of T. 178 LValue 179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 180 LValueBaseInfo BaseInfo; 181 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 182 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 183 } 184 185 186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 187 return CGM.getTypes().ConvertTypeForMem(T); 188 } 189 190 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 191 return CGM.getTypes().ConvertType(T); 192 } 193 194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 195 type = type.getCanonicalType(); 196 while (true) { 197 switch (type->getTypeClass()) { 198 #define TYPE(name, parent) 199 #define ABSTRACT_TYPE(name, parent) 200 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 201 #define DEPENDENT_TYPE(name, parent) case Type::name: 202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 203 #include "clang/AST/TypeNodes.def" 204 llvm_unreachable("non-canonical or dependent type in IR-generation"); 205 206 case Type::Auto: 207 case Type::DeducedTemplateSpecialization: 208 llvm_unreachable("undeduced type in IR-generation"); 209 210 // Various scalar types. 211 case Type::Builtin: 212 case Type::Pointer: 213 case Type::BlockPointer: 214 case Type::LValueReference: 215 case Type::RValueReference: 216 case Type::MemberPointer: 217 case Type::Vector: 218 case Type::ExtVector: 219 case Type::FunctionProto: 220 case Type::FunctionNoProto: 221 case Type::Enum: 222 case Type::ObjCObjectPointer: 223 case Type::Pipe: 224 return TEK_Scalar; 225 226 // Complexes. 227 case Type::Complex: 228 return TEK_Complex; 229 230 // Arrays, records, and Objective-C objects. 231 case Type::ConstantArray: 232 case Type::IncompleteArray: 233 case Type::VariableArray: 234 case Type::Record: 235 case Type::ObjCObject: 236 case Type::ObjCInterface: 237 return TEK_Aggregate; 238 239 // We operate on atomic values according to their underlying type. 240 case Type::Atomic: 241 type = cast<AtomicType>(type)->getValueType(); 242 continue; 243 } 244 llvm_unreachable("unknown type kind!"); 245 } 246 } 247 248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 249 // For cleanliness, we try to avoid emitting the return block for 250 // simple cases. 251 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 252 253 if (CurBB) { 254 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 255 256 // We have a valid insert point, reuse it if it is empty or there are no 257 // explicit jumps to the return block. 258 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 259 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 260 delete ReturnBlock.getBlock(); 261 } else 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 // Otherwise, if the return block is the target of a single direct 267 // branch then we can just put the code in that block instead. This 268 // cleans up functions which started with a unified return block. 269 if (ReturnBlock.getBlock()->hasOneUse()) { 270 llvm::BranchInst *BI = 271 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 272 if (BI && BI->isUnconditional() && 273 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 274 // Record/return the DebugLoc of the simple 'return' expression to be used 275 // later by the actual 'ret' instruction. 276 llvm::DebugLoc Loc = BI->getDebugLoc(); 277 Builder.SetInsertPoint(BI->getParent()); 278 BI->eraseFromParent(); 279 delete ReturnBlock.getBlock(); 280 return Loc; 281 } 282 } 283 284 // FIXME: We are at an unreachable point, there is no reason to emit the block 285 // unless it has uses. However, we still need a place to put the debug 286 // region.end for now. 287 288 EmitBlock(ReturnBlock.getBlock()); 289 return llvm::DebugLoc(); 290 } 291 292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 293 if (!BB) return; 294 if (!BB->use_empty()) 295 return CGF.CurFn->getBasicBlockList().push_back(BB); 296 delete BB; 297 } 298 299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 300 assert(BreakContinueStack.empty() && 301 "mismatched push/pop in break/continue stack!"); 302 303 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 304 && NumSimpleReturnExprs == NumReturnExprs 305 && ReturnBlock.getBlock()->use_empty(); 306 // Usually the return expression is evaluated before the cleanup 307 // code. If the function contains only a simple return statement, 308 // such as a constant, the location before the cleanup code becomes 309 // the last useful breakpoint in the function, because the simple 310 // return expression will be evaluated after the cleanup code. To be 311 // safe, set the debug location for cleanup code to the location of 312 // the return statement. Otherwise the cleanup code should be at the 313 // end of the function's lexical scope. 314 // 315 // If there are multiple branches to the return block, the branch 316 // instructions will get the location of the return statements and 317 // all will be fine. 318 if (CGDebugInfo *DI = getDebugInfo()) { 319 if (OnlySimpleReturnStmts) 320 DI->EmitLocation(Builder, LastStopPoint); 321 else 322 DI->EmitLocation(Builder, EndLoc); 323 } 324 325 // Pop any cleanups that might have been associated with the 326 // parameters. Do this in whatever block we're currently in; it's 327 // important to do this before we enter the return block or return 328 // edges will be *really* confused. 329 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 330 bool HasOnlyLifetimeMarkers = 331 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 332 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 333 if (HasCleanups) { 334 // Make sure the line table doesn't jump back into the body for 335 // the ret after it's been at EndLoc. 336 if (CGDebugInfo *DI = getDebugInfo()) 337 if (OnlySimpleReturnStmts) 338 DI->EmitLocation(Builder, EndLoc); 339 340 PopCleanupBlocks(PrologueCleanupDepth); 341 } 342 343 // Emit function epilog (to return). 344 llvm::DebugLoc Loc = EmitReturnBlock(); 345 346 if (ShouldInstrumentFunction()) 347 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 348 349 // Emit debug descriptor for function end. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 DI->EmitFunctionEnd(Builder, CurFn); 352 353 // Reset the debug location to that of the simple 'return' expression, if any 354 // rather than that of the end of the function's scope '}'. 355 ApplyDebugLocation AL(*this, Loc); 356 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 357 EmitEndEHSpec(CurCodeDecl); 358 359 assert(EHStack.empty() && 360 "did not remove all scopes from cleanup stack!"); 361 362 // If someone did an indirect goto, emit the indirect goto block at the end of 363 // the function. 364 if (IndirectBranch) { 365 EmitBlock(IndirectBranch->getParent()); 366 Builder.ClearInsertionPoint(); 367 } 368 369 // If some of our locals escaped, insert a call to llvm.localescape in the 370 // entry block. 371 if (!EscapedLocals.empty()) { 372 // Invert the map from local to index into a simple vector. There should be 373 // no holes. 374 SmallVector<llvm::Value *, 4> EscapeArgs; 375 EscapeArgs.resize(EscapedLocals.size()); 376 for (auto &Pair : EscapedLocals) 377 EscapeArgs[Pair.second] = Pair.first; 378 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 379 &CGM.getModule(), llvm::Intrinsic::localescape); 380 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 381 } 382 383 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 384 llvm::Instruction *Ptr = AllocaInsertPt; 385 AllocaInsertPt = nullptr; 386 Ptr->eraseFromParent(); 387 388 // If someone took the address of a label but never did an indirect goto, we 389 // made a zero entry PHI node, which is illegal, zap it now. 390 if (IndirectBranch) { 391 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 392 if (PN->getNumIncomingValues() == 0) { 393 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 394 PN->eraseFromParent(); 395 } 396 } 397 398 EmitIfUsed(*this, EHResumeBlock); 399 EmitIfUsed(*this, TerminateLandingPad); 400 EmitIfUsed(*this, TerminateHandler); 401 EmitIfUsed(*this, UnreachableBlock); 402 403 if (CGM.getCodeGenOpts().EmitDeclMetadata) 404 EmitDeclMetadata(); 405 406 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 407 I = DeferredReplacements.begin(), 408 E = DeferredReplacements.end(); 409 I != E; ++I) { 410 I->first->replaceAllUsesWith(I->second); 411 I->first->eraseFromParent(); 412 } 413 } 414 415 /// ShouldInstrumentFunction - Return true if the current function should be 416 /// instrumented with __cyg_profile_func_* calls 417 bool CodeGenFunction::ShouldInstrumentFunction() { 418 if (!CGM.getCodeGenOpts().InstrumentFunctions) 419 return false; 420 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 421 return false; 422 return true; 423 } 424 425 /// ShouldXRayInstrument - Return true if the current function should be 426 /// instrumented with XRay nop sleds. 427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 428 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 429 } 430 431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 432 /// instrumentation function with the current function and the call site, if 433 /// function instrumentation is enabled. 434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 435 auto NL = ApplyDebugLocation::CreateArtificial(*this); 436 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 437 llvm::PointerType *PointerTy = Int8PtrTy; 438 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 439 llvm::FunctionType *FunctionTy = 440 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 441 442 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 443 llvm::CallInst *CallSite = Builder.CreateCall( 444 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 445 llvm::ConstantInt::get(Int32Ty, 0), 446 "callsite"); 447 448 llvm::Value *args[] = { 449 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 450 CallSite 451 }; 452 453 EmitNounwindRuntimeCall(F, args); 454 } 455 456 static void removeImageAccessQualifier(std::string& TyName) { 457 std::string ReadOnlyQual("__read_only"); 458 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 459 if (ReadOnlyPos != std::string::npos) 460 // "+ 1" for the space after access qualifier. 461 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 462 else { 463 std::string WriteOnlyQual("__write_only"); 464 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 465 if (WriteOnlyPos != std::string::npos) 466 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 467 else { 468 std::string ReadWriteQual("__read_write"); 469 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 470 if (ReadWritePos != std::string::npos) 471 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 472 } 473 } 474 } 475 476 // Returns the address space id that should be produced to the 477 // kernel_arg_addr_space metadata. This is always fixed to the ids 478 // as specified in the SPIR 2.0 specification in order to differentiate 479 // for example in clGetKernelArgInfo() implementation between the address 480 // spaces with targets without unique mapping to the OpenCL address spaces 481 // (basically all single AS CPUs). 482 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 483 switch (LangAS) { 484 case LangAS::opencl_global: return 1; 485 case LangAS::opencl_constant: return 2; 486 case LangAS::opencl_local: return 3; 487 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 488 default: 489 return 0; // Assume private. 490 } 491 } 492 493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 494 // information in the program executable. The argument information stored 495 // includes the argument name, its type, the address and access qualifiers used. 496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 497 CodeGenModule &CGM, llvm::LLVMContext &Context, 498 CGBuilderTy &Builder, ASTContext &ASTCtx) { 499 // Create MDNodes that represent the kernel arg metadata. 500 // Each MDNode is a list in the form of "key", N number of values which is 501 // the same number of values as their are kernel arguments. 502 503 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 504 505 // MDNode for the kernel argument address space qualifiers. 506 SmallVector<llvm::Metadata *, 8> addressQuals; 507 508 // MDNode for the kernel argument access qualifiers (images only). 509 SmallVector<llvm::Metadata *, 8> accessQuals; 510 511 // MDNode for the kernel argument type names. 512 SmallVector<llvm::Metadata *, 8> argTypeNames; 513 514 // MDNode for the kernel argument base type names. 515 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 516 517 // MDNode for the kernel argument type qualifiers. 518 SmallVector<llvm::Metadata *, 8> argTypeQuals; 519 520 // MDNode for the kernel argument names. 521 SmallVector<llvm::Metadata *, 8> argNames; 522 523 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 524 const ParmVarDecl *parm = FD->getParamDecl(i); 525 QualType ty = parm->getType(); 526 std::string typeQuals; 527 528 if (ty->isPointerType()) { 529 QualType pointeeTy = ty->getPointeeType(); 530 531 // Get address qualifier. 532 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 533 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 534 535 // Get argument type name. 536 std::string typeName = 537 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 538 539 // Turn "unsigned type" to "utype" 540 std::string::size_type pos = typeName.find("unsigned"); 541 if (pointeeTy.isCanonical() && pos != std::string::npos) 542 typeName.erase(pos+1, 8); 543 544 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 545 546 std::string baseTypeName = 547 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 548 Policy) + 549 "*"; 550 551 // Turn "unsigned type" to "utype" 552 pos = baseTypeName.find("unsigned"); 553 if (pos != std::string::npos) 554 baseTypeName.erase(pos+1, 8); 555 556 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 557 558 // Get argument type qualifiers: 559 if (ty.isRestrictQualified()) 560 typeQuals = "restrict"; 561 if (pointeeTy.isConstQualified() || 562 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 563 typeQuals += typeQuals.empty() ? "const" : " const"; 564 if (pointeeTy.isVolatileQualified()) 565 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 566 } else { 567 uint32_t AddrSpc = 0; 568 bool isPipe = ty->isPipeType(); 569 if (ty->isImageType() || isPipe) 570 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 571 572 addressQuals.push_back( 573 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 574 575 // Get argument type name. 576 std::string typeName; 577 if (isPipe) 578 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 579 .getAsString(Policy); 580 else 581 typeName = ty.getUnqualifiedType().getAsString(Policy); 582 583 // Turn "unsigned type" to "utype" 584 std::string::size_type pos = typeName.find("unsigned"); 585 if (ty.isCanonical() && pos != std::string::npos) 586 typeName.erase(pos+1, 8); 587 588 std::string baseTypeName; 589 if (isPipe) 590 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 591 ->getElementType().getCanonicalType() 592 .getAsString(Policy); 593 else 594 baseTypeName = 595 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 596 597 // Remove access qualifiers on images 598 // (as they are inseparable from type in clang implementation, 599 // but OpenCL spec provides a special query to get access qualifier 600 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 601 if (ty->isImageType()) { 602 removeImageAccessQualifier(typeName); 603 removeImageAccessQualifier(baseTypeName); 604 } 605 606 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 607 608 // Turn "unsigned type" to "utype" 609 pos = baseTypeName.find("unsigned"); 610 if (pos != std::string::npos) 611 baseTypeName.erase(pos+1, 8); 612 613 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 614 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const Decl *PDecl = parm; 624 if (auto *TD = dyn_cast<TypedefType>(ty)) 625 PDecl = TD->getDecl(); 626 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 627 if (A && A->isWriteOnly()) 628 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 629 else if (A && A->isReadWrite()) 630 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 631 else 632 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 633 } else 634 accessQuals.push_back(llvm::MDString::get(Context, "none")); 635 636 // Get argument name. 637 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 638 } 639 640 Fn->setMetadata("kernel_arg_addr_space", 641 llvm::MDNode::get(Context, addressQuals)); 642 Fn->setMetadata("kernel_arg_access_qual", 643 llvm::MDNode::get(Context, accessQuals)); 644 Fn->setMetadata("kernel_arg_type", 645 llvm::MDNode::get(Context, argTypeNames)); 646 Fn->setMetadata("kernel_arg_base_type", 647 llvm::MDNode::get(Context, argBaseTypeNames)); 648 Fn->setMetadata("kernel_arg_type_qual", 649 llvm::MDNode::get(Context, argTypeQuals)); 650 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 651 Fn->setMetadata("kernel_arg_name", 652 llvm::MDNode::get(Context, argNames)); 653 } 654 655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 656 llvm::Function *Fn) 657 { 658 if (!FD->hasAttr<OpenCLKernelAttr>()) 659 return; 660 661 llvm::LLVMContext &Context = getLLVMContext(); 662 663 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 664 665 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 666 QualType HintQTy = A->getTypeHint(); 667 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 668 bool IsSignedInteger = 669 HintQTy->isSignedIntegerType() || 670 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 671 llvm::Metadata *AttrMDArgs[] = { 672 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 673 CGM.getTypes().ConvertType(A->getTypeHint()))), 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 llvm::IntegerType::get(Context, 32), 676 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 677 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 680 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 681 llvm::Metadata *AttrMDArgs[] = { 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 685 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 686 } 687 688 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 689 llvm::Metadata *AttrMDArgs[] = { 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 693 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 694 } 695 696 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 697 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 698 llvm::Metadata *AttrMDArgs[] = { 699 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 700 Fn->setMetadata("intel_reqd_sub_group_size", 701 llvm::MDNode::get(Context, AttrMDArgs)); 702 } 703 } 704 705 /// Determine whether the function F ends with a return stmt. 706 static bool endsWithReturn(const Decl* F) { 707 const Stmt *Body = nullptr; 708 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 709 Body = FD->getBody(); 710 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 711 Body = OMD->getBody(); 712 713 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 714 auto LastStmt = CS->body_rbegin(); 715 if (LastStmt != CS->body_rend()) 716 return isa<ReturnStmt>(*LastStmt); 717 } 718 return false; 719 } 720 721 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 722 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 723 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 724 } 725 726 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 727 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 728 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 729 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 730 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 731 return false; 732 733 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 734 return false; 735 736 if (MD->getNumParams() == 2) { 737 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 738 if (!PT || !PT->isVoidPointerType() || 739 !PT->getPointeeType().isConstQualified()) 740 return false; 741 } 742 743 return true; 744 } 745 746 void CodeGenFunction::StartFunction(GlobalDecl GD, 747 QualType RetTy, 748 llvm::Function *Fn, 749 const CGFunctionInfo &FnInfo, 750 const FunctionArgList &Args, 751 SourceLocation Loc, 752 SourceLocation StartLoc) { 753 assert(!CurFn && 754 "Do not use a CodeGenFunction object for more than one function"); 755 756 const Decl *D = GD.getDecl(); 757 758 DidCallStackSave = false; 759 CurCodeDecl = D; 760 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 761 if (FD->usesSEHTry()) 762 CurSEHParent = FD; 763 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 764 FnRetTy = RetTy; 765 CurFn = Fn; 766 CurFnInfo = &FnInfo; 767 assert(CurFn->isDeclaration() && "Function already has body?"); 768 769 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 770 SanOpts.clear(); 771 772 if (D) { 773 // Apply the no_sanitize* attributes to SanOpts. 774 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 775 SanOpts.Mask &= ~Attr->getMask(); 776 } 777 778 // Apply sanitizer attributes to the function. 779 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 780 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 781 if (SanOpts.has(SanitizerKind::Thread)) 782 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 783 if (SanOpts.has(SanitizerKind::Memory)) 784 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 785 if (SanOpts.has(SanitizerKind::SafeStack)) 786 Fn->addFnAttr(llvm::Attribute::SafeStack); 787 788 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 789 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 790 if (SanOpts.has(SanitizerKind::Thread)) { 791 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 792 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 793 if (OMD->getMethodFamily() == OMF_dealloc || 794 OMD->getMethodFamily() == OMF_initialize || 795 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 796 markAsIgnoreThreadCheckingAtRuntime(Fn); 797 } 798 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 799 IdentifierInfo *II = FD->getIdentifier(); 800 if (II && II->isStr("__destroy_helper_block_")) 801 markAsIgnoreThreadCheckingAtRuntime(Fn); 802 } 803 } 804 805 // Ignore unrelated casts in STL allocate() since the allocator must cast 806 // from void* to T* before object initialization completes. Don't match on the 807 // namespace because not all allocators are in std:: 808 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 809 if (matchesStlAllocatorFn(D, getContext())) 810 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 811 } 812 813 // Apply xray attributes to the function (as a string, for now) 814 if (D && ShouldXRayInstrumentFunction()) { 815 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 816 if (XRayAttr->alwaysXRayInstrument()) 817 Fn->addFnAttr("function-instrument", "xray-always"); 818 if (XRayAttr->neverXRayInstrument()) 819 Fn->addFnAttr("function-instrument", "xray-never"); 820 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 821 Fn->addFnAttr("xray-log-args", 822 llvm::utostr(LogArgs->getArgumentCount())); 823 } 824 } else { 825 if (!CGM.imbueXRayAttrs(Fn, Loc)) 826 Fn->addFnAttr( 827 "xray-instruction-threshold", 828 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 829 } 830 } 831 832 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 833 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 834 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 835 836 // Add no-jump-tables value. 837 Fn->addFnAttr("no-jump-tables", 838 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 839 840 if (getLangOpts().OpenCL) { 841 // Add metadata for a kernel function. 842 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 843 EmitOpenCLKernelMetadata(FD, Fn); 844 } 845 846 // If we are checking function types, emit a function type signature as 847 // prologue data. 848 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 849 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 850 if (llvm::Constant *PrologueSig = 851 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 852 llvm::Constant *FTRTTIConst = 853 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 854 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 855 llvm::Constant *PrologueStructConst = 856 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 857 Fn->setPrologueData(PrologueStructConst); 858 } 859 } 860 } 861 862 // If we're checking nullability, we need to know whether we can check the 863 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 864 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 865 auto Nullability = FnRetTy->getNullability(getContext()); 866 if (Nullability && *Nullability == NullabilityKind::NonNull) { 867 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 868 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 869 RetValNullabilityPrecondition = 870 llvm::ConstantInt::getTrue(getLLVMContext()); 871 } 872 } 873 874 // If we're in C++ mode and the function name is "main", it is guaranteed 875 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 876 // used within a program"). 877 if (getLangOpts().CPlusPlus) 878 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 879 if (FD->isMain()) 880 Fn->addFnAttr(llvm::Attribute::NoRecurse); 881 882 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 883 884 // Create a marker to make it easy to insert allocas into the entryblock 885 // later. Don't create this with the builder, because we don't want it 886 // folded. 887 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 888 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 889 890 ReturnBlock = getJumpDestInCurrentScope("return"); 891 892 Builder.SetInsertPoint(EntryBB); 893 894 // If we're checking the return value, allocate space for a pointer to a 895 // precise source location of the checked return statement. 896 if (requiresReturnValueCheck()) { 897 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 898 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 899 } 900 901 // Emit subprogram debug descriptor. 902 if (CGDebugInfo *DI = getDebugInfo()) { 903 // Reconstruct the type from the argument list so that implicit parameters, 904 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 905 // convention. 906 CallingConv CC = CallingConv::CC_C; 907 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 908 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 909 CC = SrcFnTy->getCallConv(); 910 SmallVector<QualType, 16> ArgTypes; 911 for (const VarDecl *VD : Args) 912 ArgTypes.push_back(VD->getType()); 913 QualType FnType = getContext().getFunctionType( 914 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 915 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 916 } 917 918 if (ShouldInstrumentFunction()) 919 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 920 921 // Since emitting the mcount call here impacts optimizations such as function 922 // inlining, we just add an attribute to insert a mcount call in backend. 923 // The attribute "counting-function" is set to mcount function name which is 924 // architecture dependent. 925 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 926 if (CGM.getCodeGenOpts().CallFEntry) 927 Fn->addFnAttr("fentry-call", "true"); 928 else { 929 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 930 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 931 } 932 } 933 934 if (RetTy->isVoidType()) { 935 // Void type; nothing to return. 936 ReturnValue = Address::invalid(); 937 938 // Count the implicit return. 939 if (!endsWithReturn(D)) 940 ++NumReturnExprs; 941 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 942 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 943 // Indirect aggregate return; emit returned value directly into sret slot. 944 // This reduces code size, and affects correctness in C++. 945 auto AI = CurFn->arg_begin(); 946 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 947 ++AI; 948 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 949 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 950 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 951 // Load the sret pointer from the argument struct and return into that. 952 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 953 llvm::Function::arg_iterator EI = CurFn->arg_end(); 954 --EI; 955 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 956 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 957 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 958 } else { 959 ReturnValue = CreateIRTemp(RetTy, "retval"); 960 961 // Tell the epilog emitter to autorelease the result. We do this 962 // now so that various specialized functions can suppress it 963 // during their IR-generation. 964 if (getLangOpts().ObjCAutoRefCount && 965 !CurFnInfo->isReturnsRetained() && 966 RetTy->isObjCRetainableType()) 967 AutoreleaseResult = true; 968 } 969 970 EmitStartEHSpec(CurCodeDecl); 971 972 PrologueCleanupDepth = EHStack.stable_begin(); 973 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 974 975 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 976 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 977 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 978 if (MD->getParent()->isLambda() && 979 MD->getOverloadedOperator() == OO_Call) { 980 // We're in a lambda; figure out the captures. 981 MD->getParent()->getCaptureFields(LambdaCaptureFields, 982 LambdaThisCaptureField); 983 if (LambdaThisCaptureField) { 984 // If the lambda captures the object referred to by '*this' - either by 985 // value or by reference, make sure CXXThisValue points to the correct 986 // object. 987 988 // Get the lvalue for the field (which is a copy of the enclosing object 989 // or contains the address of the enclosing object). 990 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 991 if (!LambdaThisCaptureField->getType()->isPointerType()) { 992 // If the enclosing object was captured by value, just use its address. 993 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 994 } else { 995 // Load the lvalue pointed to by the field, since '*this' was captured 996 // by reference. 997 CXXThisValue = 998 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 999 } 1000 } 1001 for (auto *FD : MD->getParent()->fields()) { 1002 if (FD->hasCapturedVLAType()) { 1003 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1004 SourceLocation()).getScalarVal(); 1005 auto VAT = FD->getCapturedVLAType(); 1006 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1007 } 1008 } 1009 } else { 1010 // Not in a lambda; just use 'this' from the method. 1011 // FIXME: Should we generate a new load for each use of 'this'? The 1012 // fast register allocator would be happier... 1013 CXXThisValue = CXXABIThisValue; 1014 } 1015 1016 // Check the 'this' pointer once per function, if it's available. 1017 if (CXXThisValue) { 1018 SanitizerSet SkippedChecks; 1019 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1020 QualType ThisTy = MD->getThisType(getContext()); 1021 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, 1022 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1023 SkippedChecks); 1024 } 1025 } 1026 1027 // If any of the arguments have a variably modified type, make sure to 1028 // emit the type size. 1029 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1030 i != e; ++i) { 1031 const VarDecl *VD = *i; 1032 1033 // Dig out the type as written from ParmVarDecls; it's unclear whether 1034 // the standard (C99 6.9.1p10) requires this, but we're following the 1035 // precedent set by gcc. 1036 QualType Ty; 1037 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1038 Ty = PVD->getOriginalType(); 1039 else 1040 Ty = VD->getType(); 1041 1042 if (Ty->isVariablyModifiedType()) 1043 EmitVariablyModifiedType(Ty); 1044 } 1045 // Emit a location at the end of the prologue. 1046 if (CGDebugInfo *DI = getDebugInfo()) 1047 DI->EmitLocation(Builder, StartLoc); 1048 } 1049 1050 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1051 const Stmt *Body) { 1052 incrementProfileCounter(Body); 1053 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1054 EmitCompoundStmtWithoutScope(*S); 1055 else 1056 EmitStmt(Body); 1057 } 1058 1059 /// When instrumenting to collect profile data, the counts for some blocks 1060 /// such as switch cases need to not include the fall-through counts, so 1061 /// emit a branch around the instrumentation code. When not instrumenting, 1062 /// this just calls EmitBlock(). 1063 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1064 const Stmt *S) { 1065 llvm::BasicBlock *SkipCountBB = nullptr; 1066 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1067 // When instrumenting for profiling, the fallthrough to certain 1068 // statements needs to skip over the instrumentation code so that we 1069 // get an accurate count. 1070 SkipCountBB = createBasicBlock("skipcount"); 1071 EmitBranch(SkipCountBB); 1072 } 1073 EmitBlock(BB); 1074 uint64_t CurrentCount = getCurrentProfileCount(); 1075 incrementProfileCounter(S); 1076 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1077 if (SkipCountBB) 1078 EmitBlock(SkipCountBB); 1079 } 1080 1081 /// Tries to mark the given function nounwind based on the 1082 /// non-existence of any throwing calls within it. We believe this is 1083 /// lightweight enough to do at -O0. 1084 static void TryMarkNoThrow(llvm::Function *F) { 1085 // LLVM treats 'nounwind' on a function as part of the type, so we 1086 // can't do this on functions that can be overwritten. 1087 if (F->isInterposable()) return; 1088 1089 for (llvm::BasicBlock &BB : *F) 1090 for (llvm::Instruction &I : BB) 1091 if (I.mayThrow()) 1092 return; 1093 1094 F->setDoesNotThrow(); 1095 } 1096 1097 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1098 FunctionArgList &Args) { 1099 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1100 QualType ResTy = FD->getReturnType(); 1101 1102 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1103 if (MD && MD->isInstance()) { 1104 if (CGM.getCXXABI().HasThisReturn(GD)) 1105 ResTy = MD->getThisType(getContext()); 1106 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1107 ResTy = CGM.getContext().VoidPtrTy; 1108 CGM.getCXXABI().buildThisParam(*this, Args); 1109 } 1110 1111 // The base version of an inheriting constructor whose constructed base is a 1112 // virtual base is not passed any arguments (because it doesn't actually call 1113 // the inherited constructor). 1114 bool PassedParams = true; 1115 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1116 if (auto Inherited = CD->getInheritedConstructor()) 1117 PassedParams = 1118 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1119 1120 if (PassedParams) { 1121 for (auto *Param : FD->parameters()) { 1122 Args.push_back(Param); 1123 if (!Param->hasAttr<PassObjectSizeAttr>()) 1124 continue; 1125 1126 auto *Implicit = ImplicitParamDecl::Create( 1127 getContext(), Param->getDeclContext(), Param->getLocation(), 1128 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1129 SizeArguments[Param] = Implicit; 1130 Args.push_back(Implicit); 1131 } 1132 } 1133 1134 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1135 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1136 1137 return ResTy; 1138 } 1139 1140 static bool 1141 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1142 const ASTContext &Context) { 1143 QualType T = FD->getReturnType(); 1144 // Avoid the optimization for functions that return a record type with a 1145 // trivial destructor or another trivially copyable type. 1146 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1147 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1148 return !ClassDecl->hasTrivialDestructor(); 1149 } 1150 return !T.isTriviallyCopyableType(Context); 1151 } 1152 1153 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1154 const CGFunctionInfo &FnInfo) { 1155 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1156 CurGD = GD; 1157 1158 FunctionArgList Args; 1159 QualType ResTy = BuildFunctionArgList(GD, Args); 1160 1161 // Check if we should generate debug info for this function. 1162 if (FD->hasAttr<NoDebugAttr>()) 1163 DebugInfo = nullptr; // disable debug info indefinitely for this function 1164 1165 // The function might not have a body if we're generating thunks for a 1166 // function declaration. 1167 SourceRange BodyRange; 1168 if (Stmt *Body = FD->getBody()) 1169 BodyRange = Body->getSourceRange(); 1170 else 1171 BodyRange = FD->getLocation(); 1172 CurEHLocation = BodyRange.getEnd(); 1173 1174 // Use the location of the start of the function to determine where 1175 // the function definition is located. By default use the location 1176 // of the declaration as the location for the subprogram. A function 1177 // may lack a declaration in the source code if it is created by code 1178 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1179 SourceLocation Loc = FD->getLocation(); 1180 1181 // If this is a function specialization then use the pattern body 1182 // as the location for the function. 1183 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1184 if (SpecDecl->hasBody(SpecDecl)) 1185 Loc = SpecDecl->getLocation(); 1186 1187 Stmt *Body = FD->getBody(); 1188 1189 // Initialize helper which will detect jumps which can cause invalid lifetime 1190 // markers. 1191 if (Body && ShouldEmitLifetimeMarkers) 1192 Bypasses.Init(Body); 1193 1194 // Emit the standard function prologue. 1195 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1196 1197 // Generate the body of the function. 1198 PGO.assignRegionCounters(GD, CurFn); 1199 if (isa<CXXDestructorDecl>(FD)) 1200 EmitDestructorBody(Args); 1201 else if (isa<CXXConstructorDecl>(FD)) 1202 EmitConstructorBody(Args); 1203 else if (getLangOpts().CUDA && 1204 !getLangOpts().CUDAIsDevice && 1205 FD->hasAttr<CUDAGlobalAttr>()) 1206 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1207 else if (isa<CXXMethodDecl>(FD) && 1208 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1209 // The lambda static invoker function is special, because it forwards or 1210 // clones the body of the function call operator (but is actually static). 1211 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1212 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1213 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1214 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1215 // Implicit copy-assignment gets the same special treatment as implicit 1216 // copy-constructors. 1217 emitImplicitAssignmentOperatorBody(Args); 1218 } else if (Body) { 1219 EmitFunctionBody(Args, Body); 1220 } else 1221 llvm_unreachable("no definition for emitted function"); 1222 1223 // C++11 [stmt.return]p2: 1224 // Flowing off the end of a function [...] results in undefined behavior in 1225 // a value-returning function. 1226 // C11 6.9.1p12: 1227 // If the '}' that terminates a function is reached, and the value of the 1228 // function call is used by the caller, the behavior is undefined. 1229 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1230 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1231 bool ShouldEmitUnreachable = 1232 CGM.getCodeGenOpts().StrictReturn || 1233 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1234 if (SanOpts.has(SanitizerKind::Return)) { 1235 SanitizerScope SanScope(this); 1236 llvm::Value *IsFalse = Builder.getFalse(); 1237 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1238 SanitizerHandler::MissingReturn, 1239 EmitCheckSourceLocation(FD->getLocation()), None); 1240 } else if (ShouldEmitUnreachable) { 1241 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1242 EmitTrapCall(llvm::Intrinsic::trap); 1243 } 1244 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1245 Builder.CreateUnreachable(); 1246 Builder.ClearInsertionPoint(); 1247 } 1248 } 1249 1250 // Emit the standard function epilogue. 1251 FinishFunction(BodyRange.getEnd()); 1252 1253 // If we haven't marked the function nothrow through other means, do 1254 // a quick pass now to see if we can. 1255 if (!CurFn->doesNotThrow()) 1256 TryMarkNoThrow(CurFn); 1257 } 1258 1259 /// ContainsLabel - Return true if the statement contains a label in it. If 1260 /// this statement is not executed normally, it not containing a label means 1261 /// that we can just remove the code. 1262 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1263 // Null statement, not a label! 1264 if (!S) return false; 1265 1266 // If this is a label, we have to emit the code, consider something like: 1267 // if (0) { ... foo: bar(); } goto foo; 1268 // 1269 // TODO: If anyone cared, we could track __label__'s, since we know that you 1270 // can't jump to one from outside their declared region. 1271 if (isa<LabelStmt>(S)) 1272 return true; 1273 1274 // If this is a case/default statement, and we haven't seen a switch, we have 1275 // to emit the code. 1276 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1277 return true; 1278 1279 // If this is a switch statement, we want to ignore cases below it. 1280 if (isa<SwitchStmt>(S)) 1281 IgnoreCaseStmts = true; 1282 1283 // Scan subexpressions for verboten labels. 1284 for (const Stmt *SubStmt : S->children()) 1285 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1286 return true; 1287 1288 return false; 1289 } 1290 1291 /// containsBreak - Return true if the statement contains a break out of it. 1292 /// If the statement (recursively) contains a switch or loop with a break 1293 /// inside of it, this is fine. 1294 bool CodeGenFunction::containsBreak(const Stmt *S) { 1295 // Null statement, not a label! 1296 if (!S) return false; 1297 1298 // If this is a switch or loop that defines its own break scope, then we can 1299 // include it and anything inside of it. 1300 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1301 isa<ForStmt>(S)) 1302 return false; 1303 1304 if (isa<BreakStmt>(S)) 1305 return true; 1306 1307 // Scan subexpressions for verboten breaks. 1308 for (const Stmt *SubStmt : S->children()) 1309 if (containsBreak(SubStmt)) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1316 if (!S) return false; 1317 1318 // Some statement kinds add a scope and thus never add a decl to the current 1319 // scope. Note, this list is longer than the list of statements that might 1320 // have an unscoped decl nested within them, but this way is conservatively 1321 // correct even if more statement kinds are added. 1322 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1323 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1324 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1325 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1326 return false; 1327 1328 if (isa<DeclStmt>(S)) 1329 return true; 1330 1331 for (const Stmt *SubStmt : S->children()) 1332 if (mightAddDeclToScope(SubStmt)) 1333 return true; 1334 1335 return false; 1336 } 1337 1338 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1339 /// to a constant, or if it does but contains a label, return false. If it 1340 /// constant folds return true and set the boolean result in Result. 1341 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1342 bool &ResultBool, 1343 bool AllowLabels) { 1344 llvm::APSInt ResultInt; 1345 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1346 return false; 1347 1348 ResultBool = ResultInt.getBoolValue(); 1349 return true; 1350 } 1351 1352 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1353 /// to a constant, or if it does but contains a label, return false. If it 1354 /// constant folds return true and set the folded value. 1355 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1356 llvm::APSInt &ResultInt, 1357 bool AllowLabels) { 1358 // FIXME: Rename and handle conversion of other evaluatable things 1359 // to bool. 1360 llvm::APSInt Int; 1361 if (!Cond->EvaluateAsInt(Int, getContext())) 1362 return false; // Not foldable, not integer or not fully evaluatable. 1363 1364 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1365 return false; // Contains a label. 1366 1367 ResultInt = Int; 1368 return true; 1369 } 1370 1371 1372 1373 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1374 /// statement) to the specified blocks. Based on the condition, this might try 1375 /// to simplify the codegen of the conditional based on the branch. 1376 /// 1377 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1378 llvm::BasicBlock *TrueBlock, 1379 llvm::BasicBlock *FalseBlock, 1380 uint64_t TrueCount) { 1381 Cond = Cond->IgnoreParens(); 1382 1383 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1384 1385 // Handle X && Y in a condition. 1386 if (CondBOp->getOpcode() == BO_LAnd) { 1387 // If we have "1 && X", simplify the code. "0 && X" would have constant 1388 // folded if the case was simple enough. 1389 bool ConstantBool = false; 1390 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1391 ConstantBool) { 1392 // br(1 && X) -> br(X). 1393 incrementProfileCounter(CondBOp); 1394 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1395 TrueCount); 1396 } 1397 1398 // If we have "X && 1", simplify the code to use an uncond branch. 1399 // "X && 0" would have been constant folded to 0. 1400 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1401 ConstantBool) { 1402 // br(X && 1) -> br(X). 1403 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1404 TrueCount); 1405 } 1406 1407 // Emit the LHS as a conditional. If the LHS conditional is false, we 1408 // want to jump to the FalseBlock. 1409 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1410 // The counter tells us how often we evaluate RHS, and all of TrueCount 1411 // can be propagated to that branch. 1412 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1413 1414 ConditionalEvaluation eval(*this); 1415 { 1416 ApplyDebugLocation DL(*this, Cond); 1417 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1418 EmitBlock(LHSTrue); 1419 } 1420 1421 incrementProfileCounter(CondBOp); 1422 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1423 1424 // Any temporaries created here are conditional. 1425 eval.begin(*this); 1426 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1427 eval.end(*this); 1428 1429 return; 1430 } 1431 1432 if (CondBOp->getOpcode() == BO_LOr) { 1433 // If we have "0 || X", simplify the code. "1 || X" would have constant 1434 // folded if the case was simple enough. 1435 bool ConstantBool = false; 1436 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1437 !ConstantBool) { 1438 // br(0 || X) -> br(X). 1439 incrementProfileCounter(CondBOp); 1440 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1441 TrueCount); 1442 } 1443 1444 // If we have "X || 0", simplify the code to use an uncond branch. 1445 // "X || 1" would have been constant folded to 1. 1446 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1447 !ConstantBool) { 1448 // br(X || 0) -> br(X). 1449 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1450 TrueCount); 1451 } 1452 1453 // Emit the LHS as a conditional. If the LHS conditional is true, we 1454 // want to jump to the TrueBlock. 1455 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1456 // We have the count for entry to the RHS and for the whole expression 1457 // being true, so we can divy up True count between the short circuit and 1458 // the RHS. 1459 uint64_t LHSCount = 1460 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1461 uint64_t RHSCount = TrueCount - LHSCount; 1462 1463 ConditionalEvaluation eval(*this); 1464 { 1465 ApplyDebugLocation DL(*this, Cond); 1466 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1467 EmitBlock(LHSFalse); 1468 } 1469 1470 incrementProfileCounter(CondBOp); 1471 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1472 1473 // Any temporaries created here are conditional. 1474 eval.begin(*this); 1475 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1476 1477 eval.end(*this); 1478 1479 return; 1480 } 1481 } 1482 1483 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1484 // br(!x, t, f) -> br(x, f, t) 1485 if (CondUOp->getOpcode() == UO_LNot) { 1486 // Negate the count. 1487 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1488 // Negate the condition and swap the destination blocks. 1489 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1490 FalseCount); 1491 } 1492 } 1493 1494 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1495 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1496 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1497 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1498 1499 ConditionalEvaluation cond(*this); 1500 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1501 getProfileCount(CondOp)); 1502 1503 // When computing PGO branch weights, we only know the overall count for 1504 // the true block. This code is essentially doing tail duplication of the 1505 // naive code-gen, introducing new edges for which counts are not 1506 // available. Divide the counts proportionally between the LHS and RHS of 1507 // the conditional operator. 1508 uint64_t LHSScaledTrueCount = 0; 1509 if (TrueCount) { 1510 double LHSRatio = 1511 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1512 LHSScaledTrueCount = TrueCount * LHSRatio; 1513 } 1514 1515 cond.begin(*this); 1516 EmitBlock(LHSBlock); 1517 incrementProfileCounter(CondOp); 1518 { 1519 ApplyDebugLocation DL(*this, Cond); 1520 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1521 LHSScaledTrueCount); 1522 } 1523 cond.end(*this); 1524 1525 cond.begin(*this); 1526 EmitBlock(RHSBlock); 1527 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1528 TrueCount - LHSScaledTrueCount); 1529 cond.end(*this); 1530 1531 return; 1532 } 1533 1534 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1535 // Conditional operator handling can give us a throw expression as a 1536 // condition for a case like: 1537 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1538 // Fold this to: 1539 // br(c, throw x, br(y, t, f)) 1540 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1541 return; 1542 } 1543 1544 // If the branch has a condition wrapped by __builtin_unpredictable, 1545 // create metadata that specifies that the branch is unpredictable. 1546 // Don't bother if not optimizing because that metadata would not be used. 1547 llvm::MDNode *Unpredictable = nullptr; 1548 auto *Call = dyn_cast<CallExpr>(Cond); 1549 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1550 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1551 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1552 llvm::MDBuilder MDHelper(getLLVMContext()); 1553 Unpredictable = MDHelper.createUnpredictable(); 1554 } 1555 } 1556 1557 // Create branch weights based on the number of times we get here and the 1558 // number of times the condition should be true. 1559 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1560 llvm::MDNode *Weights = 1561 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1562 1563 // Emit the code with the fully general case. 1564 llvm::Value *CondV; 1565 { 1566 ApplyDebugLocation DL(*this, Cond); 1567 CondV = EvaluateExprAsBool(Cond); 1568 } 1569 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1570 } 1571 1572 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1573 /// specified stmt yet. 1574 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1575 CGM.ErrorUnsupported(S, Type); 1576 } 1577 1578 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1579 /// variable-length array whose elements have a non-zero bit-pattern. 1580 /// 1581 /// \param baseType the inner-most element type of the array 1582 /// \param src - a char* pointing to the bit-pattern for a single 1583 /// base element of the array 1584 /// \param sizeInChars - the total size of the VLA, in chars 1585 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1586 Address dest, Address src, 1587 llvm::Value *sizeInChars) { 1588 CGBuilderTy &Builder = CGF.Builder; 1589 1590 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1591 llvm::Value *baseSizeInChars 1592 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1593 1594 Address begin = 1595 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1596 llvm::Value *end = 1597 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1598 1599 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1600 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1601 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1602 1603 // Make a loop over the VLA. C99 guarantees that the VLA element 1604 // count must be nonzero. 1605 CGF.EmitBlock(loopBB); 1606 1607 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1608 cur->addIncoming(begin.getPointer(), originBB); 1609 1610 CharUnits curAlign = 1611 dest.getAlignment().alignmentOfArrayElement(baseSize); 1612 1613 // memcpy the individual element bit-pattern. 1614 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1615 /*volatile*/ false); 1616 1617 // Go to the next element. 1618 llvm::Value *next = 1619 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1620 1621 // Leave if that's the end of the VLA. 1622 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1623 Builder.CreateCondBr(done, contBB, loopBB); 1624 cur->addIncoming(next, loopBB); 1625 1626 CGF.EmitBlock(contBB); 1627 } 1628 1629 void 1630 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1631 // Ignore empty classes in C++. 1632 if (getLangOpts().CPlusPlus) { 1633 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1634 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1635 return; 1636 } 1637 } 1638 1639 // Cast the dest ptr to the appropriate i8 pointer type. 1640 if (DestPtr.getElementType() != Int8Ty) 1641 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1642 1643 // Get size and alignment info for this aggregate. 1644 CharUnits size = getContext().getTypeSizeInChars(Ty); 1645 1646 llvm::Value *SizeVal; 1647 const VariableArrayType *vla; 1648 1649 // Don't bother emitting a zero-byte memset. 1650 if (size.isZero()) { 1651 // But note that getTypeInfo returns 0 for a VLA. 1652 if (const VariableArrayType *vlaType = 1653 dyn_cast_or_null<VariableArrayType>( 1654 getContext().getAsArrayType(Ty))) { 1655 QualType eltType; 1656 llvm::Value *numElts; 1657 std::tie(numElts, eltType) = getVLASize(vlaType); 1658 1659 SizeVal = numElts; 1660 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1661 if (!eltSize.isOne()) 1662 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1663 vla = vlaType; 1664 } else { 1665 return; 1666 } 1667 } else { 1668 SizeVal = CGM.getSize(size); 1669 vla = nullptr; 1670 } 1671 1672 // If the type contains a pointer to data member we can't memset it to zero. 1673 // Instead, create a null constant and copy it to the destination. 1674 // TODO: there are other patterns besides zero that we can usefully memset, 1675 // like -1, which happens to be the pattern used by member-pointers. 1676 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1677 // For a VLA, emit a single element, then splat that over the VLA. 1678 if (vla) Ty = getContext().getBaseElementType(vla); 1679 1680 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1681 1682 llvm::GlobalVariable *NullVariable = 1683 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1684 /*isConstant=*/true, 1685 llvm::GlobalVariable::PrivateLinkage, 1686 NullConstant, Twine()); 1687 CharUnits NullAlign = DestPtr.getAlignment(); 1688 NullVariable->setAlignment(NullAlign.getQuantity()); 1689 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1690 NullAlign); 1691 1692 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1693 1694 // Get and call the appropriate llvm.memcpy overload. 1695 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1696 return; 1697 } 1698 1699 // Otherwise, just memset the whole thing to zero. This is legal 1700 // because in LLVM, all default initializers (other than the ones we just 1701 // handled above) are guaranteed to have a bit pattern of all zeros. 1702 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1703 } 1704 1705 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1706 // Make sure that there is a block for the indirect goto. 1707 if (!IndirectBranch) 1708 GetIndirectGotoBlock(); 1709 1710 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1711 1712 // Make sure the indirect branch includes all of the address-taken blocks. 1713 IndirectBranch->addDestination(BB); 1714 return llvm::BlockAddress::get(CurFn, BB); 1715 } 1716 1717 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1718 // If we already made the indirect branch for indirect goto, return its block. 1719 if (IndirectBranch) return IndirectBranch->getParent(); 1720 1721 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1722 1723 // Create the PHI node that indirect gotos will add entries to. 1724 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1725 "indirect.goto.dest"); 1726 1727 // Create the indirect branch instruction. 1728 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1729 return IndirectBranch->getParent(); 1730 } 1731 1732 /// Computes the length of an array in elements, as well as the base 1733 /// element type and a properly-typed first element pointer. 1734 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1735 QualType &baseType, 1736 Address &addr) { 1737 const ArrayType *arrayType = origArrayType; 1738 1739 // If it's a VLA, we have to load the stored size. Note that 1740 // this is the size of the VLA in bytes, not its size in elements. 1741 llvm::Value *numVLAElements = nullptr; 1742 if (isa<VariableArrayType>(arrayType)) { 1743 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1744 1745 // Walk into all VLAs. This doesn't require changes to addr, 1746 // which has type T* where T is the first non-VLA element type. 1747 do { 1748 QualType elementType = arrayType->getElementType(); 1749 arrayType = getContext().getAsArrayType(elementType); 1750 1751 // If we only have VLA components, 'addr' requires no adjustment. 1752 if (!arrayType) { 1753 baseType = elementType; 1754 return numVLAElements; 1755 } 1756 } while (isa<VariableArrayType>(arrayType)); 1757 1758 // We get out here only if we find a constant array type 1759 // inside the VLA. 1760 } 1761 1762 // We have some number of constant-length arrays, so addr should 1763 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1764 // down to the first element of addr. 1765 SmallVector<llvm::Value*, 8> gepIndices; 1766 1767 // GEP down to the array type. 1768 llvm::ConstantInt *zero = Builder.getInt32(0); 1769 gepIndices.push_back(zero); 1770 1771 uint64_t countFromCLAs = 1; 1772 QualType eltType; 1773 1774 llvm::ArrayType *llvmArrayType = 1775 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1776 while (llvmArrayType) { 1777 assert(isa<ConstantArrayType>(arrayType)); 1778 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1779 == llvmArrayType->getNumElements()); 1780 1781 gepIndices.push_back(zero); 1782 countFromCLAs *= llvmArrayType->getNumElements(); 1783 eltType = arrayType->getElementType(); 1784 1785 llvmArrayType = 1786 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1787 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1788 assert((!llvmArrayType || arrayType) && 1789 "LLVM and Clang types are out-of-synch"); 1790 } 1791 1792 if (arrayType) { 1793 // From this point onwards, the Clang array type has been emitted 1794 // as some other type (probably a packed struct). Compute the array 1795 // size, and just emit the 'begin' expression as a bitcast. 1796 while (arrayType) { 1797 countFromCLAs *= 1798 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1799 eltType = arrayType->getElementType(); 1800 arrayType = getContext().getAsArrayType(eltType); 1801 } 1802 1803 llvm::Type *baseType = ConvertType(eltType); 1804 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1805 } else { 1806 // Create the actual GEP. 1807 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1808 gepIndices, "array.begin"), 1809 addr.getAlignment()); 1810 } 1811 1812 baseType = eltType; 1813 1814 llvm::Value *numElements 1815 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1816 1817 // If we had any VLA dimensions, factor them in. 1818 if (numVLAElements) 1819 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1820 1821 return numElements; 1822 } 1823 1824 std::pair<llvm::Value*, QualType> 1825 CodeGenFunction::getVLASize(QualType type) { 1826 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1827 assert(vla && "type was not a variable array type!"); 1828 return getVLASize(vla); 1829 } 1830 1831 std::pair<llvm::Value*, QualType> 1832 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1833 // The number of elements so far; always size_t. 1834 llvm::Value *numElements = nullptr; 1835 1836 QualType elementType; 1837 do { 1838 elementType = type->getElementType(); 1839 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1840 assert(vlaSize && "no size for VLA!"); 1841 assert(vlaSize->getType() == SizeTy); 1842 1843 if (!numElements) { 1844 numElements = vlaSize; 1845 } else { 1846 // It's undefined behavior if this wraps around, so mark it that way. 1847 // FIXME: Teach -fsanitize=undefined to trap this. 1848 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1849 } 1850 } while ((type = getContext().getAsVariableArrayType(elementType))); 1851 1852 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1853 } 1854 1855 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1856 assert(type->isVariablyModifiedType() && 1857 "Must pass variably modified type to EmitVLASizes!"); 1858 1859 EnsureInsertPoint(); 1860 1861 // We're going to walk down into the type and look for VLA 1862 // expressions. 1863 do { 1864 assert(type->isVariablyModifiedType()); 1865 1866 const Type *ty = type.getTypePtr(); 1867 switch (ty->getTypeClass()) { 1868 1869 #define TYPE(Class, Base) 1870 #define ABSTRACT_TYPE(Class, Base) 1871 #define NON_CANONICAL_TYPE(Class, Base) 1872 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1873 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1874 #include "clang/AST/TypeNodes.def" 1875 llvm_unreachable("unexpected dependent type!"); 1876 1877 // These types are never variably-modified. 1878 case Type::Builtin: 1879 case Type::Complex: 1880 case Type::Vector: 1881 case Type::ExtVector: 1882 case Type::Record: 1883 case Type::Enum: 1884 case Type::Elaborated: 1885 case Type::TemplateSpecialization: 1886 case Type::ObjCTypeParam: 1887 case Type::ObjCObject: 1888 case Type::ObjCInterface: 1889 case Type::ObjCObjectPointer: 1890 llvm_unreachable("type class is never variably-modified!"); 1891 1892 case Type::Adjusted: 1893 type = cast<AdjustedType>(ty)->getAdjustedType(); 1894 break; 1895 1896 case Type::Decayed: 1897 type = cast<DecayedType>(ty)->getPointeeType(); 1898 break; 1899 1900 case Type::Pointer: 1901 type = cast<PointerType>(ty)->getPointeeType(); 1902 break; 1903 1904 case Type::BlockPointer: 1905 type = cast<BlockPointerType>(ty)->getPointeeType(); 1906 break; 1907 1908 case Type::LValueReference: 1909 case Type::RValueReference: 1910 type = cast<ReferenceType>(ty)->getPointeeType(); 1911 break; 1912 1913 case Type::MemberPointer: 1914 type = cast<MemberPointerType>(ty)->getPointeeType(); 1915 break; 1916 1917 case Type::ConstantArray: 1918 case Type::IncompleteArray: 1919 // Losing element qualification here is fine. 1920 type = cast<ArrayType>(ty)->getElementType(); 1921 break; 1922 1923 case Type::VariableArray: { 1924 // Losing element qualification here is fine. 1925 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1926 1927 // Unknown size indication requires no size computation. 1928 // Otherwise, evaluate and record it. 1929 if (const Expr *size = vat->getSizeExpr()) { 1930 // It's possible that we might have emitted this already, 1931 // e.g. with a typedef and a pointer to it. 1932 llvm::Value *&entry = VLASizeMap[size]; 1933 if (!entry) { 1934 llvm::Value *Size = EmitScalarExpr(size); 1935 1936 // C11 6.7.6.2p5: 1937 // If the size is an expression that is not an integer constant 1938 // expression [...] each time it is evaluated it shall have a value 1939 // greater than zero. 1940 if (SanOpts.has(SanitizerKind::VLABound) && 1941 size->getType()->isSignedIntegerType()) { 1942 SanitizerScope SanScope(this); 1943 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1944 llvm::Constant *StaticArgs[] = { 1945 EmitCheckSourceLocation(size->getLocStart()), 1946 EmitCheckTypeDescriptor(size->getType()) 1947 }; 1948 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1949 SanitizerKind::VLABound), 1950 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1951 } 1952 1953 // Always zexting here would be wrong if it weren't 1954 // undefined behavior to have a negative bound. 1955 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1956 } 1957 } 1958 type = vat->getElementType(); 1959 break; 1960 } 1961 1962 case Type::FunctionProto: 1963 case Type::FunctionNoProto: 1964 type = cast<FunctionType>(ty)->getReturnType(); 1965 break; 1966 1967 case Type::Paren: 1968 case Type::TypeOf: 1969 case Type::UnaryTransform: 1970 case Type::Attributed: 1971 case Type::SubstTemplateTypeParm: 1972 case Type::PackExpansion: 1973 // Keep walking after single level desugaring. 1974 type = type.getSingleStepDesugaredType(getContext()); 1975 break; 1976 1977 case Type::Typedef: 1978 case Type::Decltype: 1979 case Type::Auto: 1980 case Type::DeducedTemplateSpecialization: 1981 // Stop walking: nothing to do. 1982 return; 1983 1984 case Type::TypeOfExpr: 1985 // Stop walking: emit typeof expression. 1986 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1987 return; 1988 1989 case Type::Atomic: 1990 type = cast<AtomicType>(ty)->getValueType(); 1991 break; 1992 1993 case Type::Pipe: 1994 type = cast<PipeType>(ty)->getElementType(); 1995 break; 1996 } 1997 } while (type->isVariablyModifiedType()); 1998 } 1999 2000 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2001 if (getContext().getBuiltinVaListType()->isArrayType()) 2002 return EmitPointerWithAlignment(E); 2003 return EmitLValue(E).getAddress(); 2004 } 2005 2006 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2007 return EmitLValue(E).getAddress(); 2008 } 2009 2010 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2011 const APValue &Init) { 2012 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2013 if (CGDebugInfo *Dbg = getDebugInfo()) 2014 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2015 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2016 } 2017 2018 CodeGenFunction::PeepholeProtection 2019 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2020 // At the moment, the only aggressive peephole we do in IR gen 2021 // is trunc(zext) folding, but if we add more, we can easily 2022 // extend this protection. 2023 2024 if (!rvalue.isScalar()) return PeepholeProtection(); 2025 llvm::Value *value = rvalue.getScalarVal(); 2026 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2027 2028 // Just make an extra bitcast. 2029 assert(HaveInsertPoint()); 2030 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2031 Builder.GetInsertBlock()); 2032 2033 PeepholeProtection protection; 2034 protection.Inst = inst; 2035 return protection; 2036 } 2037 2038 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2039 if (!protection.Inst) return; 2040 2041 // In theory, we could try to duplicate the peepholes now, but whatever. 2042 protection.Inst->eraseFromParent(); 2043 } 2044 2045 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2046 llvm::Value *AnnotatedVal, 2047 StringRef AnnotationStr, 2048 SourceLocation Location) { 2049 llvm::Value *Args[4] = { 2050 AnnotatedVal, 2051 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2052 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2053 CGM.EmitAnnotationLineNo(Location) 2054 }; 2055 return Builder.CreateCall(AnnotationFn, Args); 2056 } 2057 2058 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2059 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2060 // FIXME We create a new bitcast for every annotation because that's what 2061 // llvm-gcc was doing. 2062 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2063 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2064 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2065 I->getAnnotation(), D->getLocation()); 2066 } 2067 2068 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2069 Address Addr) { 2070 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2071 llvm::Value *V = Addr.getPointer(); 2072 llvm::Type *VTy = V->getType(); 2073 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2074 CGM.Int8PtrTy); 2075 2076 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2077 // FIXME Always emit the cast inst so we can differentiate between 2078 // annotation on the first field of a struct and annotation on the struct 2079 // itself. 2080 if (VTy != CGM.Int8PtrTy) 2081 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2082 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2083 V = Builder.CreateBitCast(V, VTy); 2084 } 2085 2086 return Address(V, Addr.getAlignment()); 2087 } 2088 2089 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2090 2091 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2092 : CGF(CGF) { 2093 assert(!CGF->IsSanitizerScope); 2094 CGF->IsSanitizerScope = true; 2095 } 2096 2097 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2098 CGF->IsSanitizerScope = false; 2099 } 2100 2101 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2102 const llvm::Twine &Name, 2103 llvm::BasicBlock *BB, 2104 llvm::BasicBlock::iterator InsertPt) const { 2105 LoopStack.InsertHelper(I); 2106 if (IsSanitizerScope) 2107 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2108 } 2109 2110 void CGBuilderInserter::InsertHelper( 2111 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2112 llvm::BasicBlock::iterator InsertPt) const { 2113 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2114 if (CGF) 2115 CGF->InsertHelper(I, Name, BB, InsertPt); 2116 } 2117 2118 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2119 CodeGenModule &CGM, const FunctionDecl *FD, 2120 std::string &FirstMissing) { 2121 // If there aren't any required features listed then go ahead and return. 2122 if (ReqFeatures.empty()) 2123 return false; 2124 2125 // Now build up the set of caller features and verify that all the required 2126 // features are there. 2127 llvm::StringMap<bool> CallerFeatureMap; 2128 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2129 2130 // If we have at least one of the features in the feature list return 2131 // true, otherwise return false. 2132 return std::all_of( 2133 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2134 SmallVector<StringRef, 1> OrFeatures; 2135 Feature.split(OrFeatures, "|"); 2136 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2137 [&](StringRef Feature) { 2138 if (!CallerFeatureMap.lookup(Feature)) { 2139 FirstMissing = Feature.str(); 2140 return false; 2141 } 2142 return true; 2143 }); 2144 }); 2145 } 2146 2147 // Emits an error if we don't have a valid set of target features for the 2148 // called function. 2149 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2150 const FunctionDecl *TargetDecl) { 2151 // Early exit if this is an indirect call. 2152 if (!TargetDecl) 2153 return; 2154 2155 // Get the current enclosing function if it exists. If it doesn't 2156 // we can't check the target features anyhow. 2157 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2158 if (!FD) 2159 return; 2160 2161 // Grab the required features for the call. For a builtin this is listed in 2162 // the td file with the default cpu, for an always_inline function this is any 2163 // listed cpu and any listed features. 2164 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2165 std::string MissingFeature; 2166 if (BuiltinID) { 2167 SmallVector<StringRef, 1> ReqFeatures; 2168 const char *FeatureList = 2169 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2170 // Return if the builtin doesn't have any required features. 2171 if (!FeatureList || StringRef(FeatureList) == "") 2172 return; 2173 StringRef(FeatureList).split(ReqFeatures, ","); 2174 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2175 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2176 << TargetDecl->getDeclName() 2177 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2178 2179 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2180 // Get the required features for the callee. 2181 SmallVector<StringRef, 1> ReqFeatures; 2182 llvm::StringMap<bool> CalleeFeatureMap; 2183 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2184 for (const auto &F : CalleeFeatureMap) { 2185 // Only positive features are "required". 2186 if (F.getValue()) 2187 ReqFeatures.push_back(F.getKey()); 2188 } 2189 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2190 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2191 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2192 } 2193 } 2194 2195 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2196 if (!CGM.getCodeGenOpts().SanitizeStats) 2197 return; 2198 2199 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2200 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2201 CGM.getSanStats().create(IRB, SSK); 2202 } 2203 2204 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2205 if (CGDebugInfo *DI = getDebugInfo()) 2206 return DI->SourceLocToDebugLoc(Location); 2207 2208 return llvm::DebugLoc(); 2209 } 2210