1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP) { 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 AlignmentSource *Source) { 122 return getNaturalTypeAlignment(T->getPointeeType(), Source, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 AlignmentSource *Source, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (Source) *Source = AlignmentSource::AttributedType; 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (Source) *Source = AlignmentSource::Type; 140 141 CharUnits Alignment; 142 if (T->isIncompleteType()) { 143 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 144 } else { 145 // For C++ class pointees, we don't know whether we're pointing at a 146 // base or a complete object, so we generally need to use the 147 // non-virtual alignment. 148 const CXXRecordDecl *RD; 149 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 150 Alignment = CGM.getClassPointerAlignment(RD); 151 } else { 152 Alignment = getContext().getTypeAlignInChars(T); 153 } 154 155 // Cap to the global maximum type alignment unless the alignment 156 // was somehow explicit on the type. 157 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 158 if (Alignment.getQuantity() > MaxAlign && 159 !getContext().isAlignmentRequired(T)) 160 Alignment = CharUnits::fromQuantity(MaxAlign); 161 } 162 } 163 return Alignment; 164 } 165 166 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 167 AlignmentSource AlignSource; 168 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 169 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 170 CGM.getTBAAInfo(T)); 171 } 172 173 /// Given a value of type T* that may not be to a complete object, 174 /// construct an l-value with the natural pointee alignment of T. 175 LValue 176 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 177 AlignmentSource AlignSource; 178 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 179 return MakeAddrLValue(Address(V, Align), T, AlignSource); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 llvm_unreachable("undeduced auto type in IR-generation"); 205 206 // Various scalar types. 207 case Type::Builtin: 208 case Type::Pointer: 209 case Type::BlockPointer: 210 case Type::LValueReference: 211 case Type::RValueReference: 212 case Type::MemberPointer: 213 case Type::Vector: 214 case Type::ExtVector: 215 case Type::FunctionProto: 216 case Type::FunctionNoProto: 217 case Type::Enum: 218 case Type::ObjCObjectPointer: 219 case Type::Pipe: 220 return TEK_Scalar; 221 222 // Complexes. 223 case Type::Complex: 224 return TEK_Complex; 225 226 // Arrays, records, and Objective-C objects. 227 case Type::ConstantArray: 228 case Type::IncompleteArray: 229 case Type::VariableArray: 230 case Type::Record: 231 case Type::ObjCObject: 232 case Type::ObjCInterface: 233 return TEK_Aggregate; 234 235 // We operate on atomic values according to their underlying type. 236 case Type::Atomic: 237 type = cast<AtomicType>(type)->getValueType(); 238 continue; 239 } 240 llvm_unreachable("unknown type kind!"); 241 } 242 } 243 244 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 245 // For cleanliness, we try to avoid emitting the return block for 246 // simple cases. 247 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 248 249 if (CurBB) { 250 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 251 252 // We have a valid insert point, reuse it if it is empty or there are no 253 // explicit jumps to the return block. 254 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 255 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 256 delete ReturnBlock.getBlock(); 257 } else 258 EmitBlock(ReturnBlock.getBlock()); 259 return llvm::DebugLoc(); 260 } 261 262 // Otherwise, if the return block is the target of a single direct 263 // branch then we can just put the code in that block instead. This 264 // cleans up functions which started with a unified return block. 265 if (ReturnBlock.getBlock()->hasOneUse()) { 266 llvm::BranchInst *BI = 267 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 268 if (BI && BI->isUnconditional() && 269 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 270 // Record/return the DebugLoc of the simple 'return' expression to be used 271 // later by the actual 'ret' instruction. 272 llvm::DebugLoc Loc = BI->getDebugLoc(); 273 Builder.SetInsertPoint(BI->getParent()); 274 BI->eraseFromParent(); 275 delete ReturnBlock.getBlock(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) 343 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 344 345 // Emit debug descriptor for function end. 346 if (CGDebugInfo *DI = getDebugInfo()) 347 DI->EmitFunctionEnd(Builder); 348 349 // Reset the debug location to that of the simple 'return' expression, if any 350 // rather than that of the end of the function's scope '}'. 351 ApplyDebugLocation AL(*this, Loc); 352 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 353 EmitEndEHSpec(CurCodeDecl); 354 355 assert(EHStack.empty() && 356 "did not remove all scopes from cleanup stack!"); 357 358 // If someone did an indirect goto, emit the indirect goto block at the end of 359 // the function. 360 if (IndirectBranch) { 361 EmitBlock(IndirectBranch->getParent()); 362 Builder.ClearInsertionPoint(); 363 } 364 365 // If some of our locals escaped, insert a call to llvm.localescape in the 366 // entry block. 367 if (!EscapedLocals.empty()) { 368 // Invert the map from local to index into a simple vector. There should be 369 // no holes. 370 SmallVector<llvm::Value *, 4> EscapeArgs; 371 EscapeArgs.resize(EscapedLocals.size()); 372 for (auto &Pair : EscapedLocals) 373 EscapeArgs[Pair.second] = Pair.first; 374 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 375 &CGM.getModule(), llvm::Intrinsic::localescape); 376 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 377 } 378 379 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 380 llvm::Instruction *Ptr = AllocaInsertPt; 381 AllocaInsertPt = nullptr; 382 Ptr->eraseFromParent(); 383 384 // If someone took the address of a label but never did an indirect goto, we 385 // made a zero entry PHI node, which is illegal, zap it now. 386 if (IndirectBranch) { 387 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 388 if (PN->getNumIncomingValues() == 0) { 389 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 390 PN->eraseFromParent(); 391 } 392 } 393 394 EmitIfUsed(*this, EHResumeBlock); 395 EmitIfUsed(*this, TerminateLandingPad); 396 EmitIfUsed(*this, TerminateHandler); 397 EmitIfUsed(*this, UnreachableBlock); 398 399 if (CGM.getCodeGenOpts().EmitDeclMetadata) 400 EmitDeclMetadata(); 401 402 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 403 I = DeferredReplacements.begin(), 404 E = DeferredReplacements.end(); 405 I != E; ++I) { 406 I->first->replaceAllUsesWith(I->second); 407 I->first->eraseFromParent(); 408 } 409 } 410 411 /// ShouldInstrumentFunction - Return true if the current function should be 412 /// instrumented with __cyg_profile_func_* calls 413 bool CodeGenFunction::ShouldInstrumentFunction() { 414 if (!CGM.getCodeGenOpts().InstrumentFunctions) 415 return false; 416 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 417 return false; 418 return true; 419 } 420 421 /// ShouldXRayInstrument - Return true if the current function should be 422 /// instrumented with XRay nop sleds. 423 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 424 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 425 } 426 427 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 428 /// instrumentation function with the current function and the call site, if 429 /// function instrumentation is enabled. 430 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 431 auto NL = ApplyDebugLocation::CreateArtificial(*this); 432 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 433 llvm::PointerType *PointerTy = Int8PtrTy; 434 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 435 llvm::FunctionType *FunctionTy = 436 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 437 438 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 439 llvm::CallInst *CallSite = Builder.CreateCall( 440 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 441 llvm::ConstantInt::get(Int32Ty, 0), 442 "callsite"); 443 444 llvm::Value *args[] = { 445 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 446 CallSite 447 }; 448 449 EmitNounwindRuntimeCall(F, args); 450 } 451 452 static void removeImageAccessQualifier(std::string& TyName) { 453 std::string ReadOnlyQual("__read_only"); 454 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 455 if (ReadOnlyPos != std::string::npos) 456 // "+ 1" for the space after access qualifier. 457 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 458 else { 459 std::string WriteOnlyQual("__write_only"); 460 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 461 if (WriteOnlyPos != std::string::npos) 462 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 463 else { 464 std::string ReadWriteQual("__read_write"); 465 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 466 if (ReadWritePos != std::string::npos) 467 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 468 } 469 } 470 } 471 472 // Returns the address space id that should be produced to the 473 // kernel_arg_addr_space metadata. This is always fixed to the ids 474 // as specified in the SPIR 2.0 specification in order to differentiate 475 // for example in clGetKernelArgInfo() implementation between the address 476 // spaces with targets without unique mapping to the OpenCL address spaces 477 // (basically all single AS CPUs). 478 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 479 switch (LangAS) { 480 case LangAS::opencl_global: return 1; 481 case LangAS::opencl_constant: return 2; 482 case LangAS::opencl_local: return 3; 483 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 484 default: 485 return 0; // Assume private. 486 } 487 } 488 489 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 490 // information in the program executable. The argument information stored 491 // includes the argument name, its type, the address and access qualifiers used. 492 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 493 CodeGenModule &CGM, llvm::LLVMContext &Context, 494 CGBuilderTy &Builder, ASTContext &ASTCtx) { 495 // Create MDNodes that represent the kernel arg metadata. 496 // Each MDNode is a list in the form of "key", N number of values which is 497 // the same number of values as their are kernel arguments. 498 499 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 500 501 // MDNode for the kernel argument address space qualifiers. 502 SmallVector<llvm::Metadata *, 8> addressQuals; 503 504 // MDNode for the kernel argument access qualifiers (images only). 505 SmallVector<llvm::Metadata *, 8> accessQuals; 506 507 // MDNode for the kernel argument type names. 508 SmallVector<llvm::Metadata *, 8> argTypeNames; 509 510 // MDNode for the kernel argument base type names. 511 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 512 513 // MDNode for the kernel argument type qualifiers. 514 SmallVector<llvm::Metadata *, 8> argTypeQuals; 515 516 // MDNode for the kernel argument names. 517 SmallVector<llvm::Metadata *, 8> argNames; 518 519 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 520 const ParmVarDecl *parm = FD->getParamDecl(i); 521 QualType ty = parm->getType(); 522 std::string typeQuals; 523 524 if (ty->isPointerType()) { 525 QualType pointeeTy = ty->getPointeeType(); 526 527 // Get address qualifier. 528 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 529 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 530 531 // Get argument type name. 532 std::string typeName = 533 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 534 535 // Turn "unsigned type" to "utype" 536 std::string::size_type pos = typeName.find("unsigned"); 537 if (pointeeTy.isCanonical() && pos != std::string::npos) 538 typeName.erase(pos+1, 8); 539 540 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 541 542 std::string baseTypeName = 543 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 544 Policy) + 545 "*"; 546 547 // Turn "unsigned type" to "utype" 548 pos = baseTypeName.find("unsigned"); 549 if (pos != std::string::npos) 550 baseTypeName.erase(pos+1, 8); 551 552 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 553 554 // Get argument type qualifiers: 555 if (ty.isRestrictQualified()) 556 typeQuals = "restrict"; 557 if (pointeeTy.isConstQualified() || 558 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 559 typeQuals += typeQuals.empty() ? "const" : " const"; 560 if (pointeeTy.isVolatileQualified()) 561 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 562 } else { 563 uint32_t AddrSpc = 0; 564 bool isPipe = ty->isPipeType(); 565 if (ty->isImageType() || isPipe) 566 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 567 568 addressQuals.push_back( 569 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 570 571 // Get argument type name. 572 std::string typeName; 573 if (isPipe) 574 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 575 .getAsString(Policy); 576 else 577 typeName = ty.getUnqualifiedType().getAsString(Policy); 578 579 // Turn "unsigned type" to "utype" 580 std::string::size_type pos = typeName.find("unsigned"); 581 if (ty.isCanonical() && pos != std::string::npos) 582 typeName.erase(pos+1, 8); 583 584 std::string baseTypeName; 585 if (isPipe) 586 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 587 ->getElementType().getCanonicalType() 588 .getAsString(Policy); 589 else 590 baseTypeName = 591 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 592 593 // Remove access qualifiers on images 594 // (as they are inseparable from type in clang implementation, 595 // but OpenCL spec provides a special query to get access qualifier 596 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 597 if (ty->isImageType()) { 598 removeImageAccessQualifier(typeName); 599 removeImageAccessQualifier(baseTypeName); 600 } 601 602 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 603 604 // Turn "unsigned type" to "utype" 605 pos = baseTypeName.find("unsigned"); 606 if (pos != std::string::npos) 607 baseTypeName.erase(pos+1, 8); 608 609 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 610 611 // Get argument type qualifiers: 612 if (ty.isConstQualified()) 613 typeQuals = "const"; 614 if (ty.isVolatileQualified()) 615 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 625 if (A && A->isWriteOnly()) 626 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 627 else if (A && A->isReadWrite()) 628 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 629 else 630 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 631 } else 632 accessQuals.push_back(llvm::MDString::get(Context, "none")); 633 634 // Get argument name. 635 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 636 } 637 638 Fn->setMetadata("kernel_arg_addr_space", 639 llvm::MDNode::get(Context, addressQuals)); 640 Fn->setMetadata("kernel_arg_access_qual", 641 llvm::MDNode::get(Context, accessQuals)); 642 Fn->setMetadata("kernel_arg_type", 643 llvm::MDNode::get(Context, argTypeNames)); 644 Fn->setMetadata("kernel_arg_base_type", 645 llvm::MDNode::get(Context, argBaseTypeNames)); 646 Fn->setMetadata("kernel_arg_type_qual", 647 llvm::MDNode::get(Context, argTypeQuals)); 648 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 649 Fn->setMetadata("kernel_arg_name", 650 llvm::MDNode::get(Context, argNames)); 651 } 652 653 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 654 llvm::Function *Fn) 655 { 656 if (!FD->hasAttr<OpenCLKernelAttr>()) 657 return; 658 659 llvm::LLVMContext &Context = getLLVMContext(); 660 661 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 662 663 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 664 QualType hintQTy = A->getTypeHint(); 665 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 666 bool isSignedInteger = 667 hintQTy->isSignedIntegerType() || 668 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 669 llvm::Metadata *attrMDArgs[] = { 670 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 671 CGM.getTypes().ConvertType(A->getTypeHint()))), 672 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 673 llvm::IntegerType::get(Context, 32), 674 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 675 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 676 } 677 678 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 679 llvm::Metadata *attrMDArgs[] = { 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 683 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 684 } 685 686 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 687 llvm::Metadata *attrMDArgs[] = { 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 691 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 692 } 693 } 694 695 /// Determine whether the function F ends with a return stmt. 696 static bool endsWithReturn(const Decl* F) { 697 const Stmt *Body = nullptr; 698 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 699 Body = FD->getBody(); 700 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 701 Body = OMD->getBody(); 702 703 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 704 auto LastStmt = CS->body_rbegin(); 705 if (LastStmt != CS->body_rend()) 706 return isa<ReturnStmt>(*LastStmt); 707 } 708 return false; 709 } 710 711 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 712 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 713 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 714 } 715 716 void CodeGenFunction::StartFunction(GlobalDecl GD, 717 QualType RetTy, 718 llvm::Function *Fn, 719 const CGFunctionInfo &FnInfo, 720 const FunctionArgList &Args, 721 SourceLocation Loc, 722 SourceLocation StartLoc) { 723 assert(!CurFn && 724 "Do not use a CodeGenFunction object for more than one function"); 725 726 const Decl *D = GD.getDecl(); 727 728 DidCallStackSave = false; 729 CurCodeDecl = D; 730 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 731 if (FD->usesSEHTry()) 732 CurSEHParent = FD; 733 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 734 FnRetTy = RetTy; 735 CurFn = Fn; 736 CurFnInfo = &FnInfo; 737 assert(CurFn->isDeclaration() && "Function already has body?"); 738 739 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 740 SanOpts.clear(); 741 742 if (D) { 743 // Apply the no_sanitize* attributes to SanOpts. 744 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 745 SanOpts.Mask &= ~Attr->getMask(); 746 } 747 748 // Apply sanitizer attributes to the function. 749 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 750 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 751 if (SanOpts.has(SanitizerKind::Thread)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 753 if (SanOpts.has(SanitizerKind::Memory)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 755 if (SanOpts.has(SanitizerKind::SafeStack)) 756 Fn->addFnAttr(llvm::Attribute::SafeStack); 757 758 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 759 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 760 if (SanOpts.has(SanitizerKind::Thread)) { 761 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 762 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 763 if (OMD->getMethodFamily() == OMF_dealloc || 764 OMD->getMethodFamily() == OMF_initialize || 765 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 766 markAsIgnoreThreadCheckingAtRuntime(Fn); 767 } 768 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 769 IdentifierInfo *II = FD->getIdentifier(); 770 if (II && II->isStr("__destroy_helper_block_")) 771 markAsIgnoreThreadCheckingAtRuntime(Fn); 772 } 773 } 774 775 // Apply xray attributes to the function (as a string, for now) 776 if (D && ShouldXRayInstrumentFunction()) { 777 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 778 if (XRayAttr->alwaysXRayInstrument()) 779 Fn->addFnAttr("function-instrument", "xray-always"); 780 if (XRayAttr->neverXRayInstrument()) 781 Fn->addFnAttr("function-instrument", "xray-never"); 782 } else { 783 Fn->addFnAttr( 784 "xray-instruction-threshold", 785 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 786 } 787 } 788 789 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 790 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 791 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 792 793 // Add no-jump-tables value. 794 Fn->addFnAttr("no-jump-tables", 795 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 796 797 if (getLangOpts().OpenCL) { 798 // Add metadata for a kernel function. 799 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 800 EmitOpenCLKernelMetadata(FD, Fn); 801 } 802 803 // If we are checking function types, emit a function type signature as 804 // prologue data. 805 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 806 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 807 if (llvm::Constant *PrologueSig = 808 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 809 llvm::Constant *FTRTTIConst = 810 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 811 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 812 llvm::Constant *PrologueStructConst = 813 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 814 Fn->setPrologueData(PrologueStructConst); 815 } 816 } 817 } 818 819 // If we're in C++ mode and the function name is "main", it is guaranteed 820 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 821 // used within a program"). 822 if (getLangOpts().CPlusPlus) 823 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 824 if (FD->isMain()) 825 Fn->addFnAttr(llvm::Attribute::NoRecurse); 826 827 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 828 829 // Create a marker to make it easy to insert allocas into the entryblock 830 // later. Don't create this with the builder, because we don't want it 831 // folded. 832 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 833 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 834 835 ReturnBlock = getJumpDestInCurrentScope("return"); 836 837 Builder.SetInsertPoint(EntryBB); 838 839 // Emit subprogram debug descriptor. 840 if (CGDebugInfo *DI = getDebugInfo()) { 841 // Reconstruct the type from the argument list so that implicit parameters, 842 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 843 // convention. 844 CallingConv CC = CallingConv::CC_C; 845 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 846 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 847 CC = SrcFnTy->getCallConv(); 848 SmallVector<QualType, 16> ArgTypes; 849 for (const VarDecl *VD : Args) 850 ArgTypes.push_back(VD->getType()); 851 QualType FnType = getContext().getFunctionType( 852 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 853 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 854 } 855 856 if (ShouldInstrumentFunction()) 857 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 858 859 // Since emitting the mcount call here impacts optimizations such as function 860 // inlining, we just add an attribute to insert a mcount call in backend. 861 // The attribute "counting-function" is set to mcount function name which is 862 // architecture dependent. 863 if (CGM.getCodeGenOpts().InstrumentForProfiling) 864 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 865 866 if (RetTy->isVoidType()) { 867 // Void type; nothing to return. 868 ReturnValue = Address::invalid(); 869 870 // Count the implicit return. 871 if (!endsWithReturn(D)) 872 ++NumReturnExprs; 873 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 874 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 875 // Indirect aggregate return; emit returned value directly into sret slot. 876 // This reduces code size, and affects correctness in C++. 877 auto AI = CurFn->arg_begin(); 878 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 879 ++AI; 880 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 881 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 882 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 883 // Load the sret pointer from the argument struct and return into that. 884 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 885 llvm::Function::arg_iterator EI = CurFn->arg_end(); 886 --EI; 887 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 888 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 889 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 890 } else { 891 ReturnValue = CreateIRTemp(RetTy, "retval"); 892 893 // Tell the epilog emitter to autorelease the result. We do this 894 // now so that various specialized functions can suppress it 895 // during their IR-generation. 896 if (getLangOpts().ObjCAutoRefCount && 897 !CurFnInfo->isReturnsRetained() && 898 RetTy->isObjCRetainableType()) 899 AutoreleaseResult = true; 900 } 901 902 EmitStartEHSpec(CurCodeDecl); 903 904 PrologueCleanupDepth = EHStack.stable_begin(); 905 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 906 907 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 908 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 909 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 910 if (MD->getParent()->isLambda() && 911 MD->getOverloadedOperator() == OO_Call) { 912 // We're in a lambda; figure out the captures. 913 MD->getParent()->getCaptureFields(LambdaCaptureFields, 914 LambdaThisCaptureField); 915 if (LambdaThisCaptureField) { 916 // If the lambda captures the object referred to by '*this' - either by 917 // value or by reference, make sure CXXThisValue points to the correct 918 // object. 919 920 // Get the lvalue for the field (which is a copy of the enclosing object 921 // or contains the address of the enclosing object). 922 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 923 if (!LambdaThisCaptureField->getType()->isPointerType()) { 924 // If the enclosing object was captured by value, just use its address. 925 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 926 } else { 927 // Load the lvalue pointed to by the field, since '*this' was captured 928 // by reference. 929 CXXThisValue = 930 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 931 } 932 } 933 for (auto *FD : MD->getParent()->fields()) { 934 if (FD->hasCapturedVLAType()) { 935 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 936 SourceLocation()).getScalarVal(); 937 auto VAT = FD->getCapturedVLAType(); 938 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 939 } 940 } 941 } else { 942 // Not in a lambda; just use 'this' from the method. 943 // FIXME: Should we generate a new load for each use of 'this'? The 944 // fast register allocator would be happier... 945 CXXThisValue = CXXABIThisValue; 946 } 947 } 948 949 // If any of the arguments have a variably modified type, make sure to 950 // emit the type size. 951 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 952 i != e; ++i) { 953 const VarDecl *VD = *i; 954 955 // Dig out the type as written from ParmVarDecls; it's unclear whether 956 // the standard (C99 6.9.1p10) requires this, but we're following the 957 // precedent set by gcc. 958 QualType Ty; 959 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 960 Ty = PVD->getOriginalType(); 961 else 962 Ty = VD->getType(); 963 964 if (Ty->isVariablyModifiedType()) 965 EmitVariablyModifiedType(Ty); 966 } 967 // Emit a location at the end of the prologue. 968 if (CGDebugInfo *DI = getDebugInfo()) 969 DI->EmitLocation(Builder, StartLoc); 970 } 971 972 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 973 const Stmt *Body) { 974 incrementProfileCounter(Body); 975 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 976 EmitCompoundStmtWithoutScope(*S); 977 else 978 EmitStmt(Body); 979 } 980 981 /// When instrumenting to collect profile data, the counts for some blocks 982 /// such as switch cases need to not include the fall-through counts, so 983 /// emit a branch around the instrumentation code. When not instrumenting, 984 /// this just calls EmitBlock(). 985 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 986 const Stmt *S) { 987 llvm::BasicBlock *SkipCountBB = nullptr; 988 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 989 // When instrumenting for profiling, the fallthrough to certain 990 // statements needs to skip over the instrumentation code so that we 991 // get an accurate count. 992 SkipCountBB = createBasicBlock("skipcount"); 993 EmitBranch(SkipCountBB); 994 } 995 EmitBlock(BB); 996 uint64_t CurrentCount = getCurrentProfileCount(); 997 incrementProfileCounter(S); 998 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 999 if (SkipCountBB) 1000 EmitBlock(SkipCountBB); 1001 } 1002 1003 /// Tries to mark the given function nounwind based on the 1004 /// non-existence of any throwing calls within it. We believe this is 1005 /// lightweight enough to do at -O0. 1006 static void TryMarkNoThrow(llvm::Function *F) { 1007 // LLVM treats 'nounwind' on a function as part of the type, so we 1008 // can't do this on functions that can be overwritten. 1009 if (F->isInterposable()) return; 1010 1011 for (llvm::BasicBlock &BB : *F) 1012 for (llvm::Instruction &I : BB) 1013 if (I.mayThrow()) 1014 return; 1015 1016 F->setDoesNotThrow(); 1017 } 1018 1019 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1020 FunctionArgList &Args) { 1021 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1022 QualType ResTy = FD->getReturnType(); 1023 1024 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1025 if (MD && MD->isInstance()) { 1026 if (CGM.getCXXABI().HasThisReturn(GD)) 1027 ResTy = MD->getThisType(getContext()); 1028 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1029 ResTy = CGM.getContext().VoidPtrTy; 1030 CGM.getCXXABI().buildThisParam(*this, Args); 1031 } 1032 1033 // The base version of an inheriting constructor whose constructed base is a 1034 // virtual base is not passed any arguments (because it doesn't actually call 1035 // the inherited constructor). 1036 bool PassedParams = true; 1037 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1038 if (auto Inherited = CD->getInheritedConstructor()) 1039 PassedParams = 1040 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1041 1042 if (PassedParams) { 1043 for (auto *Param : FD->parameters()) { 1044 Args.push_back(Param); 1045 if (!Param->hasAttr<PassObjectSizeAttr>()) 1046 continue; 1047 1048 IdentifierInfo *NoID = nullptr; 1049 auto *Implicit = ImplicitParamDecl::Create( 1050 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1051 getContext().getSizeType()); 1052 SizeArguments[Param] = Implicit; 1053 Args.push_back(Implicit); 1054 } 1055 } 1056 1057 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1058 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1059 1060 return ResTy; 1061 } 1062 1063 static bool 1064 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1065 const ASTContext &Context) { 1066 QualType T = FD->getReturnType(); 1067 // Avoid the optimization for functions that return a record type with a 1068 // trivial destructor or another trivially copyable type. 1069 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1070 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1071 return !ClassDecl->hasTrivialDestructor(); 1072 } 1073 return !T.isTriviallyCopyableType(Context); 1074 } 1075 1076 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1077 const CGFunctionInfo &FnInfo) { 1078 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1079 CurGD = GD; 1080 1081 FunctionArgList Args; 1082 QualType ResTy = BuildFunctionArgList(GD, Args); 1083 1084 // Check if we should generate debug info for this function. 1085 if (FD->hasAttr<NoDebugAttr>()) 1086 DebugInfo = nullptr; // disable debug info indefinitely for this function 1087 1088 SourceRange BodyRange; 1089 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1090 CurEHLocation = BodyRange.getEnd(); 1091 1092 // Use the location of the start of the function to determine where 1093 // the function definition is located. By default use the location 1094 // of the declaration as the location for the subprogram. A function 1095 // may lack a declaration in the source code if it is created by code 1096 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1097 SourceLocation Loc = FD->getLocation(); 1098 1099 // If this is a function specialization then use the pattern body 1100 // as the location for the function. 1101 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1102 if (SpecDecl->hasBody(SpecDecl)) 1103 Loc = SpecDecl->getLocation(); 1104 1105 Stmt *Body = FD->getBody(); 1106 1107 // Initialize helper which will detect jumps which can cause invalid lifetime 1108 // markers. 1109 if (Body && ShouldEmitLifetimeMarkers) 1110 Bypasses.Init(Body); 1111 1112 // Emit the standard function prologue. 1113 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1114 1115 // Generate the body of the function. 1116 PGO.assignRegionCounters(GD, CurFn); 1117 if (isa<CXXDestructorDecl>(FD)) 1118 EmitDestructorBody(Args); 1119 else if (isa<CXXConstructorDecl>(FD)) 1120 EmitConstructorBody(Args); 1121 else if (getLangOpts().CUDA && 1122 !getLangOpts().CUDAIsDevice && 1123 FD->hasAttr<CUDAGlobalAttr>()) 1124 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1125 else if (isa<CXXConversionDecl>(FD) && 1126 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1127 // The lambda conversion to block pointer is special; the semantics can't be 1128 // expressed in the AST, so IRGen needs to special-case it. 1129 EmitLambdaToBlockPointerBody(Args); 1130 } else if (isa<CXXMethodDecl>(FD) && 1131 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1132 // The lambda static invoker function is special, because it forwards or 1133 // clones the body of the function call operator (but is actually static). 1134 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1135 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1136 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1137 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1138 // Implicit copy-assignment gets the same special treatment as implicit 1139 // copy-constructors. 1140 emitImplicitAssignmentOperatorBody(Args); 1141 } else if (Body) { 1142 EmitFunctionBody(Args, Body); 1143 } else 1144 llvm_unreachable("no definition for emitted function"); 1145 1146 // C++11 [stmt.return]p2: 1147 // Flowing off the end of a function [...] results in undefined behavior in 1148 // a value-returning function. 1149 // C11 6.9.1p12: 1150 // If the '}' that terminates a function is reached, and the value of the 1151 // function call is used by the caller, the behavior is undefined. 1152 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1153 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1154 bool ShouldEmitUnreachable = 1155 CGM.getCodeGenOpts().StrictReturn || 1156 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1157 if (SanOpts.has(SanitizerKind::Return)) { 1158 SanitizerScope SanScope(this); 1159 llvm::Value *IsFalse = Builder.getFalse(); 1160 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1161 SanitizerHandler::MissingReturn, 1162 EmitCheckSourceLocation(FD->getLocation()), None); 1163 } else if (ShouldEmitUnreachable) { 1164 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1165 EmitTrapCall(llvm::Intrinsic::trap); 1166 } 1167 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1168 Builder.CreateUnreachable(); 1169 Builder.ClearInsertionPoint(); 1170 } 1171 } 1172 1173 // Emit the standard function epilogue. 1174 FinishFunction(BodyRange.getEnd()); 1175 1176 // If we haven't marked the function nothrow through other means, do 1177 // a quick pass now to see if we can. 1178 if (!CurFn->doesNotThrow()) 1179 TryMarkNoThrow(CurFn); 1180 } 1181 1182 /// ContainsLabel - Return true if the statement contains a label in it. If 1183 /// this statement is not executed normally, it not containing a label means 1184 /// that we can just remove the code. 1185 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1186 // Null statement, not a label! 1187 if (!S) return false; 1188 1189 // If this is a label, we have to emit the code, consider something like: 1190 // if (0) { ... foo: bar(); } goto foo; 1191 // 1192 // TODO: If anyone cared, we could track __label__'s, since we know that you 1193 // can't jump to one from outside their declared region. 1194 if (isa<LabelStmt>(S)) 1195 return true; 1196 1197 // If this is a case/default statement, and we haven't seen a switch, we have 1198 // to emit the code. 1199 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1200 return true; 1201 1202 // If this is a switch statement, we want to ignore cases below it. 1203 if (isa<SwitchStmt>(S)) 1204 IgnoreCaseStmts = true; 1205 1206 // Scan subexpressions for verboten labels. 1207 for (const Stmt *SubStmt : S->children()) 1208 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1209 return true; 1210 1211 return false; 1212 } 1213 1214 /// containsBreak - Return true if the statement contains a break out of it. 1215 /// If the statement (recursively) contains a switch or loop with a break 1216 /// inside of it, this is fine. 1217 bool CodeGenFunction::containsBreak(const Stmt *S) { 1218 // Null statement, not a label! 1219 if (!S) return false; 1220 1221 // If this is a switch or loop that defines its own break scope, then we can 1222 // include it and anything inside of it. 1223 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1224 isa<ForStmt>(S)) 1225 return false; 1226 1227 if (isa<BreakStmt>(S)) 1228 return true; 1229 1230 // Scan subexpressions for verboten breaks. 1231 for (const Stmt *SubStmt : S->children()) 1232 if (containsBreak(SubStmt)) 1233 return true; 1234 1235 return false; 1236 } 1237 1238 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1239 if (!S) return false; 1240 1241 // Some statement kinds add a scope and thus never add a decl to the current 1242 // scope. Note, this list is longer than the list of statements that might 1243 // have an unscoped decl nested within them, but this way is conservatively 1244 // correct even if more statement kinds are added. 1245 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1246 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1247 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1248 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1249 return false; 1250 1251 if (isa<DeclStmt>(S)) 1252 return true; 1253 1254 for (const Stmt *SubStmt : S->children()) 1255 if (mightAddDeclToScope(SubStmt)) 1256 return true; 1257 1258 return false; 1259 } 1260 1261 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1262 /// to a constant, or if it does but contains a label, return false. If it 1263 /// constant folds return true and set the boolean result in Result. 1264 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1265 bool &ResultBool, 1266 bool AllowLabels) { 1267 llvm::APSInt ResultInt; 1268 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1269 return false; 1270 1271 ResultBool = ResultInt.getBoolValue(); 1272 return true; 1273 } 1274 1275 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1276 /// to a constant, or if it does but contains a label, return false. If it 1277 /// constant folds return true and set the folded value. 1278 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1279 llvm::APSInt &ResultInt, 1280 bool AllowLabels) { 1281 // FIXME: Rename and handle conversion of other evaluatable things 1282 // to bool. 1283 llvm::APSInt Int; 1284 if (!Cond->EvaluateAsInt(Int, getContext())) 1285 return false; // Not foldable, not integer or not fully evaluatable. 1286 1287 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1288 return false; // Contains a label. 1289 1290 ResultInt = Int; 1291 return true; 1292 } 1293 1294 1295 1296 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1297 /// statement) to the specified blocks. Based on the condition, this might try 1298 /// to simplify the codegen of the conditional based on the branch. 1299 /// 1300 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1301 llvm::BasicBlock *TrueBlock, 1302 llvm::BasicBlock *FalseBlock, 1303 uint64_t TrueCount) { 1304 Cond = Cond->IgnoreParens(); 1305 1306 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1307 1308 // Handle X && Y in a condition. 1309 if (CondBOp->getOpcode() == BO_LAnd) { 1310 // If we have "1 && X", simplify the code. "0 && X" would have constant 1311 // folded if the case was simple enough. 1312 bool ConstantBool = false; 1313 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1314 ConstantBool) { 1315 // br(1 && X) -> br(X). 1316 incrementProfileCounter(CondBOp); 1317 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1318 TrueCount); 1319 } 1320 1321 // If we have "X && 1", simplify the code to use an uncond branch. 1322 // "X && 0" would have been constant folded to 0. 1323 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1324 ConstantBool) { 1325 // br(X && 1) -> br(X). 1326 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1327 TrueCount); 1328 } 1329 1330 // Emit the LHS as a conditional. If the LHS conditional is false, we 1331 // want to jump to the FalseBlock. 1332 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1333 // The counter tells us how often we evaluate RHS, and all of TrueCount 1334 // can be propagated to that branch. 1335 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1336 1337 ConditionalEvaluation eval(*this); 1338 { 1339 ApplyDebugLocation DL(*this, Cond); 1340 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1341 EmitBlock(LHSTrue); 1342 } 1343 1344 incrementProfileCounter(CondBOp); 1345 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1346 1347 // Any temporaries created here are conditional. 1348 eval.begin(*this); 1349 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1350 eval.end(*this); 1351 1352 return; 1353 } 1354 1355 if (CondBOp->getOpcode() == BO_LOr) { 1356 // If we have "0 || X", simplify the code. "1 || X" would have constant 1357 // folded if the case was simple enough. 1358 bool ConstantBool = false; 1359 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1360 !ConstantBool) { 1361 // br(0 || X) -> br(X). 1362 incrementProfileCounter(CondBOp); 1363 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1364 TrueCount); 1365 } 1366 1367 // If we have "X || 0", simplify the code to use an uncond branch. 1368 // "X || 1" would have been constant folded to 1. 1369 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1370 !ConstantBool) { 1371 // br(X || 0) -> br(X). 1372 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1373 TrueCount); 1374 } 1375 1376 // Emit the LHS as a conditional. If the LHS conditional is true, we 1377 // want to jump to the TrueBlock. 1378 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1379 // We have the count for entry to the RHS and for the whole expression 1380 // being true, so we can divy up True count between the short circuit and 1381 // the RHS. 1382 uint64_t LHSCount = 1383 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1384 uint64_t RHSCount = TrueCount - LHSCount; 1385 1386 ConditionalEvaluation eval(*this); 1387 { 1388 ApplyDebugLocation DL(*this, Cond); 1389 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1390 EmitBlock(LHSFalse); 1391 } 1392 1393 incrementProfileCounter(CondBOp); 1394 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1395 1396 // Any temporaries created here are conditional. 1397 eval.begin(*this); 1398 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1399 1400 eval.end(*this); 1401 1402 return; 1403 } 1404 } 1405 1406 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1407 // br(!x, t, f) -> br(x, f, t) 1408 if (CondUOp->getOpcode() == UO_LNot) { 1409 // Negate the count. 1410 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1411 // Negate the condition and swap the destination blocks. 1412 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1413 FalseCount); 1414 } 1415 } 1416 1417 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1418 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1419 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1420 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1421 1422 ConditionalEvaluation cond(*this); 1423 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1424 getProfileCount(CondOp)); 1425 1426 // When computing PGO branch weights, we only know the overall count for 1427 // the true block. This code is essentially doing tail duplication of the 1428 // naive code-gen, introducing new edges for which counts are not 1429 // available. Divide the counts proportionally between the LHS and RHS of 1430 // the conditional operator. 1431 uint64_t LHSScaledTrueCount = 0; 1432 if (TrueCount) { 1433 double LHSRatio = 1434 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1435 LHSScaledTrueCount = TrueCount * LHSRatio; 1436 } 1437 1438 cond.begin(*this); 1439 EmitBlock(LHSBlock); 1440 incrementProfileCounter(CondOp); 1441 { 1442 ApplyDebugLocation DL(*this, Cond); 1443 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1444 LHSScaledTrueCount); 1445 } 1446 cond.end(*this); 1447 1448 cond.begin(*this); 1449 EmitBlock(RHSBlock); 1450 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1451 TrueCount - LHSScaledTrueCount); 1452 cond.end(*this); 1453 1454 return; 1455 } 1456 1457 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1458 // Conditional operator handling can give us a throw expression as a 1459 // condition for a case like: 1460 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1461 // Fold this to: 1462 // br(c, throw x, br(y, t, f)) 1463 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1464 return; 1465 } 1466 1467 // If the branch has a condition wrapped by __builtin_unpredictable, 1468 // create metadata that specifies that the branch is unpredictable. 1469 // Don't bother if not optimizing because that metadata would not be used. 1470 llvm::MDNode *Unpredictable = nullptr; 1471 auto *Call = dyn_cast<CallExpr>(Cond); 1472 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1473 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1474 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1475 llvm::MDBuilder MDHelper(getLLVMContext()); 1476 Unpredictable = MDHelper.createUnpredictable(); 1477 } 1478 } 1479 1480 // Create branch weights based on the number of times we get here and the 1481 // number of times the condition should be true. 1482 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1483 llvm::MDNode *Weights = 1484 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1485 1486 // Emit the code with the fully general case. 1487 llvm::Value *CondV; 1488 { 1489 ApplyDebugLocation DL(*this, Cond); 1490 CondV = EvaluateExprAsBool(Cond); 1491 } 1492 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1493 } 1494 1495 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1496 /// specified stmt yet. 1497 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1498 CGM.ErrorUnsupported(S, Type); 1499 } 1500 1501 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1502 /// variable-length array whose elements have a non-zero bit-pattern. 1503 /// 1504 /// \param baseType the inner-most element type of the array 1505 /// \param src - a char* pointing to the bit-pattern for a single 1506 /// base element of the array 1507 /// \param sizeInChars - the total size of the VLA, in chars 1508 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1509 Address dest, Address src, 1510 llvm::Value *sizeInChars) { 1511 CGBuilderTy &Builder = CGF.Builder; 1512 1513 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1514 llvm::Value *baseSizeInChars 1515 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1516 1517 Address begin = 1518 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1519 llvm::Value *end = 1520 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1521 1522 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1523 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1524 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1525 1526 // Make a loop over the VLA. C99 guarantees that the VLA element 1527 // count must be nonzero. 1528 CGF.EmitBlock(loopBB); 1529 1530 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1531 cur->addIncoming(begin.getPointer(), originBB); 1532 1533 CharUnits curAlign = 1534 dest.getAlignment().alignmentOfArrayElement(baseSize); 1535 1536 // memcpy the individual element bit-pattern. 1537 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1538 /*volatile*/ false); 1539 1540 // Go to the next element. 1541 llvm::Value *next = 1542 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1543 1544 // Leave if that's the end of the VLA. 1545 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1546 Builder.CreateCondBr(done, contBB, loopBB); 1547 cur->addIncoming(next, loopBB); 1548 1549 CGF.EmitBlock(contBB); 1550 } 1551 1552 void 1553 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1554 // Ignore empty classes in C++. 1555 if (getLangOpts().CPlusPlus) { 1556 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1557 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1558 return; 1559 } 1560 } 1561 1562 // Cast the dest ptr to the appropriate i8 pointer type. 1563 if (DestPtr.getElementType() != Int8Ty) 1564 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1565 1566 // Get size and alignment info for this aggregate. 1567 CharUnits size = getContext().getTypeSizeInChars(Ty); 1568 1569 llvm::Value *SizeVal; 1570 const VariableArrayType *vla; 1571 1572 // Don't bother emitting a zero-byte memset. 1573 if (size.isZero()) { 1574 // But note that getTypeInfo returns 0 for a VLA. 1575 if (const VariableArrayType *vlaType = 1576 dyn_cast_or_null<VariableArrayType>( 1577 getContext().getAsArrayType(Ty))) { 1578 QualType eltType; 1579 llvm::Value *numElts; 1580 std::tie(numElts, eltType) = getVLASize(vlaType); 1581 1582 SizeVal = numElts; 1583 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1584 if (!eltSize.isOne()) 1585 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1586 vla = vlaType; 1587 } else { 1588 return; 1589 } 1590 } else { 1591 SizeVal = CGM.getSize(size); 1592 vla = nullptr; 1593 } 1594 1595 // If the type contains a pointer to data member we can't memset it to zero. 1596 // Instead, create a null constant and copy it to the destination. 1597 // TODO: there are other patterns besides zero that we can usefully memset, 1598 // like -1, which happens to be the pattern used by member-pointers. 1599 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1600 // For a VLA, emit a single element, then splat that over the VLA. 1601 if (vla) Ty = getContext().getBaseElementType(vla); 1602 1603 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1604 1605 llvm::GlobalVariable *NullVariable = 1606 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1607 /*isConstant=*/true, 1608 llvm::GlobalVariable::PrivateLinkage, 1609 NullConstant, Twine()); 1610 CharUnits NullAlign = DestPtr.getAlignment(); 1611 NullVariable->setAlignment(NullAlign.getQuantity()); 1612 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1613 NullAlign); 1614 1615 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1616 1617 // Get and call the appropriate llvm.memcpy overload. 1618 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1619 return; 1620 } 1621 1622 // Otherwise, just memset the whole thing to zero. This is legal 1623 // because in LLVM, all default initializers (other than the ones we just 1624 // handled above) are guaranteed to have a bit pattern of all zeros. 1625 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1626 } 1627 1628 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1629 // Make sure that there is a block for the indirect goto. 1630 if (!IndirectBranch) 1631 GetIndirectGotoBlock(); 1632 1633 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1634 1635 // Make sure the indirect branch includes all of the address-taken blocks. 1636 IndirectBranch->addDestination(BB); 1637 return llvm::BlockAddress::get(CurFn, BB); 1638 } 1639 1640 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1641 // If we already made the indirect branch for indirect goto, return its block. 1642 if (IndirectBranch) return IndirectBranch->getParent(); 1643 1644 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1645 1646 // Create the PHI node that indirect gotos will add entries to. 1647 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1648 "indirect.goto.dest"); 1649 1650 // Create the indirect branch instruction. 1651 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1652 return IndirectBranch->getParent(); 1653 } 1654 1655 /// Computes the length of an array in elements, as well as the base 1656 /// element type and a properly-typed first element pointer. 1657 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1658 QualType &baseType, 1659 Address &addr) { 1660 const ArrayType *arrayType = origArrayType; 1661 1662 // If it's a VLA, we have to load the stored size. Note that 1663 // this is the size of the VLA in bytes, not its size in elements. 1664 llvm::Value *numVLAElements = nullptr; 1665 if (isa<VariableArrayType>(arrayType)) { 1666 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1667 1668 // Walk into all VLAs. This doesn't require changes to addr, 1669 // which has type T* where T is the first non-VLA element type. 1670 do { 1671 QualType elementType = arrayType->getElementType(); 1672 arrayType = getContext().getAsArrayType(elementType); 1673 1674 // If we only have VLA components, 'addr' requires no adjustment. 1675 if (!arrayType) { 1676 baseType = elementType; 1677 return numVLAElements; 1678 } 1679 } while (isa<VariableArrayType>(arrayType)); 1680 1681 // We get out here only if we find a constant array type 1682 // inside the VLA. 1683 } 1684 1685 // We have some number of constant-length arrays, so addr should 1686 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1687 // down to the first element of addr. 1688 SmallVector<llvm::Value*, 8> gepIndices; 1689 1690 // GEP down to the array type. 1691 llvm::ConstantInt *zero = Builder.getInt32(0); 1692 gepIndices.push_back(zero); 1693 1694 uint64_t countFromCLAs = 1; 1695 QualType eltType; 1696 1697 llvm::ArrayType *llvmArrayType = 1698 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1699 while (llvmArrayType) { 1700 assert(isa<ConstantArrayType>(arrayType)); 1701 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1702 == llvmArrayType->getNumElements()); 1703 1704 gepIndices.push_back(zero); 1705 countFromCLAs *= llvmArrayType->getNumElements(); 1706 eltType = arrayType->getElementType(); 1707 1708 llvmArrayType = 1709 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1710 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1711 assert((!llvmArrayType || arrayType) && 1712 "LLVM and Clang types are out-of-synch"); 1713 } 1714 1715 if (arrayType) { 1716 // From this point onwards, the Clang array type has been emitted 1717 // as some other type (probably a packed struct). Compute the array 1718 // size, and just emit the 'begin' expression as a bitcast. 1719 while (arrayType) { 1720 countFromCLAs *= 1721 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1722 eltType = arrayType->getElementType(); 1723 arrayType = getContext().getAsArrayType(eltType); 1724 } 1725 1726 llvm::Type *baseType = ConvertType(eltType); 1727 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1728 } else { 1729 // Create the actual GEP. 1730 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1731 gepIndices, "array.begin"), 1732 addr.getAlignment()); 1733 } 1734 1735 baseType = eltType; 1736 1737 llvm::Value *numElements 1738 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1739 1740 // If we had any VLA dimensions, factor them in. 1741 if (numVLAElements) 1742 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1743 1744 return numElements; 1745 } 1746 1747 std::pair<llvm::Value*, QualType> 1748 CodeGenFunction::getVLASize(QualType type) { 1749 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1750 assert(vla && "type was not a variable array type!"); 1751 return getVLASize(vla); 1752 } 1753 1754 std::pair<llvm::Value*, QualType> 1755 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1756 // The number of elements so far; always size_t. 1757 llvm::Value *numElements = nullptr; 1758 1759 QualType elementType; 1760 do { 1761 elementType = type->getElementType(); 1762 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1763 assert(vlaSize && "no size for VLA!"); 1764 assert(vlaSize->getType() == SizeTy); 1765 1766 if (!numElements) { 1767 numElements = vlaSize; 1768 } else { 1769 // It's undefined behavior if this wraps around, so mark it that way. 1770 // FIXME: Teach -fsanitize=undefined to trap this. 1771 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1772 } 1773 } while ((type = getContext().getAsVariableArrayType(elementType))); 1774 1775 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1776 } 1777 1778 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1779 assert(type->isVariablyModifiedType() && 1780 "Must pass variably modified type to EmitVLASizes!"); 1781 1782 EnsureInsertPoint(); 1783 1784 // We're going to walk down into the type and look for VLA 1785 // expressions. 1786 do { 1787 assert(type->isVariablyModifiedType()); 1788 1789 const Type *ty = type.getTypePtr(); 1790 switch (ty->getTypeClass()) { 1791 1792 #define TYPE(Class, Base) 1793 #define ABSTRACT_TYPE(Class, Base) 1794 #define NON_CANONICAL_TYPE(Class, Base) 1795 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1796 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1797 #include "clang/AST/TypeNodes.def" 1798 llvm_unreachable("unexpected dependent type!"); 1799 1800 // These types are never variably-modified. 1801 case Type::Builtin: 1802 case Type::Complex: 1803 case Type::Vector: 1804 case Type::ExtVector: 1805 case Type::Record: 1806 case Type::Enum: 1807 case Type::Elaborated: 1808 case Type::TemplateSpecialization: 1809 case Type::ObjCTypeParam: 1810 case Type::ObjCObject: 1811 case Type::ObjCInterface: 1812 case Type::ObjCObjectPointer: 1813 llvm_unreachable("type class is never variably-modified!"); 1814 1815 case Type::Adjusted: 1816 type = cast<AdjustedType>(ty)->getAdjustedType(); 1817 break; 1818 1819 case Type::Decayed: 1820 type = cast<DecayedType>(ty)->getPointeeType(); 1821 break; 1822 1823 case Type::Pointer: 1824 type = cast<PointerType>(ty)->getPointeeType(); 1825 break; 1826 1827 case Type::BlockPointer: 1828 type = cast<BlockPointerType>(ty)->getPointeeType(); 1829 break; 1830 1831 case Type::LValueReference: 1832 case Type::RValueReference: 1833 type = cast<ReferenceType>(ty)->getPointeeType(); 1834 break; 1835 1836 case Type::MemberPointer: 1837 type = cast<MemberPointerType>(ty)->getPointeeType(); 1838 break; 1839 1840 case Type::ConstantArray: 1841 case Type::IncompleteArray: 1842 // Losing element qualification here is fine. 1843 type = cast<ArrayType>(ty)->getElementType(); 1844 break; 1845 1846 case Type::VariableArray: { 1847 // Losing element qualification here is fine. 1848 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1849 1850 // Unknown size indication requires no size computation. 1851 // Otherwise, evaluate and record it. 1852 if (const Expr *size = vat->getSizeExpr()) { 1853 // It's possible that we might have emitted this already, 1854 // e.g. with a typedef and a pointer to it. 1855 llvm::Value *&entry = VLASizeMap[size]; 1856 if (!entry) { 1857 llvm::Value *Size = EmitScalarExpr(size); 1858 1859 // C11 6.7.6.2p5: 1860 // If the size is an expression that is not an integer constant 1861 // expression [...] each time it is evaluated it shall have a value 1862 // greater than zero. 1863 if (SanOpts.has(SanitizerKind::VLABound) && 1864 size->getType()->isSignedIntegerType()) { 1865 SanitizerScope SanScope(this); 1866 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1867 llvm::Constant *StaticArgs[] = { 1868 EmitCheckSourceLocation(size->getLocStart()), 1869 EmitCheckTypeDescriptor(size->getType()) 1870 }; 1871 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1872 SanitizerKind::VLABound), 1873 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1874 } 1875 1876 // Always zexting here would be wrong if it weren't 1877 // undefined behavior to have a negative bound. 1878 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1879 } 1880 } 1881 type = vat->getElementType(); 1882 break; 1883 } 1884 1885 case Type::FunctionProto: 1886 case Type::FunctionNoProto: 1887 type = cast<FunctionType>(ty)->getReturnType(); 1888 break; 1889 1890 case Type::Paren: 1891 case Type::TypeOf: 1892 case Type::UnaryTransform: 1893 case Type::Attributed: 1894 case Type::SubstTemplateTypeParm: 1895 case Type::PackExpansion: 1896 // Keep walking after single level desugaring. 1897 type = type.getSingleStepDesugaredType(getContext()); 1898 break; 1899 1900 case Type::Typedef: 1901 case Type::Decltype: 1902 case Type::Auto: 1903 // Stop walking: nothing to do. 1904 return; 1905 1906 case Type::TypeOfExpr: 1907 // Stop walking: emit typeof expression. 1908 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1909 return; 1910 1911 case Type::Atomic: 1912 type = cast<AtomicType>(ty)->getValueType(); 1913 break; 1914 1915 case Type::Pipe: 1916 type = cast<PipeType>(ty)->getElementType(); 1917 break; 1918 } 1919 } while (type->isVariablyModifiedType()); 1920 } 1921 1922 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1923 if (getContext().getBuiltinVaListType()->isArrayType()) 1924 return EmitPointerWithAlignment(E); 1925 return EmitLValue(E).getAddress(); 1926 } 1927 1928 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1929 return EmitLValue(E).getAddress(); 1930 } 1931 1932 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1933 const APValue &Init) { 1934 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1935 if (CGDebugInfo *Dbg = getDebugInfo()) 1936 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1937 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1938 } 1939 1940 CodeGenFunction::PeepholeProtection 1941 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1942 // At the moment, the only aggressive peephole we do in IR gen 1943 // is trunc(zext) folding, but if we add more, we can easily 1944 // extend this protection. 1945 1946 if (!rvalue.isScalar()) return PeepholeProtection(); 1947 llvm::Value *value = rvalue.getScalarVal(); 1948 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1949 1950 // Just make an extra bitcast. 1951 assert(HaveInsertPoint()); 1952 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1953 Builder.GetInsertBlock()); 1954 1955 PeepholeProtection protection; 1956 protection.Inst = inst; 1957 return protection; 1958 } 1959 1960 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1961 if (!protection.Inst) return; 1962 1963 // In theory, we could try to duplicate the peepholes now, but whatever. 1964 protection.Inst->eraseFromParent(); 1965 } 1966 1967 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1968 llvm::Value *AnnotatedVal, 1969 StringRef AnnotationStr, 1970 SourceLocation Location) { 1971 llvm::Value *Args[4] = { 1972 AnnotatedVal, 1973 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1974 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1975 CGM.EmitAnnotationLineNo(Location) 1976 }; 1977 return Builder.CreateCall(AnnotationFn, Args); 1978 } 1979 1980 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1981 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1982 // FIXME We create a new bitcast for every annotation because that's what 1983 // llvm-gcc was doing. 1984 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1985 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1986 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1987 I->getAnnotation(), D->getLocation()); 1988 } 1989 1990 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1991 Address Addr) { 1992 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1993 llvm::Value *V = Addr.getPointer(); 1994 llvm::Type *VTy = V->getType(); 1995 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1996 CGM.Int8PtrTy); 1997 1998 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1999 // FIXME Always emit the cast inst so we can differentiate between 2000 // annotation on the first field of a struct and annotation on the struct 2001 // itself. 2002 if (VTy != CGM.Int8PtrTy) 2003 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2004 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2005 V = Builder.CreateBitCast(V, VTy); 2006 } 2007 2008 return Address(V, Addr.getAlignment()); 2009 } 2010 2011 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2012 2013 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2014 : CGF(CGF) { 2015 assert(!CGF->IsSanitizerScope); 2016 CGF->IsSanitizerScope = true; 2017 } 2018 2019 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2020 CGF->IsSanitizerScope = false; 2021 } 2022 2023 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2024 const llvm::Twine &Name, 2025 llvm::BasicBlock *BB, 2026 llvm::BasicBlock::iterator InsertPt) const { 2027 LoopStack.InsertHelper(I); 2028 if (IsSanitizerScope) 2029 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2030 } 2031 2032 void CGBuilderInserter::InsertHelper( 2033 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2034 llvm::BasicBlock::iterator InsertPt) const { 2035 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2036 if (CGF) 2037 CGF->InsertHelper(I, Name, BB, InsertPt); 2038 } 2039 2040 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2041 CodeGenModule &CGM, const FunctionDecl *FD, 2042 std::string &FirstMissing) { 2043 // If there aren't any required features listed then go ahead and return. 2044 if (ReqFeatures.empty()) 2045 return false; 2046 2047 // Now build up the set of caller features and verify that all the required 2048 // features are there. 2049 llvm::StringMap<bool> CallerFeatureMap; 2050 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2051 2052 // If we have at least one of the features in the feature list return 2053 // true, otherwise return false. 2054 return std::all_of( 2055 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2056 SmallVector<StringRef, 1> OrFeatures; 2057 Feature.split(OrFeatures, "|"); 2058 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2059 [&](StringRef Feature) { 2060 if (!CallerFeatureMap.lookup(Feature)) { 2061 FirstMissing = Feature.str(); 2062 return false; 2063 } 2064 return true; 2065 }); 2066 }); 2067 } 2068 2069 // Emits an error if we don't have a valid set of target features for the 2070 // called function. 2071 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2072 const FunctionDecl *TargetDecl) { 2073 // Early exit if this is an indirect call. 2074 if (!TargetDecl) 2075 return; 2076 2077 // Get the current enclosing function if it exists. If it doesn't 2078 // we can't check the target features anyhow. 2079 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2080 if (!FD) 2081 return; 2082 2083 // Grab the required features for the call. For a builtin this is listed in 2084 // the td file with the default cpu, for an always_inline function this is any 2085 // listed cpu and any listed features. 2086 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2087 std::string MissingFeature; 2088 if (BuiltinID) { 2089 SmallVector<StringRef, 1> ReqFeatures; 2090 const char *FeatureList = 2091 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2092 // Return if the builtin doesn't have any required features. 2093 if (!FeatureList || StringRef(FeatureList) == "") 2094 return; 2095 StringRef(FeatureList).split(ReqFeatures, ","); 2096 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2097 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2098 << TargetDecl->getDeclName() 2099 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2100 2101 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2102 // Get the required features for the callee. 2103 SmallVector<StringRef, 1> ReqFeatures; 2104 llvm::StringMap<bool> CalleeFeatureMap; 2105 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2106 for (const auto &F : CalleeFeatureMap) { 2107 // Only positive features are "required". 2108 if (F.getValue()) 2109 ReqFeatures.push_back(F.getKey()); 2110 } 2111 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2112 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2113 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2114 } 2115 } 2116 2117 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2118 if (!CGM.getCodeGenOpts().SanitizeStats) 2119 return; 2120 2121 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2122 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2123 CGM.getSanStats().create(IRB, SSK); 2124 } 2125 2126 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2127 if (CGDebugInfo *DI = getDebugInfo()) 2128 return DI->SourceLocToDebugLoc(Location); 2129 2130 return llvm::DebugLoc(); 2131 } 2132