1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   // Emit debug descriptor for function end.
387   if (CGDebugInfo *DI = getDebugInfo())
388     DI->EmitFunctionEnd(Builder, CurFn);
389 
390   // Reset the debug location to that of the simple 'return' expression, if any
391   // rather than that of the end of the function's scope '}'.
392   ApplyDebugLocation AL(*this, Loc);
393   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394   EmitEndEHSpec(CurCodeDecl);
395 
396   assert(EHStack.empty() &&
397          "did not remove all scopes from cleanup stack!");
398 
399   // If someone did an indirect goto, emit the indirect goto block at the end of
400   // the function.
401   if (IndirectBranch) {
402     EmitBlock(IndirectBranch->getParent());
403     Builder.ClearInsertionPoint();
404   }
405 
406   // If some of our locals escaped, insert a call to llvm.localescape in the
407   // entry block.
408   if (!EscapedLocals.empty()) {
409     // Invert the map from local to index into a simple vector. There should be
410     // no holes.
411     SmallVector<llvm::Value *, 4> EscapeArgs;
412     EscapeArgs.resize(EscapedLocals.size());
413     for (auto &Pair : EscapedLocals)
414       EscapeArgs[Pair.second] = Pair.first;
415     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416         &CGM.getModule(), llvm::Intrinsic::localescape);
417     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418   }
419 
420   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421   llvm::Instruction *Ptr = AllocaInsertPt;
422   AllocaInsertPt = nullptr;
423   Ptr->eraseFromParent();
424 
425   // PostAllocaInsertPt, if created, was lazily created when it was required,
426   // remove it now since it was just created for our own convenience.
427   if (PostAllocaInsertPt) {
428     llvm::Instruction *PostPtr = PostAllocaInsertPt;
429     PostAllocaInsertPt = nullptr;
430     PostPtr->eraseFromParent();
431   }
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (const auto &R : DeferredReplacements) {
455     if (llvm::Value *Old = R.first) {
456       Old->replaceAllUsesWith(R.second);
457       cast<llvm::Instruction>(Old)->eraseFromParent();
458     }
459   }
460   DeferredReplacements.clear();
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
489     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange.getValue().first,
506         VScaleRange.getValue().second));
507   }
508 
509   // If we generated an unreachable return block, delete it now.
510   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511     Builder.ClearInsertionPoint();
512     ReturnBlock.getBlock()->eraseFromParent();
513   }
514   if (ReturnValue.isValid()) {
515     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516     if (RetAlloca && RetAlloca->use_empty()) {
517       RetAlloca->eraseFromParent();
518       ReturnValue = Address::invalid();
519     }
520   }
521 }
522 
523 /// ShouldInstrumentFunction - Return true if the current function should be
524 /// instrumented with __cyg_profile_func_* calls
525 bool CodeGenFunction::ShouldInstrumentFunction() {
526   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529     return false;
530   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531     return false;
532   return true;
533 }
534 
535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536   if (!CurFuncDecl)
537     return false;
538   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Constant *
564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                             llvm::Constant *Addr) {
566   // Addresses stored in prologue data can't require run-time fixups and must
567   // be PC-relative. Run-time fixups are undesirable because they necessitate
568   // writable text segments, which are unsafe. And absolute addresses are
569   // undesirable because they break PIE mode.
570 
571   // Add a layer of indirection through a private global. Taking its address
572   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                       /*isConstant=*/true,
575                                       llvm::GlobalValue::PrivateLinkage, Addr);
576 
577   // Create a PC-relative address.
578   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581   return (IntPtrTy == Int32Ty)
582              ? PCRelAsInt
583              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584 }
585 
586 llvm::Value *
587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                           llvm::Value *EncodedAddr) {
589   // Reconstruct the address of the global.
590   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594 
595   // Load the original pointer through the global.
596   return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
597                             "decoded_addr");
598 }
599 
600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                llvm::Function *Fn)
602 {
603   if (!FD->hasAttr<OpenCLKernelAttr>())
604     return;
605 
606   llvm::LLVMContext &Context = getLLVMContext();
607 
608   CGM.GenOpenCLArgMetadata(Fn, FD, this);
609 
610   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611     QualType HintQTy = A->getTypeHint();
612     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613     bool IsSignedInteger =
614         HintQTy->isSignedIntegerType() ||
615         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618             CGM.getTypes().ConvertType(A->getTypeHint()))),
619         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620             llvm::IntegerType::get(Context, 32),
621             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643     llvm::Metadata *AttrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645     Fn->setMetadata("intel_reqd_sub_group_size",
646                     llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 }
649 
650 /// Determine whether the function F ends with a return stmt.
651 static bool endsWithReturn(const Decl* F) {
652   const Stmt *Body = nullptr;
653   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654     Body = FD->getBody();
655   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656     Body = OMD->getBody();
657 
658   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659     auto LastStmt = CS->body_rbegin();
660     if (LastStmt != CS->body_rend())
661       return isa<ReturnStmt>(*LastStmt);
662   }
663   return false;
664 }
665 
666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667   if (SanOpts.has(SanitizerKind::Thread)) {
668     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670   }
671 }
672 
673 /// Check if the return value of this function requires sanitization.
674 bool CodeGenFunction::requiresReturnValueCheck() const {
675   return requiresReturnValueNullabilityCheck() ||
676          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678 }
679 
680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685     return false;
686 
687   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688     return false;
689 
690   if (MD->getNumParams() == 2) {
691     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692     if (!PT || !PT->isVoidPointerType() ||
693         !PT->getPointeeType().isConstQualified())
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// Return the UBSan prologue signature for \p FD if one is available.
701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                             const FunctionDecl *FD) {
703   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704     if (!MD->isStatic())
705       return nullptr;
706   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707 }
708 
709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                     llvm::Function *Fn,
711                                     const CGFunctionInfo &FnInfo,
712                                     const FunctionArgList &Args,
713                                     SourceLocation Loc,
714                                     SourceLocation StartLoc) {
715   assert(!CurFn &&
716          "Do not use a CodeGenFunction object for more than one function");
717 
718   const Decl *D = GD.getDecl();
719 
720   DidCallStackSave = false;
721   CurCodeDecl = D;
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
723   if (FD && FD->usesSEHTry())
724     CurSEHParent = FD;
725   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726   FnRetTy = RetTy;
727   CurFn = Fn;
728   CurFnInfo = &FnInfo;
729   assert(CurFn->isDeclaration() && "Function already has body?");
730 
731   // If this function is ignored for any of the enabled sanitizers,
732   // disable the sanitizer for the function.
733   do {
734 #define SANITIZER(NAME, ID)                                                    \
735   if (SanOpts.empty())                                                         \
736     break;                                                                     \
737   if (SanOpts.has(SanitizerKind::ID))                                          \
738     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
739       SanOpts.set(SanitizerKind::ID, false);
740 
741 #include "clang/Basic/Sanitizers.def"
742 #undef SANITIZER
743   } while (false);
744 
745   if (D) {
746     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
747     bool NoSanitizeCoverage = false;
748 
749     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
750       // Apply the no_sanitize* attributes to SanOpts.
751       SanitizerMask mask = Attr->getMask();
752       SanOpts.Mask &= ~mask;
753       if (mask & SanitizerKind::Address)
754         SanOpts.set(SanitizerKind::KernelAddress, false);
755       if (mask & SanitizerKind::KernelAddress)
756         SanOpts.set(SanitizerKind::Address, false);
757       if (mask & SanitizerKind::HWAddress)
758         SanOpts.set(SanitizerKind::KernelHWAddress, false);
759       if (mask & SanitizerKind::KernelHWAddress)
760         SanOpts.set(SanitizerKind::HWAddress, false);
761 
762       // SanitizeCoverage is not handled by SanOpts.
763       if (Attr->hasCoverage())
764         NoSanitizeCoverage = true;
765     }
766 
767     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
768       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
769 
770     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
771       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
772   }
773 
774   if (ShouldSkipSanitizerInstrumentation()) {
775     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
776   } else {
777     // Apply sanitizer attributes to the function.
778     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
779       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
780     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
781                          SanitizerKind::KernelHWAddress))
782       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
783     if (SanOpts.has(SanitizerKind::MemtagStack))
784       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
785     if (SanOpts.has(SanitizerKind::Thread))
786       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
787     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
788       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
789   }
790   if (SanOpts.has(SanitizerKind::SafeStack))
791     Fn->addFnAttr(llvm::Attribute::SafeStack);
792   if (SanOpts.has(SanitizerKind::ShadowCallStack))
793     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
794 
795   // Apply fuzzing attribute to the function.
796   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
797     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
798 
799   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
800   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
801   if (SanOpts.has(SanitizerKind::Thread)) {
802     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
803       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
804       if (OMD->getMethodFamily() == OMF_dealloc ||
805           OMD->getMethodFamily() == OMF_initialize ||
806           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
807         markAsIgnoreThreadCheckingAtRuntime(Fn);
808       }
809     }
810   }
811 
812   // Ignore unrelated casts in STL allocate() since the allocator must cast
813   // from void* to T* before object initialization completes. Don't match on the
814   // namespace because not all allocators are in std::
815   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
816     if (matchesStlAllocatorFn(D, getContext()))
817       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
818   }
819 
820   // Ignore null checks in coroutine functions since the coroutines passes
821   // are not aware of how to move the extra UBSan instructions across the split
822   // coroutine boundaries.
823   if (D && SanOpts.has(SanitizerKind::Null))
824     if (FD && FD->getBody() &&
825         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
826       SanOpts.Mask &= ~SanitizerKind::Null;
827 
828   // Apply xray attributes to the function (as a string, for now)
829   bool AlwaysXRayAttr = false;
830   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
831     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
832             XRayInstrKind::FunctionEntry) ||
833         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
834             XRayInstrKind::FunctionExit)) {
835       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
836         Fn->addFnAttr("function-instrument", "xray-always");
837         AlwaysXRayAttr = true;
838       }
839       if (XRayAttr->neverXRayInstrument())
840         Fn->addFnAttr("function-instrument", "xray-never");
841       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
842         if (ShouldXRayInstrumentFunction())
843           Fn->addFnAttr("xray-log-args",
844                         llvm::utostr(LogArgs->getArgumentCount()));
845     }
846   } else {
847     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
848       Fn->addFnAttr(
849           "xray-instruction-threshold",
850           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
851   }
852 
853   if (ShouldXRayInstrumentFunction()) {
854     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
855       Fn->addFnAttr("xray-ignore-loops");
856 
857     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
858             XRayInstrKind::FunctionExit))
859       Fn->addFnAttr("xray-skip-exit");
860 
861     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
862             XRayInstrKind::FunctionEntry))
863       Fn->addFnAttr("xray-skip-entry");
864 
865     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
866     if (FuncGroups > 1) {
867       auto FuncName = llvm::makeArrayRef<uint8_t>(
868           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
869       auto Group = crc32(FuncName) % FuncGroups;
870       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
871           !AlwaysXRayAttr)
872         Fn->addFnAttr("function-instrument", "xray-never");
873     }
874   }
875 
876   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
877     if (CGM.isProfileInstrExcluded(Fn, Loc))
878       Fn->addFnAttr(llvm::Attribute::NoProfile);
879 
880   unsigned Count, Offset;
881   if (const auto *Attr =
882           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
883     Count = Attr->getCount();
884     Offset = Attr->getOffset();
885   } else {
886     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
887     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
888   }
889   if (Count && Offset <= Count) {
890     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
891     if (Offset)
892       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
893   }
894   // Instruct that functions for COFF/CodeView targets should start with a
895   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
896   // backends as they don't need it -- instructions on these architectures are
897   // always atomically patchable at runtime.
898   if (CGM.getCodeGenOpts().HotPatch &&
899       getContext().getTargetInfo().getTriple().isX86())
900     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
901 
902   // Add no-jump-tables value.
903   if (CGM.getCodeGenOpts().NoUseJumpTables)
904     Fn->addFnAttr("no-jump-tables", "true");
905 
906   // Add no-inline-line-tables value.
907   if (CGM.getCodeGenOpts().NoInlineLineTables)
908     Fn->addFnAttr("no-inline-line-tables");
909 
910   // Add profile-sample-accurate value.
911   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
912     Fn->addFnAttr("profile-sample-accurate");
913 
914   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
915     Fn->addFnAttr("use-sample-profile");
916 
917   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
918     Fn->addFnAttr("cfi-canonical-jump-table");
919 
920   if (D && D->hasAttr<NoProfileFunctionAttr>())
921     Fn->addFnAttr(llvm::Attribute::NoProfile);
922 
923   if (FD && getLangOpts().OpenCL) {
924     // Add metadata for a kernel function.
925     EmitOpenCLKernelMetadata(FD, Fn);
926   }
927 
928   // If we are checking function types, emit a function type signature as
929   // prologue data.
930   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
931     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
932       // Remove any (C++17) exception specifications, to allow calling e.g. a
933       // noexcept function through a non-noexcept pointer.
934       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
935           FD->getType(), EST_None);
936       llvm::Constant *FTRTTIConst =
937           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
938       llvm::Constant *FTRTTIConstEncoded =
939           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
940       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
941       llvm::Constant *PrologueStructConst =
942           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
943       Fn->setPrologueData(PrologueStructConst);
944     }
945   }
946 
947   // If we're checking nullability, we need to know whether we can check the
948   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
949   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
950     auto Nullability = FnRetTy->getNullability(getContext());
951     if (Nullability && *Nullability == NullabilityKind::NonNull) {
952       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
953             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
954         RetValNullabilityPrecondition =
955             llvm::ConstantInt::getTrue(getLLVMContext());
956     }
957   }
958 
959   // If we're in C++ mode and the function name is "main", it is guaranteed
960   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
961   // used within a program").
962   //
963   // OpenCL C 2.0 v2.2-11 s6.9.i:
964   //     Recursion is not supported.
965   //
966   // SYCL v1.2.1 s3.10:
967   //     kernels cannot include RTTI information, exception classes,
968   //     recursive code, virtual functions or make use of C++ libraries that
969   //     are not compiled for the device.
970   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
971              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
972              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
973     Fn->addFnAttr(llvm::Attribute::NoRecurse);
974 
975   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
976   llvm::fp::ExceptionBehavior FPExceptionBehavior =
977       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
978   Builder.setDefaultConstrainedRounding(RM);
979   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
980   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
981       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
982                RM != llvm::RoundingMode::NearestTiesToEven))) {
983     Builder.setIsFPConstrained(true);
984     Fn->addFnAttr(llvm::Attribute::StrictFP);
985   }
986 
987   // If a custom alignment is used, force realigning to this alignment on
988   // any main function which certainly will need it.
989   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
990              CGM.getCodeGenOpts().StackAlignment))
991     Fn->addFnAttr("stackrealign");
992 
993   // "main" doesn't need to zero out call-used registers.
994   if (FD && FD->isMain())
995     Fn->removeFnAttr("zero-call-used-regs");
996 
997   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
998 
999   // Create a marker to make it easy to insert allocas into the entryblock
1000   // later.  Don't create this with the builder, because we don't want it
1001   // folded.
1002   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1003   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1004 
1005   ReturnBlock = getJumpDestInCurrentScope("return");
1006 
1007   Builder.SetInsertPoint(EntryBB);
1008 
1009   // If we're checking the return value, allocate space for a pointer to a
1010   // precise source location of the checked return statement.
1011   if (requiresReturnValueCheck()) {
1012     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1013     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1014                         ReturnLocation);
1015   }
1016 
1017   // Emit subprogram debug descriptor.
1018   if (CGDebugInfo *DI = getDebugInfo()) {
1019     // Reconstruct the type from the argument list so that implicit parameters,
1020     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1021     // convention.
1022     DI->emitFunctionStart(GD, Loc, StartLoc,
1023                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1024                           CurFuncIsThunk);
1025   }
1026 
1027   if (ShouldInstrumentFunction()) {
1028     if (CGM.getCodeGenOpts().InstrumentFunctions)
1029       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1030     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1031       CurFn->addFnAttr("instrument-function-entry-inlined",
1032                        "__cyg_profile_func_enter");
1033     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1034       CurFn->addFnAttr("instrument-function-entry-inlined",
1035                        "__cyg_profile_func_enter_bare");
1036   }
1037 
1038   // Since emitting the mcount call here impacts optimizations such as function
1039   // inlining, we just add an attribute to insert a mcount call in backend.
1040   // The attribute "counting-function" is set to mcount function name which is
1041   // architecture dependent.
1042   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1043     // Calls to fentry/mcount should not be generated if function has
1044     // the no_instrument_function attribute.
1045     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1046       if (CGM.getCodeGenOpts().CallFEntry)
1047         Fn->addFnAttr("fentry-call", "true");
1048       else {
1049         Fn->addFnAttr("instrument-function-entry-inlined",
1050                       getTarget().getMCountName());
1051       }
1052       if (CGM.getCodeGenOpts().MNopMCount) {
1053         if (!CGM.getCodeGenOpts().CallFEntry)
1054           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1055             << "-mnop-mcount" << "-mfentry";
1056         Fn->addFnAttr("mnop-mcount");
1057       }
1058 
1059       if (CGM.getCodeGenOpts().RecordMCount) {
1060         if (!CGM.getCodeGenOpts().CallFEntry)
1061           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1062             << "-mrecord-mcount" << "-mfentry";
1063         Fn->addFnAttr("mrecord-mcount");
1064       }
1065     }
1066   }
1067 
1068   if (CGM.getCodeGenOpts().PackedStack) {
1069     if (getContext().getTargetInfo().getTriple().getArch() !=
1070         llvm::Triple::systemz)
1071       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1072         << "-mpacked-stack";
1073     Fn->addFnAttr("packed-stack");
1074   }
1075 
1076   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1077       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1078     Fn->addFnAttr("warn-stack-size",
1079                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1080 
1081   if (RetTy->isVoidType()) {
1082     // Void type; nothing to return.
1083     ReturnValue = Address::invalid();
1084 
1085     // Count the implicit return.
1086     if (!endsWithReturn(D))
1087       ++NumReturnExprs;
1088   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1089     // Indirect return; emit returned value directly into sret slot.
1090     // This reduces code size, and affects correctness in C++.
1091     auto AI = CurFn->arg_begin();
1092     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1093       ++AI;
1094     ReturnValue = Address(&*AI, ConvertType(RetTy),
1095                           CurFnInfo->getReturnInfo().getIndirectAlign());
1096     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1097       ReturnValuePointer =
1098           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1099       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1100                               ReturnValue.getPointer(), Int8PtrTy),
1101                           ReturnValuePointer);
1102     }
1103   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1104              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1105     // Load the sret pointer from the argument struct and return into that.
1106     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1107     llvm::Function::arg_iterator EI = CurFn->arg_end();
1108     --EI;
1109     llvm::Value *Addr = Builder.CreateStructGEP(
1110         CurFnInfo->getArgStruct(), &*EI, Idx);
1111     llvm::Type *Ty =
1112         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1113     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1114     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1115     ReturnValue =
1116         Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1117   } else {
1118     ReturnValue = CreateIRTemp(RetTy, "retval");
1119 
1120     // Tell the epilog emitter to autorelease the result.  We do this
1121     // now so that various specialized functions can suppress it
1122     // during their IR-generation.
1123     if (getLangOpts().ObjCAutoRefCount &&
1124         !CurFnInfo->isReturnsRetained() &&
1125         RetTy->isObjCRetainableType())
1126       AutoreleaseResult = true;
1127   }
1128 
1129   EmitStartEHSpec(CurCodeDecl);
1130 
1131   PrologueCleanupDepth = EHStack.stable_begin();
1132 
1133   // Emit OpenMP specific initialization of the device functions.
1134   if (getLangOpts().OpenMP && CurCodeDecl)
1135     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1136 
1137   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1138 
1139   if (isa_and_nonnull<CXXMethodDecl>(D) &&
1140       cast<CXXMethodDecl>(D)->isInstance()) {
1141     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1142     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1143     if (MD->getParent()->isLambda() &&
1144         MD->getOverloadedOperator() == OO_Call) {
1145       // We're in a lambda; figure out the captures.
1146       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1147                                         LambdaThisCaptureField);
1148       if (LambdaThisCaptureField) {
1149         // If the lambda captures the object referred to by '*this' - either by
1150         // value or by reference, make sure CXXThisValue points to the correct
1151         // object.
1152 
1153         // Get the lvalue for the field (which is a copy of the enclosing object
1154         // or contains the address of the enclosing object).
1155         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1156         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1157           // If the enclosing object was captured by value, just use its address.
1158           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1159         } else {
1160           // Load the lvalue pointed to by the field, since '*this' was captured
1161           // by reference.
1162           CXXThisValue =
1163               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1164         }
1165       }
1166       for (auto *FD : MD->getParent()->fields()) {
1167         if (FD->hasCapturedVLAType()) {
1168           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1169                                            SourceLocation()).getScalarVal();
1170           auto VAT = FD->getCapturedVLAType();
1171           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1172         }
1173       }
1174     } else {
1175       // Not in a lambda; just use 'this' from the method.
1176       // FIXME: Should we generate a new load for each use of 'this'?  The
1177       // fast register allocator would be happier...
1178       CXXThisValue = CXXABIThisValue;
1179     }
1180 
1181     // Check the 'this' pointer once per function, if it's available.
1182     if (CXXABIThisValue) {
1183       SanitizerSet SkippedChecks;
1184       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1185       QualType ThisTy = MD->getThisType();
1186 
1187       // If this is the call operator of a lambda with no capture-default, it
1188       // may have a static invoker function, which may call this operator with
1189       // a null 'this' pointer.
1190       if (isLambdaCallOperator(MD) &&
1191           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1192         SkippedChecks.set(SanitizerKind::Null, true);
1193 
1194       EmitTypeCheck(
1195           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1196           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1197     }
1198   }
1199 
1200   // If any of the arguments have a variably modified type, make sure to
1201   // emit the type size, but only if the function is not naked. Naked functions
1202   // have no prolog to run this evaluation.
1203   if (!FD || !FD->hasAttr<NakedAttr>()) {
1204     for (const VarDecl *VD : Args) {
1205       // Dig out the type as written from ParmVarDecls; it's unclear whether
1206       // the standard (C99 6.9.1p10) requires this, but we're following the
1207       // precedent set by gcc.
1208       QualType Ty;
1209       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1210         Ty = PVD->getOriginalType();
1211       else
1212         Ty = VD->getType();
1213 
1214       if (Ty->isVariablyModifiedType())
1215         EmitVariablyModifiedType(Ty);
1216     }
1217   }
1218   // Emit a location at the end of the prologue.
1219   if (CGDebugInfo *DI = getDebugInfo())
1220     DI->EmitLocation(Builder, StartLoc);
1221   // TODO: Do we need to handle this in two places like we do with
1222   // target-features/target-cpu?
1223   if (CurFuncDecl)
1224     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1225       LargestVectorWidth = VecWidth->getVectorWidth();
1226 }
1227 
1228 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1229   incrementProfileCounter(Body);
1230   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1231     EmitCompoundStmtWithoutScope(*S);
1232   else
1233     EmitStmt(Body);
1234 
1235   // This is checked after emitting the function body so we know if there
1236   // are any permitted infinite loops.
1237   if (checkIfFunctionMustProgress())
1238     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1239 }
1240 
1241 /// When instrumenting to collect profile data, the counts for some blocks
1242 /// such as switch cases need to not include the fall-through counts, so
1243 /// emit a branch around the instrumentation code. When not instrumenting,
1244 /// this just calls EmitBlock().
1245 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1246                                                const Stmt *S) {
1247   llvm::BasicBlock *SkipCountBB = nullptr;
1248   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1249     // When instrumenting for profiling, the fallthrough to certain
1250     // statements needs to skip over the instrumentation code so that we
1251     // get an accurate count.
1252     SkipCountBB = createBasicBlock("skipcount");
1253     EmitBranch(SkipCountBB);
1254   }
1255   EmitBlock(BB);
1256   uint64_t CurrentCount = getCurrentProfileCount();
1257   incrementProfileCounter(S);
1258   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1259   if (SkipCountBB)
1260     EmitBlock(SkipCountBB);
1261 }
1262 
1263 /// Tries to mark the given function nounwind based on the
1264 /// non-existence of any throwing calls within it.  We believe this is
1265 /// lightweight enough to do at -O0.
1266 static void TryMarkNoThrow(llvm::Function *F) {
1267   // LLVM treats 'nounwind' on a function as part of the type, so we
1268   // can't do this on functions that can be overwritten.
1269   if (F->isInterposable()) return;
1270 
1271   for (llvm::BasicBlock &BB : *F)
1272     for (llvm::Instruction &I : BB)
1273       if (I.mayThrow())
1274         return;
1275 
1276   F->setDoesNotThrow();
1277 }
1278 
1279 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1280                                                FunctionArgList &Args) {
1281   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1282   QualType ResTy = FD->getReturnType();
1283 
1284   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1285   if (MD && MD->isInstance()) {
1286     if (CGM.getCXXABI().HasThisReturn(GD))
1287       ResTy = MD->getThisType();
1288     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1289       ResTy = CGM.getContext().VoidPtrTy;
1290     CGM.getCXXABI().buildThisParam(*this, Args);
1291   }
1292 
1293   // The base version of an inheriting constructor whose constructed base is a
1294   // virtual base is not passed any arguments (because it doesn't actually call
1295   // the inherited constructor).
1296   bool PassedParams = true;
1297   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1298     if (auto Inherited = CD->getInheritedConstructor())
1299       PassedParams =
1300           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1301 
1302   if (PassedParams) {
1303     for (auto *Param : FD->parameters()) {
1304       Args.push_back(Param);
1305       if (!Param->hasAttr<PassObjectSizeAttr>())
1306         continue;
1307 
1308       auto *Implicit = ImplicitParamDecl::Create(
1309           getContext(), Param->getDeclContext(), Param->getLocation(),
1310           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1311       SizeArguments[Param] = Implicit;
1312       Args.push_back(Implicit);
1313     }
1314   }
1315 
1316   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1317     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1318 
1319   return ResTy;
1320 }
1321 
1322 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1323                                    const CGFunctionInfo &FnInfo) {
1324   assert(Fn && "generating code for null Function");
1325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1326   CurGD = GD;
1327 
1328   FunctionArgList Args;
1329   QualType ResTy = BuildFunctionArgList(GD, Args);
1330 
1331   if (FD->isInlineBuiltinDeclaration()) {
1332     // When generating code for a builtin with an inline declaration, use a
1333     // mangled name to hold the actual body, while keeping an external
1334     // definition in case the function pointer is referenced somewhere.
1335     std::string FDInlineName = (Fn->getName() + ".inline").str();
1336     llvm::Module *M = Fn->getParent();
1337     llvm::Function *Clone = M->getFunction(FDInlineName);
1338     if (!Clone) {
1339       Clone = llvm::Function::Create(Fn->getFunctionType(),
1340                                      llvm::GlobalValue::InternalLinkage,
1341                                      Fn->getAddressSpace(), FDInlineName, M);
1342       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1343     }
1344     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1345     Fn = Clone;
1346   } else {
1347     // Detect the unusual situation where an inline version is shadowed by a
1348     // non-inline version. In that case we should pick the external one
1349     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1350     // to detect that situation before we reach codegen, so do some late
1351     // replacement.
1352     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1353          PD = PD->getPreviousDecl()) {
1354       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1355         std::string FDInlineName = (Fn->getName() + ".inline").str();
1356         llvm::Module *M = Fn->getParent();
1357         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1358           Clone->replaceAllUsesWith(Fn);
1359           Clone->eraseFromParent();
1360         }
1361         break;
1362       }
1363     }
1364   }
1365 
1366   // Check if we should generate debug info for this function.
1367   if (FD->hasAttr<NoDebugAttr>()) {
1368     // Clear non-distinct debug info that was possibly attached to the function
1369     // due to an earlier declaration without the nodebug attribute
1370     Fn->setSubprogram(nullptr);
1371     // Disable debug info indefinitely for this function
1372     DebugInfo = nullptr;
1373   }
1374 
1375   // The function might not have a body if we're generating thunks for a
1376   // function declaration.
1377   SourceRange BodyRange;
1378   if (Stmt *Body = FD->getBody())
1379     BodyRange = Body->getSourceRange();
1380   else
1381     BodyRange = FD->getLocation();
1382   CurEHLocation = BodyRange.getEnd();
1383 
1384   // Use the location of the start of the function to determine where
1385   // the function definition is located. By default use the location
1386   // of the declaration as the location for the subprogram. A function
1387   // may lack a declaration in the source code if it is created by code
1388   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1389   SourceLocation Loc = FD->getLocation();
1390 
1391   // If this is a function specialization then use the pattern body
1392   // as the location for the function.
1393   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1394     if (SpecDecl->hasBody(SpecDecl))
1395       Loc = SpecDecl->getLocation();
1396 
1397   Stmt *Body = FD->getBody();
1398 
1399   if (Body) {
1400     // Coroutines always emit lifetime markers.
1401     if (isa<CoroutineBodyStmt>(Body))
1402       ShouldEmitLifetimeMarkers = true;
1403 
1404     // Initialize helper which will detect jumps which can cause invalid
1405     // lifetime markers.
1406     if (ShouldEmitLifetimeMarkers)
1407       Bypasses.Init(Body);
1408   }
1409 
1410   // Emit the standard function prologue.
1411   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1412 
1413   // Save parameters for coroutine function.
1414   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1415     llvm::append_range(FnArgs, FD->parameters());
1416 
1417   // Generate the body of the function.
1418   PGO.assignRegionCounters(GD, CurFn);
1419   if (isa<CXXDestructorDecl>(FD))
1420     EmitDestructorBody(Args);
1421   else if (isa<CXXConstructorDecl>(FD))
1422     EmitConstructorBody(Args);
1423   else if (getLangOpts().CUDA &&
1424            !getLangOpts().CUDAIsDevice &&
1425            FD->hasAttr<CUDAGlobalAttr>())
1426     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1427   else if (isa<CXXMethodDecl>(FD) &&
1428            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1429     // The lambda static invoker function is special, because it forwards or
1430     // clones the body of the function call operator (but is actually static).
1431     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1432   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1433              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1434               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1435     // Implicit copy-assignment gets the same special treatment as implicit
1436     // copy-constructors.
1437     emitImplicitAssignmentOperatorBody(Args);
1438   } else if (Body) {
1439     EmitFunctionBody(Body);
1440   } else
1441     llvm_unreachable("no definition for emitted function");
1442 
1443   // C++11 [stmt.return]p2:
1444   //   Flowing off the end of a function [...] results in undefined behavior in
1445   //   a value-returning function.
1446   // C11 6.9.1p12:
1447   //   If the '}' that terminates a function is reached, and the value of the
1448   //   function call is used by the caller, the behavior is undefined.
1449   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1450       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1451     bool ShouldEmitUnreachable =
1452         CGM.getCodeGenOpts().StrictReturn ||
1453         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1454     if (SanOpts.has(SanitizerKind::Return)) {
1455       SanitizerScope SanScope(this);
1456       llvm::Value *IsFalse = Builder.getFalse();
1457       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1458                 SanitizerHandler::MissingReturn,
1459                 EmitCheckSourceLocation(FD->getLocation()), None);
1460     } else if (ShouldEmitUnreachable) {
1461       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1462         EmitTrapCall(llvm::Intrinsic::trap);
1463     }
1464     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1465       Builder.CreateUnreachable();
1466       Builder.ClearInsertionPoint();
1467     }
1468   }
1469 
1470   // Emit the standard function epilogue.
1471   FinishFunction(BodyRange.getEnd());
1472 
1473   // If we haven't marked the function nothrow through other means, do
1474   // a quick pass now to see if we can.
1475   if (!CurFn->doesNotThrow())
1476     TryMarkNoThrow(CurFn);
1477 }
1478 
1479 /// ContainsLabel - Return true if the statement contains a label in it.  If
1480 /// this statement is not executed normally, it not containing a label means
1481 /// that we can just remove the code.
1482 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1483   // Null statement, not a label!
1484   if (!S) return false;
1485 
1486   // If this is a label, we have to emit the code, consider something like:
1487   // if (0) {  ...  foo:  bar(); }  goto foo;
1488   //
1489   // TODO: If anyone cared, we could track __label__'s, since we know that you
1490   // can't jump to one from outside their declared region.
1491   if (isa<LabelStmt>(S))
1492     return true;
1493 
1494   // If this is a case/default statement, and we haven't seen a switch, we have
1495   // to emit the code.
1496   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1497     return true;
1498 
1499   // If this is a switch statement, we want to ignore cases below it.
1500   if (isa<SwitchStmt>(S))
1501     IgnoreCaseStmts = true;
1502 
1503   // Scan subexpressions for verboten labels.
1504   for (const Stmt *SubStmt : S->children())
1505     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1506       return true;
1507 
1508   return false;
1509 }
1510 
1511 /// containsBreak - Return true if the statement contains a break out of it.
1512 /// If the statement (recursively) contains a switch or loop with a break
1513 /// inside of it, this is fine.
1514 bool CodeGenFunction::containsBreak(const Stmt *S) {
1515   // Null statement, not a label!
1516   if (!S) return false;
1517 
1518   // If this is a switch or loop that defines its own break scope, then we can
1519   // include it and anything inside of it.
1520   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1521       isa<ForStmt>(S))
1522     return false;
1523 
1524   if (isa<BreakStmt>(S))
1525     return true;
1526 
1527   // Scan subexpressions for verboten breaks.
1528   for (const Stmt *SubStmt : S->children())
1529     if (containsBreak(SubStmt))
1530       return true;
1531 
1532   return false;
1533 }
1534 
1535 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1536   if (!S) return false;
1537 
1538   // Some statement kinds add a scope and thus never add a decl to the current
1539   // scope. Note, this list is longer than the list of statements that might
1540   // have an unscoped decl nested within them, but this way is conservatively
1541   // correct even if more statement kinds are added.
1542   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1543       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1544       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1545       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1546     return false;
1547 
1548   if (isa<DeclStmt>(S))
1549     return true;
1550 
1551   for (const Stmt *SubStmt : S->children())
1552     if (mightAddDeclToScope(SubStmt))
1553       return true;
1554 
1555   return false;
1556 }
1557 
1558 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1559 /// to a constant, or if it does but contains a label, return false.  If it
1560 /// constant folds return true and set the boolean result in Result.
1561 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1562                                                    bool &ResultBool,
1563                                                    bool AllowLabels) {
1564   llvm::APSInt ResultInt;
1565   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1566     return false;
1567 
1568   ResultBool = ResultInt.getBoolValue();
1569   return true;
1570 }
1571 
1572 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1573 /// to a constant, or if it does but contains a label, return false.  If it
1574 /// constant folds return true and set the folded value.
1575 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1576                                                    llvm::APSInt &ResultInt,
1577                                                    bool AllowLabels) {
1578   // FIXME: Rename and handle conversion of other evaluatable things
1579   // to bool.
1580   Expr::EvalResult Result;
1581   if (!Cond->EvaluateAsInt(Result, getContext()))
1582     return false;  // Not foldable, not integer or not fully evaluatable.
1583 
1584   llvm::APSInt Int = Result.Val.getInt();
1585   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1586     return false;  // Contains a label.
1587 
1588   ResultInt = Int;
1589   return true;
1590 }
1591 
1592 /// Determine whether the given condition is an instrumentable condition
1593 /// (i.e. no "&&" or "||").
1594 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1595   // Bypass simplistic logical-NOT operator before determining whether the
1596   // condition contains any other logical operator.
1597   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1598     if (UnOp->getOpcode() == UO_LNot)
1599       C = UnOp->getSubExpr();
1600 
1601   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1602   return (!BOp || !BOp->isLogicalOp());
1603 }
1604 
1605 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1606 /// increments a profile counter based on the semantics of the given logical
1607 /// operator opcode.  This is used to instrument branch condition coverage for
1608 /// logical operators.
1609 void CodeGenFunction::EmitBranchToCounterBlock(
1610     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1611     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1612     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1613   // If not instrumenting, just emit a branch.
1614   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1615   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1616     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1617 
1618   llvm::BasicBlock *ThenBlock = nullptr;
1619   llvm::BasicBlock *ElseBlock = nullptr;
1620   llvm::BasicBlock *NextBlock = nullptr;
1621 
1622   // Create the block we'll use to increment the appropriate counter.
1623   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1624 
1625   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1626   // means we need to evaluate the condition and increment the counter on TRUE:
1627   //
1628   // if (Cond)
1629   //   goto CounterIncrBlock;
1630   // else
1631   //   goto FalseBlock;
1632   //
1633   // CounterIncrBlock:
1634   //   Counter++;
1635   //   goto TrueBlock;
1636 
1637   if (LOp == BO_LAnd) {
1638     ThenBlock = CounterIncrBlock;
1639     ElseBlock = FalseBlock;
1640     NextBlock = TrueBlock;
1641   }
1642 
1643   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1644   // we need to evaluate the condition and increment the counter on FALSE:
1645   //
1646   // if (Cond)
1647   //   goto TrueBlock;
1648   // else
1649   //   goto CounterIncrBlock;
1650   //
1651   // CounterIncrBlock:
1652   //   Counter++;
1653   //   goto FalseBlock;
1654 
1655   else if (LOp == BO_LOr) {
1656     ThenBlock = TrueBlock;
1657     ElseBlock = CounterIncrBlock;
1658     NextBlock = FalseBlock;
1659   } else {
1660     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1661   }
1662 
1663   // Emit Branch based on condition.
1664   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1665 
1666   // Emit the block containing the counter increment(s).
1667   EmitBlock(CounterIncrBlock);
1668 
1669   // Increment corresponding counter; if index not provided, use Cond as index.
1670   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1671 
1672   // Go to the next block.
1673   EmitBranch(NextBlock);
1674 }
1675 
1676 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1677 /// statement) to the specified blocks.  Based on the condition, this might try
1678 /// to simplify the codegen of the conditional based on the branch.
1679 /// \param LH The value of the likelihood attribute on the True branch.
1680 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1681                                            llvm::BasicBlock *TrueBlock,
1682                                            llvm::BasicBlock *FalseBlock,
1683                                            uint64_t TrueCount,
1684                                            Stmt::Likelihood LH) {
1685   Cond = Cond->IgnoreParens();
1686 
1687   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1688 
1689     // Handle X && Y in a condition.
1690     if (CondBOp->getOpcode() == BO_LAnd) {
1691       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1692       // folded if the case was simple enough.
1693       bool ConstantBool = false;
1694       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1695           ConstantBool) {
1696         // br(1 && X) -> br(X).
1697         incrementProfileCounter(CondBOp);
1698         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1699                                         FalseBlock, TrueCount, LH);
1700       }
1701 
1702       // If we have "X && 1", simplify the code to use an uncond branch.
1703       // "X && 0" would have been constant folded to 0.
1704       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1705           ConstantBool) {
1706         // br(X && 1) -> br(X).
1707         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1708                                         FalseBlock, TrueCount, LH, CondBOp);
1709       }
1710 
1711       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1712       // want to jump to the FalseBlock.
1713       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1714       // The counter tells us how often we evaluate RHS, and all of TrueCount
1715       // can be propagated to that branch.
1716       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1717 
1718       ConditionalEvaluation eval(*this);
1719       {
1720         ApplyDebugLocation DL(*this, Cond);
1721         // Propagate the likelihood attribute like __builtin_expect
1722         // __builtin_expect(X && Y, 1) -> X and Y are likely
1723         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1724         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1725                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1726         EmitBlock(LHSTrue);
1727       }
1728 
1729       incrementProfileCounter(CondBOp);
1730       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1731 
1732       // Any temporaries created here are conditional.
1733       eval.begin(*this);
1734       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1735                                FalseBlock, TrueCount, LH);
1736       eval.end(*this);
1737 
1738       return;
1739     }
1740 
1741     if (CondBOp->getOpcode() == BO_LOr) {
1742       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1743       // folded if the case was simple enough.
1744       bool ConstantBool = false;
1745       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1746           !ConstantBool) {
1747         // br(0 || X) -> br(X).
1748         incrementProfileCounter(CondBOp);
1749         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1750                                         FalseBlock, TrueCount, LH);
1751       }
1752 
1753       // If we have "X || 0", simplify the code to use an uncond branch.
1754       // "X || 1" would have been constant folded to 1.
1755       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1756           !ConstantBool) {
1757         // br(X || 0) -> br(X).
1758         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1759                                         FalseBlock, TrueCount, LH, CondBOp);
1760       }
1761 
1762       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1763       // want to jump to the TrueBlock.
1764       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1765       // We have the count for entry to the RHS and for the whole expression
1766       // being true, so we can divy up True count between the short circuit and
1767       // the RHS.
1768       uint64_t LHSCount =
1769           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1770       uint64_t RHSCount = TrueCount - LHSCount;
1771 
1772       ConditionalEvaluation eval(*this);
1773       {
1774         // Propagate the likelihood attribute like __builtin_expect
1775         // __builtin_expect(X || Y, 1) -> only Y is likely
1776         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1777         ApplyDebugLocation DL(*this, Cond);
1778         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1779                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1780         EmitBlock(LHSFalse);
1781       }
1782 
1783       incrementProfileCounter(CondBOp);
1784       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1785 
1786       // Any temporaries created here are conditional.
1787       eval.begin(*this);
1788       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1789                                RHSCount, LH);
1790 
1791       eval.end(*this);
1792 
1793       return;
1794     }
1795   }
1796 
1797   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1798     // br(!x, t, f) -> br(x, f, t)
1799     if (CondUOp->getOpcode() == UO_LNot) {
1800       // Negate the count.
1801       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1802       // The values of the enum are chosen to make this negation possible.
1803       LH = static_cast<Stmt::Likelihood>(-LH);
1804       // Negate the condition and swap the destination blocks.
1805       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1806                                   FalseCount, LH);
1807     }
1808   }
1809 
1810   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1811     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1812     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1813     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1814 
1815     // The ConditionalOperator itself has no likelihood information for its
1816     // true and false branches. This matches the behavior of __builtin_expect.
1817     ConditionalEvaluation cond(*this);
1818     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1819                          getProfileCount(CondOp), Stmt::LH_None);
1820 
1821     // When computing PGO branch weights, we only know the overall count for
1822     // the true block. This code is essentially doing tail duplication of the
1823     // naive code-gen, introducing new edges for which counts are not
1824     // available. Divide the counts proportionally between the LHS and RHS of
1825     // the conditional operator.
1826     uint64_t LHSScaledTrueCount = 0;
1827     if (TrueCount) {
1828       double LHSRatio =
1829           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1830       LHSScaledTrueCount = TrueCount * LHSRatio;
1831     }
1832 
1833     cond.begin(*this);
1834     EmitBlock(LHSBlock);
1835     incrementProfileCounter(CondOp);
1836     {
1837       ApplyDebugLocation DL(*this, Cond);
1838       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1839                            LHSScaledTrueCount, LH);
1840     }
1841     cond.end(*this);
1842 
1843     cond.begin(*this);
1844     EmitBlock(RHSBlock);
1845     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1846                          TrueCount - LHSScaledTrueCount, LH);
1847     cond.end(*this);
1848 
1849     return;
1850   }
1851 
1852   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1853     // Conditional operator handling can give us a throw expression as a
1854     // condition for a case like:
1855     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1856     // Fold this to:
1857     //   br(c, throw x, br(y, t, f))
1858     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1859     return;
1860   }
1861 
1862   // Emit the code with the fully general case.
1863   llvm::Value *CondV;
1864   {
1865     ApplyDebugLocation DL(*this, Cond);
1866     CondV = EvaluateExprAsBool(Cond);
1867   }
1868 
1869   llvm::MDNode *Weights = nullptr;
1870   llvm::MDNode *Unpredictable = nullptr;
1871 
1872   // If the branch has a condition wrapped by __builtin_unpredictable,
1873   // create metadata that specifies that the branch is unpredictable.
1874   // Don't bother if not optimizing because that metadata would not be used.
1875   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1876   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1877     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1878     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1879       llvm::MDBuilder MDHelper(getLLVMContext());
1880       Unpredictable = MDHelper.createUnpredictable();
1881     }
1882   }
1883 
1884   // If there is a Likelihood knowledge for the cond, lower it.
1885   // Note that if not optimizing this won't emit anything.
1886   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1887   if (CondV != NewCondV)
1888     CondV = NewCondV;
1889   else {
1890     // Otherwise, lower profile counts. Note that we do this even at -O0.
1891     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1892     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1893   }
1894 
1895   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1896 }
1897 
1898 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1899 /// specified stmt yet.
1900 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1901   CGM.ErrorUnsupported(S, Type);
1902 }
1903 
1904 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1905 /// variable-length array whose elements have a non-zero bit-pattern.
1906 ///
1907 /// \param baseType the inner-most element type of the array
1908 /// \param src - a char* pointing to the bit-pattern for a single
1909 /// base element of the array
1910 /// \param sizeInChars - the total size of the VLA, in chars
1911 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1912                                Address dest, Address src,
1913                                llvm::Value *sizeInChars) {
1914   CGBuilderTy &Builder = CGF.Builder;
1915 
1916   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1917   llvm::Value *baseSizeInChars
1918     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1919 
1920   Address begin =
1921     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1922   llvm::Value *end = Builder.CreateInBoundsGEP(
1923       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1924 
1925   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1926   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1927   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1928 
1929   // Make a loop over the VLA.  C99 guarantees that the VLA element
1930   // count must be nonzero.
1931   CGF.EmitBlock(loopBB);
1932 
1933   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1934   cur->addIncoming(begin.getPointer(), originBB);
1935 
1936   CharUnits curAlign =
1937     dest.getAlignment().alignmentOfArrayElement(baseSize);
1938 
1939   // memcpy the individual element bit-pattern.
1940   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1941                        /*volatile*/ false);
1942 
1943   // Go to the next element.
1944   llvm::Value *next =
1945     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1946 
1947   // Leave if that's the end of the VLA.
1948   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1949   Builder.CreateCondBr(done, contBB, loopBB);
1950   cur->addIncoming(next, loopBB);
1951 
1952   CGF.EmitBlock(contBB);
1953 }
1954 
1955 void
1956 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1957   // Ignore empty classes in C++.
1958   if (getLangOpts().CPlusPlus) {
1959     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1960       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1961         return;
1962     }
1963   }
1964 
1965   // Cast the dest ptr to the appropriate i8 pointer type.
1966   if (DestPtr.getElementType() != Int8Ty)
1967     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1968 
1969   // Get size and alignment info for this aggregate.
1970   CharUnits size = getContext().getTypeSizeInChars(Ty);
1971 
1972   llvm::Value *SizeVal;
1973   const VariableArrayType *vla;
1974 
1975   // Don't bother emitting a zero-byte memset.
1976   if (size.isZero()) {
1977     // But note that getTypeInfo returns 0 for a VLA.
1978     if (const VariableArrayType *vlaType =
1979           dyn_cast_or_null<VariableArrayType>(
1980                                           getContext().getAsArrayType(Ty))) {
1981       auto VlaSize = getVLASize(vlaType);
1982       SizeVal = VlaSize.NumElts;
1983       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1984       if (!eltSize.isOne())
1985         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1986       vla = vlaType;
1987     } else {
1988       return;
1989     }
1990   } else {
1991     SizeVal = CGM.getSize(size);
1992     vla = nullptr;
1993   }
1994 
1995   // If the type contains a pointer to data member we can't memset it to zero.
1996   // Instead, create a null constant and copy it to the destination.
1997   // TODO: there are other patterns besides zero that we can usefully memset,
1998   // like -1, which happens to be the pattern used by member-pointers.
1999   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2000     // For a VLA, emit a single element, then splat that over the VLA.
2001     if (vla) Ty = getContext().getBaseElementType(vla);
2002 
2003     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2004 
2005     llvm::GlobalVariable *NullVariable =
2006       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2007                                /*isConstant=*/true,
2008                                llvm::GlobalVariable::PrivateLinkage,
2009                                NullConstant, Twine());
2010     CharUnits NullAlign = DestPtr.getAlignment();
2011     NullVariable->setAlignment(NullAlign.getAsAlign());
2012     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2013                    Builder.getInt8Ty(), NullAlign);
2014 
2015     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2016 
2017     // Get and call the appropriate llvm.memcpy overload.
2018     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2019     return;
2020   }
2021 
2022   // Otherwise, just memset the whole thing to zero.  This is legal
2023   // because in LLVM, all default initializers (other than the ones we just
2024   // handled above) are guaranteed to have a bit pattern of all zeros.
2025   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2026 }
2027 
2028 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2029   // Make sure that there is a block for the indirect goto.
2030   if (!IndirectBranch)
2031     GetIndirectGotoBlock();
2032 
2033   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2034 
2035   // Make sure the indirect branch includes all of the address-taken blocks.
2036   IndirectBranch->addDestination(BB);
2037   return llvm::BlockAddress::get(CurFn, BB);
2038 }
2039 
2040 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2041   // If we already made the indirect branch for indirect goto, return its block.
2042   if (IndirectBranch) return IndirectBranch->getParent();
2043 
2044   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2045 
2046   // Create the PHI node that indirect gotos will add entries to.
2047   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2048                                               "indirect.goto.dest");
2049 
2050   // Create the indirect branch instruction.
2051   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2052   return IndirectBranch->getParent();
2053 }
2054 
2055 /// Computes the length of an array in elements, as well as the base
2056 /// element type and a properly-typed first element pointer.
2057 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2058                                               QualType &baseType,
2059                                               Address &addr) {
2060   const ArrayType *arrayType = origArrayType;
2061 
2062   // If it's a VLA, we have to load the stored size.  Note that
2063   // this is the size of the VLA in bytes, not its size in elements.
2064   llvm::Value *numVLAElements = nullptr;
2065   if (isa<VariableArrayType>(arrayType)) {
2066     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2067 
2068     // Walk into all VLAs.  This doesn't require changes to addr,
2069     // which has type T* where T is the first non-VLA element type.
2070     do {
2071       QualType elementType = arrayType->getElementType();
2072       arrayType = getContext().getAsArrayType(elementType);
2073 
2074       // If we only have VLA components, 'addr' requires no adjustment.
2075       if (!arrayType) {
2076         baseType = elementType;
2077         return numVLAElements;
2078       }
2079     } while (isa<VariableArrayType>(arrayType));
2080 
2081     // We get out here only if we find a constant array type
2082     // inside the VLA.
2083   }
2084 
2085   // We have some number of constant-length arrays, so addr should
2086   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2087   // down to the first element of addr.
2088   SmallVector<llvm::Value*, 8> gepIndices;
2089 
2090   // GEP down to the array type.
2091   llvm::ConstantInt *zero = Builder.getInt32(0);
2092   gepIndices.push_back(zero);
2093 
2094   uint64_t countFromCLAs = 1;
2095   QualType eltType;
2096 
2097   llvm::ArrayType *llvmArrayType =
2098     dyn_cast<llvm::ArrayType>(addr.getElementType());
2099   while (llvmArrayType) {
2100     assert(isa<ConstantArrayType>(arrayType));
2101     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2102              == llvmArrayType->getNumElements());
2103 
2104     gepIndices.push_back(zero);
2105     countFromCLAs *= llvmArrayType->getNumElements();
2106     eltType = arrayType->getElementType();
2107 
2108     llvmArrayType =
2109       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2110     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2111     assert((!llvmArrayType || arrayType) &&
2112            "LLVM and Clang types are out-of-synch");
2113   }
2114 
2115   if (arrayType) {
2116     // From this point onwards, the Clang array type has been emitted
2117     // as some other type (probably a packed struct). Compute the array
2118     // size, and just emit the 'begin' expression as a bitcast.
2119     while (arrayType) {
2120       countFromCLAs *=
2121           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2122       eltType = arrayType->getElementType();
2123       arrayType = getContext().getAsArrayType(eltType);
2124     }
2125 
2126     llvm::Type *baseType = ConvertType(eltType);
2127     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2128   } else {
2129     // Create the actual GEP.
2130     addr = Address(Builder.CreateInBoundsGEP(
2131         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2132         ConvertTypeForMem(eltType),
2133         addr.getAlignment());
2134   }
2135 
2136   baseType = eltType;
2137 
2138   llvm::Value *numElements
2139     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2140 
2141   // If we had any VLA dimensions, factor them in.
2142   if (numVLAElements)
2143     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2144 
2145   return numElements;
2146 }
2147 
2148 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2149   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2150   assert(vla && "type was not a variable array type!");
2151   return getVLASize(vla);
2152 }
2153 
2154 CodeGenFunction::VlaSizePair
2155 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2156   // The number of elements so far; always size_t.
2157   llvm::Value *numElements = nullptr;
2158 
2159   QualType elementType;
2160   do {
2161     elementType = type->getElementType();
2162     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2163     assert(vlaSize && "no size for VLA!");
2164     assert(vlaSize->getType() == SizeTy);
2165 
2166     if (!numElements) {
2167       numElements = vlaSize;
2168     } else {
2169       // It's undefined behavior if this wraps around, so mark it that way.
2170       // FIXME: Teach -fsanitize=undefined to trap this.
2171       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2172     }
2173   } while ((type = getContext().getAsVariableArrayType(elementType)));
2174 
2175   return { numElements, elementType };
2176 }
2177 
2178 CodeGenFunction::VlaSizePair
2179 CodeGenFunction::getVLAElements1D(QualType type) {
2180   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2181   assert(vla && "type was not a variable array type!");
2182   return getVLAElements1D(vla);
2183 }
2184 
2185 CodeGenFunction::VlaSizePair
2186 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2187   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2188   assert(VlaSize && "no size for VLA!");
2189   assert(VlaSize->getType() == SizeTy);
2190   return { VlaSize, Vla->getElementType() };
2191 }
2192 
2193 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2194   assert(type->isVariablyModifiedType() &&
2195          "Must pass variably modified type to EmitVLASizes!");
2196 
2197   EnsureInsertPoint();
2198 
2199   // We're going to walk down into the type and look for VLA
2200   // expressions.
2201   do {
2202     assert(type->isVariablyModifiedType());
2203 
2204     const Type *ty = type.getTypePtr();
2205     switch (ty->getTypeClass()) {
2206 
2207 #define TYPE(Class, Base)
2208 #define ABSTRACT_TYPE(Class, Base)
2209 #define NON_CANONICAL_TYPE(Class, Base)
2210 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2211 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2212 #include "clang/AST/TypeNodes.inc"
2213       llvm_unreachable("unexpected dependent type!");
2214 
2215     // These types are never variably-modified.
2216     case Type::Builtin:
2217     case Type::Complex:
2218     case Type::Vector:
2219     case Type::ExtVector:
2220     case Type::ConstantMatrix:
2221     case Type::Record:
2222     case Type::Enum:
2223     case Type::Elaborated:
2224     case Type::Using:
2225     case Type::TemplateSpecialization:
2226     case Type::ObjCTypeParam:
2227     case Type::ObjCObject:
2228     case Type::ObjCInterface:
2229     case Type::ObjCObjectPointer:
2230     case Type::BitInt:
2231       llvm_unreachable("type class is never variably-modified!");
2232 
2233     case Type::Adjusted:
2234       type = cast<AdjustedType>(ty)->getAdjustedType();
2235       break;
2236 
2237     case Type::Decayed:
2238       type = cast<DecayedType>(ty)->getPointeeType();
2239       break;
2240 
2241     case Type::Pointer:
2242       type = cast<PointerType>(ty)->getPointeeType();
2243       break;
2244 
2245     case Type::BlockPointer:
2246       type = cast<BlockPointerType>(ty)->getPointeeType();
2247       break;
2248 
2249     case Type::LValueReference:
2250     case Type::RValueReference:
2251       type = cast<ReferenceType>(ty)->getPointeeType();
2252       break;
2253 
2254     case Type::MemberPointer:
2255       type = cast<MemberPointerType>(ty)->getPointeeType();
2256       break;
2257 
2258     case Type::ConstantArray:
2259     case Type::IncompleteArray:
2260       // Losing element qualification here is fine.
2261       type = cast<ArrayType>(ty)->getElementType();
2262       break;
2263 
2264     case Type::VariableArray: {
2265       // Losing element qualification here is fine.
2266       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2267 
2268       // Unknown size indication requires no size computation.
2269       // Otherwise, evaluate and record it.
2270       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2271         // It's possible that we might have emitted this already,
2272         // e.g. with a typedef and a pointer to it.
2273         llvm::Value *&entry = VLASizeMap[sizeExpr];
2274         if (!entry) {
2275           llvm::Value *size = EmitScalarExpr(sizeExpr);
2276 
2277           // C11 6.7.6.2p5:
2278           //   If the size is an expression that is not an integer constant
2279           //   expression [...] each time it is evaluated it shall have a value
2280           //   greater than zero.
2281           if (SanOpts.has(SanitizerKind::VLABound)) {
2282             SanitizerScope SanScope(this);
2283             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2284             clang::QualType SEType = sizeExpr->getType();
2285             llvm::Value *CheckCondition =
2286                 SEType->isSignedIntegerType()
2287                     ? Builder.CreateICmpSGT(size, Zero)
2288                     : Builder.CreateICmpUGT(size, Zero);
2289             llvm::Constant *StaticArgs[] = {
2290                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2291                 EmitCheckTypeDescriptor(SEType)};
2292             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2293                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2294           }
2295 
2296           // Always zexting here would be wrong if it weren't
2297           // undefined behavior to have a negative bound.
2298           // FIXME: What about when size's type is larger than size_t?
2299           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2300         }
2301       }
2302       type = vat->getElementType();
2303       break;
2304     }
2305 
2306     case Type::FunctionProto:
2307     case Type::FunctionNoProto:
2308       type = cast<FunctionType>(ty)->getReturnType();
2309       break;
2310 
2311     case Type::Paren:
2312     case Type::TypeOf:
2313     case Type::UnaryTransform:
2314     case Type::Attributed:
2315     case Type::BTFTagAttributed:
2316     case Type::SubstTemplateTypeParm:
2317     case Type::MacroQualified:
2318       // Keep walking after single level desugaring.
2319       type = type.getSingleStepDesugaredType(getContext());
2320       break;
2321 
2322     case Type::Typedef:
2323     case Type::Decltype:
2324     case Type::Auto:
2325     case Type::DeducedTemplateSpecialization:
2326       // Stop walking: nothing to do.
2327       return;
2328 
2329     case Type::TypeOfExpr:
2330       // Stop walking: emit typeof expression.
2331       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2332       return;
2333 
2334     case Type::Atomic:
2335       type = cast<AtomicType>(ty)->getValueType();
2336       break;
2337 
2338     case Type::Pipe:
2339       type = cast<PipeType>(ty)->getElementType();
2340       break;
2341     }
2342   } while (type->isVariablyModifiedType());
2343 }
2344 
2345 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2346   if (getContext().getBuiltinVaListType()->isArrayType())
2347     return EmitPointerWithAlignment(E);
2348   return EmitLValue(E).getAddress(*this);
2349 }
2350 
2351 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2352   return EmitLValue(E).getAddress(*this);
2353 }
2354 
2355 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2356                                               const APValue &Init) {
2357   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2358   if (CGDebugInfo *Dbg = getDebugInfo())
2359     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2360       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2361 }
2362 
2363 CodeGenFunction::PeepholeProtection
2364 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2365   // At the moment, the only aggressive peephole we do in IR gen
2366   // is trunc(zext) folding, but if we add more, we can easily
2367   // extend this protection.
2368 
2369   if (!rvalue.isScalar()) return PeepholeProtection();
2370   llvm::Value *value = rvalue.getScalarVal();
2371   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2372 
2373   // Just make an extra bitcast.
2374   assert(HaveInsertPoint());
2375   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2376                                                   Builder.GetInsertBlock());
2377 
2378   PeepholeProtection protection;
2379   protection.Inst = inst;
2380   return protection;
2381 }
2382 
2383 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2384   if (!protection.Inst) return;
2385 
2386   // In theory, we could try to duplicate the peepholes now, but whatever.
2387   protection.Inst->eraseFromParent();
2388 }
2389 
2390 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2391                                               QualType Ty, SourceLocation Loc,
2392                                               SourceLocation AssumptionLoc,
2393                                               llvm::Value *Alignment,
2394                                               llvm::Value *OffsetValue) {
2395   if (Alignment->getType() != IntPtrTy)
2396     Alignment =
2397         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2398   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2399     OffsetValue =
2400         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2401   llvm::Value *TheCheck = nullptr;
2402   if (SanOpts.has(SanitizerKind::Alignment)) {
2403     llvm::Value *PtrIntValue =
2404         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2405 
2406     if (OffsetValue) {
2407       bool IsOffsetZero = false;
2408       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2409         IsOffsetZero = CI->isZero();
2410 
2411       if (!IsOffsetZero)
2412         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2413     }
2414 
2415     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2416     llvm::Value *Mask =
2417         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2418     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2419     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2420   }
2421   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2422       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2423 
2424   if (!SanOpts.has(SanitizerKind::Alignment))
2425     return;
2426   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2427                                OffsetValue, TheCheck, Assumption);
2428 }
2429 
2430 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2431                                               const Expr *E,
2432                                               SourceLocation AssumptionLoc,
2433                                               llvm::Value *Alignment,
2434                                               llvm::Value *OffsetValue) {
2435   if (auto *CE = dyn_cast<CastExpr>(E))
2436     E = CE->getSubExprAsWritten();
2437   QualType Ty = E->getType();
2438   SourceLocation Loc = E->getExprLoc();
2439 
2440   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2441                           OffsetValue);
2442 }
2443 
2444 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2445                                                  llvm::Value *AnnotatedVal,
2446                                                  StringRef AnnotationStr,
2447                                                  SourceLocation Location,
2448                                                  const AnnotateAttr *Attr) {
2449   SmallVector<llvm::Value *, 5> Args = {
2450       AnnotatedVal,
2451       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2452       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2453       CGM.EmitAnnotationLineNo(Location),
2454   };
2455   if (Attr)
2456     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2457   return Builder.CreateCall(AnnotationFn, Args);
2458 }
2459 
2460 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2461   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2462   // FIXME We create a new bitcast for every annotation because that's what
2463   // llvm-gcc was doing.
2464   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2465     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2466                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2467                        I->getAnnotation(), D->getLocation(), I);
2468 }
2469 
2470 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2471                                               Address Addr) {
2472   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2473   llvm::Value *V = Addr.getPointer();
2474   llvm::Type *VTy = V->getType();
2475   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2476   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2477   llvm::PointerType *IntrinTy =
2478       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2479   llvm::Function *F =
2480       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2481 
2482   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2483     // FIXME Always emit the cast inst so we can differentiate between
2484     // annotation on the first field of a struct and annotation on the struct
2485     // itself.
2486     if (VTy != IntrinTy)
2487       V = Builder.CreateBitCast(V, IntrinTy);
2488     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2489     V = Builder.CreateBitCast(V, VTy);
2490   }
2491 
2492   return Address(V, Addr.getElementType(), Addr.getAlignment());
2493 }
2494 
2495 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2496 
2497 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2498     : CGF(CGF) {
2499   assert(!CGF->IsSanitizerScope);
2500   CGF->IsSanitizerScope = true;
2501 }
2502 
2503 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2504   CGF->IsSanitizerScope = false;
2505 }
2506 
2507 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2508                                    const llvm::Twine &Name,
2509                                    llvm::BasicBlock *BB,
2510                                    llvm::BasicBlock::iterator InsertPt) const {
2511   LoopStack.InsertHelper(I);
2512   if (IsSanitizerScope)
2513     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2514 }
2515 
2516 void CGBuilderInserter::InsertHelper(
2517     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2518     llvm::BasicBlock::iterator InsertPt) const {
2519   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2520   if (CGF)
2521     CGF->InsertHelper(I, Name, BB, InsertPt);
2522 }
2523 
2524 // Emits an error if we don't have a valid set of target features for the
2525 // called function.
2526 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2527                                           const FunctionDecl *TargetDecl) {
2528   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2529 }
2530 
2531 // Emits an error if we don't have a valid set of target features for the
2532 // called function.
2533 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2534                                           const FunctionDecl *TargetDecl) {
2535   // Early exit if this is an indirect call.
2536   if (!TargetDecl)
2537     return;
2538 
2539   // Get the current enclosing function if it exists. If it doesn't
2540   // we can't check the target features anyhow.
2541   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2542   if (!FD)
2543     return;
2544 
2545   // Grab the required features for the call. For a builtin this is listed in
2546   // the td file with the default cpu, for an always_inline function this is any
2547   // listed cpu and any listed features.
2548   unsigned BuiltinID = TargetDecl->getBuiltinID();
2549   std::string MissingFeature;
2550   llvm::StringMap<bool> CallerFeatureMap;
2551   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2552   if (BuiltinID) {
2553     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2554     if (!Builtin::evaluateRequiredTargetFeatures(
2555         FeatureList, CallerFeatureMap)) {
2556       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2557           << TargetDecl->getDeclName()
2558           << FeatureList;
2559     }
2560   } else if (!TargetDecl->isMultiVersion() &&
2561              TargetDecl->hasAttr<TargetAttr>()) {
2562     // Get the required features for the callee.
2563 
2564     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2565     ParsedTargetAttr ParsedAttr =
2566         CGM.getContext().filterFunctionTargetAttrs(TD);
2567 
2568     SmallVector<StringRef, 1> ReqFeatures;
2569     llvm::StringMap<bool> CalleeFeatureMap;
2570     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2571 
2572     for (const auto &F : ParsedAttr.Features) {
2573       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2574         ReqFeatures.push_back(StringRef(F).substr(1));
2575     }
2576 
2577     for (const auto &F : CalleeFeatureMap) {
2578       // Only positive features are "required".
2579       if (F.getValue())
2580         ReqFeatures.push_back(F.getKey());
2581     }
2582     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2583       if (!CallerFeatureMap.lookup(Feature)) {
2584         MissingFeature = Feature.str();
2585         return false;
2586       }
2587       return true;
2588     }))
2589       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2590           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2591   }
2592 }
2593 
2594 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2595   if (!CGM.getCodeGenOpts().SanitizeStats)
2596     return;
2597 
2598   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2599   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2600   CGM.getSanStats().create(IRB, SSK);
2601 }
2602 
2603 llvm::Value *
2604 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2605   llvm::Value *Condition = nullptr;
2606 
2607   if (!RO.Conditions.Architecture.empty())
2608     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2609 
2610   if (!RO.Conditions.Features.empty()) {
2611     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2612     Condition =
2613         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2614   }
2615   return Condition;
2616 }
2617 
2618 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2619                                              llvm::Function *Resolver,
2620                                              CGBuilderTy &Builder,
2621                                              llvm::Function *FuncToReturn,
2622                                              bool SupportsIFunc) {
2623   if (SupportsIFunc) {
2624     Builder.CreateRet(FuncToReturn);
2625     return;
2626   }
2627 
2628   llvm::SmallVector<llvm::Value *, 10> Args(
2629       llvm::make_pointer_range(Resolver->args()));
2630 
2631   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2632   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2633 
2634   if (Resolver->getReturnType()->isVoidTy())
2635     Builder.CreateRetVoid();
2636   else
2637     Builder.CreateRet(Result);
2638 }
2639 
2640 void CodeGenFunction::EmitMultiVersionResolver(
2641     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2642   assert(getContext().getTargetInfo().getTriple().isX86() &&
2643          "Only implemented for x86 targets");
2644 
2645   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2646 
2647   // Main function's basic block.
2648   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2649   Builder.SetInsertPoint(CurBlock);
2650   EmitX86CpuInit();
2651 
2652   for (const MultiVersionResolverOption &RO : Options) {
2653     Builder.SetInsertPoint(CurBlock);
2654     llvm::Value *Condition = FormResolverCondition(RO);
2655 
2656     // The 'default' or 'generic' case.
2657     if (!Condition) {
2658       assert(&RO == Options.end() - 1 &&
2659              "Default or Generic case must be last");
2660       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2661                                        SupportsIFunc);
2662       return;
2663     }
2664 
2665     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2666     CGBuilderTy RetBuilder(*this, RetBlock);
2667     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2668                                      SupportsIFunc);
2669     CurBlock = createBasicBlock("resolver_else", Resolver);
2670     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2671   }
2672 
2673   // If no generic/default, emit an unreachable.
2674   Builder.SetInsertPoint(CurBlock);
2675   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2676   TrapCall->setDoesNotReturn();
2677   TrapCall->setDoesNotThrow();
2678   Builder.CreateUnreachable();
2679   Builder.ClearInsertionPoint();
2680 }
2681 
2682 // Loc - where the diagnostic will point, where in the source code this
2683 //  alignment has failed.
2684 // SecondaryLoc - if present (will be present if sufficiently different from
2685 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2686 //  It should be the location where the __attribute__((assume_aligned))
2687 //  was written e.g.
2688 void CodeGenFunction::emitAlignmentAssumptionCheck(
2689     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2690     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2691     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2692     llvm::Instruction *Assumption) {
2693   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2694          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2695              llvm::Intrinsic::getDeclaration(
2696                  Builder.GetInsertBlock()->getParent()->getParent(),
2697                  llvm::Intrinsic::assume) &&
2698          "Assumption should be a call to llvm.assume().");
2699   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2700          "Assumption should be the last instruction of the basic block, "
2701          "since the basic block is still being generated.");
2702 
2703   if (!SanOpts.has(SanitizerKind::Alignment))
2704     return;
2705 
2706   // Don't check pointers to volatile data. The behavior here is implementation-
2707   // defined.
2708   if (Ty->getPointeeType().isVolatileQualified())
2709     return;
2710 
2711   // We need to temorairly remove the assumption so we can insert the
2712   // sanitizer check before it, else the check will be dropped by optimizations.
2713   Assumption->removeFromParent();
2714 
2715   {
2716     SanitizerScope SanScope(this);
2717 
2718     if (!OffsetValue)
2719       OffsetValue = Builder.getInt1(false); // no offset.
2720 
2721     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2722                                     EmitCheckSourceLocation(SecondaryLoc),
2723                                     EmitCheckTypeDescriptor(Ty)};
2724     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2725                                   EmitCheckValue(Alignment),
2726                                   EmitCheckValue(OffsetValue)};
2727     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2728               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2729   }
2730 
2731   // We are now in the (new, empty) "cont" basic block.
2732   // Reintroduce the assumption.
2733   Builder.Insert(Assumption);
2734   // FIXME: Assumption still has it's original basic block as it's Parent.
2735 }
2736 
2737 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2738   if (CGDebugInfo *DI = getDebugInfo())
2739     return DI->SourceLocToDebugLoc(Location);
2740 
2741   return llvm::DebugLoc();
2742 }
2743 
2744 llvm::Value *
2745 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2746                                                       Stmt::Likelihood LH) {
2747   switch (LH) {
2748   case Stmt::LH_None:
2749     return Cond;
2750   case Stmt::LH_Likely:
2751   case Stmt::LH_Unlikely:
2752     // Don't generate llvm.expect on -O0 as the backend won't use it for
2753     // anything.
2754     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2755       return Cond;
2756     llvm::Type *CondTy = Cond->getType();
2757     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2758     llvm::Function *FnExpect =
2759         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2760     llvm::Value *ExpectedValueOfCond =
2761         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2762     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2763                               Cond->getName() + ".expval");
2764   }
2765   llvm_unreachable("Unknown Likelihood");
2766 }
2767 
2768 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2769                                                     unsigned NumElementsDst,
2770                                                     const llvm::Twine &Name) {
2771   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2772   unsigned NumElementsSrc = SrcTy->getNumElements();
2773   if (NumElementsSrc == NumElementsDst)
2774     return SrcVec;
2775 
2776   std::vector<int> ShuffleMask(NumElementsDst, -1);
2777   for (unsigned MaskIdx = 0;
2778        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2779     ShuffleMask[MaskIdx] = MaskIdx;
2780 
2781   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2782 }
2783